
Numer. Math. 75: 501–522 (1997) Numerische
Mathematik
c© Springer-Verlag 1997

Electronic Edition

A wavelet multilevel method for ill-posed problems
stabilized by Tikhonov regularization

Andreas Rieder

Fachbereich Mathematik, Geb. 38, Universität des Saarlandes, D-66041 Saarbrücken, Germany; e-
mail: andreas@num.uni-sb.de

Received March 6, 1995 / Revised version received December 27, 1995

Summary. An additive Schwarz iteration is described for the fast resolution of
linear ill-posed problems which are stabilized by Tikhonov regularization. The
algorithm and its analysis are presented in a general framework which applies
to integral equations of the first kind discretized either by spline functions or
Daubechies wavelets. Numerical experiments are reported on to illustrate the
theoretical results and to compare both discretization schemes.
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1. Introduction

Iterative schemes for solving the compact operator equation (1.1) of the first
kind,

Kf = g,(1.1)

are mostly used in the sense of regularization methods due to the ill-posedness
of (1.1), that is, they are used to balance the data error and the approximation
error, see e. g. Louis [18]. From this point of view the convergence speed and
the performance of these iterative methods are of minor importance.

In this paper we discretize equation (1.1) by applying the method of least
squares and stabilize it by Tikhonov regularization, see Plato and Vainikko [21].
Since the resulting finite dimensional linear system is already regularized we are
primarily interested in achieving an efficient iterative solver in terms of conver-
gence speed, parallel coding, and performance. Therefore, an additive Schwarz
relaxation will be the method of our choice.

For the construction of the multilevel solver we will split the test func-
tion space into orthogonal subspaces of increasing dimension. The number of
subspaces involved is called the splitting level and the subspace with smallest
dimension is referred to as coarsest space.
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This approach not only offers all the advantages of multilevel splittings but
also yields an asymptotic orthogonality of the splitting spaces with respect to an
inner product related to problem (1.1). The latter fact will be essential for the
presented convergence analysis where we will rely on well-known convergence
results for Schwarz type methods, see e. g. Hackbusch [15], Oswald [20] and
Yserentant [27].

A first study of multilevel algorithms in connection with ill-posed problems
was done by King in [17] where he proposed a method which is akin to the
nested iteration known in multigrid theory, cf. Hackbusch [15]. King applied his
multilevel iteration as a regularization technique in the sense mentioned above.
This is one of the main differences to our approach. A more detailed comparison
of King’s algorithm with our algorithm is postponed to Sect. 5.

The outline of this paper is as follows. In the next section we give a brief
account on the adequate discretization and regularization of equation (1.1) by
the method of least squares. Also in the next section we introduce the multilevel
splitting of the approximation space and prove some of its properties.

Section 3 is devoted to the additive Schwarz iteration. After a motivation we
define and analyze the iteration in an abstract framework. We find two qualitative
different convergence results: 1. For a fixed splitting level, the convergence is
getting faster as the discretization step-size decreases, that is, the dimension
of the approximation space increases. 2. In case the coarsest space is fixed, the
convergence rate is independent of the discretization step-size and of the splitting
level. We complete Sect. 3 with a representation of the algorithm with respect to
wavelet or pre-wavelet splittings of the approximation space.

In the remainder of the paper we apply the proposed iterative scheme to
integral equations onL2(0, 1). Here, we present two families of test function
spaces which satisfy the hypotheses of our abstract theory. These spaces are
spline spaces and the spaces of the Daubechies scaling functions on the interval,
see Cohen, Daubechies and Vial [6]. The numerical realization of the method
in this setting is considered next. We show that approximate integration, which
will be necessary in a general application of the algorithm, does not deteriorate
the convergence behaviour. Finally, an analysis of the computational complexity
confirms the efficiency of the iteration and the presentation of various numerical
experiments support the theoretical results.

Wavelets have already been used for the treatment of inverse problems.
For instance, we refer to Donoho [13], Dicken and Maaß [12] and to Xia and
Nashed [26].

2. Preliminary considerations

2.1. Discretization, regularization and parameter selection

Let K : X → Y (X,Y real Hilbert spaces) be a compact non-degenerate operator.
Then, it is well known that equation (1.1) is ill posed, that is, the minimum norm
solution f ? of (1.1) does not depend continuously on the right hand sideg.
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We now assume that only noisy datagε ∈ Y are available satisfying‖g −
gε‖Y ≤ ε for a known error boundε > 0. A computable approximation tof ?

is then provided by the unique solutionf ε,αl of the finite dimensional normal
equation

(K ∗
l Kl + αI ) fl = K ∗

l g
ε, α > 0,(2.1)

which is stabilized using Tikhonov regularization (throughout the paperI denotes
either the identity operator or the identity matrix of appropriate size). In (2.1),
Kl = KPl wherePl : X → Vl is the orthogonal projection onto the subspaceVl ⊂
X. In the sequel we will assume that the sequence{Vl }l of finite dimensional
approximation spaces is expanding, i. e.Vl ⊂ Vl +1, and that the union∪l Vl is
dense inX. Under these assumptions the quantity

γl := ‖K − Kl ‖ = ‖K (I − Pl )‖,(2.2)

which will be crucial for the further analysis, satisfies

γl +1 ≤ γl and γl → 0 asl →∞ iff K is compact,(2.3)

see e. g. Groetsch [14]. The operator norm in (2.2) is defined by‖K‖ =
sup{‖Ku‖Y | u ∈ X, ‖u‖X = 1}.

An a-priori (α = α(l , ε)) as well as an a-posteriori (α = α(l , ε, gε)) choice for
the regularization parameterα in (2.1) is established by Plato and Vainikko [21]
leading to the convergence off ε,αl to the minimum norm solutionf ? asε tends
to zero andl goes to infinity. Moreover, the resulting convergence rate is optimal
in ε.

It is the goal of the paper to provide an efficient multilevel solver for equation
(2.1) with one of the above mentioned parameter selection strategiesunder the
general assumption of a fixed noise levelε. In this frameworkα is bounded below
by a positive constantα0(ε) uniformly in the discretization levell which gives
that

γl ≤
√
α0(ε) <

√
α for l sufficiently large.(2.4)

The above inequality guarantees a high performance of our multilevel solver as
will be discussed in the Sects. 4 and 5.

Remark.From an abstract point of view the normal equation (2.1) is a symmetric
operator equation of the second kind. Therefore, our algorithm applies to such a
class of problems in general. Nevertheless we present our algorithm in the above
context of ill-posed problems since Tikhonov regularization automatically leads
to linear problems (2.1) with symmetric and positive definite matrices.

2.2. Multilevel splitting of the approximation spaces

The basis of all multilevel algorithms is the decomposition of the approximation
space into subspaces. To this end we define the spaceWl as theX–orthogonal
complement ofVl with respect to the larger spaceVl +1: Vl +1 = Vl ⊕Wl where⊕
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denotes theX–orthogonal sum. Consequently, we have the orthogonal multilevel
splitting

Vl = Vlmin ⊕
l−1⊕

j = lmin

Wj , lmin ≤ l − 1,(2.5)

which also can be expressed in terms of projection operators

Pl = Plmin +
l−1∑

j = lmin

Qj(2.6)

whereQj is the orthogonal projection fromX onto Wj .
Compact operators vanish asymptotically on the complement spacesWl .

Lemma 2.1. Let Vl and Wl be the spaces defined above and let K: X → Y be
a compact linear operator. Then,

‖K Ql ‖ ≤ γl → 0 as l →∞

whereγl is defined in(2.2).

Proof. The orthogonality ofVl and Wl gives Pl Ql = 0. Therefore,‖K Ql ‖ =
‖K (I − Pl ) Ql ‖ ≤ ‖K (I − Pl )‖ = γl . ut

The regularized normal equation (2.1) can be reformulated as a variational prob-
lem

find f ε,αl ∈ Vl : a( f ε,αl , vl ) = 〈K ∗
l g

ε, vl 〉X for all vl ∈ Vl(2.7)

where the bilinear forma : X × X → R,

a(u, v) := 〈Ku,Kv〉Y + α 〈u, v〉X ,(2.8)

is symmetric and positive definite. The operatorsAl = K ∗
l Kl + αPl and Bl =

Ql K ∗KQl +αQl are associated toa via a(ul , vl ) = 〈Al ul , vl 〉X for all ul , vl ∈ Vl

anda(wl , zl ) = 〈Blwl , zl 〉X for all wl , zl ∈ Wl , respectively.
Later, we will rely on the following strong Cauchy inequality which basically

says that the spacesVl andWl are not onlyX–orthogonal but also asymptotically
orthogonal with respect to the inner product onX induced by the bilinear form
a (2.8). The corresponding norm‖ · ‖2

a = a(· , ·) is called energy norm onX.

Theorem 2.2. Let Vl and Wm be defined as above and let m≥ l . The strong
Cauchy inequality

| a(vl , wm) | ≤ min{1, γm/
√
α } ‖ vl ‖a ‖wm ‖a

holds true for allvl ∈ Vl and for allwm ∈ Wm.
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Proof. Since vl and wm are orthogonal inX we have thata(vl , wm) =
〈Kvl ,Kwm〉Y . Further,

|a(vl , wm)| = |〈Kl A
−1/2
l A1/2

l vl , KQmB−1/2
m B 1/2

m wm〉Y |
≤ ‖Kl A

−1/2
l ‖ ‖A1/2

l vl ‖X ‖KQmB−1/2
m ‖ ‖B 1/2

m wm‖X

≤ ‖Kl A
−1/2
l ‖ ‖ vl ‖a ‖KQm‖ ‖B−1/2

m ‖ ‖wm ‖a.

Using arguments from spectral theory it is easy to verify that‖Kl A−1/2
l ‖ ≤

1 and ‖B−1/2
m ‖ ≤ α−1/2. Thus, the strong Cauchy inequality is proved by

‖KQm‖ ≤ γm (Lemma 2.1). ut
Corollary 2.3. Let j < l . Then,

| a(wj , wl ) | ≤ min{1, γl /
√
α } ‖wj ‖a ‖wl ‖a

for all wj ∈ Wj and for allwl ∈ Wl .

Proof. BecauseWj ⊂ Vl for j < l the statement follows readily from Theo-
rem 2.2. ut

3. The additive Schwarz iteration

3.1. Abstract formulation and convergence analysis

The general philosophy behind any multilevel iteration with respect to a given
splitting is to replace the original large scale problem by auxiliary problems on
the subspaces which can be solved cheaply. If the subproblems are chosen in an
adequate way, their combination should yield a reasonable approximation to the
original problem, see e. g. Oswald [20] and Rüde [22].

We introduce some notation to clarify this multilevel concept in our setting.
Recalling the statement of Lemma 2.1, the auxiliary bilinear formsbj : Wj×Wj →
R defined by

bj (wj , uj ) := α 〈wj , uj 〉X ,(3.1)

approximatea (2.8) reasonably well onWj , at least forj large. Furthermore, let
Tj : Vl → Wj be given by the variational problem (lmin ≤ j ≤ l − 1)

bj (Tj vl , wj ) = a(vl , wj ) for vl ∈ Vl and for allwj ∈ Wj .(3.2)

In operator notation we may writeTj = α−1Qj Al . On the coarsest approximation
spaceVlmin we keep the original bilinear forma. Here, we getRlmin : Vl → Vlmin
by

a(Rlminvl , vlmin) = a(vl , vlmin) for vl ∈ Vl and for allvlmin ∈ Vlmin(3.3)

or Rlmin = A−1
lmin

PlminAl in operator notation. Now, we sum up theTj ’s and
Rlmin,
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Rlmin +
l−1∑

j =lmin

Tj =
(

A−1
lmin

Plmin + α−1
l−1∑

j =lmin

Qj

)
︸ ︷︷ ︸

=: Cl ,lmin

Al ,

and considerCl ,lmin as an approximate inverse ofAl with respect to the splitting
(2.5).

Starting with an initial guessu0
l ∈ Vl we define the additive Schwarz iteration

for the approximate solution of (2.1) resp. (2.7) by

uµ+1
l = uµl − ωCl ,lmin

(
Al u

µ
l − K ∗

l g
ε
)
, µ = 0, 1, 2, . . . ,(3.4)

with a damping parameterω ∈ R. If Cl ,lmin is close toA−1
l we may expect fast

convergence of{uµl }µ≥0 to f ε,αl . For a convergence analysis we introduce a new
norm onVl relative to the splitting (2.5):

||| vl |||2 := ‖Plminvl ‖2
a + α

l−1∑
j =lmin

‖Qj vl ‖2
X .

Theorem 3.1. Suppose that

Γu ||| vl |||2 ≤ ‖ vl ‖2
a ≤ Γo ||| vl |||2 for all vl ∈ Vl(3.5)

holds true for some numbers0< Γu ≤ Γo. Then,

‖ f ε,αl − uµl ‖a ≤ ρµω ‖ f ε,αl − u0
l ‖a, µ = 1, 2, . . . ,

whereρω = max{ |1− ω Γu|, |1− ω Γo| }. The convergence rateρω attains its
minimumρωopt = (Γo − Γu) / (Γo + Γu) < 1 for ωopt = 2/(Γu + Γo).

Proof. See e. g. Oswald [20], Theorem 18 on page 79. See also Hackbusch [15]
and Yserentant [27]. ut
Providingγl (2.2) tends to zero sufficiently fast we can estimate the boundsΓu

andΓo reasonably well.

Theorem 3.2. Let ηl be an upper bound ofγl (γl ≤ ηl ) satisfying

ηl ≤ ηl−1 and
l−1∑

j =lmin

ηj ≤ Cη ηlmin(3.6)

with a positive constant Cη which does neither depend on l nor on lmin. Then, the
norm equivalence(3.5) holds true for

Γu =
1

1 + 2Cη
(

1 + (Cη + 1)σlmin

)
σlmin

,

Γo =
(

1 + σ2
lmin

) (
1 + 2 Cη σlmin

)
,

whereσlmin = ηlmin/
√
α. The convergence rateρ1 of the undamped(ω = 1)

iteration (3.4) fulfills

ρ1 ≤ 2Cη σlmin

(
1 +σlmin (1 + max{Cη, σlmin})

)
.
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The above theorem, which will be proved in the appendix, has to be interpreted
in the following ways:

1. For a fixedsplitting level L= l − lmin ≥ 1 and a fixed noise levelε > 0 the
convergence rateρ1 tends to zero. Moreover,

ρ1(l ) = O
(
ηl−L/

√
α
)

as l →∞,(3.7)

where the constant in the aboveO–expression does neither depend onl and L
nor onα.
2. For a given noise levelε > 0 the undamped iteration admits a conver-
gence rateρ1 which is bounded smaller than 1 uniformly inl provided that
ηlmin <

√
α/
(
2Cη (Cη + 2)

)
. In this caselmin depends onε and it increases when

ε decreases.
3. If lmin is fixed independently ofε and l then the undamped iteration may even
diverge forε too small. Still, we can use the undamped iteration as a precon-
ditioner for the conjugate gradient method applied to (2.1). For more details on
preconditioning the conjugate gradient method we refer e. g. to Deuflhard and
Hohmann [11] and Hackbusch [15].

As an initial guess for the iteration (3.4) we suggest to takeu0
l = f ε,αlmin

, the

solution of (2.7) with respect toVlmin. The effort to calculatef ε,αlmin
is less than

the computational work for one iteration step.

Lemma 3.3. Let u0
l = f ε,αlmin

. Then,

‖ f ε,αl − u0
l ‖a ≤

√
‖K‖2 + α inf

v∈Vlmin

‖ f ε,αl − v‖X .

Proof. The proof is analogous to the proof of Céa’s lemma, see e. g. Ciar-
let [5]. ut

3.2. Representation in coordinates

In this section we present a matrix version of the iteration (3.4) given suitable
Riesz-bases inVl andWl . Therefore, we assume thatX is a function space over
the compact interval [a, b] ⊂ R; X = L2(a, b) for example. The results obtained
can easily be generalized to multiple tensor products ofX with itself.

Let ϕ ∈ X be a compactly supported function satisfying the refinement equa-
tion

ϕ(x) =
√

2
Mϕ−1∑

k=0

hk ϕ(2x − k)(3.8)

with coefficientshk ∈ R (ϕ is called scaling function in the wavelet terminology,
see e. g. Daubechies [9]). For the ease of presentation we neglect – at the present
time – necessary boundary modifications and suppose that

Vl = span{ϕl ,k | k = 0, . . . , nl − 1} ⊂ X(3.9)
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for all l ≥ l ? > 0 whereϕl ,k(x) := 2l/2ϕ(2x − k). Further let there exist another
functionψ, the wavelet, such thatWl = span{ψl ,k | k = 0, . . . ,ml − 1} and

ψ(x) =
√

2
Mψ−1∑

k=0

gk ϕ(2x − k)(3.10)

with coefficientsgk ∈ R.
Since the sum of two functionsfl =

∑
k cl

kϕl ,k ∈ Vl andgl =
∑

k dl
kψl ,k ∈ Wl

is in Vl +1, it can be expressed byfl +gl =
∑

k cl +1
k ϕl +1,k . Applying both refinement

equations (3.8) and (3.10) we get the relation

cl +1
k =

∑
i

hk−2i cl
i +

∑
j

gk−2j dl
j

which we write in matrix notation as

cl +1 = H t
l +1cl + Gt

l +1dl .(3.11)

Clearly, Hl +1 : R nl +1 → R
nl andGl +1 : R nl +1 → R

ml .
The solutionf ε,αl of the variational problem (2.7) resp. of the normal equation

(2.1) can be expanded in the basis ofVl as f ε,αl =
∑

k(ξl )kϕl ,k . The vector
ξl ∈ R nl of the expansion coefficients is the unique solution of the linear system

Al ξl = βl(3.12)

where the entries of the positive definite matrixAl and of the right hand sideβl

are given by

(Al )i ,j = 〈Kϕl ,i ,Kϕl ,j 〉Y + α 〈ϕl ,i , ϕl ,j 〉X and

(βl )j = 〈gε,Kϕl ,j 〉Y .
(3.13)

Lemma 3.4. Let Tj and Rlmin be the operators introduced in(3.2) and (3.3),
respectively. Further define the restrictions

Hl ,j := Hj +1 Hj · · · Hl−1 Hl : R nl → R
nj ,

Gl ,j := Gj +1 Hj · · · Hl−1 Hl : R nl → R
mj

for j ≤ l − 2 and setHl ,l−1 := Hl andGl ,l−1 := Gl .
For vl =

∑
k cl

kϕl ,k ∈ Vl we have that

Tj vl =
nl−1∑
k=0

(
α−1 G t

l ,j B−1
j Gl ,j Al cl

)
k
ϕl ,k , lmin ≤ j ≤ l − 1,

where Bj is the Gramian matrix(Bj )r ,s = 〈ψj ,r , ψj ,s〉X, and

Rlminvl =
nl−1∑
k=0

(
H t

l ,lmin
A−1

lmin
Hl ,lmin Al cl

)
k
ϕl ,k .
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Proof. SinceTjϕl ,k ∈ Wj there exists a matrixT ∈ R nl×mj with entriesTk,i such
thatTjϕl ,k =

∑
i Tk,i ψj ,i . A functionwj =

∑
k dj

kψj ,k ∈ Wj admits the expansion
wj =

∑
k

(
G t

l ,j d
j
)

k
ϕl ,k which follows inductively from (3.11). Hence,

bj (Tj vl , wj ) = α 〈Bj T cl , dj 〉Rmj and a(vl , wj ) = 〈Gl ,j Al cl , dj 〉Rmj .

Finally, the equation (3.2) givesT = α−1 B−1
j Gl ,j Al and we getTj vl =∑

i (Tcl )iψj ,i =
∑

k(G t
l ,j Tcl )kϕl ,k .

The representation ofRlmin can be proved in the same way.ut

Now, the abstract iteration (3.4) translated into an iteration acting on (3.12) reads

zµ+1
l = zµl − ωCl ,lmin

(
Al z

µ
l − βl

)
, µ = 0, 1, 2, . . . ,(3.14)

where

Cl ,lmin = H t
l ,lmin

A−1
lmin

Hl ,lmin + α−1
l−1∑

j =lmin

G t
l ,j B−1

j Gl ,j(3.15)

and with an arbitrary starting guessz0
l ∈ R

nl . The starting guess due to
Lemma 3.3 is

z0
l = H t

l ,lmin
ξlmin = H t

l ,lmin
A−1

lmin
Hl ,lminβl .(3.16)

In the next section we will see that the application ofB−1
j and hence ofCl ,lmin

to a vector can be realized in a very efficient way.

Remark.Readers familiar with multilevel preconditioners in the context of finite
element discretizations of elliptic PDEs may wonder why we do not go one step
further and replaceA−1

lmin
as well asB−1

j , lmin ≤ j ≤ l − 1, in (3.15) by the
spectrally equivalent identity matrixI . In doing so,Cl ,lmin would certainly gain
a simpler structure but we would loose property (3.7). For a fixed splitting levelL
the convergence speed of (3.14) would not be improved when the discretization
level l increases. As a consequence the multilevel scheme (3.14) would not
be attractive any more as an iteration in its own right. In this situationCl ,lmin
could serve as a preconditioner for the conjugate gradient method applied to
(2.1) leading to a level independent convergence rate. However, the conjugate
gradient method acting on (2.1)without any preconditioning results already in
a level independent convergence speed. This is true becauseα ≥ α0(ε) > 0
uniformly in l , cf. (2.4). Hence, the iteration (3.14) for large scale problems
(2.1) is meaningful only if (3.7) holds, see also Sect. 4.2.2. In other words: the
X–orthogonality of the splitting (2.5) is a crucial ingredient for our multilevel
algorithm and cannot be relaxed.
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4. Application to integral equations

We demonstrate the performance of our proposed iterative scheme for the solution
of integral equations. For simplicity we limit ourselves to problems on the unit
interval, but the algorithm can be carried over to problems on Cartesian products
of intervals.

Let K : L2(0, 1) → L2(0, 1) be an integral operator with non-degenerate
kernelk which is square integrable over the unit square [0, 1]2. Then, the integral
equation of the first kind,

Kf (·) =
∫ 1

0
k(·, y) f (y) dy = g(·),(4.1)

is ill posed.
To estimate the decay rate ofγl as l goes to infinity, we consider scaling

function spacesVl (3.9) of order N, that is, the polynomials up to degreeN − 1
restricted to [0, 1] are inVl .

We associate the discretization step-sizeδl = 2−l to Vl and we will useDr

to denote the (generalized) differential operator of orderr .

Lemma 4.1. Let Vl be the spaces(3.9)of order N . Further, let K be the integral
operator(4.1)and suppose that the composition Dr K ∗ is a bounded operator on
L2(0, 1) for one r ∈ {1, . . . ,N}. Then,

γl = ‖(I − Pl )K
∗‖ ≤ CN ‖Dr K ∗‖ δ r

l .(4.2)

Proof. If f is sufficiently smooth we have the following approximation result:
‖ (I −Pl ) f ‖L2 ≤ CN ‖Dr f ‖L2 δ r

l for r = 1, . . . ,N , see e. g. Strang [23], Strang
and Fix [24]. The estimate forγl is a straightforward consequence.ut
In the framework of scaling function spaces of orderN ≥ 1, Theorem 3.2 applies
because the requirements (3.6) are met forηl = CN ‖Dr K ∗‖ δ r

l with r ≥ 1 and
the decay rate (3.7) reads now

ρ1(l ) = O
(
δ r

l−L/
√
α
)

as l →∞.(4.3)

The constant in (4.3) is independent ofl , L andα.

4.1. Wavelet and spline spaces

Let Vl , l ≥ 0, be the space that contains all functions being constant on the
intervals [2−l k, 2−l (k + 1)[ (k = 0, . . . , 2l − 1). This is a simple but admissible
choice:Vl is of the form (3.9) when we setϕ = χ[0,1[, the characteristic function
of the interval [0, 1[. The complement spacesWl have also the dimension 2l and
they are spanned by the Haar-waveletψ = χ[0,1/2[ −χ[1/2,1[, see Daubechies [8].
The refinement equations (3.8) and (3.10) hold true withh0 = h1 = 1/

√
2 and

g0 = −g1 = 1/
√

2, respectively (Mϕ = Mψ = 2). Clearly, the order ofVl is N = 1.
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Fig. 1. Solid curve: convergence ratesρ1 of the undamped iteration (3.14),lmin = l −4, with respect
to the Haar-wavelet and withα = 0.001. The underlying kernel isk1(x, y) = x − y, if x ≥ y, and
k1(x, y) = 0, otherwise. Dashed curve: the rateql (4.4). The theoretical bound 0.5 for ql is drawn as
a dashed straight line. On levell = 6 the iteration diverges

The asymptotic behaviour (4.3) is illustrated in Fig. 1 where approximations
to ρ1(l ), L = 4, are plotted for severall andα = 0.001. The underlying kernel is
k1(x, y) = x − y, if x ≥ y, andk1(x, y) = 0, otherwise. Besides the convergence
speed we plotted the rate

ql = ρ1(l ) / ρ1(l − 1).(4.4)

Since (4.3) is valid withr = 1 andL = 4 we expectql to be bounded:ql ≤ 0.5
for l large.

To improve the poor decay rate ofρ1 obtained in the Haar-wavelet case
we introduce scaling function spaces containing polynomials of higher degree.
We present two different families of functions which both can be considered as
further developments of the introductory example above.

4.1.1. Daubechies wavelets on the interval

We will briefly recall the wavelet systems on the interval [0, 1] constructed by
Cohen et al. in [6]. This construction is a modification of the Daubechies wavelet
family on the real line, see Daubechies [8].

Let ϕ = ϕN andψ = ψN be the Daubechies scaling and wavelet function of
order N ≥ 2 which both have compact support in [1− N ,N ]. Define l ? to be
the smallest integer such that 2l ? ≥ 2N . For l ≥ l ? there exist 2N edge scaling
functionsϕ0

k , ϕ1
k , and 2N edge waveletsψ0

k , ψ1
k , such that each of the sets

Xl =
{
ϕ0

l ,k , | 0 ≤ k ≤ N − 1
}

∪ {
ϕl ,k |N ≤ k ≤ 2l − N − 1

} ∪ {
ϕ1

l ,k | 2l − N ≤ k ≤ 2l − 1
}
,

Yl =
{
ψ0

l ,k | 0 ≤ k ≤ N − 1
}

∪ {
ψl ,k |N ≤ k ≤ 2l − N − 1

} ∪ {
ψ1

l ,k | 2l − N ≤ k ≤ 2l − 1
}
,

is a family of orthonormal functions ( for convenience we use the notation
f 0
l ,k(x) = 2l/2 f 0

k (2l x) andf 1
l ,k(x) = 2l/2 f 1

k (2l (1−x)) only for edge functions). The
spacesV d

l andWd
l of dimensionsnl = ml = 2l ,
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V d
l := spanXl and Wd

l := spanYl ,(4.5)

have all properties required in the previous sections, for instance, the order ofV d
l

is N . The edge functions satisfy – as the interior functions – a kind of refinement
equation. The corresponding coefficients are tabulated in [6].

Remark.Since the wavelet-basis inWd
l is an orthonormal basis the correspond-

ing Gramian matrixBl coincides with the identity matrix which simplifies the
structure ofCl ,lmin (3.15).

4.1.2. Spline spaces on the interval

The N–th orderB–splineSN is defined as theN–fold convolution ofχ[0,1]. The
B–splines have compact support in [0,N ] and they satisfy the refinement relation

SN (x) =
N∑

k=0

21−N

(
N
k

)
SN (2x − k).

The correspondingB–spline-wavelet of orderN is well known, see e. g. Chui [2]
for a comprehensive introduction to spline-wavelets.

As in the case of the Daubechies wavelets we will neededge splinesandedge
spline-waveletsto yield approximation spaces of orderN on [0, 1]. For N = 2
we will give explicit expressions. The general case is considered by Chui and
Quak in [3].

The graph of the linearB–SplineS2 is shown in Fig. 2. We have that

S2(x) := S(x) =
1
2

(
S(2x) + 2S(2x − 1) + S(2x − 2)

)
.(4.6)

To span the linear functions on [0, 1], we need two edge splinesS0 andS1 given
by S0(x) = 1− x, if 0 ≤ x ≤ 1, S0(x) = 0, otherwise, andS1(x) = S0(2− x).
The modified scaling equation is

S0(x) = S0(2x) +
1
2

S(2x).

The spaceV s
l of dimensionnl = 2l + 1,

V s
l := span{S0

l , S1
l , Sl ,k | k = 0, . . . , 2l − 2},(4.7)

whereS0
l (x) := S0(2l x) andS1

l (x) := S0
l (1− x) (l ≥ 1), coincides with the space

of continuous functions which are affine linear on [2−l k, 2−l (k + 1)[.
The interior waveletψs given by, see Chui and Wang [4],

ψs(x) =
1

10
S(2x) − 3

5
S(2x − 1) + S(2x − 2)

−3
5

S(2x − 3) +
1

10
S(2x − 4)

(4.8)
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Fig. 2. The linearB–SplineS2 (4.6), its corresponding (pre-)waveletψs (4.8) and the edge spline-
waveletψ0 (4.9) for the left boundary ( from left to right)

has compact support in [0, 3], cf. Fig. 2. The edge waveletsψ0 andψ1 can be
calculated directly and they fulfill

ψ0(x) = S0(2x) − 11
12

S(2x) +
1
2

S(2x − 1) − 1
12

S(2x − 2),

ψ1(x) = ψ0(2− x),
(4.9)

cf. Fig. 2. Again, we setψ0
l (x) := ψ0(2l x), ψ1

l (x) := ψ0
l (1−x) (l ≥ 1), and define

Ws
l := span{ψ0

l , ψ
1
l , ψ

s
l ,k | k = 0, . . . , 2l − 3}

for l ≥ l ? = 2. The dimension ofWs
l is ml = 2l and the reader may convince

himself thatV s
l +1 = V s

l ⊕ Ws
l , l ≥ l ?.

Since the constructed bases inV s
l andWs

l are only Riesz-bases the functions
ψ0, ψ1, ψs, are usually called semi-orthogonal wavelets or pre-wavelets in the
wavelet literature.

Remark.The Gramian matrixBl with respect to the basis inWs
l is a band

matrix with band width 3 andBl differs from a Toeplitz matrix only at both
corners of its diagonal. Utilizing these special features together with the Cholesky
decomposition, see e. g. Deuflhard and Hohmann [11], it is possible to compute
the action ofB−1

l on a vector withO(ml ) operations. The additional storage is
independent of the dimension.

4.2. Numerical realization and computational complexity

4.2.1. Matrix generation

The sensitive point in using the proposed method lies in the computation of the
entries of the matrixAl (3.13).

Since the integrals〈 f , ϕl ,j 〉L2 can be calculated only approximately we
choose a quadrature rule of the form

Ql ,j ( f ) = δ
1/2
l

m∑
t=0

wt f (xl ,t,j )(4.10)

with weightswt ∈ R and abscissaexl ,t,j ∈ [0, 1], see Sweldens and Piessens [25].
If Ql ,j is exact for polynomials up to degreem and if f ∈ C m+1, then
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|〈 f , ϕl ,j 〉L2 − Ql ,j ( f )| ≤ CQ max
x∈[0,1]

| f (m+1)(x)| δm+3/2
l(4.11)

where the positive constantCQ does not depend onj . The error estimate (4.11)
follows from Peano’s theorem, see e. g. Davis and Rabinowitz [10].

Approximating the action ofK onϕl ,j by the integration rule (4.10) we have
to deal with a perturbatioñKl = K̃ Pl of Kl where

K̃ϕl ,j (x) := Ql ,j
(
k(x, · )) = 2−l/2

m∑
t=0

wt k(x, xl ,t,j ).

Provided the degree of accuracym (4.11) of the quadrature rule is sufficiently
high, we will show that the convergence analysis of the previous section carries
over to the perturbed linear system

Ãl ξ̃l = β̃l(4.12)

with (Ãl )i ,j = 〈K̃ϕl ,i , K̃ϕl ,j 〉L2 + α 〈ϕl ,i , ϕl ,j 〉L2

= δl

m∑
s=0

m∑
t=0

wswt

1∫
0

k(x, xl ,s,i ) k(x, xl ,t,j ) dx + α 〈ϕl ,i , ϕl ,j 〉L2(4.13)

and (̃βl )j = δ 1/2
l

∑
t wt

∫
gε(x) k(x, xl ,t,j ) dx, cf. (3.13).

Lemma 4.2. Let Vl be either Vd
l (4.5)or V s

d (4.7)and letK̃l be defined as above
with the quadrature rule(4.10) of accuracy m. Further, suppose that the kernel
k of the operator K(4.1) is m + 1–times continuously differentiable with respect
to y. Then,

γ̃l := ‖K − K̃l ‖ = O
(
δ m+1

l

)
.

Proof. Obviously,‖K − K̃l ‖ ≤ γl + ‖Kl − K̃l ‖. Using Cauchy’s inequality for
sums and the fact that we have a Riesz-basis onVl , it is straightforward to verify
that

‖(Kl − K̃l ) f ‖2 ≤ C ‖ f ‖2
L2 nl max

0≤j≤nl−1

∫ 1

0
|(K − K̃ )ϕl ,j (x)|2 dx

(4.11)
≤ C ‖ f ‖2

L2 nl C2
Q max

x,y∈[0,1]

∣∣∣ ∂m+1

∂ym+1
k(x, y)

∣∣∣2 δ 2m+3
l .

The assumption on the kernel gives‖Kl − K̃l ‖ = O
(
δ m+1

l

)
as well asγl =

O
(
δ m+1

l

)
by Lemma 4.1. ut

Lemma 2.1 holds also true for̃K qualitatively:‖K̃ Ql ‖ = ‖K̃ Pl +1(I − Pl )Ql ‖ ≤
‖K̃l +1 − K‖ + ‖K − K̃l ‖ = γ̃l +1 + γ̃l .

Altogether we found:The convergence result stated in Theorem3.2 applies
also to the iteration(3.14)when Al is replaced bỹAl . Moreover, the optimal order
r of the decay rate(4.3) is not affected by numerical integration as long as the
quadrature rule has the degree of accuracy r− 1.
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4.2.2. Computational complexity and implementation issues

We demonstrate the efficiency of the multilevel algorithm (3.14) for the solution
of (4.12) by comparing its complexity with the complexity of the Cholesky
decomposition which is a suitable direct solver to tackle (4.12).

We make the following general assumptions: We will not include the com-
putation ofÃl (4.13) into the operation count of the algorithm because this effort
has to be raised independent of the specific solver we use for (4.12). The ap-
plication of B−1

j in (3.15) is performed according to the remark at the end of

Sect. 4.1.2. Further, the auxiliary linear system with matrixÃlmin is solved using
Cholesky decomposition where the decomposition is computed once before the
iteration starts. Finally, the underlying scaling function spaces have orderN and
the degree of accuracy of the used quadrature rule isN − 1.

The different parts of the algorithm have the following operation count (we
consider the leading terms only):

1. Computation of the matrix̃Almin (4.13): N 2 n2
lmin

/2. Here, we did not take into
account the evaluation of the kernel at the quadrature points and we supposed
that the integral and the inner products are calculated exactly.
2. Cholesky decomposition ofÃlmin and computation of the starting guess(3.16):
n3

lmin
/6.

3. One step of the iteration: n2
l . Since the application ofCl ,lmin (3.15) to a vector

can be realized byO(nl +n2
lmin

) operations, the evaluation of the defect dominates
the complexity.

Thus,s steps of the iteration take essentially

Os := s n2
l + n3

lmin
/6 + N 2 n2

lmin
/2

operations.
If we fix the splitting levelL = l − lmin then we have on one side that the

convergence rate tends to zero for largel and only a few steps of the iteration
yield the solution, cf. Table 1. On the other sideOs is dominated byn3

lmin
=

n3
l−L which gives the unfavourable complexityOs = O

(
n3

l

)
. However, with a

sophisticated implementation we can achieve both, a decreasing convergence
rate and an optimal complexity.

The idea is as follows: we allow the splitting levelL to grow but not too fast.
We therefore define

L(l ) := bl /3c for l ≥ l ? + 1,(4.14)

whereb·c denotes the ‘greatest integer’ andl ? is the smallest possible approxi-
mation level, cf. Sects. 4.1.1 and 4.1.2. Now the asymptotic relation (4.3) reads

ρ1(l ) = O
(
ηl−L(l )/

√
α
)

= O
(
δ

2r/3
l /

√
α
)

as l →∞.(4.15)

So, we sacrificed one third of the optimal decay rate ofρ1 to have the following
operation count (nl = 2l )

Os ≤ (s + 4/3)n2
l + 2N 2 n4/3

l .
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Fig. 3. Solid curves: convergence ratesρ1 of the iteration (3.14),lmin = l − 5, with respect to the
kernel k1 and withα = 0.001 (•: Daubechies wavelet,N = 2; �: linear spline). Dashed curves: the
rateql (4.4). The theoretical bound 0.25 for ql is drawn as a dashed straight line

In the latter implementation the undamped multilevel iteration can be viewed as
a direct solver with complexity orderO

(
n2

l

)
which outperforms the Cholesky

solver.

Remark.SinceCl ,lmin (3.15) is a sum of matrices its action on a vector can be
performed in parallel. This leads to a speed up when the iteration is implemented
on a parallel machine.

Moreover, the iteration can even be accelerated with the help of matrix com-
pression techniques presented by Harten and Yad-Shalom [16], see also Beylkin,
Coifman and Rokhlin [1] and Dahmen, Prößdorf and Schneider [7]. The matrix-
vector product̃Al vl can be calculated with onlyO

(
nl
)

or O
(
nl log nl

)
operations

as far as the kernelk satisfies some additional requirements.

4.3. Numerical experiments

We shall provide numerical approximations to the convergence rates to demon-
strate the theoretical results as well as the performance of the Schwarz relaxation
(3.14).

For convenience, we limit ourselves to the Daubechies wavelet system of
orderN = 2 and to the linear spline system of the same order. In both cases we
computed the weights of the quadrature rules such that affine linear functions are
integrated exactly. The quadrature points are of the formxl ,t,j = 2−l (j + t). In all
presented experiments the integral in (4.13) is evaluated exactly and all kernels
are smooth enough to yield̃γl = O

(
δ 2

l

)
.

The asymptotic behaviour (4.3) is illustrated in Fig. 3 where approximations
to ρ1, L = 5, are plotted for severall and the regularization parameterα = 0.001.
The underlying kernel isk1(x, y) = x − y, x ≥ y, k1(x, y) = 0, otherwise.

Next, we compute approximations toρ1 where the coarsest levellmin = 2 is
fixed. We know thatρ1 < 1 uniformly in l if α is not too small. Here,α ≥ 0.001
is numerically sufficient, see Fig. 4.

In both examples the convergence rates with respect to the linear splines
are clearly smaller than those with respect to the Daubechies wavelet. The main
reason for this observation is the higher regularity of the linearB–spline: the
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Fig. 4. Convergence ratesρ1 with respect to the fixed coarsest levellmin = 2 (•: Daubechies wavelet,
N = 2; �: linear spline). Left:k2(x, y) = cos(π x y), Right: k1(x, y) = x − y, x ≥ y, k1(x, y) = 0,
otherwise. Solid curves:α = 0.001, dashed curves:α = 0.005

Table 1.Necessary iterations to guarantee a relative accuracy smaller than 10−4 (ε = 0.04,α = 0.001,

Daubechies wavelet, starting guess eitherz0
l = 0 orz0

l = ũlmin
:= H t

l ,lmin
Ã−1

lmin
Hl ,lmin

ξ̃lmin
(3.16))

l = 7 l = 8 l = 9 l = 10 l = 11 l = 12

z0
l = 0 49 7 4 3 3 2

lmin = l − 5
z0

l = ũlmin
12 4 2 1 1 1

z0
l = 0 7 7 7 7 7 7

lmin = 3
z0

l = ũlmin
4 4 2 4 4 4

Daubechies wavelet of order 2 is Hölder continuous with exponent 0.55, see
Daubechies [9], whereas the linearB–spline is Lipschitz continuous.

Our last example illustrates the performance of the iteration (3.14) by an
approximate solution of (4.1) with kernelk1 and exact right hand sideg(x) =
x2(x2−4x +9)/12+(1−cos(3πx))/π2/18. Thus,f ?(x) = (1−x)2 +cos2(3πx/2).
In our computations we supposed thatgε is known only at the discrete points
j δl with gε(j δl ) = g(j δl ) + εj where the random errors{εj } are distributed
uniformly in [−ε, ε]. The integrals in the (̃βl )j ’s are evaluated by the trape-
zoidal rule. Table 1 contains the numbers of iteration steps to yield an Eu-
clidean norm of the residue smaller than 10−4 · α · ‖zs

l ‖. Here,{zµl }µ denotes
the sequence of iterates generated by (3.14) with starting guess eitherz0

l = 0 or
z0

l = ũlmin := H t
l ,lmin

Ã−1
lmin

Hl ,lmin ξ̃lmin (3.16). Our stopping criterion guarantees

a relative accuracy‖zs
l − ξ̃l ‖/‖zs

l ‖ bounded by 10−4.
The approximate solutions with respect to the discretization levelsl = 6 and

l = 11 together with the minimum norm solutionf ? are displayed in Fig. 5.
We considered an absolute errorε = 0.04 and got the optimal regularization
parameter by trial and error. It took 14 (l = 6) and 1 (l = 11) iteration steps
(L = 4) to bound the relative accuracy by 0.01.

5. Discussion and conclusion

Our proposed multilevel iteration works most efficiently in its implementation
discussed in Sect. 4.2.2 if

Numerische Mathematik Electronic Edition
page 517 of Numer. Math. 75: 501–522 (1997)



518 A. Rieder

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Fig. 5. Approximate solutions (solid lines) and minimum norm solution (dashed lines) of (4.1) with
kernelk1 (ε = 0.04, Daubechies wavelet). Left:l = 6, α = 0.001, right:l = 11,α = 1.5 · 10−4. Each
α is optimal in the sense that theL2–error is minimized

ηl−L(l ) �
√
α ,(5.1)

cf. (4.15). In view of our general assumption that the noise levelε > 0 is fixed,
the requirement (5.1) holds forl such large that

ηl−L(l ) �
√
α0(ε) ,(5.2)

whereα0(ε) is as in (2.4). The largerl the more efficient is the algorithm. The
crucial conditionε > 0 is reasonable for real-life applications where noise cannot
be avoided due to the nature of the specific experiment and due to the limitations
of the measuring instrument.

Readers familiar with ill-posed problems might see a serious drawback of
the algorithm in condition (5.2) which is satisfied for large dimensions of the
system (2.1). At a first glance, this seems to be contradiction to the rule: ‘Don’t
discretize too fine to avoid noise amplification!’. The rule applies in the case the
regularization is obtained only by discretization, see e. g. Natterer [19]. However,
in our setting the stability of (2.1) comes from Tikhonov regularization and
here it pays to refine the discretization: the solutionf ε,αl of (2.1) is polluted
by a discretization error as well as by the unavoidable noise error. Increasing
the dimension reduces the discretization error without amplifying the noise. For
large l , the remaining errorf ε,αl − f ? is caused only by the noise provided
the regularization parameterα is selected according to one of the strategies
mentioned in Sect. 2.1. This argument is supported by the error estimates given
by Plato and Vainikko in [21] and by Fig. 5 where the approximate solution on
the left contains a relatively large discretization error as well as the noise error.
In contrast, the discretization error of the approximate solution shown on the
right side is negligible. Hence, this approximation is much closer to the exact
minimum norm solution.

In the remainder of this section we focus on the comparison of King’s mul-
tilevel method [17] with our algorithm. There are several differences: the most
important one is – as already mentioned in the introduction – that King considers
his iterative scheme as a regularization technique, that is, he uses the number
of iteration steps to balance the discretization and the data error. In his setup
relation (5.2) is superfluous, however, for the price of a slow convergence speed
of his full multilevel algorithm. Indeed, even if (5.2) is satisfied, King’s iteration

Numerische Mathematik Electronic Edition
page 518 of Numer. Math. 75: 501–522 (1997)



A wavelet multilevel method for ill-posed problems 519

has a splitting level dependent convergence rate, see [17, Corollary 3.4], which
deteriorates for an increasing number of levels. In our case, provided (5.2) ap-
plies, the convergence becomes even faster with increasing discretization level
and hence with increasing splitting levelL(l ) (4.14). Of course, our algorithm
can also be performed when (5.1) is strongly violated, for instance, ifε is zero.
Its performance and regularization ability in the latter situation remains still to
be investigated.

Besides the above comments our method outperforms King’s method with
respect to the following aspects which we only touch briefly.

– No damping parameter is needed to gain optimal convergence results.
– Each iteration step is parallelizable due to the additive structure.
– One iteration step is much cheaper (King’s algorithm is a multiplicative iter-

ation which requires two matrix-vector multiplications on each level of the
multilevel process).

At the end we like to emphasize that it is unclear how the performance of King’s
method improves (if it improves at all!) with the smoothness of the operator and
the order of the approximation spaces.

Appendix: Proof of Theorem 3.2

The proof of Theorem 3.2 will be given by providing boundsΓu andΓo for the
inequality (3.5).

We note the estimate

bj (wj , wj ) ≤ a(wj , wj ) ≤
(

1 + γ2
lmin

/α
)

bj (wj , wj )(A.1)

for all wj ∈ Wj , j ≥ lmin, which is an immediate consequence from the definition
of bj (3.1) and from Lemma 2.1.

First, we consider the upper boundΓo. Let v ∈ Vl thenv = Plminv +
∑

j Qj v
due to (2.6). For the following estimate we will use the statements of Theorem 2.2
and Corollary 2.3 as well as the inequalities (A.1), (3.6), and 2|xy| ≤ x2 + y2,
x, y ∈ R:

a(v, v) = a(Plminv,Plminv) +
l−1∑

j =lmin

a(Qj v,Qj v)

+ 2
l−1∑

j =lmin

a(Plminv,Qj v) + 2
l−2∑

j =lmin

l−1∑
i =j +1

a(Qj v,Qi v)

≤ (
1 + η2

lmin
/α
) ||| v |||2

+ 2
l−1∑

j =lmin

ηj a(Plminv,Plminv)1/2a(Qj v,Qj v)1/2/
√
α
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+ 2
l−2∑

j =lmin

l−1∑
i =j +1

ηi a(Qj v,Qj v)1/2a(Qi v,Qi v)1/2/
√
α

≤ (
1 + η2

lmin
/α
) ||| v |||2

+
l−1∑

j =lmin

ηj
(

a(Plminv,Plminv) + a(Qj v,Qj v)
)
/
√
α

+
l−2∑

j =lmin

l−1∑
i =j +1

ηi
(

a(Qj v,Qj v) + a(Qi v,Qi v)
)
/
√
α

≤ (
1 + η2

lmin
/α
) ||| v |||2

+ Cηηlmin

(
a(Plminv,Plminv) +

l−1∑
j =lmin

a(Qj v,Qj v)
)
/
√
α

+Cηηlmin

l−1∑
j =lmin

a(Qj v,Qj v)/
√
α

≤ (
1 + η2

lmin
/α
) ||| v |||2 + 2Cη

(
ηlmin/

√
α
) (

1 + η2
lmin

/α
) ||| v |||2.

Thus, we have verified the right inequality in (3.5) withΓo from Theorem 3.2.
Now, we concentrate on the lower boundΓu. The first inequality of the

following estimate comes from (A.1) and the second one follows by the splitting
v = Plminv +

∑
j Qj v for v ∈ Vl :

||| v |||2 ≤ a(Plminv,Plminv) +
l−1∑

j =lmin

a(Qj v,Qj v)

≤ a(v, v) + 2
l−1∑

j =lmin

|a(Plminv,Qj v)|(A.2)

+ 2
l−2∑

j =lmin

l−1∑
i =j +1

|a(Qj v,Qi v)| .

To proceed we supply Lemma A.1.

Lemma A.1. Let Pl and Ql be the projections defined in Sect.2 and let a be the
bilinear form (2.8). If i /= j then

|a(Qi v,Qj v)| ≤ (
γi γj /α

)
a(v, v) for all v ∈ X.

Further,

|a(Pl v,Qj v)| ≤ (
1 + γl /

√
α
) (
γj /

√
α
)

a(v, v) for j ≥ l and for all v ∈ X.
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Proof. Writing A for K ∗K + αI we have that

|a(Qi v,Qj v)| = |〈KQi v,KQj v〉Y |
= |〈KQi A−1/2A1/2v , KQj A−1/2A1/2v〉Y |
≤
(
‖KQi ‖ ‖KQj ‖/α

)
a(v, v).

Lemma 2.1 implies now the first statement. Taking into account that

‖KPl A−1/2‖ ≤ ‖K A−1/2‖ + ‖K (I − Pl )A−1/2‖ ≤ 1 + γl /
√
α

one can prove the second statement analogously.ut
Applying Lemma A.1 to (A.2) we achieve

||| v |||2 ≤ a(v, v) + 2
(

1 + ηlmin/
√
α
)

×(Cη ηlmin/
√
α
)

a(v, v) + 2
(

C2
η η

2
lmin

/α
)

a(v, v) .

Hence, Theorem 3.2 is proved.
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