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Inverse and ill-posed problems

T ∈ L(X, Y ), X, Y real Hilbert spaces, R(T ) non-closed in Y .

For instance: T compact and non-degenerated

Inverse problem: Tf = gε

gε ∈ Y : ‖Tf+ − gε‖Y ≤ ε and f+ ∈ N(T )⊥

ε noise level

Difficulty: generalized inverse T+ : R(T ) ⊕R(T )⊥ ⊂ Y → X is unbounded
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Regularization of inverse problems

Regularization: {Rn}n∈N0
, Rn : Y → X continuous, Rn0 = 0.

If there is a parameter choice γ : ]0,∞[×Y → N0 such that we have

sup
{

‖f+ −Rγ(ε,gε)g
ε‖X

∣

∣ gε ∈ Y, ‖Tf+ − gε‖Y ≤ ε
}

−→ 0 as ε → 0

for all f+ ∈ N(T )⊥, then ({Rn}n∈N0
, γ) is a regularization scheme for T +.

Optimality: The regularization scheme ({Rn}n∈N0
, γ) for T+ is called

(order-)optimal in Xµ,% := (T ∗T )µ/2B%(0), µ, % > 0, if

sup
{

‖f+ −Rγ(ε,gε)g
ε‖X

∣

∣ gε ∈ Y, ‖Tf+ − gε‖Y ≤ ε, f+ ∈ Xµ,%

}

≤ Cµ εµ/(µ+1) %1/(µ+1).
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Regularization schemes by filter functions I

{Fn}n∈N0
, Fn : [0, ‖T‖2] → R, piecew. continuous with jump-discontinuities is

called regularizing filter if

lim
n→∞

Fn(λ) = 1/λ and λ|Fn(λ)| ≤ CF for λ ∈ ]0, ‖T‖2].

Candidates for regularization operators: Rn := Fn(T ∗T )T ∗ ∈ L(Y, X)

Morozov’s discrepancy principle: Choose τ > 1 and set

γ(ε, gε) := min
{

n ∈ N0 : ‖TRngε − gε‖Y ≤ τ ε
}

.

Remark: ({Rn}n∈N0
, γ) is a regularization scheme for T +.
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Regularization schemes by filter functions II
We have that

sup{|Fn(λ)| | 0 ≤ λ ≤ ‖T‖2} = O(tn) as n → ∞

where {tn}n∈N0
diverges strongly monotone to infinity.

The qualification µQ of a filter is the largest number such that

sup
0≤λ≤‖T‖2

λµ/2 |1 − λ Fn(λ)| = O
(

tn
−µ/2

)

as n → ∞ for all µ ∈ ]0, µQ].

Theorem: {Fn}n∈N0
as above with tn/tn+1 ≥ ϑ > 0 and µQ > 1,

γ discr. principle, τ > sup{|1−λFn(λ)| |n ∈ N0, 0 ≤ λ ≤ ‖T‖2]} ≥ 1.

Then, ({Rn}n∈N0
, γ), Rn := Fn(T ∗T )T ∗, is an optimal regularization

scheme for T+ in Xµ,% for all µ ∈ ]0, µQ − 1] and all % > 0.
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Examples

Tikhonov-Phillips

Fn(λ) = 1/(λ + t−1
n ), Rn = (T ∗T + t−1

n I)−1T ∗, µQ = 2

Showalter’s or asymptotic regularization

u′(t) = T ∗
(

gε − Tu(t)
)

, u(0) = 0,

Define Rngε := u(tn).

We have µQ = ∞ and Rn = Fn(T ∗T )T ∗ where

Fn(λ) =











1 − exp(−λ tn)

λ
: λ > 0,

tn : λ = 0.
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Sneak preview: Conclusion of the talk

Runge-Kutta integrators applied to the evolution equation

u′(t) = T ∗
(

gε − Tu(t)
)

, u(0) = 0,

generate optimal regularization schemes in Xµ,% for all µ, % > 0, when
stopped by the discrepancy principle (µQ = ∞).
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Runge-Kutta integrators I

Ψ : [0,∞[×W → W , W Banach space, w0 ∈ W

w′(t) = Ψ
(

t, w(t)
)

, t > 0, w(0) = w0,

Runge-Kutta integrator with s stages and time steps {∆tn}n∈N ⊂ ]0,∞[ :

wn ≈ w(tn), tn =
n

∑

k=1

∆tk

wn = wn−1 + ∆tn
s

∑

i=1

bi ki(tn−1, wn−1, ∆tn),

ki = Ψ
(

tn−1 + ci∆tn, wn−1 + ∆tn
s

∑

j=1

aijkj

)

, i = 1, . . . , s.
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Runge-Kutta integrators II

Compact representation by Butcher array

c A

bt
=

c1 a11 · · · a1s

...
...

...
...

cs as1 · · · ass

b1 · · · bs

RK is called explicit if A is strictly lower triangular, otherwise implicit.

RK is called consistent if
∑s

i=1 bi = 1.

explicit Euler:
0 0

1
implicit Euler:

1 1

1
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Runge-Kutta integrators seen as regularizations I

Application of RK to Showalter’s ODE yields

wn = R(−∆tn T ∗T )wn−1 + ∆tn Q(−∆tn T ∗T )T ∗gε, w0 = 0,

where

R(z) =
det(I − z A + z

�

bt)

det(I − z A)
, Q(z) =

R(z) − 1

z
.

R stability function (polynomial/rational function for explicit/implicit RK)

Lemma: We have that

wn = Rngε = Fn(T ∗T )T ∗gε with Fn(λ) =
1 − ∏n

k=1 R(−∆tk λ)

λ
.
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Runge-Kutta integrators seen as regularizations II

Theorem 1: To any consistent RK there is a maximal ∆tmax such that for any
0 < ∆tmin < ∆tmax the family {Fn}n∈N0

with {∆tn}n∈N ⊂ [∆tmin, ∆tmax[ constitu-
tes a filter having infinite qualification.

In other words: RK integrators with sufficiently small step sizes bounded away
from zero yield optimal regularization schemes in Xµ,% for all µ, % > 0 when
stopped by the discrepancy principle.

Theorem 2: If the consistent RK additionally satisfies

|R(−z)| < 1 for all z > 0,

then the above statement holds without a restriction on the magnitude of ∆tmax.

Remark: The add. requirement in Th. 2 can only be satisfied by implicit RKs.

Proof: R(z) = exp(z) + O(z2) = 1 + z + O(z2) as z → 0.
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Examples

Explicit Euler: R(z) = 1 + z,
0 0

1
, ∆tmax =

2

‖T‖2

wn = (I − ∆tnT ∗T )wn−1 + ∆tnT ∗gε = wn−1 + ∆tnT ∗(gε − Twn−1)

This is the well-known Landweber iteration.

Implicit Euler: R(z) =
1

1 − z
,

1 1

1
, no restriction on ∆tmax

wn = (I + ∆tnT ∗T )−1wn−1 + ∆tn(I + ∆tnT ∗T )−1T ∗gε

= (I + ∆tnT ∗T )−1(wn−1 + ∆tnT ∗gε).

This iteration is also known as nonstationary iterated Tikhonov-Phillips
regularization.
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Selection of the step sizes
Since

‖f+ −RnTf+‖X ≤ CQ %
(

n
∑

j=1

∆tj
)−µ/2

for any f+ ∈ Xµ,%

large step sizes are attractive!
On the other side: If the last time step is too large the discrepancy principle
might be over-satisfied, that is,

‖TRγ(ε,gε)g
ε − gε‖Y � τ ε,

and the noise gets amplified.

Therefore, step size control by monitoring of q :=
‖TRγ(ε,gε)g

ε − gε‖Y

τ ε
.

Accept Rγ(ε,gε)g
ε as approximate solution when q ≈ 1.

Otherwise, reduce last time step.
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Numerical experiments: Integral equation of the 1. kind

Discretization by projection method and

discretization effects are taken into account.

200 300 400 500 600 700 800 900

10−1

100

101

102

CPU−times in seconds 

l 

impl. Euler 

SDIRK2 

RKC8 
RKC5 

integrator ∆t

RKC5 529

RKC8 1128

impl. Euler l3/2

SDIRK2 l3/2

In above experiments:

q = ql ≥ 0.96 lead to comparable reconstruction errors.
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Generalization to inconsistent RK

Observation: Theorems 1 and 2 remain valid under

R(z) = 1 + c z + O(z2) as z → 0 for c > 1,

that is, RK-integrators may be inconsistent.

Question: Can we use this additional freedom to construct schemes which
converge faster than the implicit Euler scheme?

Answer: YES!

c©Andreas Rieder, Joint Mathematics Meeting, Atlanta, January 5-8, 2005 – p.16/21



Outlook: Non-linear Problems

Asymptotic regularization in the non-linear case T (f) = gε means: solve

u′(t) = T ′
(

u(t)
)∗

(

gε − T
(

u(t)
)

)

, u(0) = u0,

and set Rngε := u(tn).

The application of integrators to the above ODE generates a variety of new
potential regularization schemes.

Manuscript for download:
www.mathematik.uni-karlsruhe.de/∼rieder
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Inconsistent RK can do better

Desired properties of a synthetic scheme:

1. |R(−z)| < 1 for z > 0 and |R(∞)| < 1 (no restriction on ∆tmax),

2. R′(0) � 1 (good damping of contributions of small spectral values).
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A synthetic scheme: SYNTH

1 1

2 + θ 1 + θ 1

1 + θ 1

R(z) =
1 + θ z

(1 − z)2

For θ ∈
[

0, 2(1 +
√

2)
[

the desired properties are satisfied with

R′(0) = 2 + θ and |R(∞)| = 0.

The generated iteration reads

wn =
(

I +∆tnT ∗T
)−2

(

(

I −θ∆tnT ∗T
)

wn−1 +∆tn
(

(2+θ)I +∆tnT ∗T
)

T ∗y
)

.
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Impl. Euler vs. SYNTH

Theorem 3: To any θ ∈ [0, 1] there is a family {Qn} ⊂ L(Y ) converging point-
wise to 0 such that

TwS
n − gε = Qn(TwE

n − gε).

Here, {wE
n} and {wS

n} denote the sequences generated by impl. Euler and
SYNTH, respectively, for a joint constant time step ∆t.

Consequence:

We expect the discrepancy principle to stop SYNTH earlier than impl. Euler.
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CPU-timing: Impl. Euler vs. SYNTH
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