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Inverse and ill-posed problems

T e L(X,Y), X,Y real Hiloert spaces, R(T') non-closedinY.

For instance: T' compact and non-degenerated

Inverse problem: T f = g°

FEY |Tfr —gflly <e and feN(T)*
£ noise level

Difficulty: generalized inverse T* : R(T) & R(T)*+ Cc Y — X is unbounded
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Regularization of inverse problems

Regularization: {R,}.cn,, Rn:Y — X continuous, R,,0 = 0.
If there is a parameter choice v : |0, o[ xY — Njg such that we have

sup {[[f* = Rycg)9°x |7 €Y, ITFT = g°lly <ef — 0 as e —0

for all f+ € N(T)+, then ({R, }.en,,7) is a regularization scheme for 7.

Optimality: The regularization scheme ({R.,, }nen,, ) for T is called
(order-)optimal in X, , := (T*T)*/2B,(0), i, 0 > 0, if

sup{Hf+ - Rfy(s,gs)geHX ‘ga S Y7 HTf+ _geHY < ¢, f+ < XM,Q}

< €, M) 1/,
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Regularization schemes by filter functions I

{F,  hengs Frno: [0,]|T|I°] — R, piecew. continuous with jump-discontinuities is
called regularizing filter if

lim F,(A\) =1/A and MF,(\)| <Cg for X €]o,||T|?].

n—aoo

Candidates for regularization operators: R, := F,,(T*T)T* € L(Y, X)

Morozov’s discrepancy principle: Choose = > 1 and set

v(e,¢%) :==min{n € Ny : [|[TR,¢° — ¢°|ly < Te}.

Remark: ({R,}nen,,?) is a regularization scheme for T+,
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Regularization schemes by filter functions II

We have that
sup{|F,, (N[0 <A < ||T||°} = O(t,) as n— oo

where {t,, } ,en, diverges strongly monotone to infinity.
The qualification uq of a filter is the largest number such that

sup M2 |1 = XF,(\)| = O(tn_“’/z) as n — oo forall u€]0, uql.
0<AL||T||?

Theorem: {F, }nen, as above with ¢, /t, 11 > ¢ > 0and pug > 1,
~ discr. principle, 7 > sup{|1—=AF,(\)||n € Ng, 0 < X < ||T|?]} > 1.

Then, ({Rn}neng, ), Rn := E,(T*T)T*, is an optimal regularization
scheme for T* in X, , for all u €]0, uqg — 1] and all o > 0.
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® Tikhonov-Pnhillips
Fo(A) =1/(A+t.1), Ry =(T"T +t,'1)7'T", pg =2

® Showalter’s or asymptotic regularization
u'(t) =T*(¢° — Tu(t)), u(0)=0,

Define R,¢° := u(t,).

We have pg =00 and R, = F,(T*T)T* where

exp( ) A> 0.
\ tn . A=0.
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Sneak preview: Conclusion of the talk

Runge-Kutta integrators applied to the evolution equation
u'(t) =T*(¢° — Tu(t)), u(0)=0,

generate optimal regularization schemes in X, , for all i, o > 0, when
stopped by the discrepancy principle (g = o0).
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Runge-Kutta integrators I

U [0,00[xW — W, W Banach space, wy € W

w'(t) = U(t,w(t)), t>0, w(0)=wo,

Runge-Kutta integrator with s stages and time steps {At,, },en C]0, 0] :

wy R w(ty), o= At
k=1

Wy = Wp—1 + Atn Z bz ki(tn—la Wn—1, Atn)v
1=1

k‘i = \If(tn_1 + CiAtn, Wp—1 + Atn Zaijkj), 1= 1, ... S

j=1
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Runge-Kutta integrators 11

Compact representation by Butcher array

Ci |11 -+ Q1s
c| A :
; —
b Cs As1 Ass
bl bs

RK is called explicit if A is strictly lower triangular, otherwise implicit.

RK is called consistent if >, _, b; = 1.

. 0]0 o 1|1
explicit Euler: —\T implicit Euler: —NT
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Runge-Kutta integrators seen as regularizations I

Application of RK to Showalter’s ODE yields
wy, = R(—At, T*T)w,_1 + At, Q(—At, T*T)T*¢°, wy =0,

where

det(] — z A + 21b’
R(z) = et(l — z A+ z1b")

 R(2) -1
det(I —zA) Q) = z

R stability function (polynomial/rational function for explicit/implicit RK)

Lemma: We have that
1 — HZZl R(—Atg \)

wy, = Rpng® = F,(T*T)T*g° with F,,(\) = )
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Runge-Kutta integrators seen as regularizations II

Theorem 1: To any consistent RK there is a maximal Atyax such that for any
O < Atmin < Atmax the fam”y {Fn}nENo Wlth {Atn}neN C [Atmina Atmax[ COnStItU-
tes a filter having infinite qualification.

In other words: RK integrators with sufficiently small step sizes bounded away
from zero yield optimal regularization schemes in X, , for all i, o > 0 when
stopped by the discrepancy principle.

Theorem 2: If the consistent RK additionally satisfies
|R(—2)| <1 forall z >0,

then the above statement holds without a restriction on the magnitude of Aty ax.

Remark: The add. requirement in Th. 2 can only be satisfied by implicit RKs.

Proof: R(z) =exp(z) +0(2%) =1+ 2+ 0(2%) asz — 0.
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Examples
00 2
® Explicit Euler: R(z) =1+ z, —\T Atmax = —HT||2

wy = (I — AT " Tw,—1 + ALT ¢ = w,1 + AT (¢g° — Twy—1)

This is the well-known Landweber iteration.
1 1 \ 1
1—2’ ‘ 1

® Implicit Euler: R(z) = , No restriction on Atmax

wy, = (I +ALTT)  w,oy + A, (T + AL T*T) 1T g°
= (I+At,T*T) " (wp-1 + AL, T*g%).

This iteration is also known as nonstationary iterated Tikhonov-Phillips
regularization.
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Selection of the step sizes

Since

n —p/2
1fT =R Tf x <Coq o (ZAtj) forany f*eX,,

j=1

large step sizes are attractive!
On the other side: If the last time step is too large the discrepancy principle
might be over-satisfied, that is,

HT,R”y(zs,gE)g8 — gaHY < TEg,
and the noise gets amplified.

HTR7(8,95)96 — ggHY
Te '

Therefore, step size control by monitoring of ¢ :=
Accept R, 4-)9° as approximate solution when g ~ 1.

Otherwise, reduce last time step.
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Numerical experiments: Integral equation of the 1. kind

® Discretization by projection method and

® discretization effects are taken into account.

CPU-times in seconds

integrator At
s s RKC5 529

S w RKC8 | 1128
1°°g;;x“—*3"‘\“ """" impl. Euler | [3/2

e SDIRK2 | [3/2

200 300 400 / 500 600 700 800 900

In above experiments:
qg = q; > 0.96 lead to comparable reconstruction errors.
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Generalization to inconsistent RK

Observation: Theorems 1 and 2 remain valid under
R(z)=14+cz+0(z*) asz—0 for ¢> 1,

that is, RK-integrators may be inconsistent.

Question: Can we use this additional freedom to construct schemes which
converge faster than the implicit Euler scheme?

Answer: YES!
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Outlook: Non-linear Problems

Asymptotic regularization in the non-linear case T(f) = g° means: solve

() = T (u(t))" (gs _ T(u(t))), u(0) = o,
and set R,¢° := u(t,).

The application of integrators to the above ODE generates a variety of new
potential regularization schemes.

Manuscript for download:
www.mathematik.uni-karlsruhe.de/~rieder
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Inconsistent RK can do better

Desired properties of a synthetic scheme:
1. |[R(—2)| < 1forz>0and|R(co)| <1 (no restriction on Atmax),

2. R'(0) > 1 (good damping of contributions of small spectral values).
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A synthetic scheme: SYNTH

1 1
1+0z
2460|1460 1 R(z)—(l_z)2
1460 1

For 6 € [0,2(1+ v/2)[ the desired properties are satisfied with
R(0)=2+6 and |R(co)| =D0.
The generated iteration reads

wy = (L4 At TT) 7 (1= 04T T)wy 1 + Aty (24 0)1 + Aty T*T) T*y)
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Impl. Euler vs. SYNTH

Theorem 3: To any 6 € [0, 1] there is a family {Q..} € L£(Y") converging point-
wise to 0 such that

TwS — ¢° = Qu(Twy — g°).

Here, {wE} and {wS} denote the sequences generated by impl. Euler and
SYNTH, respectively, for a joint constant time step At.

Consequence:
We expect the discrepancy principle to stop SYNTH earlier than impl. Euler.
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CPU-timing: Impl. Euler vs. SYNTH

CPU-times in seconds
10 F ‘ ‘

200 300 400 } 500 600 700 800 900
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