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Summary. We extend the continuous wavelet transform to Sobolev spaces Hs(F,) 
for arbitrary real s and show that the transformed distribution lies in the fiber 

spaces L2((IRo,~a),HS(IR))_~H~ 2 dadb\ / I R , 7 ) .  This generalisation of the 

wavelet transform naturally leads to a unitary operator between these spaces. 
Further the asymptotic behaviour of the transforms of Lz-functions for small 

scaling parameters is examined. In special cases the wavelet transform converges to 
a generalized derivative of its argument. We also discuss the consequences for the 
discrete wavelet transform arising from this property. Numerical examples illus- 
trate the main result. 
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1 Introduction 

The wavelet transform (WT) is a tool for analyzing and synthesizing signals with 
many applications in geophysics [5], acoustics [6], and quantum theory [12]. It 
has a lot of advantages compared to the Fourier transform, e.g. the high 
frequency components are studied with sharper time resolution than low frequency 
components [2]. 

The transformed signal is composed by its inner product with shifted and scaled 
versions of a fixed function called analyzing or basic wavelet. 

Let.f~ L2(IR) be the signal and ~, 6 L2(IR ) the analyzing wavelet. The mapping 

/ / . _ h \ \  
(1) f(.)~--~lal-1/2(f, t p { ~ , )  b ~ ,  a~IR\{0},  

0' \ \ a l l  
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describes the analysis o f f (up  to constant factor), where ( ", �9 )o denotes the inner 
product in L2(~-). With an admissibility condition on ~ the right hand side of(l)  is 

( dbda) 
an element in L2 (IR x IR\{0}), 7 / / a n d  it is possible to synthesize f by these 

moments. 
In the literature one often finds the definition of the wavelet transform via an 

irreducible unitary representation of the group of affine-linear transformations of 
the real axis ('ax + b'-group). Hence its essential properties are abstractly proved 
by help of group theory (orthogonality relations). 

For a detailed description of these group-theoretical aspects we refer to 
Grossmann, Morlet, and Paul [7, 8]. 

In the next section some known results will be verified without group-theoretical 
arguments in such a way that the extension of the wavelet transform to Sobolev 
spaces becomes obvious. It will be seen that the signal and the wavelet transform 
share the same Sobolev order. The discrete wavelet transform was already ex- 
tended to the spaces HS(1R) by Daubechies [2] via the concept of frames but only 
for very special choices of basic wavelets. 

The preponderant part of the paper deals with the asymptotic behaviour of (1) 
for small a. Without a heuristic frequency analysis our inquiry explains the basics 
for the widespread use of wavelet techniques in edge detection and pattern recogni- 
tion. It turns out that the right hand side of (1) converges to a derivative off,  as 
already observed for a very special example in [8], p. 306, for a great class of basic 
wavelets ~b (in particular for all compactly supported). In Sect. 5 we apply the 
results to show the approximation properties of the discrete wavelet transform. 
Again derivatives of the transformed signal are computed. Numerical tests in 
Sect. 6 verify the theoretical results. 

2 The wavelet transform 

We define with the help of the shift-operator 

(2) (Tbg)(x) = g(x -- b), b e n  

and the dilation-operator 

(3) (D"g)(x) = ta[-1/2g( X ), a@lRoi= IR\{O} 

a unitary transformation U(b, a):L2(IR, dt)-, L2(]R, dr), where dt denotes the 
Lebesgue measure, by 

(4) (U(b,a)g)(x)=(TbD~g)(x)=}al-1/2g(~-), (b,a)~lR x 1R0 �9 

To simplify further calculations we introduce the Fourier transform 

(Ff)(~o)=f(e))=-~!f(x)e-'X~ co~IR, 
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leading to 

(5) FT b = e- ib()F 

(6) FD" = D~/"F. 

Hence we get 

(7) ( U(b, a)g) A (to) = F(TbD"g) (~o) = e-ib*'lalX/2 (~(a~o) . 

In the sequel we describe the wavelet transform, based on a function 0- 

Definition 2.1. A function ~h e L2(IR, dt) is admissible if and only if 0 is not  identical 

to zero and ( U( ", " )0, 0 )o  lies in L2 IR x N o , ~  ,i.e. 

dbda 
(8) ~ S l(C(t',~)O, 0 ) o l ~ - . T  < <' �9 

W i t h ' * '  denoting the convolution we reformulate the admissibility condition (8) as 

(9) 

dbda 
~ l(TbD~O, 0)ol2 a2 

fro R 

dbda 
- ~ ~ I ( t ) - ~ ~  ~ a ~ 

d da =2'~ f ~ ](D-a0)^(Q)'~(Q)]2 e~-2 
IRon, 

da 
= 2re ~ ~ la l t~(-aQ)12l~(Q)12dQ~ 

rRo N 

In the last step we substituted ~o = - ao an changed the order of integration. As 
a consequence we can characterize the admissible functions. 

Lemma 2.2. ~ffZ2(~R, dr)\{0} is admissible if and only if the inte,qral 

I ~ L S -  d., 

exists. 

Remark. As a necessary condition on the admissibility of an element ~ e Lz(IR, dt) 
we derive 

1 
(10) 4J(0) = ~ ! O(t)dt = 0 ; 

i.e. the mean value of 0 has to be zero, if the integral exists (e.g. if 0 is in addition 
integrable). We call an admissible function also analyzing resp. basic wavelet or 
wavelet in short. 
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Theorem 2.3. Let ~b be admissible and f~L2(lR, dt), Let C o = 2~ ~ ~ - d o ~ .  
~ o  

The integral 

1 
(11) Lof(b,  a) = ~ ( f ,  U(b, a)~ 5o 

1 1  ( [ ~ a  b )  d l! ftttd, 

( dbda) 
defines an element of L2 IR x ~o, a ~ . 

( dbda~ 
Moreover Lo:L2(IR, dt)--, L 2 IR x lRo, a2 ] is an isometry. 

Proof. L , f ( b ,a )  exists for any (b,a)~IR x ~o  because f and TbDa~ are in 
L2(IR, dt). A similar calculation to (9) results in 

dbda 
IIt+fll 2 =  J ]" ILr 2 a 2 

~-o 

1 a 2 dbda : c~, [ [" I(U(b, )q~,fSI 
Rio gl. 

1 I qJ(~)12 dco 
= C-o" l lf l lz '2n" j" ~ -  = I l f l h ~  �9 [ ]  

F.o 

dbd~,l(O 
Definition2.4. TheoperatorLo:L2(IR,&)-- .L 2 IR x lRo, a2 ) admissible)is 

called wavelet transform with analyzing (basic) wavelet 0. 

3 Extension to Sobolev spaces 

In this section we extend the wavelet transform, which we defined o n  L 2 ( ~ t .  , dt), to 
Sobolev spaces H'(~,) and interpret its images as elements of the fiber space 

// L \  \ 

Le((IRo, 7) ,H~'( IR))  abbreviated by ,~-" which is isomorphic to the tensor 
\k ~ I  I 

product L2(IRo, d~2 ) ~H'(IR)  as well as to the Sobolev space with two variables 

da db '~ a i 
H ~ IR 2, a2 //, see [1], Chapter 12, pp. 274-279. 

If /z is a measure on ~,o and (B, H'll) an arbitrary normed space then 
L2((lRo, dli(x)), (B, II " It)) consists of those ~b~B which depend on a real variable 
and for which holds 

j II~(x)tl2d~(x) < or . 

~o 

H'(IR), a ~ IR, denotes the Sobolev space of those tempered distributions y having 
a regular and with respect to the weight (1 + ~oz)" square integrable Fourier 
transform 3. We sometimes call elements of H'(IR) signals. 
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F rom now on we assume ~ to be admissible and integrable. If q, and f a r e  real 
then L~f  is real. Without  loss of generality we assume ff and f to be real. Under  the 
assumpt ion above we have 

(12) 
1 

L+,f(b, a) = ~ ( TbD~k,f)o 

1 
= - ~ ( D - a ~ *  f)(b) . 

From (6) we obtain the Fourier  t ransform of L ,  with respect to its shift a rgument  

(13) (L+f( ' ,  a)) ^ (~) = 2~ laltl2 ~( - a~o ) f ( co ) .  

Fix a e IRo and let f e  <~(IR), the Schwartz space on IR. Let us now determine the 
H ' ( IR)-norm of L+f( . ,  a). For  that  we need an inequality from Fourier  analysis 

leading to 

(14) I] L~,f( ' ,  a)ll 2 = S (1 + eoz)~l(Lq, f ( ' ,  a)) ^ (~o)12do9 

2re . (1 
= 

< - - H D  IlL S(] + 
= C~0 

= K(a, ~9). Ilfll 2 , 

1 
where K(a, if) = ~71al  H~H2,. 

The Schwartz space is dense in H'(IR). Therefore we are in a position to extend 
L~,f(., a) uniquely for fixed a to a continuous mapping  from H~(IR) to itself. 

Lemma  3.1. The inteyral operator L~, with an inteyrable and admissible tp is an 
isometry from H'(IR), o~ IR to the fiber space ~ i.e. 

I ILo f l l~= S l l L + f ( ' , a ) l l ~ )  = l l f l l ~ .  

Proof. It suffices to consider f~<9~(IR). The result is shown by a straightforward 
computat ion.  

da 
[I Lq, fll 2= = J" J" (1 + ~o2)'l(L+f(', a)) ^ go)t 2 d~  a~ 

P-o 
(13) 2n da 
m. C-~ I !(1-~- u)2)ala]llfi(--au))i2n.?(uJ)n2d(o ~ 

~o 



880 A. Rieder 

Substituting - a o  = ~ and treating o) > 0 a n d  o < 0 separately leads to 

2 n  [[/~(~)i2 d ~ ' j  (1 + o2)~lf(ea)lZdo IIL*ilI~= = ~ ~ o ~  ~< 

= I l f l l ~  �9 
[] 

The signal f and its wavelet transform L , f  share the same Sobolev order. For 
a linear isometry U between Hilbert spaces we have that, see [14], 

(15) U* U = id and UU* is the orthogonal projection 

onto range(U) (which is closed), 

where U* is the adjoint operator of U. From statement (15) it follows immediately 
that 

(16) the transform L,  is inverted, on its range, by its adjoint L$ 

and that 

(17) an element g ~ ~ "  lies in range(L,) if and only if L,L~, g = g. 

Next we figure out an explicit expression for L$: o~ ' - - ,H  ~. In what follows 
we use f~,9~ g(x,a)=g1(x)'gz(a) with glE<9~ g2GC~(IRo) and 
A(a, ~o, c 0 = (1 + co2y(L,f( �9 , a)) ^ (oD'(g(', a)) ^ (~o). Setting up a scalar product 
on i f "  in a canonical manner, 

d a  

(0,7), = j ( O ( ' , a ) , v ( ' , a ) ) ~ ,  
~o 

we get 

(18)  (L~f g)~, = ~ j A(a, o, or ~22" 
F-.o ~.. 

Applying two times the Cauchy Schwarz (C.S.) inequality leads to 

da 
~ IA(a, co, or162 ~ ~ j" NLof(.,  a)lt~ltg(, a)N, 

N.o DI 1/o 

<= [IZ, f l l ~  IIg]l~ , 

which allows to change the order of integration in (18). 

~ 0  ^ da (19) (L*fo)~ = I (  1 + efl)~f(~ I 2X(D-aqJ)^(~ ( ~ 1 7 6  
N. Ro 

We abbreviate the inner integral by (/~g)(co) and estimate [/~gl to conclude that 
.4ge L2(lR, at): 

^ 2 da (20) [Ag(oa)[ 2< j" I(g(',a)) ffo)l ~ .  
Ro 
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Again we used the C.S. inequality and get 

da do~ (21) ~ tAg(o))[ 2do) < ~ ~ I(g(',  a))^(~o)] 2 
R F,o 

= I I g l l ~ o  �9 

Consequently there exists a Ag ~ L2(IR, dt) with 

(22) (Ag) ^ (o~) = Ag(~) 

and now the equation 09) reads as 

(23) (L, f ,  g), = ]" (1 + r ^ (o~)d~ 

= <.s Ag>~. 

In the last step we determine Ag(x) using the fact that the integral 

da 
j" I(D "~)^(eo)(g( ' ,a))^( to)ldr (24) 

exists. 

(25) 
1 

Ag(x) = ~ ! (Ag)^(to)ei~x dr 

1 1 

_ 1 ~ ( D _ O C ~ , g ( . , a ) ) ( x ) ~  

1 1 dbda 

We showed that the operators L ,  and A are adjoints of each other on prehilbert 
spaces of H" resp. g ' .  This property is inherited by their extensions. Accordingly 
the extension of A on ,~-" is identical to L$. The abstract characterization (17) of 
range(L,) results in 

Lemma 3.2. Range (L~ ) ~ .~" is a Hilbert space with reproducing kernel 

P([~, s b, a) = ~ (L, qJ) 
,,/ C ,  ~ a 

dbda 
g~range(L~),~g( 'b,~)= ~ ~ n( 'b ,s  a2 

~o R 

Proof A direct calculation of L,L~  proves the lemma. [] 

We will now determine the HS-distance of two wavelet transforms with different 
basic wavelets and different argument functions to study the dependence of the 
transform on its wavelet and its argument. 
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Lemma 3.3. For admissible and inteyrable 0, 7 and f g~ HS(~,), s~ IR, holds: 

Proof. 

IlL, f ( ' ,  a) - L,g( ' ,  a)lls =< ILL0/(', a) - L .J( ' ,  a)lls + IlL, f ( ' ,  a) - L,O(', a)lls 

(D-~0)^(~o) (D-.7)^(o~) 2 )1/2 

/ 

Performing the same steps as in (14) to each term of the sum yields the 
lemma. [2 

A direct application of Lemma 3.3 gives 

Corollary 3.4. Let 0 and f be as in the preceding lemma. Then 

II Zof ( ' ,  a)I1~ = 0 ( , , / ~ ) .  

4 Asymptotic behaviour for small dilation parameters 

We adopt the assumptions on f and 0 from the last paragraph. In addition we 
assume without loss of generality 0 to be real because the admissibility condition is 
valid not only for the real but also for the imaginary part of 0 [8]. Then 

x/-~o l l x f ~  ( t - b ) f ( t ) d t  ~ a -  (26) Lq, f(b, a ) -  ! 0 

1 
-- ~ ~ l  ! t~(ae))f(oJ)e -ib~d~o 

is even in the second variable because q~ is. We restrict ourselves to the half-plane 
a > 0 .  

Considering (26) we realize that the integral expression looks like the 0-average 
0n * f of f with Oa(X) = a -  1. O(a- I x). 

Indeed we have 

(27) (O,* f ) (b )=x / -~~  Lof(b, - a ) = x f ~  L~,f(b,a). 

For 0 e L1 (IR) (i.e. 0 is integrable) with ~R O(t)dt = 1 the 0-average of f converges 
to f in the L2-norm which means that 

(28) lira ]10, * f - f  ][o = 0.  
a ~ O  

Unfortunately a basic wavelet has zero mean and therefore (28) does not hold for 
the WT. 
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Now we are interested whether an asymptot ic  behaviour  like (28) is possible 
under certain assumptions on the analyzing wavelet. 

For  the ~O-average of f we write At, f ( ' , ' ) ,  i.e. 

(29) Aq'f(b'a) = (~a *f)(b)  = l- Ia.~(b a t ) f ( t ) d t  " 

L e m m a  4.1. Let f.6HS(lR), s~lR. Let ~96Lx(IR) with I ~ ( t ) d t  = 1. Then we 
have 

(i) A~, f ( ' ,  a)--*f( ' )  in HS(IR) as a ~ 0, 
(ii) d k ( A ( f ) (  �9 , a) = A~,(dkf)( �9 , a) = a - k ( A a k c f ) (  �9 , a), i f  d k ~  ~ LI(]R ). 

(d k denoting the k-th generalized derivative). 

Proof. 

(i) t[ ~,, * f . -  f [I 2 = ~ l(a, to)do9 

where I(a, to) = (1 + a~z)s[f(tn)[Zll - x / ~  ~(aw)l 2 . 

With M = s u p o , ~ l l  - x / ~ ( a ( o } l  z which exists by the lemma of 
Riemann Lebesgue and is independent of a we find 

l(a,~o) < M ' ( I  + ~o2)Slf(a~)12 
as well as 

lim I(a, (o) = 0 a . e . .  

a ~ 0  

Applying the dominated  convergence theorem yields the assertion. 
(ii) Let {f.},~N c 5g(IR) converge to f in H~(IR). The equality 

dk(A~f.) = A(dkf .  = a-kAa~c~f, is valid in H ~-k(lR). Since the operators  A~, and d k 
are continuous, the limits of  the three terms are equal. [] 

L e m m a  4.2. Let 0 ~ oe  Ha(~),  /3 > 1. 
Then dk o is admissible for 1 <- k <_/3. 

Proof. First, it is easy to see that dko is equal to zero if and only if Q = 0 because 
zero is the only constant  in H~(IR), se lR.  Therefore we have dko 4: O. 

Second, fl -- k > 0 implies d k O e L z ( l R ) .  
Third, we use the relation 

to estimate 

(dko)^( ' )  = ik( . )k~( . )  

I(dk0)^(~)l 2 
5 I~[ d w =  y I(ol2k-1]~(o~)12do~ 

IRo ~o 

< ~" (1 + ~ o @ - ' / 2 1 0 ( ~ ) 1 2  d ~  < II011~ �9 

The result follows from L e m m a  2.2. [] 

Our  investigations now focus on the WT with analyzing wavelet dk~ e L I(IR) 
with ~ E Ha(~,)c~ L1(IR),/3 > 1, and 5~tp(t)dt = 1 (thus qJ itself is not admissible). 
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Theorem 4.3. LetfeHS(R), se IR, and ~, 6HO(IR) ~ LI(IR), fl~N, with S~b(t)dt = 1 
and dg~9 e LI(IR) at least for one k6{1 . . . . .  fl}. Then 

lim ak~Ldkq,  f ( ' , a  ) -- 1 dkf(.)s_k.=O ' 
a~O ~ k k  

where CR abbreviates Cake,. 

Proof. ~ is not identical to zero. According to Lemma 4.2 dk~ is admissible. With 
an application of Lemma 4.1 (ii) we restate 

Ldkof(b, a) = ~/ ~k Adkof(b' a) 

ak + l/2 

- x~kk Aq'dkf(b' a) 

a k + 1/2 

- ~ d~(A~,f)(b, a). 

Now we estimate 

a k ~  Ldkg, f ( ' ,  a) -- -- 1 k ) ~ - k  1 _ _ ~  d f(" - ~ Ildk[Aq, f (  ", a) - f ( ' ) ]  II,-k 

1 
< ~ ]jAof(',a) - - f ( ' )Hs 

using the boundedness of the differential operator from H ~ to H s-k. The term on 
the right tends to zero by part (i) of Lemma 4.1. This ends the proof. [5 

Remarks. 
(i) For s > �89 + k we have uniform convergence. This results immediately by 
Sobolev's Imbedding Theorem [13]. 

(ii) For compactly supported ~ we know that Ldk~,f(',a)eH~-*+o(~,) if 
f e  H~(N), ~ e HP(IR), and 1 < k < fl (fl integral). Hence, in accordance with the 

1 1 k 
theorem above, ~ Lakof(', a) is an approximation of ~ d )Cwhich is at least 

fl levels smoother than its limit, x/Ck 

4.1 Local convergence 

In practical applications of the WT, i.e. the analysis and synthesis of time- 
dependent signals, the signal f is compactly supported. Even if this signal possesses 
a high order of smoothness within its support under a global viewpoint we can only 
deduce that f is square integrable over the real line, which means f~  H ~ 

By Theorem 4.3 ~ L~k,f  approximates the k-th derivative o f f  only in 
a 

H-R(1R) although f is local an element of the Sobolev space HS(IR) with s > 0 and 
therefore we would expect a kind of local convergence in the stronger norm of 
ns-~(~). 

We specify the concept of local convergence. Therefore we define the local 
Sobolev spaces [13]. 



The wavelet transform 885 

Definition 4.4. Let f2 c IR be open. 

Hfo~([2) : =  { f i s  a distribution I Vf2' c f2, f2' compact,  

3g~ 'EH+(IR) : f  - g~" on f2'} 

is called local Sobolev space of order s. 

The 

s ~ . Lemma 4.5. feHto~(f2) f ~eH~(IR) Vq~eCS~(f2) 
(C~((2) denotes the space of the test functions with compact support in 12) 

suggests a concept of convergence in H~or 

Definition 4.6. Let {f,},+~ be a sequence in H~or and feH~o~(f2). { f , } , ~  
converges to f in H~oc(~2) (local convergence) if and only if II q'f ,  - ~ f  II~ converges 
to zero for any (be Cff(f2). 

Remark. This concept of local convergence is well defined because the limit is 
uniquely determined. 

Without  loss of generality we assume that 

(30) supp ( f )  = [ - ~  T]  = I .  

Further we consider 

(31) f~H~o~(l ~ with I ~ = ]  - 7 ' ,  T [  and s61R. 

For 0 < e < T let J~ be the compact  interval [ -  ~, el. We know from real analysis 
that there is a F ~ C ~ ( I  ~ which is identical to 1 on J+. 

Lemma 4.7 
(i) r~(- ) f ( - )~  HS(IR) 

(ii) Y,(" ) f(" ) converges to f i n  H~oc(l ~ as ~ tends to T. 
s 0 (iii) Y~( ' ) f ( ' )  - f ( ' )  on H,or 

Proof. (i) is the statement of Lemma 4.5. 
(ii) Let (b~C~(l~ For  sufficiently large e,  with 0 < e , <  T we have 

supp(q') _~ J~ for all ~ with e ,  < c, < T. 
This implies q ) F J =  q~fin HS(IR) for e ,  < e < T a n d  thus the assertion. 

+ H~oc(J~ ). We still have to show the (iii) It is clear that both F~ f and f are in + o 
Co (J~) act on the distribution F J :  equality. Let a test function q~e + o 

(t'~(tlf(t), q,(t)) = ( f ( t ) ,  rAt)q)(t)) = ( f ( t ) ,  q,(t)).  D 

A local version of Theorem 4.3 reads as 

Theorem 4.8. Let ffulfill (30) and (31). Let ~b be defined as in Theorem 4.3 and s as 
a b o v e .  

1 1 k , H ,or ( jo)  .for any Then ~ Lakq,(E~f)(" a) converges to --dx/~k "f in +-k 

e]0, T[  as a tends to zero. 

Remark. Even locally we can reach the convergence in the strongest norm. 
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Proof of the theorem. First we conclude d k f =  dk(F~f) in H~Lk(J ~ with the 
Leibniz' rule and the action of q~eC~(J  ~ on dk(FJ): 

The last equality holds true because F~[supp(~) = 1. 
Theorem 4.3 yields 

1 a ~ O  1 
ak+l /2Ldko(FJ)( ' ,a)  , - ~ k d k ( F J ) ( ' ) e H S - k ( I R ) .  

To continue the proof we need the boundedness of the multiplication operator on 
HL Let H 6 5~(IR) and let Tn: H ~ --* H ~ be defined by T n f  = 11 . f  Then Tu is 
continuous for all ~ E IR [13]. We are now able to prove the desired convergence in 
H~,-~k( J~ 

Let q~EC~( J ~ ~ 5~(IR): 

1 I d k f ( ' )  ~-k. ~(" ) ~ Ldk~(r~f)( ' ,  a) -- ~(" ) 

. 1 1 ") ~-k <IIT~It  ~ Ld, o ( F , f ) ( ' , a ) - - ~ d k ( F J ) (  �9 [] 

Under local conditions of smoothness on the signal, statements can be made about 
the order of convergence. 

Lemma 4.9. Let f be two times continuously differentiable in a neiyhbourhood 
of b~IR (e.9. f E H ~ o r  for some e > 0  and s > 2 , + � 8 9  Let 
~9~Ha(IR)c~LI(IR), fl > 1, with ~ b ( t ) d t  = 1 and supp~O = [T~, 7"2]. For a > 0 
sufficiently small holds 

1 
a-3/2Laof(b,  a) = - - f '  (b) + O(a) 

(prime indicates the first classical derivative). 

Proof Using the facts that for sufficiently small a df is equal to f '  in 
[b + aT1, b + aT2] =: l (b ,  a) and that M(a) = supr (()1 exists, we obtain 
by the mean value theorem 

a -  1 , 1 
3~2Ld, f (b ,  a) . ~ f  (b) = ~ tAodf(b, a ) - J "  (b)] 

< "- 'M(a)  I [ t - b l d t  

= K(a, b , f ) ' a  

1 
with K(a, b , f )  = ~ - ~ "  M(a) f~-~lO(y)l l yldy. [] 

N/ "-"l 
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4.2 Wavelet transfi~rm with compactly supported wavelet 

The practical importance  of the former statements of this section would be 
increased if we could find a criterion to decide whether an integrable wavelet 0 can 
be represented by ~9 = d k ~ with ~k e Hk (1R) c~ L1 (IR) and ~ qJ (t)dt + O. 

We will see that  the compactness  of the support  of the basic wavelet suffices to 
guarantee the existence of such a ~. 

We need a p repara tory  lemma which can be verified by induction�9 

L e m m a  4.10. Let 4h(x) = ~ d?t l (t)dt, l > 1, x e [~, fl] a sequence of  functions with 
qSoeLl([a ,  fl]). Then 

4~,+ l(X) = l i (Oo(Z)'(x - z ) 'dz  . 
�9 ~ t  

The following theorem and its corollary formulate the above ment ioned criterion. 

Theorem 4.11. Let O be square integrable and not identical to zero. Let [~, fl] be the 
compact support of  Q and let its mean value be equal to zero. 

Then exists a k e n  and a uniquely determined ~9eHk(lR)c~Ll(lR) with 
~r 4= 0 and dkl) = Q. 

Proof  We define a sequence of functions whose k-th member  is our  searched ~: 

4~o(X) := o(x) 

d?z(x):=i(ot_l( t)dt  l =  1,2 . . . .  

{~b~ } t ~  has the following properties: 
(a) 4 , ,eC ~ 1([c~,1~]),1> 1, 
(b) qS'l = ~ almost  everywhere 

(thl is absolute continuous), 
q5 lj~(x)=qSl j(x) V x e [ c ~ , f l ] a n d O _ - < j _ - < l - I  
(q51J~ indicates the j- th classical derivative of q~), 

1 
(c) qSt + 1 (x) = ~. ~ ~ O(z) (x - z) t dz (Lemma 4.10). 

Assertion. There is a k e n  with 4)k+l(fl) = ~ 4)k(t)dt 4: O. 

We proof  the assertion indirectly. Let us therefore assume ~b~+l(fl) = 0 'v'l __> 0. 
Proper ty  (c ) leads  to 0 = ( l / l ! ) ~ O ( z ) ( f l -  z)'dz for l_>_ 0. This implies I~O(z) 
z~dz = 0 Vl > 0 which contradicts  O ~ 0. 

The assertion is true and we set 

k ' =  min{ l eNl r  4: 0} 

~ :  = r 

and show that  ~ has the desired properties: 

(i) dJ~, = ~bk-~, 0 =<j _--< k 
(ii) dJO(a) = d~O(b) = qbk-j(b) = 0,0 < j < k - 1 

This means dJ~ ,eck-J -~( lR) ,  0 < j  < k - 1 with compact  suppor t  [~, fl] and 
d~,  e L 2 ( N )  for 0 < j  < k, i.e. OeHk(lR) .  
(iii) f~O( t )d t  = ~ C~k(t)dt = dpk+ x(fl)4: 0. [] 
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Corollary 4.12. Let 0 ~ Oe L2(IR) be compactly supported and ~ O(t)dt = O. Then 
0 is admissible. 

Proof The preceding theorem supplies a k e N  and a OeHk(IR) with ~ 5 0 ,  
dk~ --= Q. Lemma 4.2 completes the proof. 

Remarks. (a)Within  the remark on Lemma 2.2 the mean value condition 
~ O(t)dt--0 was mentioned as a necessary condition for the admissibility of 
a Ll-function O- The corollary states that for 0 ~ 0 with compact support the mean 
value condition is also sufficient. 

(b) For all WT with compactly supported basic wavelets the statements of 
convergence described in the Theorems 4.3 resp. 4.8 hold. 

5 Consequences for the discrete wavelet transform 

In this paragraph we want to discuss the conclusions and consequences for the 
discrete wavelet transform (DWT) arising from Theorems 4.3 and 4.11. 

The DWT is a modification of the continuous one which is relevant and 
adequate for practical applications like signal theory [6], edge detection, and 
pattern recognition [9, 10]. 

In the sequel we give a short description of its essential properties: 

For suitable grids G = {(b' ,  a,)[m, nEZ} c ]R x IR 0 and suitable basic wavelets 
the mapping 

(32) Lg: L2([R ) ~/2(7~2) defined by 

D (Lo f)m., = ( rbmD""O,f)o 

= x f~oLo f (b ' ,  a,) 

is continuous and continuously invertible. 
Thus there exist positive numbers A and B such that 

(33) AIIfilo ~ IIL~fll,2 ~ Btlfllo �9 

Then the set 

(34) R(G, O) = {TbD"OI( b, a)eG} 

is called a frame of L2(IR). 
We refer the reader to [3] and [4] for sufficient conditions on the grid G and the 

analyzing wavelet g, so that R(G, ~) constitutes a frame. 
For sake of simplicity we restrict ourselves to the dyadic grid, see [-2, 11], 

Gd = {(2ran, 2")Ira, n e Z } and basic wavelets with the following properties: 

(P1) R(Gd, ~) = {~m,.(X) = 2-'/Zg'(2-'X -- n)lm, n~Z} forms an orthonormal 
basis (ONB) in Lz(IR ) (called wavelet basis). 

(P2) There exists a function ~eL2(IR) such that 
{~bi, k(X) = 2-J/zg~(2-Jx -- k) lkeZ} forms an ONB for 

Vj = ~) W,. with Wm= span{q6., , ln~Z}. 
j<m 



The wavelet transform 889 

The simplest example of a wavelet satisfying (PI) and (P2) is the Haar-function 

1 ifO_<x_<�89 

(35) 0 ( x ) =  - 1 i f � 8 9  1 

1 else 

R(Go, t~) is the Haar-system well known from functional analysis. 

{10 i f 0 < x <  1 satisfies(P2) with respect to the Haar- The function qS(x) = else 

wavelet. 
Further examples of arbitrarily smooth 0 and q5 can be found in [3]. 
We mention some properties of the spaces Vj. Let Pi resp. Qj denote the 

orthogonal projections onto V~ resp. Wj. 

(36) 

(37) 

(38) 

�9 . . c V 2 ~  VI~ V o ~ V - 1 ~ V - 2 c . . .  

0 vj = {0}, U vj = L21m 

P j f - * f  as j ~ - oe 

Pj.['~ 0 as j ~ + 

vj , =  b |  P1 ~=P~+Qi 

In [1 l] the above introduced construction of the spaces Vj, Wj, and the projections 
Pi, Q1 is called multiscale analysis. Because of (36) and (37) P i f  is heuristically 
interpreted as a representation of f on the scale 2 i. P i f  contains only details of 
f with minimal size 2 i. 

So we are able to interpret Qi.f= ~,~z ( f ,  qJj,,)0~91,, = ( P j - 1 -  Pj).f as the 
change of f at the transition from the scale 2 i -  1 to the coarser scale 2 i. 

The additional requirements (P1) and (P2) yield an iterative algorithm (by 
S. Mallat [11]) for analyzing and synthezing signals. The analysis part is for- 
mulated as follows: 

With the notations (s ~ L2(]R)) 

(39) c~(s) = (s, (aj, k)O 

for the moments of Pis relative to {4~i, klkETZ} and 

(40) q~(s) = (s, Oi, k)O 

for the moments (wavelet coefficients) of Q j r  relative to {Oj, kJk e 7Z} the M allat- 
iteration reads 

(41) c~ = ~ h ( n -  2k)c~ -1 
n~Z 

with the filter h(n) = 2-1/2 ~ dp(x/2)c~(x - n)dx and 

(42) q~ = ~ g(n - 2k)c~ -1 
n E K  

with the filter g(n)= 2 - x / z ~ 9 ( x / 2 ) O ( x -  n)dx. (41) and (42) are consequently 
discrete convolutions which can be efficiently calculated by FFT. 
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If the signal to analyze is only sampled at discrete times we have to perform 
some sort of interpolation together with a projection before we can iterate. The 
smallest detail of the discrete signal, given by the sampling distance, is set equal to 
one without loss of generality. For obvious reasons we construct the members of 
the signal sequence {Sk }k~  as the moments of a Lz-function projected onto V0. The 
continuous signal is now s(x) = ~kSk(O(X -- k)e  Vo. F o r . / >  1 the iteration can be 
started with c~ = s k. 

These facts about the DWT should suffice to interpret the orthogonal projec- 
tion Qj: L2(IR) ~ Wj within the framework of Sect. 4. 

As mentioned above we obtain from o {fk}k~Z the continuous signal 
0 S(X) -~ 2 k f  k .q~O,k(X) in Vo. 

We set f~, = CJk(S) and q~ = q JR(S) and calculate 

( x -  2j+lk ) 
x /~(L~,Pf i ) (2J+lk ,  2 /+1) = 2 -'~/+ 1)/2 ! ~O } ~ -  Pjs(x)dx 

= ~ f { g ( n -  2k).  
n~Z 

By (42) we have the equality 

(43) q{+l = x /~dLq,  P : ) ( 2  j+l k, 2 j+ 1) 

exploiting the wavelet coefficients to be an approximation of 

2{j+ 1)~t+ 1/2~ dt( P js)(2 j+ 1 k) 

if q, is the/- th  derivative of a function 0 fulfilling the hypotheses of Theorem 4.3. 
q~+~ is an average of D2JO and Pjs at instant 2J+lk. For decreasing j the 

average is computed over smaller domains (within Mallet's algorithm for discrete 
signals the smallest value o f j  is zero). 

For the projections Qj+I this means 

(44) Qs+ l s(x) = x /C~  Z (Lq, Pjs)(2 j+l k, 2 j+ 1)~+ 1. k(X) 
keZ 

2~J+l)ll+l/2) ~" dt(Pjs)(2J+lk)tpj+l.~(x).  
keZ 

Thus Q~+1 approximates an interpolation in the sense mentioned above of the 
sequence J r  = {21J+l)l~+I/Zld~(Pfi)(2J+lk)l ke;g} in the space Wj+I. The k-th 
member of ~9:j is the /-th derivative of the projection of s e V0 onto Vj at instant 
2J+lk. 

For j = 0 (44) reduces to 

(45) Qls(x) ~ 2 ~+ 1/2).~ s~O(2k)O(2x _ k) . 
k 

Hence Qls interpolates the/- th derivative of s(x) = ~ , k f  ~ 43(X -- k) in 14:1 founded 
upon the double stepsize of the starting sequence { fO}k~Z. 

The example of the Haar-wavelet (35) explains in a clear way the meaning of 
(44) and (45). 
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The filters h and g of (41) and (42) are easily computed:  

{ 2  1/2 i f n e { 0 ,  l} { 2 -1/2 i f n = 0  

(46) h(n) -- 0 else , y(n) = - 2 2/2 if n = 1 . 

0 else 

Mallat 's  i teration reads 

(47) j('{ = "9 l / 2 / ' f j - 1  j - 1  
- -  ~ , , J  2 k  ~-. /2k+ l )  

q{ 2 - , / 2 ( f { ~ ,  j -1 
j = l , 2  . . . .  

We write out the first two iterations for the wavelet coefficients 

(48) q~ 2 1/2(f~ k o = - f 2 k + , )  

q2 ~ "o 'o o o = 2 ((J,k +J4~+1)- (f4k+2 +f4k+3) )  

and recognize at the first step a difference quotient of the original signal. At the 
second and all other steps the wavelet coefficients are formed by differences of 
smoothed versions where averages of neighbouring elements are taken. 

The practical importance  of the Haar-funct ion to serve as a basic wavelet is 
therefore very limited particularly in connection with noisy signals since the 
evaluation of (48) is very instable. 

Starting with the filter h of (41) Daubechies [3] gives a method for constructing 
basic wavelets satisfying the conditions (P1) and (P2). She shows that  filters with 
finite length belong to compact ly  supported wavelets. In accordance with Theorem 
4.11 and the statements of this section the approximat ions  (44) and (45) hold for the 
corresponding DWT.  

General result. The signal changes represented by the D W T  at the transition from 
a finer to a coarser scale are nothing but the jumps  in a derivative of a smoothed 
version resulted by 'projecting the signal onto  the coarser scale'. 

6 Numerical  examples  

We illustrate the statement of Theorem 4.3 by two examples. The signal under 
considerat ion is 

(49) f(x) = { ~~__ x + X 

with the derivatives (6 is Dirac's  distribution) 

i f l  < [ x l <  1.5 

i f - l < x < 0  

i f 0 < x < l  

else 

6H~(IR),s < �89 

1 if --1 < x < 0  

(50) dr(x) = 6(x + 1.5) - 6(x - 1.5) + - 1 if 0 < x < 1 

0 else 

(51) d2f(x) = (Y(x + 1.5) - 6'(x - 1.5) + 6(x + 1) 

- 26(x) + 6(x - 1). 
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Our first example uses the basic wavelet 

1 if - 1  < x < 0  

0 1 ( x ) =  - 1 i f 0 < x <  1 

0 else 

which is just a translated and dilated version of the Haar-wavelet (35). 

According to Theorems 4.3 and 4.11 x /~e~  a-3/2 LQ~ f(b, a) approximates (50) 
for small a as is shown in Fig. 6.1. The ranges of the shift b and the dilation a are 
marked. To see more details in the diagram we cut off the values of the transform 
with modulus greater than 5. 

Figure 6.2 shows ~ a-5/2 Lo 2 f (b, a) with analyzing wavelet 

1 ifO.5 < Ixl < 1 

0 2 ( x )  = - -  1 i f  Ix [  < 0.5 

0 else 

,/" 
�9 

./ 

.,,/ 

. /  
/ 

l 

Fig. 6.1. Approximation of (50) by WT 



The wavelet transform 893 

/ 

Fig. 6.2. Approximation of (51) by WT 

Again the results of the former sections predict  convergence to (51). We note 
a special feature of this example.  Due to the i l l-posedness of numerical  differenti- 
a t ion the errors  made  by discret izat ion blow up if a approaches  zero. To avoid  
noise amplif icat ion we have regularized by l imiting a to the interval [0.25, 1.05]. 
Therefore the quali ty of the app rox ima t ion  is worse than  the one of the first 
example.  
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