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A Note on a Nonlinear Model of a Piezoelectric Rod

If piezoceramics are excited by weak electric fields a nonlinear behavior can be observed, if the excitation frequency is
close to a resonance frequency of the system. To derive a theoretical model nonlinear constitutive equations are used,
to describe the longitudinal oscillations of a slender piezoceramic rod near the first resonance frequency. Hamilton’s
principle is used to receive a variational principle for the piezoelectric rod. Introducing a Rayleigh Ritz ansatz with
the eigenfunctions of the linearized system to approximate the exact solution leads to nonlinear ordinary differential
equations. These equations are approximated with the method of harmonic balance. Finally it is possible to calculate
the amplitudes of the displacements numerically. As a result it is shown, that the Duffing type nonlinearities found
in measurements can be described with this model.

1. Theoretical Model

The model of the piezoceramic rod is shown in figure 1. A coordinate sys-
tem is introduced such that the 3-axis is aligned with the poling direction.
The left and right end of the rod are stress-free (mechanical boundary con-
ditions) and the rod is excited by a harmonic electric voltage ϕ(t) (electrical
boundary condition). The thickness to length ratio is assumed to be small,
thus simple rod theory is used. Furthermore, the influence of the electrodes
is neglected and the cross sectional area is assumed to be constant in the
theoretical model. To derive a variational principle for the piezoceramic, it
is convenient to use HAMILTON’s principle for dielectric continua Figure 1: Model of the piezoceramic

rod
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In equation (1) H denotes the electric enthalpy density and T the kinetic energy density, which are given by
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The field quantities are the strain S3 and the electric field E3. In the second equation terms of higher order are
introduced to describe the nonlinear behavior of the piezoceramics. The stiffness constants are denoted by c0, c1,
and c2, additionally the abbreviations e0 = c0d0, e1 = c0d1 + c1d0, e2 = c0d2 + c2d0 + c1d1 are introduced. The
piezoelectric constants are named d0, d1 and d2. The nonlinear constitutive equations can be obtained by the partial
derivatives of the electric enthalpy density with respect to the strain S3 and the electric field E3
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In equation (3) and (4) T3 denotes the tension in longitudinal direction and D3 the dielectric displacement. It
is obvious that the stiffness and the piezoelectric coupling depend in a nonlinear way on the strain. Due to the
mechanical and electrical boundary conditions the virtual work δW in Hamilton’s principle (1) reduces to the
material damping. From the second nonlinear constitutive equation (4) a relation for the electric field is derived.
Applying the field equation E = −grad ϕ to the electric field, it is possible to receive the dielectric displacement
depending on the electric potential, the displacement and its derivatives. Introducing the variations of equation (2),
the electric field, the electric displacement and their variations into Hamilton’s principle (1) an equation of the
form
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f (ϕ , ü , u̇,x , δu , δu,x) dx dt = 0 (5)

PAMM · Proc. Appl. Math. Mech. 2, 64–65 (2003) / DOI 10.1002/pamm.200310018
 

First published in:

EVA-STAR (Elektronisches Volltextarchiv – Scientific Articles Repository) 
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011091 



is obtained. It is not possible to find an exact solution for this equation. Therefore, a Rayleigh-Ritz ansatz is
used to get an approximate nonlinear ordinary differential equation. In this paper only the first eigenfunction of the
linearized problem is used as an approximation for the exact solution. For this simplified case a nonlinear ordinary
differential equation is obtained

Cmp̈ + Cdṗ + C5p
5 + C4p

4 + C3p
3 + (C2aϕ + C2b)p2 + (C1aϕ + C1b)p = Cϕϕ, (6)

with the coefficients Ci which depend on material properties and dimensions of the rod. It can be seen that the
ODE is inhomogeneous and of 5th order. Furthermore there is a parametric excitation by C2aϕ and C1aϕ due to the
time dependence of the excitation voltage ϕ(t). Solutions of this nonlinear differential equation may be calculated
by the method of harmonic balance. As in experiments only the fundamental and the second harmonic frequency
are observed, an ansatz of such a form is used to approximate the exact solution of (6). Additional a harmonic
excitation voltage ϕ(t) = ϕ̂ cos Ωt is assumed. Finally, a solution for the displacement amplitudes can be obtained
numerically and two transfer functions are defined. The intention is to receive a relation between the amplitudes of
the first and second harmonic oscillation to the amplitude of the excitation voltage.

2. Results

To calculate the influence of the nonlinear parameters in the constitutive
equations (3) and (4) the first transfer function is used. Certain material
parameters are chosen and the electric field strength is approximately 120
V/mm, considered in the range of low level signals. The nonlinear material
parameters c1, c2, d1 and d2 are varied and their influence on the transfer
function is investigated. An excitation near the first resonance frequency
shows a nonlinear behavior in form of Duffing type nonlinearities. From
measurements it is known that the transfer curve inclines to the left near
the first resonance frequency. To investigate the influence of the nonlinear
parameters, each parameter is varied, while the others are set to zero. The
value of the inner damping is constant d= 0.45 Ns for all simulations. It
can be shown, that c1, d1, positive c2 and positive d2 lead to curves V1(Ω),
which incline to the right. For values of c2 and d2, which are negative, the
curves V1(Ω) incline to the left. This is the behavior which is observed in
measurements.
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Figure 2: Transfer functions V1(Ω) for
varying ϕ̂

Figure 2 shows the influence on the transfer curve for varying excitation voltages. In this simulation the piezoelectric
constant is d2= −10−7 m/V and the other nonlinear parameters are set to zero. The typical Duffing type nonlin-
earities can be observed. The curves incline to the left and the jump phenomena occurs. Moreover the difference at
which the curves achieve their maximum can be seen. This behavior can be found in measurements, too.

3. Conclusions

In this paper a nonlinear model of a piezoceramic rod is presented. With the electric enthalpy density and kinetic
energy density Hamilton’s principle for dielectric media is used to derive an integral form into which a Ritz ansatz
is introduced. The resulting nonlinear ordinary differential equation is approximated by the method of harmonic
balance. The Duffing type nonlinearities, as they can be observed in measurements, can be modelled with the
presented nonlinear constitutive equations.
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