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Summary. An additive Schwarz iteration is described for the fast resolution of
linear ill-posed problems which are stabilized by Tikhonov regularization. The
algorithm and its analysis are presented in a general framework which applies
to integral equations of the first kind discretized either by spline functions or
Daubechies wavelets. Numerical experiments are reported on to illustrate the
theoretical results and to compare both discretization schemes.
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1. Introduction

Iterative schemes for solving the compact operator equation (1.1) of the first
kind,
(1.1 Kf =g,

are mostly used in the sense of regularization methods due to the ill-posedness
of (1.1), that is, they are used to balance the data error and the approximation
error, see e. g. Louis [18]. From this point of view the convergence speed and

the performance of these iterative methods are of minor importance.

In this paper we discretize equation (1.1) by applying the method of least
squares and stabilize it by Tikhonov regularization, see Plato and Vainikko [21].
Since the resulting finite dimensional linear system is already regularized we are
primarily interested in achieving an efficient iterative solver in terms of conver-
gence speed, parallel coding, and performance. Therefore, an additive Schwarz
relaxation will be the method of our choice.

For the construction of the multilevel solver we will split the test func-
tion space into orthogonal subspaces of increasing dimension. The number of
subspaces involved is called the splitting level and the subspace with smallest
dimension is referred to as coarsest space.
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502 A. Rieder

This approach not only offers all the advantages of multilevel splittings but
also yields an asymptotic orthogonality of the splitting spaces with respect to an
inner product related to problem (1.1). The latter fact will be essential for the
presented convergence analysis where we will rely on well-known convergence
results for Schwarz type methods, see e. g. Hackbusch [15], Oswald [20] and
Yserentant [27].

A first study of multilevel algorithms in connection with ill-posed problems
was done by King in [17] where he proposed a method which is akin to the
nested iteration known in multigrid theory, cf. Hackbusch [15]. King applied his
multilevel iteration as a regularization technique in the sense mentioned above.
This is one of the main differences to our approach. A more detailed comparison
of King’s algorithm with our algorithm is postponed to Sect. 5.

The outline of this paper is as follows. In the next section we give a brief
account on the adequate discretization and regularization of equation (1.1) by
the method of least squares. Also in the next section we introduce the multilevel
splitting of the approximation space and prove some of its properties.

Section 3 is devoted to the additive Schwarz iteration. After a motivation we
define and analyze the iteration in an abstract framework. We find two qualitative
different convergence results: 1. For a fixed splitting level, the convergence is
getting faster as the discretization step-size decreases, that is, the dimension
of the approximation space increases. 2. In case the coarsest space is fixed, the
convergence rate is independent of the discretization step-size and of the splitting
level. We complete Sect. 3 with a representation of the algorithm with respect to
wavelet or pre-wavelet splittings of the approximation space.

In the remainder of the paper we apply the proposed iterative scheme to
integral equations oh.?(0,1). Here, we present two families of test function
spaces which satisfy the hypotheses of our abstract theory. These spaces are
spline spaces and the spaces of the Daubechies scaling functions on the interval,
see Cohen, Daubechies and Vial [6]. The numerical realization of the method
in this setting is considered next. We show that approximate integration, which
will be necessary in a general application of the algorithm, does not deteriorate
the convergence behaviour. Finally, an analysis of the computational complexity
confirms the efficiency of the iteration and the presentation of various numerical
experiments support the theoretical results.

Wavelets have already been used for the treatment of inverse problems.
For instance, we refer to Donoho [13], Dicken and Maal3 [12] and to Xia and
Nashed [26].

2. Preliminary considerations

2.1. Discretization, regularization and parameter selection

LetK : X — Y (X,Y real Hilbert spaces) be a compact non-degenerate operator.
Then, it is well known that equation (1.1) is ill posed, that is, the minimum norm
solutionf* of (1.1) does not depend continuously on the right hand gide
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We now assume that only noisy daja € Y are available satisfyinglg —
¢¢|ly < e for a known error bound > 0. A computable approximation to*
is then provided by the unique solutidfi*® of the finite dimensional normal
equation
(2.1) (K*Ki + al)fi = K*¢%, a>0,

which is stabilized using Tikhonov regularization (throughout the pagEmotes
either the identity operator or the identity matrix of appropriate size). In (2.1),
K; = KP, whereP; : X — V, is the orthogonal projection onto the subsp¥ce-

X. In the sequel we will assume that the sequefi¢g, of finite dimensional
approximation spaces is expanding, i.\e.C V.1, and that the union,V, is
dense inX. Under these assumptions the quantity

(2.2) 7= K=K = [[KE =PI,
which will be crucial for the further analysis, satisfies
(2.3) 1<y and 4 —0asl —» oo iff K is compact,

see e. g. Groetsch [14]. The operator norm in (2.2) is defined|Ky =
sup{[[Kully [u € X, [luflx = 1}.

An a-priori (o = afl, €)) as well as an a-posteriori (= ol , €, g¢)) choice for
the regularization parameterin (2.1) is established by Plato and Vainikko [21]
leading to the convergence §f“ to the minimum norm solutiof* ase tends
to zero and goes to infinity. Moreover, the resulting convergence rate is optimal
in e.

It is the goal of the paper to provide an efficient multilevel solver for equation
(2.1) with one of the above mentioned parameter selection strategos the
general assumption of a fixed noise leweln this frameworkx is bounded below
by a positive constantg(c) uniformly in the discretization levdl which gives
that
(2.4) M < Vaole) < Va forl sufficiently large.

The above inequality guarantees a high performance of our multilevel solver as
will be discussed in the Sects. 4 and 5.

Remark.From an abstract point of view the normal equation (2.1) is a symmetric
operator equation of the second kind. Therefore, our algorithm applies to such a
class of problems in general. Nevertheless we present our algorithm in the above
context of ill-posed problems since Tikhonov regularization automatically leads
to linear problems (2.1) with symmetric and positive definite matrices.

2.2. Multilevel splitting of the approximation spaces
The basis of all multilevel algorithms is the decomposition of the approximation

space into subspaces. To this end we define the spaas theX—orthogonal
complement o, with respect to the larger spa®:1: Vi+1 =V, W whered
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denotes th&X—orthogonal sum. Consequently, we have the orthogonal multilevel
splitting
-1
(2.5) Vi =V, @ @ Wi, Inin <1 =1,
i =Imin

which also can be expressed in terms of projection operators
-1
(2'6) P = PImin + Z Qj
1 =Imin
whereQ; is the orthogonal projection frord onto W, .

Compact operators vanish asymptotically on the complement spdces

Lemma 2.1. Let \j and W be the spaces defined above and let K — Y be
a compact linear operator. Then,

IKQJ] <y —0 as |- oo
where~, is defined in(2.2).

Proof. The orthogonality ofv; and W gives PQ, = 0. Therefore,|K Q|| =
KO =P)Q <|KI-=P)[=x. O

The regularized normal equation (2.1) can be reformulated as a variational prob-
lem

@2.7)  find 5% e Vi1 a(fo u) = (K*g%,v)x forall v €V

where the bilinear forma : X x X — IR,
(2.8) a(u,v) = (Ku,Kv)y + a{u,v)x,

is symmetric and positive definite. The operato# = K*K, + aP, and. 7 =
QK*KQ +aQ; are associated @ viaa(u,v) = {4 u;, v )x forall u, v €V,
anda(w,z) = (Aw,z)x for all wy,z € W, respectively.

Later, we will rely on the following strong Cauchy inequality which basically
says that the spac&$ andW, are not onlyX—orthogonal but also asymptotically
orthogonal with respect to the inner product Xrinduced by the bilinear form
a (2.8). The corresponding norin- ||2 = a(-, -) is called energy norm oK.

Theorem 2.2. Let f and W, be defined as above and let tn |I. The strong
Cauchy inequality

la(ur, wm) | < min{L, ym/vVa} (v llal|wnla
holds true for allvy € V, and for all wy, € Wi,
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Proof. Since vy and wy, are orthogonal inX we have thata(v,wn) =
(Kv, Kwm)y . Further,

a(u, wm)| = [(Ki. 2 Y220 KQm B Y2 B 2wy |

,—1/2 21/2 D— G
< K 2P0l 1K Qe B Y2 - P
,—1/2 B—
< KA 2 ol IKQul (-0 21w [fa-
Using arguments from spectral theory it is easy to verify th&t. 2, 12 | <

1 and || ZnY?| < a~Y2. Thus, the strong Cauchy inequality is proved by
[KQm|| < vm (Lemma 2.1). O

Corollary 2.3. Letj < I. Then,

la(w;, w)| < min{l,ym/va} [wlallw a
for all w; € W, and for allw, € W.

Proof. BecauseW, C V, for j < | the statement follows readily from Theo-
rem2.2. O

3. The additive Schwarz iteration
3.1. Abstract formulation and convergence analysis

The general philosophy behind any multilevel iteration with respect to a given
splitting is to replace the original large scale problem by auxiliary problems on
the subspaces which can be solved cheaply. If the subproblems are chosen in an
adequate way, their combination should yield a reasonable approximation to the
original problem, see e. g. Oswald [20] andde [22].

We introduce some notation to clarify this multilevel concept in our setting.
Recalling the statement of Lemma 2.1, the auxiliary bilinear fdgmsi xW —
R defined by
3.1) by (wy, U) = o (wy, Uj)x,

approximatea (2.8) reasonably well oV, at least forj large. Furthermore, let
F Vi — W be given by the variational probleny{, <j <I —1)

(3.2) bj (Fu,w;) = a(u,wj) forv €V, and for allw; € W,.

In operator notation we may writg’ = a~1Q;. 4. On the coarsest approximation
spacev, . we keep the original bilinear form. Here, we get2, . : V| — V,
by

(3.3) a(#

min

u,v . ) = a(y,v . ) forvy €V, and forally_. €V,

min min min min min
9 — 2—1 /7 H H 5
or. 72 .. = Lné|minplmin"'76| in operator notation. Now, we sum up tbg's and
)
'/glmin’
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-1 -1
g 05 — 2—1 -1 X 7
Tin * T = (AP + 07 D Q)

1=lmin 1=Imin

= ?,(l’

Imin
and conside?; | . as an approximate inverse.o#, with respect to the splitting
(2.5).

Starting with an initial guesa,o € V| we define the additive Schwarz iteration
for the approximate solution of (2.1) resp. (2.7) by
B4 u=u —wE, (A - Kig), w=012...,

with a damping parameter € R. If 7 . is close to /Zl‘l we may expect fast
convergence ofu/‘},>o to f,~“. For a convergence analysis we introduce a new
norm onV, relative to the splitting (2.5):

-1
o 17 = P 12+ a Y 1Qu |k
i=lmin
Theorem 3.1. Suppose that
(3.5) Lilllo[[P < o[z < Tolllu ||* forall v eV
holds true for some numbeés< I, < I,. Then,

||f|5’04 _ullu ||a < pulj ||f|67a _ulo||37 [L::L,Z,...,

wherep,, = max{ |1 — w |, |1 — w Iy }. The convergence rate, attains its
minimumpwOpt =[o— 1)/ T+ Iy) < Lfor wop = 2/(Iu+ Io).

Proof. See e. g. Oswald [20], Theorem 18 on page 79. See also Hackbusch [15]
and Yserentant [27]. O

Providingy (2.2) tends to zero sufficiently fast we can estimate the boufds
and I, reasonably well.
Theorem 3.2. Letn be an upper bound of; (1 < ) satisfying
-1

(3.6) m<m-1 and Y < Gy,

i=\min
with a positive constant £which does neither depend on | nor gl Then, the
norm equivalencé3.5) holds true for

FU = 1 )
1+ 2C77 (1 + (CU + 1)U|min)g|min
Iy = (1 +a,2mm) (1+2Cya,,.),

where Olnin = 77|mm/\/a. The convergence ratg; of the undampedw = 1)
iteration (3.4) fulfills

p1 < 2Cy o1y, (Lo, (L+maxCy, o1, 1))
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The above theorem, which will be proved in the appendix, has to be interpreted
in the following ways:

1. For a fixedsplitting level L=1 — Ihin > 1 and a fixed noise level > 0 the
convergence ratp; tends to zero. Moreover,

(3.7) pi(l) = O(m-L/Ve) asl — oo,

where the constant in the abo@-expression does neither dependloand L
nor ona.
2. For a given noise levet > 0 the undamped iteration admits a conver-
gence ratep; which is bounded smaller than 1 uniformly Inprovided that
Min < v/ (2C, (C, +2)). In this casdmin depends om and it increases when
¢ decreases.
3. If Imin is fixed independently of andl then the undamped iteration may even
diverge fore too small. Still, we can use the undamped iteration as a precon-
ditioner for the conjugate gradient method applied to (2.1). For more details on
preconditioning the conjugate gradient method we refer e. g. to Deuflhard and
Hohmann [11] and Hackbusch [15].

As an initial guess for the iteration (3.4) we suggest to take= f,;’i‘;‘, the
solution of (2.7) with respect t¥, . . The effort to calculaté,;’i(: is less than
the computational work for one iteration step.

Lemma 3.3. Let Y =f,~“. Then,

go 0 2 H g0
I ulla < \/HKII +a ygg;m i v[[x-
Proof. The proof is analogous to the proof ofe€s lemma, see e. g. Ciar-
let [5]. O

3.2. Representation in coordinates

In this section we present a matrix version of the iteration (3.4) given suitable
Riesz-bases iV, andW,. Therefore, we assume thétis a function space over
the compact intervald, b] c 2; X = L?(a, b) for example. The results obtained
can easily be generalized to multiple tensor productX efith itself.

Let ¢ € X be a compactly supported function satisfying the refinement equa-

tion
M,—1

(3.8) p(x) = V2 > hep2x —k)

k=0
with coefficientshy € IR (¢ is called scaling function in the wavelet terminology,

see e. g. Daubechies [9]). For the ease of presentation we neglect — at the present
time — necessary boundary modifications and suppose that

(3.9 Vi =spafyix |k=0,....,nm —1} C X
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for all | > 1* > 0 wherey x(x) := 2'/2p(2x — k). Further let there exist another
function ¢, the wavelet, such thaté = spaf x|k =0,...,m — 1} and

My —1

(3.10) $x) = V2 Y gep(2x k)

k=0

with coefficientsgy € .

Since the sum of two functiorfs= ", C|'<90|,k eViandg =), d|'<1/1| kK EW
is in Vj41, it can be expressed liy+g = >, ¢k o1k Applying both refinement
equations (3.8) and (3.10) we get the relation

Gt =D hcad +> gegd
i ]

which we write in matrix notation as
(3.11) c*t = H,c" + Gl d".

Clearly,Hj+1 : R"™ - R™ andG4p : R" — R™M,

The solutiorf,”“ of the variational problem (2.7) resp. of the normal equation
(2.1) can be expanded in the basis\4fas f=“ = ", (&)kpi k. The vector
& € R" of the expansion coefficients is the unique solution of the linear system

(3.12) A& =06

where the entries of the positive definite matfixand of the right hand sidg,
are given by

A = (Ko, Kerj)y + aoni,orj)x  and

@) = (g5, Korj)y -

Lemma 3.4. Let.7f and.72, . be the operators introduced i(8.2) and (3.3),
respectively. Further define the restrictions

(3.13)

;= HaaHp - HogHOGRY - RY,
fﬁ’_’j = GjerHj --- HiZ1H TRV S R™M

forj <l —2andset7,_1:=H and 4 ,_1 :=G.
For vy =3, Clor x € Vi we have that

n—1

07, — -1 ot -1 | H

T =Y (G B AC) v e <) <1 -1
k=0

where B is the Gramian matriXB;), s = (¢j.r,¢; s)x, and

n—1
F — ot -1 g |
'ﬂlminvl = E <!76|=|min A'min '7g|v|minA| C )kgohk.
k=0
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Proof. Sincefy x € Wi there exists a matri'xr‘ € R"*M with entriesTy ; such
that.F ok = Y- Twi ¢ Afunctionw; = 37, diej « € W admits the expansion
wj =3 (4945d"), o1k which follows inductively from (3.11). Hence,

b (Fvi,wi) = a(BTc,d)gn and a(u,w;) = (G;Ac,d)gn
Finally, the equation (3.2) give§ = o B 1% ;A and we getFu =
PTUSTUNIED S E/ A [ NS

The representation o2, .. can be proved in the same way(

Now, the abstract iteration (3.4) translated into an iteration acting on (3.12) reads
(314) Z|/L+l = Z|'u - w Clvlmln ( Z|IL - ﬁ|)7 m= 07 1a 27 tee

where
-1
— ot Z -1 ((t 1 ((
7/| Im|n Aimn 7/| 'mln to Z B J

i=\min

3.15) C,

mln

and with an arbitrary starting gues® € R"™. The starting guess due to
Lemma 3.3 is

0 _ - 15
(3.16) 2’ = 0 inlimin = PO tminP T i -

In the next section we will see that the apphcatlonBj)Tl and hence o
to a vector can be realized in a very efficient way.

»'min

Remark.Readers familiar with multilevel preconditioners in the context of finite
element discretizations of elliptic PDEs may wonder why we do not go one step
further and replace!\( as well asB;~ ! lmin <j <1 —1,in (3.15) by the
spectrally equivalent |dent|ty matrilx. In domg s0,Gi 1,;, Would certainly gain

a simpler structure but we would loose property (3. 7) For a fixed splitting level
the convergence speed of (3.14) would not be improved when the discretization
level | increases. As a consequence the multilevel scheme (3.14) would not
be attractive any more as an iteration in its own right. In this situa@on,

could serve as a preconditioner for the conjugate gradient method applied to
(2.1) leading to a level independent convergence rate. However, the conjugate
gradient method acting on (2.%)ithout any preconditioning results already in

a level independent convergence speed. This is true beeauseng(e) > 0
uniformly in I, cf. (2.4). Hence, the iteration (3.14) for large scale problems
(2.1) is meaningful only if (3.7) holds, see also Sect.4.2.2. In other words: the
X-orthogonality of the splitting (2.5) is a crucial ingredient for our multilevel
algorithm and cannot be relaxed.
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4. Application to integral equations

We demonstrate the performance of our proposed iterative scheme for the solution
of integral equations. For simplicity we limit ourselves to problems on the unit
interval, but the algorithm can be carried over to problems on Cartesian products
of intervals.

Let K : L?(0,1) — L?%0,1) be an integral operator with non-degenerate
kernelk which is square integrable over the unit squargl[&. Then, the integral
equation of the first kind,

1
@.1) Kf() = /0 k(G y) ) dy = g0).

is ill posed.

To estimate the decay rate of as| goes to infinity, we consider scaling
function space¥, (3.9) oforder N, that is, the polynomials up to degrée— 1
restricted to [01] are inV,.

We associate the discretization step-sizes 2~' to V| and we will useD'
to denote the (generalized) differential operator of order

Lemma 4.1. Let \f be the spaceg3.9)of order N . Further, let K be the integral
operator(4.1) and suppose that the compositiof B* is a bounded operator on
L?(0,1) foronere {1,...,N}. Then,

(4.2) n =0 =P)K*| < Cy DK™ 4.

Proof. If f is sufficiently smooth we have the following approximation result:
I =P)f |l < Cn |IDf||2 ¢ for r =1,...,N, see e. g. Strang [23], Strang
and Fix [24]. The estimate foy, is a straightforward consequencea

In the framework of scaling function spaces of ortlep> 1, Theorem 3.2 applies
because the requirements (3.6) are metifor Cy |D" K*|| " with r > 1 and
the decay rate (3.7) reads now

(4.3) pi(l) = O(§7/Va) asl — .

The constant in (4.3) is independentlofL and a.

4.1. Wavelet and spline spaces

Let V|, | > 0, be the space that contains all functions being constant on the
intervals [27'k,27'(k +1)[ (k = 0,...,2 — 1). This is a simple but admissible
choice:V, is of the form (3.9) when we set = x[o,1[, the characteristic function

of the interval [Q1[. The complement spac®¥ have also the dimension and

they are spanned by the Haar-wavelet xo 1/o — X[1/2,11, S€€ Daubechies [8].
The refinement equations (3.8) and (3.10) hold true wmigh= h; = 1/1/2 and
go=—g1=1/V2, respectivelyl, = M, = 2). Clearly, the order o¥| isN = 1.
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0.2

0.0

7 8 9 10 11 12

Fig. 1. Solid curve: convergence ratps of the undamped iteration (3.14),in = | — 4, with respect
to the Haar-wavelet and withk = 0.001. The underlying kernel ik;(x,y) = x — vy, if x >y, and
ki(x,y) = 0, otherwise. Dashed curve: the rate(4.4). The theoretical bound®for g is drawn as
a dashed straight line. On leviek 6 the iteration diverges

The asymptotic behaviour (4.3) is illustrated in Fig. 1 where approximations
to p1(l), L = 4, are plotted for severdland« = 0.001. The underlying kernel is
ki(x,y) =x —y, if x >y, andky(x,y) = 0, otherwise. Besides the convergence
speed we plotted the rate

(4.4) a = pa()/pa(l = 1),

Since (4.3) is valid withr = 1 andL = 4 we expecty to be boundedg < 0.5
for | large.

To improve the poor decay rate @f obtained in the Haar-wavelet case
we introduce scaling function spaces containing polynomials of higher degree.
We present two different families of functions which both can be considered as
further developments of the introductory example above.

4.1.1. Daubechies wavelets on the interval

We will briefly recall the wavelet systems on the interval Ipconstructed by
Cohen et al. in [6]. This construction is a modification of the Daubechies wavelet
family on the real line, see Daubechies [8].

Let ¢ = on ande = ¢y be the Daubechies scaling and wavelet function of
orderN > 2 which both have compact support in AN, N]. Definel* to be
the smallest integer such that'2> 2N. For| > |* there exist R edge scaling
functionse?, ¢i, and N edge waveletg?, ¥, such that each of the sets

X = {¢lk, [0<k <N -1}

U{axIN<k<2 —N-1} U {g}y |2 -N<k<2 -1},
(U ]0<k<N -1}

U{ik[N<k<2 —N-1} U {g} |2 -N<k<2 -1},

Y,

is a family of orthonormal functions ( for convenience we use the notation
f%(x) = 2/2£2(2'x) andfi’, (x) = 2/2£}(2' (1—x)) only for edge functions). The
spaces/,? andW¢ of dimensionsy =m =2,
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(4.5) v\? :=sparX, and W :=spany,,

have all properties required in the previous sections, for instance, the ordgr of
is N. The edge functions satisfy — as the interior funcsiena kind of refinement
equation. The corresponding coefficients are tabulated in [6].

Remark. Since the wavelet-basis W is an orthonormal basis the correspond-
ing Gramian matrixB, coincides with the identity matrix which simplifies the
structure ofC; . (3.15).

min

4.1.2. Spline spaces on the interval

The N-th orderB—splineSy is defined as th&l—fold convolution ofxjo.1;. The
B—splines have compact support in i and they satisfy the refinement relation

N

si00 = Y27 ({) s .

k=0

The correspondin@—spline-wavelet of ordeX is well known, see e. g. Chui [2]
for a comprehensive introduction to spline-wavelets.

As in the case of the Daubechies wavelets we will nedge splinesndedge
spline-waveletdo yield approximation spaces of ordir on [0,1]. ForN = 2
we will give explicit expressions. The general case is considered by Chui and
Quak in [3].

The graph of the lineaB-SplineS; is shown in Fig. 2. We have that

(4.6) S(x) = S(x) = ; (S(2x) + 2S(2x — 1) + S(2x — 2)).
To span the linear functions on,[0], we need two edge splin&® andS* given

by SO%(x) = 1 —x, if 0 < x < 1, S(x) = 0, otherwise, an®*(x) = S°(2 — x).
The modified scaling equation is

So%(x) = SP(2x) + ;S(Zx).
The space,® of dimensionn, = 2 +1,
(4.7) VS = spa S%, S', S«
whereS°(x) := S°(2'x) andSt(x) := (1 —x) (I > 1), coincides with the space

of continuous functions which are affine linear o [R, 2! (k + 1)[.
The interior wavelet)® given by, see Chui and Wang [4],

k=0,...,2 -2},

1 3
PS(X) = S(2x) — _S(2x — 1) + S(2x — 2)
(4.8) " 19 Vs 1X
—58(2x -3) + 10S(Zx —4)
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1 1 1
/\ 1/\2 3
0 0
~06

Fig. 2. The linearB—Spline$ (4.6), its corresponding (pre-)wavelgf (4.8) and the edge spline-
wavelety0 (4.9) for the left boundary ( from left to right)

has compact support in [8], cf. Fig. 2. The edge wavelets® and ' can be
calculated directly and they fulfill
11 1 1
Oy = <0 _ _1) — _
P (X) = S7(2x) 12 S(2x) + 5 S(2x — 1) 12 S(2x — 2),
PHx) = 9°2 - x),
cf. Fig. 2. Again, we set)’(x) := ¢°(2'x), ¥it(x) := »2(1—x) (I > 1), and define
VVIS = spar{zlqo, wll’ W.,k | k= O,.‘.,ZI - 3}

for | > I* = 2. The dimension ofAjS is m = 2' and the reader may convince
himself thatV,5; = V@ Ws, | > 1,

Since the constructed basesvfi andW;® are only Riesz-bases the functions
0, 1L, ¢®, are usually called semi-orthogonal wavelets or pre-wavelets in the
wavelet literature.

(4.9)

Remark.The Gramian matrixB, with respect to the basis iWy® is a band
matrix with band width 3 andB, differs from a Toeplitz matrix only at both
corners of its diagonal. Utilizing these special features together with the Cholesky
decomposition, see e. g. Deuflhard and Hohmann [11], it is possible to compute
the action ofBl‘1 on a vector withO(m/) operations. The additional storage is
independent of the dimension.

4.2. Numerical realization and computational complexity
4.2.1. Matrix generation

The sensitive point in using the proposed method lies in the computation of the
entries of the matripgy (3.13).

Since the integrals(f, ¢ j) 2 can be calculated only approximately we
choose a quadrature rule of the form

(4.10) Qi(f) = 62> wif(xy)

t=0

with weightswy € R and abscissag ¢ < [0, 1], see Sweldens and Piessens [25].
If Q; is exact for polynomials up to degree and iff € # ™1, then
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(411 [(f e - Q] < Co max 10| ™

where the positive constafllp does not depend gn The error estimate (4.11)
follows from Peano’s theorem, see e. g. Davis and Rabinowitz [10].

Approximating the action oK on ¢ ; by the integration rule (4.10) we have
to deal with a perturbatio; = KP, of K, where

m
K () = Qj(kx, ) = 272w k(x, % 1)-
t=0
Provided the degree of accuraey(4.11) of the quadrature rule is sufficiently
high, we will show that the convergence analysis of the previous section carries
over to the perturbed linear system

(4.12) A& =06

with (A = (Ko, Koz + alan, o
m m 1

(4.13) =4 Z Z ws W /k(X>XI,s,i)k(X7XI,t,j)dX +a(o, e
s=0 t=0 0

and () =62 3, we [g°()K(X, % ;) dX, cf. (3.13).

Lemma 4.2. Let \ be either \ (4.5)or V§ (4.7)and letK; be defined as above
with the quadrature rulg4.10) of accuracy m. Further, suppose that the kernel
k of the operator K(4.1) is m+ 1-times continuously differentiable with respect
toy. Then, B

A= (K = K| = 0(g™).

Proof. Obviously, ||[K — K[| < v + ||Ki — Ki||. Using Cauchy’s inequality for
sums and the fact that we have a Riesz-basi¥|oit is straightforward to verify
that

1
_ROYfI2 < 2 RN ()12
I =RTIZ < Clfifen max [ —Rya, 60P ox

(4.11)
< C|flz.m C§ m

2
k(x,y)|” ome.
YE

am+1
ax
[0,1] ’ gym+l

The assumption on the kernel givél, — K||| = O(§™1) as well asy
O(§™1) by Lemma 4.1. O

Lemma 2.1 holds also true fot qualitatively: [KQ || = [[KPi1(l — P)Q <
[Kiva = K[ +[[K = Ki[| = Fpe2 + 3

Altogether we foundThe convergence result stated in Theorgrdapplies
also to the iteratior(3.14)when A is replaced byA . Moreover, the optimal order
r of the decay rat€4.3) is not affected by numerical integration as long as the
guadrature rule has the degree of accuracy-rl.
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4.2.2. Computational complexity and implementation issues

We demonstrate the efficiency of the multilevel algorithm (3.14) for the solution
of (4.12) by comparing its complexity with the complexity of the Cholesky
decomposition which is a suitable direct solver to tackle (4.12).

We make the following general assumptions: We will not include the com-
putation of A (4.13) into the operation count of the algorithm because this effort
has to be raised independent of the specific solver we use for (4.12). The ap-
plication of BJ-‘l in (3.15) is performed according to the remark at the end of

Sect. 4.1.2. Further, the auxiliary linear system with ma&%n is solved using
Cholesky decomposition where the decomposition is computed once before the
iteration starts. Finally, the underlying scaling function spaces have brdard
the degree of accuracy of the used quadrature rub is1.

The different parts of the algorithm have the following operation count (we
consider the leading terms only):

1. Computation of the matrif(\.mm (4.13): Nzn,fni /2. Here, we did not take into
account the evaluation of the kernel at the quadrature points and we supposed
that the integral and the inner products are calculated exactly.

2. Cholesky decomposition §fmin and computation of the starting gue&16):

ne /6.
min

3. One step of the iterationn?. Since the application a@i i (3:15) to a vector

can be realized b@(n +n|fnin) operations, the evaluation of the defect dominates

the complexity.

Thus,s steps of the iteration take essentially
OS =S nz * nI::’nin/6 + I\Iznﬁnin/2

operations.

If we fix the splitting levelL = | — I, then we have on one side that the
convergence rate tends to zero for latgand only a few steps of the iteration
yield the solution, cf. Table 1. On the other si@g is dominated bynfr’nin =
n?_, which gives the unfavourable complexi@s = O(n?). However, with a
sophisticated implementation we can achieve both, a decreasing convergence
rate and an optimal complexity.

The idea is as follows: we allow the splitting leveto grow but not too fast.

We therefore define
(4.14) L{) = [I/3] for | >1"+1,

where | -] denotes the ‘greatest integer’ ahtis the smallest possible approxi-
mation level, cf. Sects.4.1.1 and 4.1.2. Now the asymptotic relation (4.3) reads

@.15) ;) = O(m-rpy/ve) = O(§73/ya) asl — .

So, we sacrificed one third of the optimal decay rate;ofo have the following
operation countr{ = 2')

Os < (s+4/3)n? + 2N2n*3,
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0.1 \\
0.0 * - *—
7 8 9 10 11 12
Fig. 3. Solid curves: convergence ratgs of the iteration (3.14)Imin = | — 5, with respect to the

kernelk; and witha = 0.001 (e: Daubechies wavelet\ = 2; o: linear spline). Dashed curves: the
rateq (4.4). The theoretical boundZb for g is drawn as a dashed straight line

In the latter implementation the undamped multilevel iteration can be viewed as
a direct solver with complexity orde@(nﬁ) which outperforms the Cholesky
solver.

Remark.SinceCUrnin (3.15) is a sum of matrices its action on a vector can be
performed in parallel. This leads to a speed up when the iteration is implemented
on a parallel machine.

Moreover, the iteration can even be accelerated with the help of matrix com-
pression techniques presented by Harten and Yad-Shalom [16], see also Beylkin,
Coifman and Rokhlin [1] and Dahmen,d®dorf and Schneider [7]. The matrix-
vector producty v can be calculated with oni® (n) or O(n; log ny) operations
as far as the kernéd satisfies some additional requirements.

4.3. Numerical experiments

We shall provide numerical approximations to the convergence rates to demon-
strate the theoretical results as well as the performance of the Schwarz relaxation
(3.14).

For convenience, we limit ourselves to the Daubechies wavelet system of
orderN = 2 and to the linear spline system of the same order. In both cases we
computed the weights of the quadrature rules such that affine linear functions are
integrated exactly. The quadrature points are of the farm = 27'( +t). In all
presented experiments the integral in (4.13) is evaluated exactly and all kernels
are smooth enough to yiefd = O(¢?).

The asymptotic behaviour (4.3) is illustrated in Fig. 3 where approximations
to p1, L =5, are plotted for severdland the regularization parameter= 0.001.

The underlying kernel i&1(X,y) =X —y, X >V, ki(x,y) = 0, otherwise.

Next, we compute approximations tg where the coarsest levili, = 2 is
fixed. We know thap; < 1 uniformly inl if « is not too small. Herey > 0.001
is numerically sufficient, see Fig. 4.

In both examples the convergence rates with respect to the linear splines
are clearly smaller than those with respect to the Daubechies wavelet. The main
reason for this observation is the higher regularity of the lirgaspline: the
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Fig. 4. Convergence rates; with respect to the fixed coarsest leYigl, = 2 (o: Daubechies wavelet,
N = 2; ¢: linear spline). Leftka(x,y) = cosgrx y), Right: ki(X,y) = x —y, X >V, ki(x,y) =0,
otherwise. Solid curvesy = 0.001, dashed curves: = 0.005

Table 1.Necessary iterations to guarantee a relative accuracy smaller th4rn(él& 0.04,a = 0.001,

; ; ; -7 = -1 o
Daubechies wavelet, starting guess enzquxr 0 orz|O = Ui = '76'tv'minA‘min'%' Jmin £lmin (3.16))
=7 1=8 1=9 =10 =11 1=12
0 —
lnin =1 —5 Z :O 49 7 4 3 3 2
z0= Ui 12 4 2 1 1 1
0_
lnin = 3 Z :0 7 7 7 7 7 7
=u . 4 2 4 4 4

Daubechies wavelet of order 2 isolder continuous with exponent 0.55, see
Daubechies [9], whereas the linda+spline is Lipschitz continuous.

Our last example illustrates the performance of the iteration (3.14) by an
approximate solution of (4.1) with kern&l and exact right hand sidg(x) =
x2(x2 — 4x +9)/12 + (1— cos(3rx)) /72 /18. Thusf *(x) = (L —x)2+cog(37x/2).

In our computations we supposed thatis known only at the discrete points
j 6 with ¢°(j &) = g(j &) + ¢ where the random error§; } are distributed
uniformly in [—e,¢]. The integrals in the@)j 's are evaluated by the trape-
zoidal rule. Table 1 contains the numbegrof iteration steps to yield an Eu-
clidean norm of the residue smaller than"10 « - ||z . Here,{z"}, denotes
the sequence of iterates generated by (3.14) with starting guess ZitheF or

z’ = Uiy = .%”,‘?,mmﬂi;?n.%m g (3.16). Our stopping criterion guarantees
a relative accuracy|z® — 5||/\|2|5|\ bounded by 104

The approximate solutions with respect to the discretization ldvels and
| = 11 together with the minimum norm solutidrt are displayed in Fig.5.
We considered an absolute error= 0.04 and got the optimal regularization
parameter by trial and error. It took 14 € 6) and 1 [ = 11) iteration steps
(L = 4) to bound the relative accuracy by 0.01.

min flmin

5. Discussion and conclusion

Our proposed multilevel iteration works most efficiently in its implementation
discussed in Sect.4.2.2 if
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Fig. 5. Approximate solutions (solid lines) and minimum norm solution (dashed lines) of (4.1) with
kernelk; (¢ = 0.04, Daubechies wavelet). Left:= 6, o = 0.001, right:l = 11,« = 1.5-10~%. Each
o is optimal in the sense that thé—error is minimized

(5.1) moly < Ve,

cf. (4.15). In view of our general assumption that the noise level0 is fixed,
the requirement (5.1) holds fédrsuch large that

(5.2) oLy < Vaole),

whereap(e) is as in (2.4). The largdr the more efficient is the algorithm. The
crucial conditiore > 0 is reasonable for real-life applications where noise cannot
be avoided due to the nature of the specific experiment and due to the limitations
of the measuring instrument.

Readers familiar with ill-posed problems might see a serious drawback of
the algorithm in condition (5.2) which is satisfied for large dimensions of the
system (2.1). At a first glance, this seems to be contradiction to the rule: ‘Don’t
discretize too fine to avoid noise amplification!. The rule applies in the case the
regularization is obtained only by discretization, see e. g. Natterer [19]. However,
in our setting the stability of (2.1) comes from Tikhonov regularization and
here it pays to refine the discretization: the solutforf* of (2.1) is polluted
by a discretization error as well as by the unavoidable noise error. Increasing
the dimension reduces the discretization error without amplifying the noise. For
large I, the remaining errof,~“ — f* is caused only by the noise provided
the regularization parameter is selected according to one of the strategies
mentioned in Sect. 2.1. This argument is supported by the error estimates given
by Plato and Vainikko in [21] and by Fig.5 where the approximate solution on
the left contains a relatively large discretization error as well as the noise error.
In contrast, the discretization error of the approximate solution shown on the
right side is negligible. Hence, this approximation is much closer to the exact
minimum norm solution.

In the remainder of this section we focus on the comparison of King’s mul-
tilevel method [17] with our algorithm. There are several differences: the most
important one is — as already mentioned in the introduction — that King considers
his iterative scheme as a regularization technique, that is, he uses the number
of iteration steps to balance the discretization and the data error. In his setup
relation (5.2) is superfluous, however, for the price of a slow convergence speed
of his full multilevel algorithm. Indeed, even if (5.2) is satisfied, King’s iteration

Numerische Mathematik Electronic Edition
page 518 of Numer. Math. 75: 501-522 (1997)



A wavelet multilevel method for ill-posed problems 519

has a splitting level dependent convergence rate, see [17, Corollary 3.4], which
deteriorates for an increasing number of levels. In our case, provided (5.2) ap-
plies, the convergence becomes even faster with increasing discretization level
and hence with increasing splitting levie{l) (4.14). Of course, our algorithm
can also be performed when (5.1) is strongly violated, for instanceisifzero.
Its performance and regularization ability in the latter situation remains still to
be investigated.

Besides the above comments our method outperforms King's method with
respect to the following aspects which we only touch briefly.

— No damping parameter is needed to gain optimal convergence results.

— Each iteration step is parallelizable due to the additive structure.

— One iteration step is much cheaper (King’s algorithm is a multiplicative iter-
ation which requires two matrix-vector multiplications on each level of the
multilevel process).

At the end we like to emphasize that it is unclear how the performance of King's
method improves (if it improves at all') with the smoothness of the operator and
the order of the approximation spaces.

Appendix: Proof of Theorem 3.2

The proof of Theorem 3.2 will be given by providing bounfigand I', for the
inequality (3.5).
We note the estimate

(A1) by (wj, wy) < a(wj,w) < (1 +~2  [a) by(wj,w)

for all w; € W, j > Imin, which is an immediate consequence from the definition
of b (3.1) and from Lemma 2.1.

First, we consider the upper bourd. Let v € V| thenv = Piin? + Zj Qv
due to (2.6). For the following estimate we will use the statements of Theorem 2.2
and Corollary 2.3 as well as the inequalities (A.1), (3.6), ang|2< x? +y?,
X,y € R:

I-1
APyt Plin?) + D a(Qu, Qo)

1= min

a(v,v)

-1 -2 1-1

+2 ) aP,,vQu) +2 Y Y aQu,Qu)
i=lmin j=lmin i=j+1

(L+nt Ja)|l[v]l[?
-1

+2 " g a(Piyn?: Print)2a(Q v, Qu)2/v

1=Imin

IN
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-2 1-1
+2 3> na@Qu,Qu)"*aQv, Qu)?/V a
j=|mini=j+1

IN

(L+at Ja) vl
-1
+ > (aPryv: Prnt) +a(Qu, Q) ) /v a

1=lmin

-2 1-1
> m(aQu,Qu) +a@Qu,Quv))/Va
j=lmini=i+l
< (L Ja) vl

1-1
+Cy i (a(F’|minv,P|mmv)+ > aQu.Q U)) /V a
i=lmin
1-1
+Cyiin Y, AQ v, Qv)/V
i=min

(2 + /@) TP+ 2Cy (/v @) (2 + i /e) (Lo I

IN

Thus, we have verified the right inequality in (3.5) with from Theorem 3.2.
Now, we concentrate on the lower boudd. The first inequality of the
following estimate comes from (A.1) and the second one follows by the splitting

v=P v +Zj Qv for v e Vi:

-1
APyt Prin?) + > a(Qv, Qv)

1=lmin

2
o

IN

(A.2)

IN

-1
a(v,v) +2 > [a(P,;,v. Q)|
i=lmin
-2 1-1

+23° 3 jaQu, Q).
j=lmini=j+1

To proceed we supply Lemma A.1.

Lemma A.1. Let B and Q be the projections defined in Seztand let a be the
bilinear form (2.8). If i #j then

la(Qv,Qv)| < (7 v/a)a(v,v) forallveX.
Further,
la(Piv,Qv)| < (L +%/Va)(y/Va)a(w,v) forj>1andforallveX.
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Proof. Writing . 4 for K*K +al we have that

[a(@Qiv, Q)| = [(KQiv,KQuv)y|
|<KQi V2 g1/2, 7 KQj _7/,//5—1/2{’/&1/2@Y |

(IKQ 11K 1/a) atw, o).

IN

Lemma 2.1 implies now the first statement. Taking into account that

IKPyL 22| < K.~ Y2) + [K( = P). 272 < 1+5/va

one can prove the second statement analogously.

Applying Lemma A.1 to (A.2) we achieve

ol < a0 +2(1 +ng/va)
X(Cn nlmm/\/@ ) a(v,v) + 2(C377|2min/0z) a(v,v).

Hence, Theorem 3.2 is proved.
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