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ABSTRACT

This article deals with analytical investigations on stability
and bifurcations due to declining dry friction characteristics in
the sliding domain of a simple disc-brake model, which is com-
monly referred to as ”mass-on-a-belt”-oscillator. Sliding fric-
tion is described in the sense of Coulomb as proportional to the
normal force, but with a friction coefficient µS which depends
on the relative velocity. For many common friction models this
latter dependence on the relative velocity can be described by
exponential functions. For such a characteristic the stability and
bifurcation behavior is discussed. It is shown, that the system can
undergo a subcritical Hopf-bifurcation from an unstable steady-
state fixed point to an unstable limit cycle, which separates the
basins of the stable steady-state fixed point and the self sustained
stick-slip limit cycle. Therefore, only a local examination of the
eigenvalues at the steady-state, as is the classical ansatz when
investigating conditions for the onset of friction-induced vibra-
tions, may not give the whole picture, since the stable region
around the steady state fixed point may be rather small. The an-
alytical results are verified by numerical simulations. Parameter
values are chosen for a model which corresponds to a conven-
tional disc-brake.

INTRODUCTION

A classical model of self-sustained oscillations due to dry
friction is the ”mass-on-a-belt” model, which has been widely
studied over decades (e.g. [1], [2], [3]).

When talking of ”stability” concerning this well-known fric-
tion oscillator, usually only the linear stability of the steady state
is examined by means of eigenvalue analysis, since the destabi-
lization of the steady-state fixed point is one of the possible trig-
gers leading the system to the stick-slip limit cycle. At the same
time, all that is happening in between the fixed point and the self-
sustained stick-slip cycle is neglected - although dry friction can
exhibit nonlinear characteristics. Already in 1958, Kauderer [1]
examined the energy balance of the model and predicted the ex-
istence of an unstable limit cycle in the sliding domain between
the steady-state fixed point and the stick-slip limit cycle for non-
linear friction characteristics.

This article examines the sliding motion of the oscillator in-
cluding fixed-points, limit-cycles and their stability. After a de-
scription of the mechanical model, analytical approximate solu-
tions are derived via an averaging method. In the sequel, these
analytical results are used to examine the behavior of a standard
model for disc-brake vibration. Finally, the analytical results are
checked by numerical simulations and conclusions are given.
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Figure 1. BLOCK-ON-A-BELT-MODELL.

MECHANICAL MODEL
Oscillator

The mechanical model comprises a block of massm, which
is pressed onto a moving belt by a normal forceFB, while the
belt has the constant speedv0. The block is connected to the
inertial system by a dashpod (damping coefficientd) and a spring
(stiffnessc). With the relative velocityw = v0− ẋ between block
and belt, the unsteady equation of motion in sense of Filippov
reads

ẍ+2Dω0ẋ+ω2
0x∈ R , R=

{
[−µ0

N
m;+µ0

N
m] : w = 0

sign(w)µ(w)N
m : w 6= 0

, (1)

with the dimensionless damping measureD = d
2mω0

, the eigen-

frequencyω0 =
√ c

m of the undamped system and the normal
contact forceN.

Depending on the relative velocityw the right-hand side ei-
ther represents sliding friction in the sense of Coulomb (w 6= 0)
or static friction as a constraint force (w= 0), which has to be de-
termined evaluating the kinematic constraint equation describing
stiction between belt and block. The latter case is not considered
in the following.

Sliding Friction
The sliding friction force is described in the sense of

Coulomb as being proportional to the normal contact forceN by
the coefficient of sliding frictionµ. In general, this coefficient de-
pends on a huge variety of parameters. In a first approximation,
only the dependence on the relative velocityw between the two
tribological partners is considered. Therefore, a Stribeck friction
characteristic is chosen, which features aµ(w) that declines with
increasingw. Because only dry friction is considered, there is no
increase ofµ for higherw, as it would be the case in the presence
of viscous effects.

Choosing an exponential description, the coefficient of slid-
ing friction can be written as

µ(w) = µ∞ +∆µe−a|w|, (2)

Figure 2. STRIBECK FRICTION WITHOUT VISCOUS INFLUENCES.

with ∆µ= µ0−µ∞, the absolute value|w| of the relative velocity
and a slope parametera.

One interesting aspect of the chosen friction curve is that
other common characteristics may be derived from it. For exam-
ple, expanding the exponential function and truncating after the
linear term yields

µ∗(w) = µ∞ +
∆µ

1+a|w| , (3)

which is a widely used friction model [4], [1].

Steady-state and its linear stability
In the following, the focus will be on sliding motion in the

vicinity of the steady-state fixed point. Here,w > 0 holds for
the relative velocity between block and belt and therefore the
equation of motion reads

ẍ+2Dω0ẋ+ω2
0x =

N
m

µ(w). (4)

Obviously the steady-state is at

xS =
N

mω2
0

(
µ∞ +∆µe−av0

)
. (5)

In technical applications, only the linear stability of the steady
state is considered to answer the question if self-sustained oscil-
lations arise due to a destabilization of the steady state, or not.
For this purpose, the equation of motion is linearized around the
steady-state and the linear variational equation for the perturba-
tion ∆x = x−xS is derived as follows

∆ẍ+
[
2Dω0 +

N
m

∆µ
(−ae−av0

)]

︸ ︷︷ ︸
=δ

∆ẋ+ω2
0∆x = 0. (6)

Note that the bracketed term(−ae−av0) gives the local gradi-
ent of the friction characteristic at the steady stateẋ = v0. For
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positive values ofa it always is negative and decreases asa is
increased.

The steady state is stable if the system is really damped. This
is the case if the extended damping termδ is positive, otherwise
the system is unstable. In order to correspond to later formula-
tions, the related condition is written as

xS lin. stable↔ Dω0− a
2

N
m

∆µe−av0 > 0. (7)

ANALYTICAL APPROXIMATE SOLUTION OF THE SLID-
ING MOTION
Amplitude Equation by Averaging

In the following, an approximate solution for the sliding os-
cillator is sought by applying the first order Method of Aver-
aging, cf. [2]. For this purpose, the coordinate transformation
z= x−xS (i.e. ż= ẋ, . . .) is introduced into the equation of motion
(4) such thatz= 0 corresponds to the steady-state. Rearrange-
ment to the so-called standard form and insertion of the friction
characteristic (2) yields

z̈+ω2
0z = −2Dω0ż+

N∆µ
m

(
e−a(v0−ż)−e−av0

)

= −2Dω0ż+
N∆µ

m
e−av0

(
e+aż−1

)
. (8)

Obviously the transcendental function in the bracketed term will
cause problems when carrying out the averaging procedure. For
this reason, it is made analytic by expansion into an infinite se-
ries. Doing this gives

z̈+ω2
0z = −2Dω0ż+

∞

∑
n=1

(aż)n

n!
(9)

= ε f (z, ż).

Introducing the following ansatz functions and abbreviations

z = A(t)sinθ(t) = AS , θ(t) = ω0t +ψ (10)

ż = A(t)ω0cosθ(t) = Aω0C. (11)

into eq. (9) yields the right-hand side

ε f (z, ż) = −2Dω2
0AC+

N∆µe−av0

m

[
∞

∑
n=1

(aAω0C)n

n!

]
. (12)

Averaging gives the following amplitude equation

Ȧ =
1

2πω0

2π∫

θ=0

f (z, ż)cosθdθ (13)

Figure 3. SET-UP OF THE PHASEPLANE. IN Σ0 PERIODIC HAR-

MONIC SOLUTIONS ARE POSSIBLE (e.g. γ0), WHILE SOLUTIONS

STARTING IN Σ1 ARE IMMEDIATELY ATTRACTED BY THE STICK-SLIP

LIMIT CYCLE (e.g. γ1).

= −Dω0A+
N∆µe−av0

2πm

2π∫

θ=0

∞

∑
n=1

anAnωn−1
0 Cn+1

n!
dθ. (14)

Due to the uniform convergence of the integrand, swapping inte-
gration and summation is allowed. Using the abbreviation

∫ 2π

θ=0
adθ = 〈a〉 (15)

and considering thatA is assumed to be constant during an aver-
aging periodθ = 0. . .2π, this leads to

Ȧ = −Dω0A+
N∆µe−av0

m

∞

∑
n=1

anAnωn−1
0

n!

〈
Cn+1

〉

2π
. (16)

Now, half of the sum can be dropped since
〈
C2n+1

〉
= 0 (n∈N).

Resetting indices finally yields the following amplitude equation:

Ȧ = −Dω0A+
N∆µe−av0

m

∞

∑
k=1

a2k−1ω2k−2
0

(2k−1)!

〈
C2k

〉

2π
A2k−1. (17)

Since the right-hand side (12) does not contain any sine-
terms, the phase keeps constantly zero:

ψ̇ = − 1
2πω0A

2π∫

θ=0

f (z, ż)sinθdθ = 0. (18)
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Figure 4. QUALITATIVE SKETCH OF THE AMPLITUDE GROWTH BE-

HAVIOR FOR CASES (I) AND (II).

Fixed points, limit cycles
To find fixed points or limit cycles, eq. (17) is investigated

for solutions of stationary amplitudes witḣA = 0. After that, the
stability of these amplitudes is studied.

Regarding eq. (17) it is obvious that

A1 = 0 (19)

is always a possible stationary amplitude. Separating this solu-
tion from eq. (17) the following remains

0 = −Dω0 +
N∆µe−av0

m

∞

∑
k=1

a2k−1ω2k−2
0

(2k−1)!

〈
C2k

〉

2π
A2k−2 (20)

= −Dω0 +
N∆µe−av0

m

[
a
2

+
∞

∑
k=2

a2k−1ω2k−2
0

(2k−1)!

〈
C2k

〉

2π
A2k−2

]
,

and hence

Dmω0

N∆µe−av0
− a

2
=

∞

∑
k=2

a2k−1ω2k−2
0

(2k−1)!

〈
C2k

〉

2π
A2k−2. (21)

Since all quantities are positive, eq. (21) can only hold for real,
positive amplitudesA, if the difference of the left-hand side is
positive. This yields a first equation for the existence of a limit
cycle:

A2 ∈ R+ ↔ Dmω0

N∆µe−av0
− a

2

!
> 0. (22)

In general, the differential equation (9) holds forż < v0,
i.e. in the entire half plane of sliding below stiction line which
is located aṫz= v0. But since periodic weakly-nonlinear oscilla-
tions are studied using a harmonic ansatz, the following consid-
erations will only be valid within a phase-plane section contain-
ing solutions which are not immediately trapped by the stick-slip

limit cycle. This section is denoted byΣ0 (cf. fig. 3) and will
be approximately of a circular shape for weak nonlinearities. By
geometrical considerations, the radius of this approximate circu-
lar area will ber = v0

ω0
. With this, a limit-cycle in the sense of

eq. (22) will only exist if the limit condition

A2
!
<

v0

ω0
(23)

is fulfilled, as is e.g. for trajectoryγ0 in figure 3. Otherwise, the
trajectory will soon end-up in the stick-slip limit cycle (e.g.γ1 in
figure 3).

Stability of fixed points and limit cycles
To study the stability of the stationary amplitudes given by

(19) and (20), the first derivatives with respect toA are examined.
Carrying out the derivations yields

dȦ
dA

= −Dω0 +
N∆µe−av0

m

∞

∑
k=1

a2k−1ω2k−2
0

(2k−1)!

〈
C2k

〉

2π
(2k−1)A2k−2

= −Dω0 +

N∆µe−av0

m

[
a
2

+
∞

∑
k=2

a2k−1ω2k−2
0

(2k−2)!

〈
C2k

〉

2π
A2k−2

]
. (24)

Evaluation at the fixed pointA1 = 0 gives

dȦ
dA

∣∣∣∣
A=A1

= −Dω0 +
N∆µe−av0

m
a
2
. (25)

The fact that (24) reduces so dramatically corresponds to the
theorem of Hopf and Andronov [5]. Depending on the parame-
ters of the system, two cases can be outlined:

(I) dȦ
dA

∣∣∣
A=A1

> 0: the steady-state fixed point is unstable. Simul-

taneously condition (22) assuring the existence of the cycle
is not fulfilled – hence there is only anunstable fixed-point.
Figure 5 outlines this behavior qualitatively.

(II) dȦ
dA

∣∣∣
A=A1

< 0: the steady-state fixed point is stable and at

the same time, condition (22) is fulfilled. Hence, there is an
unstable limit cycle of amplitudeA2 coexisting to the sta-
ble fixed-point. The instability of limit-cycle can easily be
seen from fig. 4, since small perturbations will be amplified.
Hence there are astable fixed-pointand anunstable limit-
cycle (see fig. 6). The amplitudeA2 of the unstable limit-
cycle has to fulfill the limit condition (23) to avoid being
swallowed by the stick-slip limit cycle.
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Figure 5. AMPLITUDE GROWTH AND PHASE PLOT.

CASE (I): UNSTABLE FIXED POINT .

Figure 6. AMPLITUDE GROWTH AND PHASE PLOT.

CASE (II): STABLE FIXED POINT AND UNSTABLE LIMIT CYCLE.

Figure 4 outlines qualitatively the growth behavior of the
amplitdes for both cases. It is found, that the system can un-
dergo a bifurcation, changing the phase plot from case (I) to (II)
and vice versa, when parameters either of the oscillators or the
friction curve are changed. The identified bifurcation behavior
(i.e. unstable fixed-point↔ stable fixed-point + unstable limit cy-
cle) is referred to assubcritical HOPF-Bifurcation, cf. figures 5,
6.

SLIDING BIFURCATIONS – APPROXIMATE ANALYT-
ICAL EVALUATION AND APPLICATION TO A DISC-
BRAKE MODEL

Despite their exactness, the infinite sums involved in the am-
plitude equation (17) are not very comfortably to handle and only
hardly allow insight in the behavior of the solutionz(t) = Acosθ.
To allow further analytical studies, the sum (17) is truncated after
the cubic terms, i.e. dropping indicesk≥ 3. This yields

Ȧ = A

[
−Dω0 +

N∆µe−av0

m

(
a
2

+
a3ω2

0

16
A2 +O(A4)

)]
.(26)

Again, the fixed point

A(3)
1 = 0 (27)

is obvious. Bracketed superscripts denote the truncation order.
The second possible stationary amplitude is then found by simple
calculus as

A(3)
2 =

4
aω0

√
Dω0m

aN∆µe−av0 −
1
2

. (28)

This equation will only yield real amplitudes, if the radicand is
positive or zero, what is equivalent to condition (22): if the rad-
icand is negative an unstable fixed-point governs the sliding be-
havior – case (I) – while for a positive radicand, a stable fixed-
point and an unstable limit-cycle can be observed – case (II).
Between these two cases, the system undergoes the subcritical
HOPF-Bifurcation when passing the borderline

0 =
Dω0m

aN∆µe−av0
− 1

2
. (29)

Although derived by a truncation of eq. (17), this equation is
equivalent to eq. (22), which was derived from the averaged so-
lution by exact analysis. Interestingly there is no loss of accuracy
in the bifurcation border description due to the truncation. This
is reasonable since at the bifurcation itself the amplitudes vanish
and therefore the truncation has no further influence.

In addition, the amplitude of the unstable limit-cycle has to
fulfill the approximate limit condition (23) to avoid entering the
bassinΣ1 and being attracted by the stick-slip limit-cycle.

Figure 7 shows the bifurcation behavior – and therefore the
stability properties – of the disc-brake model described by the pa-
rameters given in Appendix A. While the black line denotes the
HOPF-bifurcation, the grey line is given by the approximate limit
condition (23), which counts for the fact that periodic harmonic
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Figure 7. PATTERN PHASEPLOTS, BIFURCATION BORDER (BLACK

LINE) AND APPROXIMATE EXISTENCE LIMIT OF THE UNSTABLE

LIMIT CYCLE (GREY LINE) FOR A DISC BRAKE MODELL (cf. AP-

PENDIX A).

solutions may only exist in the phase plane sectionΣ0 (cf. fig. 3).
It is emphasized that this grey line is only an approximation of
condition (23) since it was derived by a truncation of (17) and
the amplitudes do not vanish as they do at the black bifurcation
line.
The qualitative behavior can be outlined as follows:

1. when passing the thick black line in direction of increasing
belt velocityv0, the unstable fixed-point turns stable and an
unstable limit-cycle of amplitudeA2 (cf. eq. (28)) is born.
Since it can only be observed unless its amplitude doesn’t
violate the limit condition (28), it vanishes when trespassing
the thick grey line given by this condition.

2. when changing parameters in direction of the slope parame-
tera, for small values ofa both borderlines can be passed si-
multaneously, i.e. the systems phase-flow changes almost in-
stantaneously from an unstable to a stable fixed-point with-
out exhibiting the limit-cycle. Surprisingly it is possible,
that further increasing the slope parametera can restabilize
the system!

Figures 8, 9 and 10 show the the influence the dampingD,
the natural frequencyω0 =

√ c
m, which is varied by doubling

and halving the stiffness of the system, and of the contact nor-
mal forceN on the bifurcation behavior. It is found that higher
damping, stiffness or lower contact normal force increase the pa-
rameter domain of the stable steady-state. But in all cases, low
velocitiesv0 stay critical in a parameter domain fora beyond a
certain threshold. Even a damping ofD = 1, which is a quite high
value for real steel brake system, can’t stabilize the steady-state.

In terms of the disc-brake model, consider that the ordinate
v0 denotes the surface velocity of the disc at the contact radius.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

a

v 0

D=0.05

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

a
v 0

D=0.1

bif.border
approx. limit for LC existence

Figure 8. INFLUENCE OF THE DAMPING D ON THE BIFURCATION

BORDER.

THIN LINES: D0 = 0.023, BASIC CONFIGURATION (APPENDIX A)

UPPER: D = 0.05 – BOTTOM: D = 0.1.

The speedvC of the car is given by

vC =
rW

r
v0, (30)

with rW denoting the radius of the wheel andr being the distance
from the axes to the contact point of the pad.

NUMERICAL SIMULATION OF A DISC BRAKE MODEL
Equation (1) is a typical example of a system exhibiting

friction-induced vibrations and is therefore often chosen as a first
model to study vibrations in disc-brakes. To evaluate the analyt-
ical results obtained above, also numerical simulations are done
for these parameter sets. These simulations are carried out using
the implicit variable time-step Runge-Kutta-Fehlberg scheme of
order 2(3) provided by MATLAB (ODE23). In order to account
for the unsteadiness of the general equation of motion (1), the
event location function of MATLAB was used to switch between
the particular differential equations.

In general, a direct simulation of unstable limit cycles is not
possible. To deal with this, the fact was used, that unstable limit
cycles are the repelling separatrix of two attractors and that this
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Figure 9. INFLUENCE OF THE NATURAL FREQUENCY ω0 ON THE

BIFURCATION BORDER.

THIN LINES: ω0 = 5000rad
s , BASIC CONFIGURATION (APPENDIX A)

UPPER: ω0 = 15810rad
s (twice the stiffness)

BOTTOM: ω0 = 1581rad
s (half the stiffness).

behavior is inverted when time is inverted. For this, the unstable
limit cycles were obtained by inversion of time.

Figure 11 outlines the bifurcation borders for typical param-
eters for disc brake models, given in Appendix A, and shows the
parameter combinations P1. . . P5 (see Appendix B) for which nu-
merical simulations are carried out.

A comparison of the simulation results of the parameter
sets P1, P2 and P3 displays how the topography of the phase-
plane changes from the unstable fixed-point (P1, figure 12) to
the twofold setup exhibiting a stable fixed-point and an unstable
limit cycle (P2, figure 13) and finally to the stable fixed-point for
set P3 (figure 14).

Figure 13 reveals an interesting aspect of the stability of the
systems steady state: although there is a stable steady state in
the sense of the classical stability analysis via eigenvalues (7),
in a practical sense the system will probably be unstable since
the bassin of attraction of the stable fixed-point, enclosed by the
unstable limit cycle, is only very small. Even small (finite) per-
turbations of the steady state will be sufficient to let the system
trespass the unstable limit cycle, leading it to the bassin of at-
traction of the stick-slip limit cycle. This example shows that

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

a

v 0

N=5000
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a
v 0
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bif.border
approx. limit for LC existence

Figure 10. INFLUENCE OF THE CONTACT NORMAL FORCE N ON

THE BIFURCATION BORDER.

THIN LINES: N = 9000N, BASIC CONFIGURATION (APPENDIX A)

UPPER: N = 5000N
BOTTOM: N = 2000N.

Figure 11. COMBINATIONS OF SIMULATION PARAMETERS (a,v0)
WITH THE SLOPE a OF THE FRICTION CHARACTERISTIC, AND THE

SPEED v0 OF BELT.

significant effects may stay undiscovered if only the eigenvalues
of the linearized equation at the steady-state are examined.

Furthermore, looking at the systems behavior when parame-
ters are changed to parameter set P4 and P5 reveals, that a reduc-
tion of the slope parametera doesn’t always cause a stabiliza-
tion of the system. In contrast, changing from P3 (fig.14) over
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Figure 12. SIMULATED PHASE PLOT FOR PARAMETER SET P1: UN-

STABLE FIXED POINT

Figure 13. SIMULATED PHASE PLOT FOR PARAMETER SET P2:

STABLE FIXED POINT & UNSTABLE LIMIT CYCLE.

P4 (fig.15) to set P5 (fig.16) leads to a destabilization of the the
steady state – although the slope parametera is reduced!

CONCLUSION
Commonly, the stability of the classical friction oscillator

is studied by linearization and examination of the eigenvalues.
This article revises the stability in the vicinity of the sliding
steady state for exponential-like friction characteristics, which
are widely used in friction modelling. By means of a averaging
method it is found that the transition behavior between stable and
unstable states of sliding motion is more complex than suggested
by the classical stability analysis. If sliding without reaching the
stick-slip limit cycle, the topology of the phase plane is given by
two possibilities: either the steady-state fixed point is unstable or
it is stable and coexists with a surrounding unstable limit cycle.
Interestingly, the bifurcation border coincidents with the stability
border derived by eigenvalue analysis. The crux of the matter is,

−4 −2 0 2 4 6

x 10
−4
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−1.5

−1

−0.5

0

0.5

1

1.5

2

x

v

Figure 14. SIMULATED PHASE PLOT FOR PARAMETER SET P3:

STABLE FIXED POINT & STABLE LIMIT CYLCE (ALMOST AT MAXI-

MUM AMPLITUDE).
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x

v 0

Figure 15. SIMULATED PHASE PLOT FOR PARAMETER SET P4:

STABLE FIXED POINT & UNSTABLE LIMIT CYCLE.

that the eigenvalue analysis only can judge the local behavior at
the steady state while it does not indicate, that the bassin of at-
traction of the steady-state is limited to the inside of the unstable
limit cycle. For that reason, besides the unstable domain there
is also a region, where the steady-state itself is stable, but small
perturbations may be sufficient for destabilization.

To demonstrate the effect, a disc-brake model is discussed. It
is found that low disc speedsv0 are extremely critical for a broad
range of parameters. Surprisingly, even relative strong damping
of D = 0.1 does not improve the situation significantly. Further-
more, it is found that e.g. for a relatively soft brake system, the
motion can be stabilized by increasing the slope parametera,
which means increasing the declination of the friction character-
istic.
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Figure 16. SIMULATED PHASE PLOT FOR PARAMETER SET P5: UN-

STABLE FIXED POINT.

REFERENCES
[1] Kauderer, H., 1958. Nichtlineare Mechanik. Springer-

Verlag, Berlin/G.
[2] Hagedorn, P., 1988.Non-linear Oscillations. Clarendon

Press, Oxford.
[3] Magnus, K. ; Popp, K., 2002.Schwingungen. Teubner Ver-

lag, Stuttgart.
[4] RA Ibrahim, E. R. “Friction-induced vibration, part i.”. Ap-

plied Mechanics Reviews,47 (7).
[5] J. Guckenheimer, P. H., 1983.Nonlinear oscillations, dy-

namical systems, and bifurcations of vector fields. Springer-
Verlag, New York.

[6] U. von Wagner, T. Jearsiripongkul, e. “Brake squeal: mod-
elling and experiments”. VDI Bericht (1749).

[7] Schmalfuss, C. “Theoretische und experimentelle unter-
suchung von scheibenbremsen”. VDI Fortschrittbericht (12)
(494).

Appendix A: basic parameter configuration for the ex-
amined brake system

System:
m = 1kg moving parts of brake pads and saddle

ω0 = 5000rad
s natural frequency

D = 0.023 dimensionless damping measure

Friction:
FB = 9kN normal force on pad
µ∞ = 0.25 sliding friction coefficient forvrel → ∞
∆µ = 0.15 ∆µ atvrel = 0 (cf.2)

Parameters were chosen according to [6], [7].

Appendix B: parameter combinations for numerical
simulation
P1: a = 2s/m,v0 = 1m/s — P2:a = 2s/m,v0 = 1.2m/s
P3: a = 2s/m,v0 = 1.9m/s — P4:a = 1.55s/m,v0 = 1.9m/s
P5: a = 0.75s/m,v0 = 1.9m/s
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