
First published in:
www.elsevier.com/locate/commatsci

Computational Materials Science 37 (2006) 306–317
Studies on rate-dependent switching effects of piezoelectric
materials using a finite element model

Arunachalakasi Arockiarajan a, Buelent Delibas a, Andreas Menzel a,*, Wolfgang Seemann b

a Chair of Applied Mechanics, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
b Institute of Engineering Mechanics, University of Karlsruhe, Kaiserstr. 12, D-76131 Karlsruhe, Germany

Received 31 May 2005; received in revised form 2 August 2005; accepted 22 August 2005
Abstract

The main goal of this paper consists in the modeling of rate-dependent behavior of piezoelectric materials within a three-dimensional
finite element setting. We propose a rate-dependent polarization framework which is applied to cyclic electrical loading at various
frequencies. The reduction in free energy of a grain is used as a criterion for the onset of the domain switching process. Nucleation
in new grains and propagation of the domain walls during domain switching is modeled by a linear kinetics theory. Averaging over
all individual grains renders the macroscopic response of the bulk material. Intergranular effects, which are essential for realistic simu-
lations, are phenomenologically captured via a probabilistic approach. The presented numerical examples, as based on the proposed
three-dimensional finite element framework, are related to the simulation of PIC-151 ceramics. In particular, averaged electric displace-
ment versus electric field curves are plotted and compared with experimental data reported in the literature.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Piezoelectric materials; Domain switching; Rate-dependent polarization; Probabilistic approach; Linear kinetics theory; Finite elements
1. Introduction

In recent years, piezoelectric and ferroelectric materials
such as BaTiO3, PZT, PLZT ceramics have widely been
used for the design of smart materials and intelligent sys-
tems, see e.g., Jaffe et al. [20]. Under the action of low elec-
tric fields or low mechanical stresses, the behavior of these
materials is almost linear but exhibits strong non-linear
response under high electric fields or mechanical stresses.
Polarization switching in the domains is identified as the
main reason for this non-linearity which plays an impor-
tant role for piezoelectric applications. Such switching pro-
cesses in the underlying unit cells or rather grains involve a
reorientation of the electric dipoles. The principal crystallo-
graphic directions (e.g., the c axis in a tetragonal cell) align
according to the orientation of these dipoles which causes a
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change in mechanical strain. The domain switching in poly-
crystals is in general not homogeneous since the domain
walls, which separate different phases, move through the
crystal. In order to better understand and explain the
non-linear properties of piezoelectric and ferroelectric
materials under high electromechanical loadings, many
experiments have been performed and reported in the liter-
ature; the reader is referred to the contributions by Cao
and Evans [5], Hwang et al. [16], Lynch [27], Lu et al.
[26] and references cited in these works. Research on the
modeling of non-linear response of piezoceramics can be
classified into two major approaches:

On the one hand, micromechanical models focus on
individual domains as for instance discussed by Hwang
et al. [16], Chen et al. [7], Fotinich and Carman [11], Huber
and Fleck [14] or Elhadrouz et al. [9]. These models are
commonly based on randomly oriented bulk elements
whereby microcrystalline properties are assumed for the
behavior of each individual element. The macroscopic
behavior of these models is usually analysed by means of
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volume averaging techniques. Concerning the switching
process, Hwang et al. [16] introduced a work energy crite-
rion to determine the initialization of domain switching.
The interaction among grains in the underlying domain
has thereby been addressed by using an Eshelby inclusion
method, see also Hwang et al. [15]. A finite element model
at the meso-scale has been developed by Hwang and
McMeeking [17,18] considering purely ferroelectric and
ferroelastic poly-crystals. Hwang and Waser [19] simulated
the domain switching in a poly-crystalline ferroelectric and
ferroelastic ceramic using a micromechanical approach. In
order to reduce the computational effort, piezoelectric
effects have, however, been neglected. Another micro-
mechanical model has been proposed by Chen et al. [7],
which takes multiple domains into account and addition-
ally incorporates the interaction between the domains by
means of a mean field theory. Fotinich and Carman
[11,12] developed a domain switching criterion based on
a critical value of the electric displacement due to switching
with additional stability arguments for mono-crystalline
piezoceramics. They also addressed the influence of the
orientation distribution on the material response for
random—, layer— and single-domain mixtures.

On the other hand, macroscopic models have been sug-
gested, which incorporate particular sets of state variables
entering for instance a phenomenological motivated free
energy function. In this context, Chen and Peercy [6]
proposed a formulation where aligned dipoles are included
in the constitutive relations. Based on a thermodynamically
consistent setting, Zhang and Rogers [37] developed a phe-
nomenological framework for elecromechanical coupling
effects. The dielectric behavior is thereby described with
the help of a hyperbolic function. Another phenomenolog-
ical model for ferroelectric materials has been advocated by
Kamlah and Tsakmakis [23] which is straightforwardly
based on the introduction of reasonable internal variables.
The constitutive behavior is governed by appropriate
ordinary differential equations capturing the history depen-
dence of the material. Kamlah and Böhle [22] proposed a
finite element model based on a two step staggered scheme:
firstly, the purely dielectric boundary value problem is
solved for the electric potential. Secondly, the electric
potential is prescribed and the electromechanical analysis
for the mechanical boundary conditions finally yields the
mechanical stress field. A monolithic coupled finite element
formulation has recently been elaborated by Romanowski
and Schröder [31,33]. That approach is essentially based
on a set of appropriate evolution equations, which, concep-
tually speaking, incorporate a one-dimensional switching
criterion, and embedded into a thermodynamically consis-
tent framework.

In general, the macroscopic behavior of poly-crystalline
ferroelectric materials is rate-dependent; the reader is
referred to the contribution by Landis [25] for a survey
of the thermodynamically consistent modelling of switch-
ing effects including rate-dependencies. Jiang [21] men-
tioned that the coercive field becomes larger with
increasing frequencies (from 1 to 100 Hz) of the applied
alternating electric field. The experimental response of the
polarization and the strain under electric loading with dif-
ferent amplitudes and frequencies is analyzed in Zhou et al.
[38]. These studies show that the coercive field increases
with increasing loading frequency. Smith et al. [36] devel-
oped a model for rate-dependent hysteresis at low excita-
tion frequency ranges. This formulation additionally
captures the movement of domain walls. Moreover, the
authors are able to show a reduction of remanent polariza-
tion for increasing frequencies—the prediction of the
change in the coercive field, however, is not completely
accurate. Kim and Jiang [24] developed a three-dimen-
sional finite element model for rate-dependent behavior
of ferroelectric ceramics associated with domain switching.
The free energy thereby serves for the characterization of
the constitutive behavior of ferroelectric variants. Propaga-
tion of polarization switching after its onset is modeled in
terms of continuous changes of mass fractions and a kinetic
relation. Numerical simulations underline the expansion of
the hysteresis curve for increasing loading frequencies.

The aim of the present work is to develop a three-dimen-
sional finite element model for the rate-dependent behavior
of piezoelectric materials including domain switching. A
large number of crystallites with randomly distributed
polarization orientations are taken into account whereby
each crystallite corresponds to one finite element. The onset
of the domain switching is not only determined in terms of
the free energy but also by a probabilistic model. As the
key feature of this approach, switching occurs with a
certain probability which depends on the fraction of free
energy with respect to a critical energy level, see Seemann
et al. [34]. The dependence of the probability on this ratio
can be modeled in terms of analytical functions, e.g., by
polynomials or hyperbolic functions. With this probabilis-
tic approach in hand, intergranular effects are phenomeno-
logically taken into account. Rate-dependent behavior,
however, takes the interpretation as the wall, which sepa-
rates the two phases before and after switching, propagat-
ing through the domain with a certain velocity. This effect
is captured by a linear kinetics relation so that nucleation
starts in a particular grain after the switching process has
been initiated. Simulations are carried out under electrical
loading with various frequencies and amplitudes which
linearly increase and decrease in time. The results of this
model are compared with measured hysteresis loops given
in the literature by means of plotting the electric displace-
ment versus the electric field.

The paper is organized as follows: Section 2 reviews
some aspects of fundamental balance— and constitutive
relations of ferroelectric and ferroelastic materials. The
reader is referred to the monographs by Nye [30], Eringen
[10] or Greiner [13] and references cited in these works for
detailed background information. The proposed rate-
dependent model is discussed in Section 3 while we briefly
review the corresponding finite element setting in Section 4.
For further details concerning the numerical framework as



Electric field
direction

Before loading After loading

Fig. 1. Two-dimensional illustration of domains with underlying grains of
a poly-crystalline piezoelectric material: un-poled virgin state (left) and
poled state after electrical loading (right).
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well as implementational aspects see, e.g., Schröder and
Gross [32] and the monograph by Silvester and Ferrari
[35]. Representative numerical examples are elaborated in
Section 5 and the paper is concluded with a short summary,
see Section 6.

2. Constitutive model

The lattice structure of the considered ferroelectric
material possesses cubic symmetry for operating tempera-
tures above the Curie temperature. This phase is called
paraelectric whereby, practically speaking, the relative
atom positions in the crystal lattice give rise to a vanishing
net dipole moment. Consequently, no piezoelectric effect is
observed within this phase. Depending on the particular
composition of the material, however, the underlying
phases possibly change if the temperature is reduced below
the Curie temperature. Apparently, the symmetry of the
material might switch from simple cubic structures to
tetragonal or rhombohedral arrangements. The new phase
is denoted as the ferroelectric phase. Relative position of
atoms are modified according to this phase transformation,
say, so that a non-zero net dipole moment is observed. This
net polarization is commonly introduced as spontaneous
polarization. It occurs in the microstructure and stems
from the specific arrangement of relative positions of atoms
in the ferroelectric phase. The movements of atoms during
the phase transition renders an additional lattice distortion
which, moreover, results in mechanical strains. This strain
is usually called the spontaneous strain. In what follows,
essential constitutive relations of the previously highlighted
physical phenomena are reviewed.

Let B denote a body of interest with configuration
B � R3 determined by placements x 2 R3. The essential
degrees of freedom are provided by the displacement field
u 2 R3 together with the electric potential / 2 R. Equilib-
rium of B for the quasi-static case is represented via

0 ¼ r � rþ b in B;

u ¼ up on oBu;

t ¼ tp ¼ r � nr on oBr

ð1Þ

with oBu [ oBr ¼ oB; oBu \ oBr ¼ ; and

0 ¼ r �D in B;

/ ¼ /p on oB/;

�q ¼ �qp ¼ D � nD on oBD

ð2Þ

with oB/ [ oBD ¼ oB, oB/ \ oBD ¼ ;. Following stan-
dard notations, the stress tensor and the electric displace-
ment field have thereby been denoted as r ¼ rt 2 R3�3

and D 2 R3 and nr;D 2 R3 characterize unit normals to
the corresponding surfaces.

Classical linear constitutive equations of a piezoelectric
material in the piezoelectric phase are given by

r ¼ C : e� E � d; ð3Þ
D ¼ d : eþ � � E; ð4Þ
where e ¼ et ¼ rsymu 2 R3�3 denotes the strain tensor while
E ¼ �r/ 2 R3 represents the electric field. Material
parameters are incorporated via C ¼ Ct ¼ CT 2 R3�3�3�3,
� ¼ �t 2 R3�3 and d 2 R3�3�3 which are introduced as the
elastic stiffness, the dielectric permittivity and the piezoelec-
tric tensor, respectively.

The so-called non-linear constitutive equations of the
piezoelectric material additionally incorporate a spontane-
ous polarization vector and a spontaneous strain tensor.
The extension of Eqs. (3) and (4) consequently renders

r ¼ C : ½e� es� � E � d; ð5Þ
D ¼ d : ½e� es� þ � � E þ Ps; ð6Þ

wherein Ps 2 R3 and es ¼ ½es�t 2 R3�3, with tr(es) = 0, char-
acterize the spontaneous polarization and spontaneous
strain, respectively. For poly-crystalline materials at
virgin—i.e. electrically un-poled—state, the polarization
vector field is in general randomly oriented. Practically
speaking, each grain is divided into sub-domains of differ-
ent polarization orientation. Since the direction of the
polarization is equally distributed in the virgin state, the
polarization of the bulk material vanishes at the macro
level. If the material is sufficiently loaded with respect to,
e.g., a prescribed electric field, the polarization vectors
within the grains align according to this loading direction.
A graphical representation of these effects is shown in
Fig. 1.

Even though material parameters generally change
during switching processes, the elastic stiffness and the
dielectric permittivity are commonly assumed to remain
constant. Moreover, anisotropic response in mainly caused
by the piezoelectric constant which supports the
assumptions

C ¼ kI � I þ 2lIsym; ð7Þ
� ¼ �I ; ð8Þ

wherein k and l are the Lamé parameters, � essentially
characterizes the dielectric permittivity and I and I denote
identity tensors of second and fourth order. The piezoelec-
tric constant, however, captures the modeling of aniso-
tropic behavior. We are in particular interested in
piezoelectric materials of perovskite type with tetragonal



A. Arockiarajan et al. / Computational Materials Science 37 (2006) 306–317 309
microstructure. The directions which characterize this sym-
metry group, 4 mm, are denoted by unit vectors m. Appar-
ently, the six possible orientation of m are in the h100i
family. In view of the piezoelectric constant we conse-
quently introduce

d ¼ d33M þ d31½m� I �M� þ d15

1

2
½I �mþ I�m� �M

� �
;

ð9Þ
wherein M = m � m � m and ½I �mþ I�m� : a ¼ ½I�
mþ I�m� : at 8a 2 R3�3. The main reason for non-linear
behavior of the material stems from domain switching
effects in the microstructure. Due to the fact that the polari-
zation vector is aligned with m, which are in the h100i
family, solely two types of domain switching come into
the picture, namely 90� and 180� domain switching. The
particular angle denotes the rotation of the polarization
vector so that, for a given polarization, four different for-
mats of 90� switching are possible while only one meaning-
ful 180� switching occurs. A crystallite microstructure is
commonly considered to switch, if the reduction of free
energy DU exceeds a particular energy barrier. In this work
we adopt the switching criterion, along with boundary con-
ditions, advocated by McMeeking and Hwang [28]. To be
specific, it is assumed that

DUðu;/Þ þ V cDwc 6 0; ð10Þ

whereby Dwc denotes a constant energy barrier per unit
volume and Vc represents the volume of the crystallite
which switches. If switching occurs, the spontaneous polar-
ization Ps of the crystallite is assumed to change solely its
direction at constant amount Ps = kPsk of the polarization
vector, i.e.,

Ps
nþ1 ¼ Ps

n þ DPs with

DPs ¼ P s½mnþ1 �mn�.
ð11Þ

The indices n + 1 and n thereby refer to the underlying time
interval Dt = tn+1 � tn > 0. For notational simplicity, how-
ever, the index n + 1 is often also omitted.

Similarly, the spontaneous strain of the crystallite might
switch as well. By analogy with the polarization vector, we
assume es = kesk to remain constant and require tr(es) = 0
which results in

es
nþ1 ¼ es

n þ Des with

Des ¼ 3

2
es½mnþ1 �mnþ1 �mn �mn�.

ð12Þ

As previously mentioned, it is assumed that the dielectric
constant and the elastic modulus are unaffected by the
switching. In what follows, we adopt the change of energy
in the system to be approximated by means of the ansatz

DU ¼ E � DPs þ r : Des ð13Þ

as advocated in Hwang et al. [16]. This relation will be
incorporated into the switching criterion in Eq. (10) which
enables us to compute representative numerical examples
in the progression of this work.

Apparently, the constitutive framework reviewed so far
fits into the class of coupled problems. The degrees of free-
dom, namely u and /, are coupled via the balance relations
(1) and (2) and the constitutive Eqs. (5) and (6). Please note
that any change in spontaneous polarization or spontane-
ous strain consequently contributes to the iterative calcula-
tion of the displacement field and the electric potential,
respectively.

3. Rate-dependent model

The dependence of the electric field and the temperature
on the switching time and the switching current has been
investigated in Merz [29] by means of experiments for
BaTiO3 single-crystals. A reduction in switching time,
and consequently an increase of the switching current,
has been noticed for increasing temperatures at constant
electric field in that study. The observed switching mecha-
nism thereby stems from the nucleation of new domains.
Subsequently, growth processes due to domain wall
motions take place. At higher temperatures both, the
nucleation of domains and the growth processes, develop
faster than at lower temperatures. Abeyarate et al. [1]
developed a model based on the free energy function, a
kinetic relation and a nucleation criterion. The switching
response of each individual phase was thereby described
by means of a constitutive theory. Subsequently, the nucle-
ation criterion signals the phase transition which is charac-
terized by a kinetic relation based on thermal activation
theory. Arlt [3,2,4] proposed a model within which the
propagation of the new phase is dominated by the phase
boundary between the old and the new nucleated phases.
Particular kinetic relations are proposed in order to deter-
mine the growth of the new phase. For quasi-static loading,
which is assumed in these contributions, domain switching
must be completed within each individual load increment.
In other words, if the incremental load step takes place in
a rather short time interval, domain switching might not
be finished. Considering for instance cyclic loading experi-
ments, different electric displacement versus electric field
curves can be observed for different loading frequencies.

In this work we apply a linear kinetics theory for the
propagation of the new phase, which has been proposed
in Delibas et al. [8]. The underlying switching criterion,
as introduced in Eqs. (10) and (13), is thereby evaluated
at zero stresses r and consequently boils down to

E � DPs > 2E0P 0; ð14Þ
whereby Vc is supposed to remain constant. The coercive
electric field parameter is denoted by E0 > 0 while P0 > 0
characterizes the (maximum) magnitude of the polarization
vector; compare Hwang et al. [16]. As a key feature of this
model, a critical time duration of the switching process is
introduced whenever nucleation has been initiated. In
general, this critical time parameter takes different values
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for each individual incremental loading. If the time interval
between two subsequent incremental steps is larger than
this critical time period, the phase boundary can com-
pletely propagate through the domain, i.e., the switching
process can be completed. The critical time parameter,
which can also be interpreted as the minimum time re-
quired for the quasi-static case, is called the limit time
Dtl. Based on experimental results, Merz [29] suggested
the following relation:

Dtl ¼
bd

E � E0

with E ¼ kEk ð15Þ

for the limit time, wherein b, d > 0 characterize a tempera-
ture-dependent material parameter and the thickness of the
specimen, respectively. Eq. (15) reflects that the initiation
of switching processes occurs only if the applied electric
field exceeds the coercive electric field, i.e., E � E0 > 0;
compare Eq. (14). In practice, initiation of switching
processes are observed even before the macroscopically
measured coercive electric field is attained. Due to this fact,
we propose the following ansatz for the limit time

Dtl ¼
C
E

with C ¼ bd > 0; ð16Þ

so that, conceptually speaking, the coercive electric field E0

is assumed to be zero within the proposed relation for Dtl.
For purpose of illustration of the rate-dependent model, we
consider a uniaxial setting under cyclic loading in terms of
/. The electric potential is thereby fixed to zero at the bot-
tom of the specimen, /bot, and chosen to depend on time at
the top of the specimen, /top; see Figs. 2 and 5 for a graph-
ical representation. The frequency of the applied electric
potential is given by

f/ ¼
1

T /
; ð17Þ

wherein T/ denotes the time period for a full cycle accord-
ing to Fig. 2. For this particular case, the rate of change of
the electric potential _/top reads

_/top ¼ �
2b/

1
2
T /
¼ �4

b/
T /
¼ �4b/f/ ð18Þ

with b/ being the loading amplitude of the electric poten-
tial. The increment of electric potential D/top between
Fig. 2. Triangular cyclic loading.
two load steps is prescribed and renders essential boundary
conditions. Fig. 3 shows that such a load increment corre-
sponds to a finite time step Dt = tn+1 � tn > 0, for which

Dt ¼
D/top

_/top

¼
D/top

4b/f/

ð19Þ

holds. Eq. (19) underlines that the time interval Dt

decreases for increasing frequencies of the electric poten-
tial. For the subsequent numerical simulations D/top andb/ are assumed to remain constant. In case that the switch-
ing process is active in a particular domain but Dt turns out
to be smaller than Dtl, the change in polarization direction
is not to be completed within the time step Dt. Based on the
applied linear kinetics theory, only a fraction of the domain
of interest has undergone a phase change. This volume
ratio is represented by Dt/Dtl. If Dt is rather small, for
instance due to a higher frequency f/, the domain switching
process might take several time steps until the whole
domain has switched.

Next, we elaborate the volume fraction which defines the
switched domain part DV in relation to the total volume V.
In this regard, the time period Dtp 6 Dtl is introduced,
which represents the time elapsed since the initiation of
the nucleation process, namely

DV ¼ V
Dtp

Dtl

so that
DV
V
¼ Dtp

Dtl

. ð20Þ

Please note that Dtp might be a multiple of Dt. Further-
more, let Ps

n and bPs

nþ1 denote polarization vectors in the do-
main of interest. Switching is assumed to be initiated within
the underlying time interval Dt. Moreover, the notationbPs

nþ1 refers to the situation where the phase change has
been completed. Based on the applied linear kinetic theory,
the actual polarization vector Ps

nþ1 allows representation as

Ps
nþ1 ¼

DV
V
bPs

nþ1 þ 1� DV
V

� �
Ps

n ð21Þ

for Dtl P Dt. Replacing the volume fractions with respect
to Eq. (20) results in

Ps
nþ1 ¼

Dtp

Dtl

bPs

nþ1 þ 1� Dtp

Dtl

� �
Ps

n. ð22Þ

Since the time interval of interest is subdivided into several
subintervals Dt we might relate, for instance, Dtp or Dtl to
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Dt. In this regard, let ts denote the time step at which
switching is initiated, so that the following relation

Dtp ¼ �ts þ
X

n

½tnþ1 � tn� ¼
Xtn

ts

Dt6
.

zDt ð23Þ

holds for Dtp P Dt, wherein z is some positive integer.
Nucleation after one time step consequently results in

Ps
nþ1ðz¼1Þ ¼

Dt
Dtl

bPs

nþ1 þ 1� Dt
Dtl

� �
Ps

n. ð24Þ

Apparently, the domain switching process might take sev-
eral incremental steps to be completed if Dt is much smaller
than Dtl. Based on the elaborations above, we obtain the
following expression for the nucleation at time ts + zDt

Ps
nþ1ðzÞ ¼

Dt
Dtl

bPs

nþ1 þ
½z� 1�Dt

Dtl

� �bPs

nþ1

þ 1� ½z� 1�Dt
Dtl

� Dt
Dtl

� �
Ps

n

¼ Dt
Dtl

½bPs

nþ1 � Ps
n� þ

½z� 1�Dt
Dtl

� �bPs

nþ1

þ 1� ½z� 1�Dt
Dtl

� �
Ps

n

¼ Ps
nþ1ðz�1Þ þ

Dt
Dtl

bPs

nþ1 � Ps
n

h i
; ð25Þ

whereby Dt = constant has been assumed. Eq. (25) moti-
vates to iterate this update until zDt P Dtl so that finally
Ps

nþ1 ¼ bPs

nþ1, i.e., switching has been completed.

4. Finite element setting

In this section we review the algorithmic setting which
will enable us to run representative numerical simulations.
In particular, the finite element method is used and applied
within a three-dimensional context. The underlying equa-
tions for the piezoelectric finite element formulation are
derived from the principle of virtual work as based on
the piezoelectric constitutive laws and balance equations.
In this work, however, we consider solely electrical load-
ing—the fully coupled setting will be elaborated in a subse-
quent contribution. The boundary value problem is
therefore given by the set of equations (2) wherein the
electric displacement boils down to

D ¼ � � E þ Ps; ð26Þ
compare Eq. (6). As a consequence, neither the elastic stiff-
ness C nor the piezoelectric constant d but solely the dielec-
tric permittivity � enter the incorporated constitutive
equation (26). In view of experimental settings, the (essen-
tial) boundary conditions /p on oB/ might be covered by
electrodes (prescribing the electric potential) while the (nat-
ural) boundary condition qp on oBD represent a prescribed
charge.

With these definitions at hand, the corresponding weak
form results in
G/ ¼ �
Z
B

dE �Ddv�
Z

oBD

d/qda ¼ Gint
/ � Gext

/ ¼ 0.

ð27Þ
Following standard finite element techniques, the linear-
ized incremental representation—for dead loading condi-
tions—results on the element level in

DGe
/ ¼

Z
Be

�dE � ½� � DE þ DPs�dv. ð28Þ

Adopting an iso-parametric interpolation renders the
approximated electric potential /, which constitutes the
remaining degree of freedom, d/ and D/ as well as x as

/h ¼
Xnel

i¼1

Ni/i;

d/h ¼
Xnel

i¼1

Nid/i;

D/h ¼
Xnel

i¼1

NiD/i;

xh ¼
Xnel

i¼1

Nixi;

ð29Þ

wherein nel denotes the number of nodes in a finite element
and Ni characterize the shape functions. Consequently, the
approximation of the electric field E, dE and DE read

Eh ¼ �
Xnel

i¼1

/irNi;

dEh ¼ �
Xnel

i¼1

d/irN i;

DEh ¼ �
Xnel

i¼1

D/irN i.

ð30Þ

Based on these assumptions, G/ allows representation on
the element level as

Ge
/ ¼

Z
Be

Xnel

i

d/i½rN i �D�dv�
Z

oBe
D

Xnel

i

d/i½N iq�da ¼ 0.

ð31Þ
Similarly, we obtain for Eq. (28)

DGe
/ ¼

Z
Be

�
Xnel

i;j

d/i½rNi � � � rNj�D/j dv. ð32Þ

Please note that DPs is not incorporated into Eq. (32) since
we do not apply standard implicit and monolithic iteration
schemes in what follows but rather a staggered technique
which turns out to perform very robust. A graphical repre-
sentation of the implemented algorithm is summarized in
the flowchart in Table 1. The spontaneous polarization
field Ps itself, however, is included within Eq. (31) and
therefore accounted for in a, say, residual manner. The
non-linearity of the proposed formulation stems from the
(time dependent) switching of the polarization vector.



Table 1
Flowchart of the applied finite element algorithm

loop over all time steps
global load step

loop over all elements
loop over all integration points
compute Ee, De and re

/; Ke
//

assemble r/, K//

update /
loop over elements

loop over all integration points
check switching criterion

update Pse

recompute / with updated Pse

loop over all elements
loop over all integration points
compute Ee, De and re

/; Ke
//

assemble r/, K//

update /
determine actual (nucleated) state
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Practically speaking, the bracket terms in Eqs. (31) and (32)
render, after assembly with respect to the global finite
element level, the residual vector r/ and the (incremental)
tangent stiffness K//. In order to save computation time,
the incremental switching process within one time step is
stopped as soon as one particular finite element has been
identified to switch, compare Table 1. This assumption
restricts the proposed formulation—nevertheless, consider-
ation of small time steps yields realistic simulations, see
Section 5.

5. Numerical examples

The computation of the material behavior is performed
within the above highlighted three-dimensional finite
element scheme. Some hundreds of crystallites are modeled
so that each finite element represents one crystallite, see the
graphical representation in Fig. 4. Moreover, we assume
the polarization vector to be constant within one element,
or rather crystallite, and choose a random orientation for
the initial polarization vector. In particular, a parameteri-
zation with respect to three Euler angles (H,U,W) is
adopted so that the directions of initial polarization vectors
allow representation as
Fig. 4. Natural assembly of grains and corresponding finite element
discretization.
Ps=P s ¼ ½cðHÞsðUÞcðWÞ þ cðUÞsðWÞ�e1

� ½cðHÞsðUÞsðWÞ � cðUÞcðWÞ�e2 � ½sðHÞsðUÞ�e3;

ð33Þ

wherein the notations c(Æ) and s(Æ) abbreviate cos(Æ) and
sin(Æ), respectively, and {e1,2,3} denotes a Cartesian frame
which is fixed in space.1 The random generation of the
Euler angles provides H,W 2 [0,2p] and sinðU� p

2
Þ 2

½�1; 1�. The spontaneous polarization magnitude is
assumed to be identical for all unit cells, namely Ps = P0

and the polarization vectors themselves are stored as inter-
nal variables at the integration point level. After an incre-
mental load step has been applied, the crystallites are
checked whether the switching criterion (14) is met, com-
pare Table 1. The energy criterion is represented by the vol-
ume averaging with respect to one finite element as based
on the integration point fields, e.g.,

E
e ¼ 1

Ve

Z
Ve

Ee dv. ð34Þ

According to this criterion, domain switching occurs if the
energy change is larger than a certain critical level for one
element at a time. The critical energy barrier is assumed to
be identical for 90� and 180� switching within the subse-
quent simulations, compare Section 2. If switching occurs
according to the mentioned criterion, new polarization
vectors are incorporated into Eq. (31) which results in an
updated electric potential. As previously mentioned, we as-
sume only one domain to switch at each incremental load
step (due to the computational efficiency). Even though this
assumption is not realistic, the proposed formulation turns
out to be acceptable when the number of finite elements is
sufficiently large and the applied time steps are sufficiently
small. Furthermore, intergranular effects stemming from
different polarization directions of different grains are
observed which, for instance, result in the development of
inter-domain stresses under electrical or mechanical load-
ing. The corresponding local electromechanical loading
state might considerably vary between grains, so that do-
main switching for some lattice structures can occur even
before the assumed global critical electromechanical field
level (this global level will be denoted as the macroscopic
coercive electric field in the progression of this contribu-
tion). As a result, non-linear response is observed even in
a small electromechanical loading range. In order to take
this effect into account, which becomes especially relevant
in the domain switching range, the proposed formulation
1 Please note that the local orthonormal frame {m1,2,3}, which defines
the symmetry of each individual grain, is defined via

m2 ¼ Ps=P s;

m1 ¼ ½cðHÞcðUÞcðWÞ � sðUÞsðWÞ�e1

� ½cðHÞcðUÞsðWÞ þ sðUÞcðWÞ�e2

þ ½sðHÞcðUÞ�e3;

m3 ¼ m1 �m2

with m = m2, compare Section 2.



Fig. 5. Boundary conditions applied to the finite element discretization of
the block-like specimen.
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incorporates an additional probability function for the do-
main switching. In what follows, we assume this function
to be determined via the polynomial

P ¼
E

e � DPse

2E0P 0

" #k

for E < E0;

1 for E P E0

8><>: ð35Þ

so that the applied switching criterion results in

E
e � DPse > 2E0P 0P ; ð36Þ

compare Eq. (14).2 In this context, intergranular effects are
phenomenologically taken into account and non-linear re-
sponse might occur at loading levels which are below the
usual critical loading. The additional material parameter
k > 0 in Eq. (35) allows matching numerical results with re-
spect to experimental data. For the subsequent simulation
appropriate congruence is obtained for, e.g., k = 5.

For the subsequent finite element calculations we con-
sider a specimen arranged in a 9 · 9 · 9 block. The discret-
ization is performed with 9 · 9 · 9 linear eight node bricks
(Q1)—their edges being parallel to the global Cartesian
frame {e1,2,3}, see Fig. 5. Loading is applied in terms of a
prescribed electric potential at the top—, /p

top, and bottom
surface, /p

bot, which are assumed to lie in the e1–e2 plane.
The electric potential is throughout zero at nodal points
on the bottom surface while the electric potential on the
top surface, which is uniform, is incrementally prescribed
according to the particular time step. Charge free condi-
tions are applied to the remaining surfaces. For the
purpose of illustration, volume averaged electric displace-
ments are plotted over the electric field

D ¼ e3 �
1

V

Z
V

Ddv;

E ¼ e3 �
1

V

Z
V

E dv;
ð37Þ

both with respect to the loading direction e3.

5.1. Hysteresis loop for the rate-independent model

To set the stage, we discuss the rate-independent case in
this section. The rate-independent model is conceptually
included in the rate-dependent formulation highlighted in
Section 3 by directly setting

Ps
nþ1 ¼ bPs

nþ1 ¼ Ps
n þ DPs; ð38Þ

the additional index z becoming redundant since Dt/
Dtl P 1; compare Eqs. (11) and (25). Longitudinal cyclic
2 Apparently, solely one type of 90� switching and 180� switching might
become relevant. The one being realized refers to the largest change in
energy as represented by Eq. (36). However, even the polarization vector
orientation which leads to the lowest possible energy level might violate
the switching criterion. It is obvious that in this particular case no further
switching is incorporated.
loading is applied in what follows. The starting point for
the first cycle is at zero potential for the un-poled ceramic.
We adopt the following material parameters: � = 0.0666
[lF/m] (cf. Eq. (8)), Ps = P0 = 0.1938 [C/m2] (cf. Eqs.
(11) and (14)), E0 = 0.4 [MV/m] (cf. Eq. (14)) and the initial
polarization direction is randomly generated (cf. Eq. (33)).

Fig. 6 shows the classical hysteresis loop by monitoring
the electric displacement versus the electric field without
considering a probability function (k = 0). It is clearly seen
in Fig. 6 that the hysteresis curve possesses sharp corners
near the macroscopic coercive electric field which is not
observed in experiments. Fig. 7 shows the hysteresis loop
based on the incorporation of a probability function with
fourth order polynomial (k = 4). The smoothness of the
curves near the critical electric field is clearly observed from
Fig. 7. Fig. 8 displays the comparison of the simulation
with experimental data given in Lu et al. [26]. The simula-
tion is preformed with a fifth order probability function
(k = 5) which nicely matches the experimental results.

5.2. Hysteresis loop for the rate-dependent model

Next, we discuss the rate-dependent case in this section
whereby longitudinal cyclic loading is applied. The starting
point for the first cycle is at zero potential for the un-poled
ceramic. The simulations are performed for three different
frequencies (0.01 Hz, 0.10 Hz, 1.00 Hz) and for different
amplitudes of the electric field (bE ¼ 2:0 MV=m, bE ¼
1:5 MV=m, bE ¼ 1:0 MV=mÞ. These particular values are
chosen for comparison reasons of the numerical simula-
tions with the experiments performed by Zhou et al. [38].
We adopt the following material parameters: � = 0.02124
[lF/m] (cf. Eq. (8)), Ps = P0 = 0.4 [C/m2] (cf. Eqs. (11)
and (14)), E0 = 1.0 [MV/m] (cf. Eq. (14)), C = 0.07 (cf.
Eq. (16)), the particular value being identified from exper-
iments reported by Merz [29], and the initial polarization
direction is randomly generated (cf. Eq. (33)).

Figs. 9–11 show the hysteresis curve for various loading
amplitudes and frequencies. It is experimentally observed
that the macroscopic coercive electric field depends on
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Fig. 7. Hysteresis curve with fourth order probability function (k = 4).
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Fig. 9. Hysteresis curve without probability function (k = 0); bE ¼
2:0 ½MV=m�.
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Fig. 10. Hysteresis curve without probability function (k = 0); bE ¼
1:5 ½MV=m�.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

E (MV/m)

D
(C

/m
2 )

Simulated

Measured
(Lu , 1999)et al.

Fig. 8. Hysteresis curve with fifth order probability function (k = 5) and
experimental data.
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Fig. 11. Hysteresis curve without probability function (k = 0); bE ¼
1:0 ½MV=m�.
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Fig. 6. Hysteresis curve without probability function (k = 0).
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Fig. 12. Hysteresis curve with fifth order probability function (k = 5), (left) and experimental data—Zhou et al. [38], (right); bE ¼ 2:0 ½MV=m�.
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Fig. 13. Hysteresis curve with fifth order probability function (k = 5), (left) and experimental data—Zhou et al. [38], (right); bE ¼ 1:5 ½MV=m�.
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Fig. 14. Hysteresis curve with fifth order probability function (k = 5), (left) and experimental data—Zhou et al. [38], (right); bE ¼ 1:0 ½MV=m�.
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the loading frequency which is monitored by the numerical
results in Figs. 9–11. The macroscopic coercive electric field
increases for higher loading frequency (0.01 Hz, 0.10 Hz,
1.00 Hz) irrespective of the loading amplitudes. We observe
that the electric displacements increase for higher loading
frequencies—even if the amplitude of the electric field
decreases. The results monitored in Figs. 9 and 10 allow
interpretation as the evolution of the electric displacements
not being saturated for a loading frequency of 1.00 Hz
compared to an almost quasi-static loading at 0.10 Hz or
0.01 Hz. Instead, the electric displacement increases for a
decreasing electric field (for 1.00 Hz) until the electric field
is smaller than the coercive electric field. Figs. 9 and 10
show that the remanent polarization (i.e., the electrical dis-
placement at zero electric field) is not varying that much for
the frequencies 0.01 Hz and 0.10 Hz. This effect stems from
the fact that possible domain switchings are more or less
completed after one simulation step. It can be observed
in Fig. 11 that the remanent polarization is decreasing if
the frequency of the cyclic loading is increased. This prop-
erty stems from the influence of the loading frequency on
the remanent polarization—especially when the amplitude
of the applied electric field is in the range of the coercive
field and the saturated polarization state has not been
achieved.

Figs. 12–14 (left) show the simulated hysteresis curves
for various amplitudes whereby intergranular effects are
taken into account by means of the proposed probabilistic
approach. The simulations are performed with a fifth order
polynomial for the probability function (k = 5). One
clearly observes that the computed curves are smooth near
the macroscopic coercive field which is not the case in Figs.
9–11 for the simulations without introducing a probability
for switching. Figs. 12–14 (right) show corresponding
experimentally measured hysteresis curves for various load-
ing amplitudes taken from Zhou et al. [38]. It is obvious
that the computations including the probabilistic approach
show a better match with the experimental results com-
pared to those simulations which did not incorporate the
probability function. Moreover, the curves in Figs. 12–14
(left) also reveal similar observation as those in Figs. 9–
11: with increasing loading frequency the macroscopic
coercive field is also increasing and the remanent polariza-
tion increases at lower loading amplitudes. As a general
rule, the electric displacement increases at higher load-
ing frequencies until the macroscopic coercive field is
reached.
6. Summary

A three-dimensional micro-mechanically motivated
model based on the free energy, a switching criterion, a
probabilistic approach and linear kinetics for domain
switching of piezoelectric materials has been presented
and implemented into a non-linear finite element program.
Simulations are discussed for a longitudinal high cyclic
electric loading at various loading frequencies and ampli-
tudes. Non-homogeneities stem from the polarization
vectors which are initially generated by random. Intergra-
nular effects between different domains have been pheno-
menologically accounted for by means of a probability
function. The simulated results are in good qualitative
agreement with experimental data. A linear kinetics theory
successfully described fundamental characteristics of piezo-
electric materials at different loading rates and amplitudes
such as the change of the macroscopic coercive field and
of the remanent polarization. Elaborations on the deriva-
tion of rate-dependent effects under coupled electrome-
chanical loadings constitute future research.
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