Optimality of the Fully Discrete Filtered Backprojection Algorithm in 2D

Andreas Rieder and Arne Schneck

UNIVERSITÄT KARLSRUHE (TH)

Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung

and

Institut für Angewandte und Numerische Mathematik

2D-Radon-Transform (parallel scanning geometry)

$$\mathbf{R}f(\mathbf{s}, \boldsymbol{\vartheta}) := \int_{l(\mathbf{s}, \boldsymbol{\vartheta}) \cap \Omega} f(x) \, \mathrm{d}\sigma(x)$$

tomographic inversion: $\mathbf{R}f(\mathbf{s}, \boldsymbol{\vartheta}) = g(\mathbf{s}, \boldsymbol{\vartheta})$

$$\mathbf{R}: L^2(\Omega) \to L^2(Z), \quad Z = [-1, 1] \times [0, 2\pi]$$

$$f = \frac{1}{4\pi} \mathbf{R}^* (\Lambda \otimes I) \mathbf{R} f$$

 $\mathbf{R}^* \colon L^2(Z) \to L^2(\Omega)$ Backprojection operator

$$\mathbf{R}^* g(x) = \int_0^{2\pi} g(x^t \omega(\vartheta), \vartheta) \, \mathrm{d}\vartheta, \quad \omega(\vartheta) = (\cos \vartheta, \sin \vartheta)^t$$

 $\Lambda \colon H^{\alpha}(\mathbb{R}) \to H^{\alpha-1}(\mathbb{R})$ Riesz potential

 $\widehat{\Lambda u}(\xi) = |\xi|\widehat{u}(\xi).$

Filtered backprojection algorithm (FBA)

discrete Radon data
$$D = \{ \mathbf{R}f(kh, jh_{\vartheta}) : k = -q, \dots, q, \ j = 0, \dots, 2p - 1 \},$$

 $h = 1/q, \quad h_{\vartheta} = \pi/p$

$$f_{\mathsf{FBA}}(x) := \frac{1}{4\pi} \mathbf{R}^*_{h_{\vartheta}} (\mathbf{I}_h \Lambda E_h \otimes I) \mathbf{R} f(x) \qquad \qquad \mathsf{R. \& Faridani '03}$$

where

E_h , I_h generalized interpolation operators

and

$$\mathbf{R}_{h_{\vartheta}}^{*}g(x) := h_{\vartheta} \sum_{j=0}^{2p-1} g(x^{t}\omega(\vartheta_{j}), \vartheta_{j}), \quad \vartheta_{j} = jh_{\vartheta}$$

Remark: The action of $I_h \Lambda E_h$ can be implemented as a convolution (filtering) followed by an interpolation. The convolution kernel (reconstruction filter) depends on I_h and E_h .

Convergence of the semi discrete FBA

Theorem [R.& Faridani '03] Under reasonable assumptions on E_h and I_h there are $0 \le \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes I)\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim h^{\boldsymbol{\alpha}}\|f\|_{\boldsymbol{\alpha}}$$

for $f \in H_0^{\alpha}(\Omega)$ where $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$.

Convergence of the semi discrete FBA

Theorem [R.& Faridani '03] Under reasonable assumptions on E_h and I_h there are $0 \le \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes I)\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim h^{\boldsymbol{\alpha}}\|f\|_{\boldsymbol{\alpha}}$$

for $f \in H_0^{\alpha}(\Omega)$ where $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$.

Consequence

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes I)\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim h^{\min\{\alpha_{\max},\,\alpha\}} \|f\|_{\alpha}, \quad \alpha > 0$$

 $\alpha_{\max} = \begin{cases} 3/2 : \text{Shepp-Logan with piecewise constant interpol.} \\ 2 : \text{Shepp-Logan with piecewise linear interpol.} \\ 5/2 : \text{mod. Shepp-Logan with piecewise linear interpol.} \end{cases}$

Error estimate for the fully discrete FBA, part I

$$\|f - f_{\mathsf{FBA}}\|_{L^{2}(\Omega)} \leq \|f - \frac{1}{4\pi} \mathbf{R}^{*} (\mathbf{I}_{h} \Lambda E_{h} \otimes I) \mathbf{R} f\|_{L^{2}(\Omega)} + \|(\mathbf{R}^{*} - \mathbf{R}^{*}_{h_{\vartheta}}) (\mathbf{I}_{h} \Lambda E_{h} \otimes I) \mathbf{R} f\|_{L^{2}(\Omega)}$$

$$\begin{split} \left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}}) (\mathbf{I}_h \Lambda E_h \otimes I) \mathbf{R} f \right\|_{L^2(\Omega)} \\ & \leq \left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}}) \left((\mathbf{I}_h \Lambda E_h - \Lambda) \otimes I \right) \mathbf{R} f \right\|_{L^2(\Omega)} \\ & + \left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}}) (\Lambda \otimes I) \mathbf{R} f \right\|_{L^2(\Omega)}. \end{split}$$

•

Error estimate for the fully discrete FBA, part II

Lemma If
$$f \in H_0^{\alpha}(\Omega)$$
, $\alpha \ge 1$, then $\left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}})(\Lambda \otimes I)\mathbf{R}f \right\|_{L^2(\Omega)} \lesssim h_{\vartheta}^{\alpha} \|f\|_{\alpha}$.

Proof: Let $f \in C_0^{\infty}(\Omega)$. We use a duality argument due to Natterer 1979:

$$\begin{split} \left\| (\mathbf{R}^* - \mathbf{R}_{h_{\vartheta}}^*) (\Lambda \otimes I) \mathbf{R} f \right\|_{L^2(\Omega)} &= \sup_{g \in \mathcal{C}_0^{\infty}(\Omega)} \frac{\left| \langle (\mathbf{R}^* - \mathbf{R}_{h_{\vartheta}}^*) (\Lambda \otimes I) \mathbf{R} f, g \rangle_{L^2} \right|}{\|g\|_{L^2}} \\ &= \sup_{g \in \mathcal{C}_0^{\infty}(\Omega)} \frac{\left| \int_0^{2\pi} u(\vartheta) \, \mathrm{d}\vartheta - h_{\vartheta} \sum_{j=0}^{2p-1} u(\vartheta_j) \right|}{\|g\|_{L^2}} \\ &\lesssim h_{\vartheta}^{2k+1} \sup_{g \in \mathcal{C}_0^{\infty}(\Omega)} \frac{\int_0^{2\pi} |u^{(2k+1)}(\vartheta)| \mathrm{d}\vartheta}{\|g\|_{L^2}} \\ \end{split}$$

with $u(\vartheta) = \int_{\Omega} g(x) (\Lambda \otimes I) \mathbf{R} f(x^t \omega(\vartheta), \vartheta) \mathrm{d}x. \text{ As } \int_0^{2\pi} |u^{(2k+1)}(\vartheta)| \mathrm{d}\vartheta \lesssim \|f\|_{2k+1} \|g\|_{L^2}, \\ k \in \mathbb{N}_0, \text{ we are done.} \end{split}$

Error estimate for the fully discrete FBA, part III

Lemma Let
$$f \in H_0^{\alpha}(\Omega)$$
. There are $1 \leq \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that
 $\left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}}) \left((I_h \Lambda E_h - \Lambda) \otimes I \right) \mathbf{R} f \right\|_{L^2} \lesssim (h^{\alpha} + h_{\vartheta}^{\alpha}) \|f\|_{\alpha}, \ \alpha_{\min} \leq \alpha \leq \alpha_{\max}.$

Proof: Let $f \in \mathcal{C}_0^{\infty}(\Omega)$ and $\Psi = ((I_h \Lambda E_h - \Lambda) \otimes I) \mathbf{R} f$. Again by duality

$$\begin{split} \left\| (\mathbf{R}^* - \mathbf{R}^*_{h_{\vartheta}}) \Psi \right\|_{L^2(\Omega)} &= \sup_{g \in \mathcal{C}_0^{\infty}(\Omega)} \frac{\left| \int_0^{2\pi} \mathbf{u}(\vartheta) \, \mathrm{d}\vartheta - h_{\vartheta} \sum_{j=0}^{2p-1} \mathbf{u}(\vartheta_j) \right|}{\|g\|_{L^2}} \\ &\lesssim h_{\vartheta} \sup_{g \in \mathcal{C}_0^{\infty}(\Omega)} \frac{\int_0^{2\pi} |\mathbf{u}'(\vartheta)| \mathrm{d}\vartheta}{\|g\|_{L^2}} \\ \end{split}$$
where $\mathbf{u}(\vartheta) := \int_{\Omega} g(x) \Psi(x^t \omega(\vartheta), \vartheta) \mathrm{d}x$. Since
$$\int_0^{2\pi} |\mathbf{u}'(\vartheta)| \mathrm{d}\vartheta \lesssim \|g\|_{L^2} \|\Psi\|_{H^{(-1/2,1)}} \lesssim h^{\alpha-1} \|g\|_{L^2} \|f\|_{\alpha}$$

we are done.

Convergence of the fully discrete FBA

Theorem Under reasonable assumptions on E_h and I_h there are constants $1 \le \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*_{h_{\vartheta}}(\mathbf{I}_h\Lambda E_h\otimes I)\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim (h^{\alpha} + h^{\alpha}_{\vartheta})\|f\|_{\alpha}$$

for $f \in H_0^{\alpha}(\Omega)$ where $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$.

Convergence of the fully discrete FBA

Theorem Under reasonable assumptions on E_h and I_h there are constants $1 \le \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*_{h_{\vartheta}}(\mathbf{I}_h\Lambda E_h\otimes I)\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim (h^{\alpha} + h^{\alpha}_{\vartheta})\|f\|_{\alpha}$$

for $f \in H_0^{\alpha}(\Omega)$ where $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$.

Consequence

$$\left\|\frac{1}{4\pi}\mathbf{R}_{h_{\vartheta}}^{*}(\mathbf{I}_{h}\Lambda E_{h}\otimes I)\mathbf{R}f - f\right\|_{L^{2}} \lesssim \left(h^{\min\{\alpha_{\max},\,\boldsymbol{\alpha}\}} + h_{\vartheta}^{\min\{\alpha_{\max},\,\boldsymbol{\alpha}\}}\right)\|f\|_{\boldsymbol{\alpha}}, \quad \boldsymbol{\alpha} \ge 1$$

 $\alpha_{\max} = \begin{cases} 3/2 : \text{Shepp-Logan with piecewise constant interpol.} \\ 2 : \text{Shepp-Logan with piecewise linear interpol.} \\ 5/2 : \text{mod. Shepp-Logan with piecewise linear interpol.} \end{cases}$

Remarks and Comments

- From an asymptotic point of view it is most efficient to choose $h = h_{\vartheta}$ yielding the well-known optimal sampling rate $p = \pi q$. Further, under the optimal sampling rate the convergence rate h^{α} as $h \to 0$ is optimal for density distributions in $H_0^{\alpha}(\Omega)$ (Natterer 1980).
- One can construct efficient filtered backprojection schemes with an arbitrarily large α_{max} . Of course, one would fully benefit from these filtered backprojection schemes if the searched-for density distributions are sufficiently smooth which is not the case in medical imaging.
- Unfortunately, our analysis does not cover the medical imaging situation where $f \in H_0^{\alpha}(\Omega)$ with $\alpha < 1/2$ but close to 1/2.

A modified FBA

$$f_{\mathsf{FBA}}(x) = \frac{1}{4\pi} \mathbf{R}^*_{h_{\vartheta}} (\mathbf{I}_h \Lambda E_h \otimes I) \mathbf{R} f(x)$$
$$= \frac{1}{4\pi} \mathbf{R}^*_{h_{\vartheta}} (\mathbf{I}_h \otimes I) (\Lambda \otimes I) (E_h \otimes I) \mathbf{R} f(x)$$

$$f_{\mathsf{MFBA}}(x) := \frac{1}{4\pi} \mathbf{R}^* (\mathbf{I}_h \otimes I) (\Lambda \otimes I) (E_h \otimes T_{h_\vartheta}) \mathbf{R} f(x)$$
$$= \frac{1}{4\pi} \mathbf{R}^* (\mathbf{I}_h \Lambda E_h \otimes T_{h_\vartheta}) \mathbf{R} f(x)$$

 $T_{h_{\vartheta}}$ piecewise linear interpolation

Remark: The evaluation of $f_{MFBA}(x)$ can be organized as standard FBA with an additional multiplication of the filtered data by a sparse matrix.

Convergence of MFBA

Theorem Under reasonable assumptions on E_h and I_h there are constants $1/2 < \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes T_{h_\vartheta})\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim \left(h^{\min\{\alpha_{\max},\alpha\}} + h_\vartheta^{\min\{\alpha_{\mathrm{T}},\alpha\}}\right)\|f\|_\alpha$$

for $f \in H_0^{\alpha}(\Omega)$, $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$ and any $\alpha_{T} < 5/2$.

Convergence of MFBA

Theorem Under reasonable assumptions on E_h and I_h there are constants $1/2 < \alpha_{\min}(E_h, I_h) < \alpha_{\max}(E_h, I_h)$ such that

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes T_{h_\vartheta})\mathbf{R}f - f\right\|_{L^2(\Omega)} \lesssim \left(h^{\min\{\alpha_{\max},\alpha\}} + h_\vartheta^{\min\{\alpha_{\mathbf{T}},\alpha\}}\right)\|f\|_\alpha$$

for $f \in H_0^{\alpha}(\Omega)$, $\alpha_{\min} \leq \alpha \leq \alpha_{\max}$ and any $\alpha_{T} < 5/2$.

Consequence

$$\left\|\frac{1}{4\pi}\mathbf{R}^*(\mathbf{I}_h\Lambda E_h\otimes T_{h_\vartheta})\mathbf{R}f - f\right\|_{L^2} \lesssim \left(h^{\min\{\alpha_{\max},\,\boldsymbol{\alpha}\}} + h_\vartheta^{\min\{\alpha_{\mathrm{T}},\,\boldsymbol{\alpha}\}}\right)\|f\|_{\boldsymbol{\alpha}}, \quad \boldsymbol{\alpha} > 1/2$$

 $\alpha_{\max} = \begin{cases} 3/2 : \text{Shepp-Logan with piecewise constant interpol.} \\ 2 : \text{Shepp-Logan with piecewise linear interpol.} \\ 5/2 : \text{mod. Shepp-Logan with piecewise linear interpol.} \end{cases}$

Numerical comparison I

Numerical comparison II

p = 600, q = 200, Shepp-Logan filter with piecewise linear interpolation

FBA

MFBA