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Iterative regularizations for nonlinear problems

F:D(F)C X —Y, X,Y Hilbert spaces

F(z)=y°

lterative schemes:  x,41 = =, + sn, o € D(F'), where s, is determined

from the linearization A, s = bg about z,,.
(Ap = F'(zp), bg = yé — F(zy))

Examples:
® nonlinear Landweber (Hanke, Neubauer, Scherzer '95)
® nonlinear gradient decent (Scherzer '96)

® iteratively regularized Gauss-Newton methods (Bakushinsky '92,
Blaschke(Kaltenbacher), Neubauer & Scherzer '97, Kaltenbacher '98, ...)

® Newton-CG (Hanke '98, R. '05, Lechleiter & R. '07)
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The need for the tangential cone condition

Bound of linearization error given by Taylor expansion
|F(v) = Fu) = F'(u)(v —u)|| S [l —

offers only little control for ill-posed problems.
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The need for the tangential cone condition

Bound of linearization error given by Taylor expansion
|F(v) = Fu) = F'(u)(v —u)|| S [l —

offers only little control for ill-posed problems.

Let F' be completely continuous and let {u, } converge weakly to u where
|lu — up|| = ¢ for all n. Then,

F(up) — Fu) = F'(w)(up — )| S |Jun —ul®

\ . 4
~~ ~~

— 0 asn — o — const as n — o0
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Tangential cone condition (TCC)

F' satisfies the tangential cone condition (Scherzer '93) locally about
vt € D(F) if there is a positive constant w < 1 such that

|F(v) = F(u) = F'(u)(v — )| Sw[|[F(v) = F(u)ll, v,u€ By(z™")
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Tangential cone condition (TCC)

F' satisfies the tangential cone condition (Scherzer '93) locally about
vt € D(F) if there is a positive constant w < 1 such that

|F(v) = F(u) = F'(u)(v — )| Sw[|[F(v) = F(u)ll, v,u€ By(z™")

Lemma If TCC then N(F'(v)) = N(F'(u)) for all v,u € B,(z™).
Moreover, if u —v € N(F/(z1)) then F(u) = F(v).

Especially: F'(z™) is injective whenever F' is injective.
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Tangential cone condition (TCC)

F' satisfies the tangential cone condition (Scherzer '93) locally about
vt € D(F) if there is a positive constant w < 1 such that

|F(v) = F(u) = F'(u)(v — )| Sw[|[F(v) = F(u)ll, v,u€ By(z™")

Lemma If TCC then N(F'(v)) = N(F'(u)) for all v,u € B,(z™).
Moreover, if u —v € N(F/(z1)) then F(u) = F(v).

Especially: F'(z™) is injective whenever F' is injective.

Theorem(Hofmann & Scherzer '98) If TCC about ™ then:
The nonlinear problem is locally ill-posed about z™ iff F'(z™)
has a non-closed range in Y.
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Governing equation

current f voltage Aof  Given f € H;1/2((‘9B) find u € H}(B):

div(cVu) =0in B, oc0yu= f on 0B

.

i

electrodes
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Governing equation

current f voltage A, f  Given f € H§1/2(8B) find v € H(B):

/
/ ¥ ////////// /JVquda:: fvdS Yve H}(B)
/// ///z//f/{%// ) | B OB

electrodes

A,: f— u|lgp Neumann to Dirichlet map
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Governing equation

current f voltage A, f  Given f € H§1/2(8B) find v € H(B):

/////////////////

/ oVuVudr = [ fvdS Vv e H(B)
B 0B

electrodes

As: f — ulsgp Neumann to Dirichlet map

EIT forward operator

F:D(F) C L™®(B) — L(LZ(0B)), o+ A,
with D(F) = {0 € L>=(B) : 0 > 09 > 0}.
In other words:  F'(o)f = u|sp

F' is injective (Astala and Paivarinta, 2006)
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Frechét differentiability of EIT operator
Let o € int(D(F)). Then,
F'(0) € L(L(B), L (L3(0B)))

Is given by
F'(0)[h]f := wlyp € L(OB)

where

/JVngod:E:—/ WV (F(o)f)Vedz Ve € H(B).
B B
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F'(0)?
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F’(o)? Not much!
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F’(o)? Not much!

There has been no progress since the pioneering work of Calderén in 1980:

If o is constant then F'(o) is injective.
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F’(o)? Not much!

There has been no progress since the pioneering work of Calderén in 1980:

If o is constant then F'(o) is injective.

Flo)h] =0 «= /B Wu(o, f) - Vu(o,g)dz = 0 Vf,g € L2(0B)
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F’(o)? Not much!

There has been no progress since the pioneering work of Calderén in 1980:

If o is constant then F'(o) is injective.

Flo)h] =0 «= /B Wu(o, f) - Vu(o,g)dz = 0 Vf,g € L2(0B)

o = 1: harmonic functions are admissible potentials.
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On the injectivity of F'(o)

As F'is injective on D(F') TCC can only hold about conductivities o for which
F'(o0) is injective as well.

What is known about injectivity of F’(o)? Not much!

There has been no progress since the pioneering work of Calderén in 1980:

If o is constant then F'(o) is injective.

Flo)h] =0 «= /B Wu(o, f) - Vu(o,g)dz = 0 Vf,g € L2(0B)

o = 1: harmonic functions are admissible potentials.

For the harmonic functions u(f)(z) = exp(2k -z + £ - x) and
u(g)(z) = exp(tk - x — £ - x) with k, £ € R?, |k| = |¢], k- £ = 0, we obtain

0= / hexp(12k - z)dx  Vk € R
B
Hence, h = 0.
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On the injectivity of F’'(0) (continued)

Theorem(Gebauer 07) Let €1, Q52 C B be open with 1 N Qy = 0. Fur-
thermore, let B\ (1 U Q) be connected and B\ (€; U Q) contain a
relatively open subset S of 9B. Then there exists a sequence of currents

{f,} C L2(S) and corresponding potentials {u,,}, defined by the weak for-
mulation of

, fn on S,
div(ocVu,) =0, o0, u, —
( ) o5 {O otherwise,
such that
lim IV, |?de = 0o and  lim Vu,|?dz = 0.
n—aoo Ql n—aoo 92
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Gebauer’s theorem at a glance

\{n

S

fn on 5,

0  otherwise,

diV(JVun) =0, o0yuylop =
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On the injectivity of '(0)|g1+(p)

Assume: h € H'T(B) with hlgg # 0.

— 3 C B (open, connected) with [/ N 9B # () and
sgn(h)|z = const # 0.

Pick S C U N OB and an open ball Q; C /. Set ngB\U.
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On the injectivity of '(0)|g1+(p)

Assume: h € H'T(B) with hlgg # 0.

— 3 C B (open, connected) with [/ N 9B # () and
sgn(h)|z = const # 0.

Pick S C U N OB and an open ball Q; C /. Set ngB\U.

2
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On the injectivity of '(0)|g1+(p)

Assume: h € H'T(B) with hlgg # 0.

— 3 C B (open, connected) with [/ N 9B # () and
sgn(h)|z = const # 0.

Pick S C U N OB and an open ball Q; C /. Set ngB\U.

By Gebauer's theorem

2

‘/ h V(o £,)2 de| 2= co.
B
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On the injectivity of '(0)|g1+(p)

Assume: h € H'T(B) with hlgg # 0.

— 3 C B (open, connected) with [/ N 9B # () and
sgn(h)| = const # 0.

Pick S C U N OB and an open ball Q; C /. Set ngB\U.

By Gebauer's theorem

2

‘/ h V(o £,)2 de| 2= co.
B

Assume h € N(F'(0)). Then,
/ h|Vu(o, f)|*de =0 Vf € L2(0B)
B

contradicting the above limit.
Hence, h € N(F'(0)).

Remainder: F'(o)[h]| =0 < [, hVu(o, f) - Vu(o,g)dz =0 Vf,g € L3(0B)
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On the injectivity of '(0)|g1+(p)

Assume: h € H'T(B) with hlgg # 0.

— 3 C B (open, connected) with [/ N 9B # () and
sgn(h)| = const # 0.

Pick S C U N OB and an open ball Q; C /. Set ngB\U.

By Gebauer's theorem
7

‘/ h V(o £,)2 de| 2= co.

B

Assume h € N(F'(0)). Then,

/ h|Vu(o, f)|*de =0 Vf € L2(0B)
B

contradicting the above limit.
Hence, h € N(F'(0)).

Line of reasoning remains correct if h|gp = 0 but sgn(h)|int(rr) = const # 0.
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On the injectivity of ['(0)|y1+ () (continued)

supph € B
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On the injectivity of ['(0)|y1+ () (continued)

supph € B
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On the injectivity of ['(0)|y1+ () (continued)

supph € B
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On the injectivity of ['(0)|y1+ () (continued)

supph € B
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On the injectivity of ['(0)|y1+ () (continued)

supph € B

By Gebauer's theorem
‘ /hyvu(a, £)2dz| P22, o0
B

Hence, h € N(F'(0)).
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On the injectivity of I'(0)|y1+(5): summary

H(o)={h € H'T(B): hlop # 0}

U {h € H'"(B) : 3U C supph open, OU N dsupph # 0,
sgn(h) |ime(0) = const # 0}
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On the injectivity of I'(0)|y1+(5): summary

H(o)={h € H'T(B): hlop # 0}

U {h € H'"(B) : 3U C supph open, OU N dsupph # 0,
sgn(h) |ime(0) = const # 0}

Theorem H(o) NN(F'(0)) =0
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On the injectivity of F'(0)|y1+(p): conductivities not in (o)

Unfortunately, there exist pathological A's for which we cannot decide whether
F'(o)[h] # 0 or not.
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On the injectivity of F'(0)|y1+(p): conductivities not in (o)

Unfortunately, there exist pathological h's for which we cannot decide whether
F'(o)[h] # 0 or not.

Example Let B the circular disc with radius 1 centered about the origin.
Consider h: B — R, h(x) = r(|x|), where r is sketched below:

0.2

0.1

0.85 0.9 0.95 1
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TCC for finite dimensional spaces

Define a Finite Element space V; as follows:
7 Vy := RgP,EpH'"(B) c H'™(B)

Z Observe: V;NN(F'(c)) =0

F: V" c L™(B) — L(L;(0B))

‘/;_::me(F):{O-KEW:O-EZUO>O}
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TCC for finite dimensional spaces

Define a Finite Element space V; as follows:
T Vy := RgP,EpH'"(B) c H'™(B)

Z Observe: V;NN(F'(c)) =0

F:V;F C L®(B) — L(L(0B))

‘/E—i_::me(F):{O-KEW:O-EZO-O>O}

Theorem If oy € int(V,") then there is a ball U(oy) C V; such that

HF(TE) - F(W) - F/(W)[TE — W]HL(L%(aB))

< Celle = vella+ () 1 (7e) = F(vo)ll (22 0m))
for any 74, v, € U(op) where

PR B
C, ~ Sup{ IE" (&) el L2 0B)— H2 (B)

: (&g, h U Vo .
1E" (&) Pelll 208y L2 (0B) (8o he) € Uloe) X E}
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The Tangential Cone
Condition (TCC)

EIT: Continuous
Model

EIT: Complete
> Electrode Model

Conclusion

EIT: Complete Electrode Model
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Governing equation

div(cVu) =0 in B

/, , X A U+ zj00pu =U; on E;
///4//%// / oOqu =0 on OB\ U;E;
_ ///////////;///// ﬁ/}zganudszfj = flg,
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Governing equation

current J; voltage Uy, div(cVu) =0 in B

/
/”/ S

electrodes E;, 7 =1,..., D

U+ zj00pu =U; on E;
0Opu =0 on 0B\ U;E;

1
J

Given f € &, :={j € span{xg,,. .., XE,}: [55idS =0} C L3(8B) find
(u,U) € HY(B) & &,

b ((u, U), (w, W)) = i fwds Y(w,W)e H'(B)® &, (1)
B
where P
bo ((v, V), (w,W)) = /BUVv-de:C + jzzl > . (v—V)(w—W)dS

(Existence & Uniqueness: Cheney, Isaacson & Somersalo, 1992)
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The forward operator

F,: D(F) C L>™(B) —>L(8p), o {f|—> U}, F,(o)f =1,

where U is the second component of the soution of (1).
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).

Is I}, injective?

\“(IT (©Andreas Rieder — Workshop Hybrid Imaging, Obergurgl, January 2008 — 20 / 24

Karlsruhe Institute of Technology



The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).

Is 7, injective? Certainly not!
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).
Is 7, injective? Certainly not!

How many independent measurements does CEM provide?
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).

Is 7, injective? Certainly not!

How many independent measurements does CEM provide?
At most (p — 1)? because dim &, = p — 1.
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).
Is 7, injective? Certainly not!

How many independent measurements does CEM provide?
At most (p — 1)? because dim &, = p — 1.

However,
< ( )fa >L2 (OB) — <f7 ( ) >L2(8B)'

Recall: A, is self-adjoint as well.
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).
Is 7, injective? Certainly not!

How many independent measurements does CEM provide?
At most (p — 1)? because dim &, = p — 1.

However,
< ( )fa >L2 (OB) — <f7 ( ) >L2(8B)'

Recall: A, is self-adjoint as well.

Thus, the DOF in F,(o) are the DOF of a symmetric matrix of order p — 1,
namely p(p —1)/2.
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The forward operator

F,: D(F)C L*(B) — L(&,), o—{f—U}, Fy(o)f=T0,
where U is the second component of the soution of (1).
Is F, injective? Certainly not!

How many independent measurements does CEM provide?
At most (p — 1)? because dim &, = p — 1.

However,
< ( )f> >L2 (OB) — <f’ ( ) >L2(8B)'

Recall: A, is self-adjoint as well.

Thus, the DOF in F,(o) are the DOF of a symmetric matrix of order p — 1,
namely p(p —1)/2.

Conjecture If V- C L*°(B) with dim V' < p(p—1)/2 then

F,: D(F)NV CV — L(&,) is injective.
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TCC for CEM

As
F,: D(F)NV CV — L(&p)

Is a mapping between finite dimensional spaces TCC holds locally about
o € int(D(F) NV) whenever F(0) € L(V,L(E,)) is injective.
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TCC for CEM

As
F,: D(F)NV CV — L(&p)

Is a mapping between finite dimensional spaces TCC holds locally about
o € int(D(F) NV) whenever F(0) € L(V,L(E,)) is injective.

We have that
F(o)n=0 <+ /BnVu(a, f)-Vu(o,g)dr =0 Vf, geé&,
where u = u(c, f) € H'(B) is the first component of the solution of

b ((u, U), (w, W)) = anWdS Y(w, W) € HY(B) @ &,.
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TCC for CEM

As
F,: D(F)NV CV — L(&p)

Is a mapping between finite dimensional spaces TCC holds locally about
o € int(D(F) NV) whenever F(0) € L(V,L(E,)) is injective.

We have that
F(o)n=0 <+ /BnVu(a, f)-Vu(o,g)dr =0 Vf, geé&,
where u = u(c, f) € H'(B) is the first component of the solution of

b ((u, U), (w, W)) = anWdS Y(w, W) € HY(B) @ &,.

Conjecture If V- C L*°(B) with dim V' < p(p—1)/2 then

/ . . . . .
F,(0) is injective for any o € int(D(F)NV).

*‘(IT (©Andreas Rieder — Workshop Hybrid Imaging, Obergurgl, January 2008 — 21 / 24
Karlsruhe Institute of Technology



The Tangential Cone
Condition (TCC)

EIT: Continuous
Model

EIT: Complete
Electrode Model

> Conclusion

Conclusion
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What to remember from this talk

#® TCC is a vital ingredient for the convergence analysis of iterative
regularization schemes for nonlinear ill-posed problems.
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What to remember from this talk

#® TCC is a vital ingredient for the convergence analysis of iterative
regularization schemes for nonlinear ill-posed problems.

® As the forward operator of the continuous model for EIT is injective, a
necessary prerequisite for the TCC to hold is the injectivity of the
Frechét derivative. We have shown that only 'pathological’ elements can
possibly be in the Null space. If we restrict the conductivities to a finite
dimensional space, say, a finite element space, then TCC holds.
Unfortunately, this is not an adequate setting for the continuous model.
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TCC is a vital ingredient for the convergence analysis of iterative
regularization schemes for nonlinear ill-posed problems.

As the forward operator of the continuous model for EIT is injective, a
necessary prerequisite for the TCC to hold is the injectivity of the
Frechét derivative. We have shown that only 'pathological’ elements can
possibly be in the Null space. If we restrict the conductivities to a finite
dimensional space, say, a finite element space, then TCC holds.
Unfortunately, this is not an adequate setting for the continuous model.

On the other hand, the CEM offers only finitely many independent
measurements. Therefore, a finite dimensional setting is necessary to
have injectivity of the forward operator. We conjectured that injectivity
of the forward operator and its derivative hold if the number of DOF of
the searched-for conductivity is at most the number of independent
measurements. If the conjectures apply then TCC holds.
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The Tangential Cone
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EIT: Continuous
Model

EIT: Complete
Electrode Model

Conclusion

Thank you for your attention!
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