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A note on the nonlinear modeling of piezoelectric rods

Piezoceramic materials are usually calculated using linear constitutive equations if the exciting electric field is small.
If the structure is excited near a resonance frequency the assumption of a linear material becomes invalid. Therefore
nonlinear constitutive equations have to be used if the super harmonics in the measured velocity signals should be
modeled. In this paper nonlinear constitutive equations are derived from the electric enthalpy density to describe
the longitudinal oscillations of a piezoceramic rod. The kinetic energy considers the inertia effects in transversal
direction so the model is not limited to the slender rod theory. With Hamilton’s principle a variational principle is
derived which is approximated using a Rayleigh Ritz ansatz with the first eigenfunction of the linearized system. The
resulting nonlinear ODE is solved by application of the harmonic balance method. The amplitudes of displacement
of the fundamental, the second and the third super harmonic oscillations are solved numerically. In a first step
the results of the theoretical model are compared with measurements. The material parameters of the nonlinear
constitutive equations are calculated using a parametric identification method. As a result it is shown that the
theoretical model can describe the Duffing type nonlinearities found in measurements.

1. Theoretical Model

The model of the piezoceramic rod is shown in figure 1. A coordinate sys-
tem is introduced such that the 3-axis is aligned with the poling direction.
The left and right end of the rod are stress-free (mechanical boundary con-
ditions) and the rod is excited by a harmonic electric voltage ϕ(t) (electrical
boundary condition). To derive a variational principle for the piezoceramic,
it is convenient to use Hamilton’s principle for dielectric media
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Figure 1: Model of the piezoceramic
rod

in which L is a modified Lagrangefunction and δW the virtual work [3]. From measurements it is known, that the
longitudinal oscillations of a piezoelectric rod show nonlinear behavior if the rod is excited near a resonance frequency
even at low electric fields. To model the observed jump phenomenon and the superharmonics an uniaxial state of
stresses is assumed. Furthermore the electric displacement in transversal direction will be neglected. Therefore the
electric enthalphy can be written as
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In this equation the independent variables are the electric field E3 and the strain S3, where the index ()3 denotes
the polarization axis of the rod. Furthermore the following abbreviations are used

c33 = cE
33 −

2(cE
13)

2

cE
11 + cE

12

, e33 = e33 − 2cE
13e31

cE
11 + cE

12

, ε33 = εS
33 +

2e2
31

cE
11 + cE

12

, (3)

in which cij denotes the stiffness tensor components, eij the piezoelectric tensor components and εij the permittivity
tensor components, in case the Voigt notation is used. By assuming a linear velocity in transversal direction, the
kinetic energy can be written as
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A detailed derivation of the above potential functions can be found in [1] and [2]. Nevertheless the nonlinear
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constitutive equations, which are based on equation (2) are given by
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with the stress T3 and the electric displacement D3 in poling direction.

Introducing the potential functions into the variational principle (1) and using Gauss law for dielectric media
divD = 0 and the field equation E = −gradϕ, an equation is obtained, which depends only on the displacement
u(x, t) and the electric potential ϕ(t) and various derivatives of u(x, t) and ϕ(t) with respect to the time t and
the coordinate x. The variational principle can not be solved analytically. Therefore a first order Rayleigh-Ritz

ansatz is introduced by using the first eigenfunction of the linearized system

u(x, t) = U(x)p(t). (7)

Obtained is a nonlinear ordinary differential equation of the form

C1 p̈(t) + C2 p̈(t)p(t) + C3 p̈(t)p(t)2 + C4 p̈(t)p(t)3 + C5 p̈(t)p(t)4 + C6 ṗ(t) + C7 ṗ(t)2p(t) +
C8 ṗ(t)2p(t)2 + C9 ṗ(t)2p(t)3 + C10 ṗ(t)2 + C11 p(t)5 + C12 p(t)4 + C13 p(t)3 + C14 p(t)2 +

C15 p(t)2ϕ(t) + C16︸︷︷︸
=0

p(t)2ϕ̈(t) + C17 p(t) + C18 p(t)ϕ(t) + C19︸︷︷︸
=0

p(t)ϕ̈(t) + C20 ϕ̈(t) = ϕ(t). (8)

It can be seen, that a parameter excitation by the voltage ϕ(t) occurs. The harmonic balance method is used to solve
the nonlinear ODE. The fundamental, the first and second higher harmonics are taken into account. The resulting
equations are solved numerically for the amplitudes of the displacement functions.

2. Results

The comparison of the fundamental harmonic oscillation with a measure-
ment for a low voltage excitation is shown in figure 2. The measurements are
carried out at a piezoceramic rod (diameter 25mm, length 20mm, material
PIC141 PI-Ceramic, Germany). The material parameters used for the simu-
lation are determined by using the Nelder-Mead simplex algorithm where
the objective function is the L2-norm of the difference between measurement
and simulation data. As one can see it is possible to describe the Duffing-
type nonlinearities with the presented model. The figure shows the sweep up
mode, which means that the frequency is increased, while the amplitudes of
velocity are measured with a gain-phase analyzer. It is well known, that the
frequency at which the jump occurs depends on the sweep mode. Further-
more it can be seen, that the amplitude function inclines to the left, which
is the so called softening effect. The material parameters used for the above
simulation are in SI-units: c1 = 1.2e−4, c2 = −9e14, e1 = 1e−4, e2 = −1e8.
The main parameters, which are responsible for the nonlinear behavior are
the piezoelectric parameter e2 and the stiffness parameter c2. Both values
lead the curve incline to left in case of negative values. A detailed discussion
of the parameter identification will be published soon. Future work will fo-
cus on the improvement of the parameter identification and the application
of the model to a piezoelectric transformer [1].
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Figure 2: Comparison of the funda-
mental amplitudes (simulation / mea-
surement)
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