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This article deals with different types of friction models and their influence on the behavior of a simple 1 degree-of-freedom
(DOF) sliding friction oscillator which is in literature commonly referred to as ”mass-on-a-belt”-oscillator. The examined
friction characteristics are assumed to be proportional to the applied normal force and only dependend on the relative velocity
between the mass and the belt. For an exponential and a generalized cubic friction characteristic, the linear stability of the
steady-state and the bifurcation behavior in the sliding domain are examined. It is shown that the resulting phase plots of the
observed system are strongly dependent on the chosen friction characteristic.

1 Introduction and mechanical model

Motivated by investigations on the phenomenon of noisy brakes, a simple model to reflect the occuring oscillations corre-
sponding to groan is searched. Experiments have shown that the measured frequencies of groan are in case of disc-brakes
independent on the driving speed. Therefore self-excitation suggests itself as the basic mechanism for this phenomenon.
In the literature, the simplest mechanical model for investigating oscillations due to friction is the so-called ”mass-on-a-belt”-
oscillator: A lumped mass m connected to the inertial system by a linear elasticity (coefficient c) and a dashpod (damping
coefficient d), is pressed by a force FB onto a belt moving with the constant velocity v0. Between the belt and the mass, the
normal force N and the friction force R act, of which the latter is in the sense of Coulomb only proportional to that normal
force. The factor of proportion µ is assumed to be at least linearly dependend on the relative velocity vrel = v0 − ẋ between
the mass (coordinate x) and the belt (see fig 1).

Fig. 1 Disc-brake for experiments and mechanical model

In the observed sliding domain (vrel > 0), af-
ter translation of the parameters into the existing
steady-state, the equation of motion reads

z̈+2Dω0ż+ω2
0z =

N

m
(µ(v0−ż)−µ(v0)),

(1)

with the natural frequency ω0 =
√

c
m and the di-

mensionless damping measure D.

2 Non-linear investigations

In addition to a linear analysis of the steady-state (see [4]), further investigations are carried out by means of a first-order
averaging method: First, the coordinates are transformed to polar coordinates (amplitude A(t) > 0 and phase ψ(t)) and then
projected to a slower time by averaging over one period T ( 1

T

∫ T

0 f(t)dt). Therefore this method is often referred to as method
of slowly changing phase and amplitude [2]. Applying this method to eq. (1) yields two differential equations, one amplitude
equation in the form Ȧ = A · f(A) and another equation for the phase. The latter yields ψ̇ = 0, indicating that the phase ψ
stays constant over all time.

The search for steady-states (i.e. Ȧ
!= 0) and the analysis of their stability show for friction characteristics, which are at least

cubical in the relative velocity, two main results:

(I) A steady-state with the amplitudeA1 = 0 always exists. This result can also be found by a linear analysis.

(II) The system undergoes a Hopf-bifurcation: On the one hand, there exists only one steady-state. By changing the sign of
the bifurcation parameter, this steady-state changes its stability and will be sourrounded by a limit cycle. Whether the
bifurcation is super- or subcritical and with it the stability of the steady-state and of the limit cycle resp., is decided by
the shape of the used friction characteristic (see chapter 3).
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3 Results for different friction characteristics

Motivated by the measured friction characteristic shown in fig. 3, an exponential ansatz, µ(vrel) = µ∞ + ∆µe−avrel ,

is investigated first. The occuring Hopf-bifurcation then
is subcritical. Therefore an unstable limit cycle exists in
the neighborhood of the stable steady-state (cf. fig. 2).
For small pertubations e.g., this can cause instabilities alt-
hough linear analysis does not predict them.

Fig. 2 Subcritical Hopf-bifurcation

Fig. 3 Left: experimentally measured friction characteristic (dots) and
exponential approximation (line). Right: parameters of used ansatz

The results of the linear and non-linear analysis and the occuring phase plots are evaluated with respect to two parameters (the
dimensionless damping coefficient D and the parameter a of the friction characteristic) and plotted in fig. 4. More details are
discussed in [3].
For a more general view, the friction characteristic now is assumed to be a cubic polynom of the form
µ(vrel) = µ0 + k1vrel + k2v

2
rel + k3v

3
rel, representing an approximation for the chosen exponential ansatz as well as

other in literature commonly used characteristics (cf. [1]). With the abbreviations K1 = 2Dω0 + N
m (k1 + 2v0k2 + 3v2

0k3),
K2 = −N

m (k2 + 3v0k3) and K3 = N
m (k3), eq. 1 then yields z̈ + ω0z = −K1ż −K2ż

2 −K3ż
3.

After ”averaging” this equation, two steady-states can be calculated: A1 = 0 and A2 =
√
− 4K1

3ω2
0K3

. The stability and exis-

tence of these steady-states are dependend on the friction parameters k1, k2 and k3. This dependence is shown in fig. 5 (as an
example for the section k2 = 0). More detailed results can be found in [5].

Fig. 4 Results of investigations dependend on the dimensionless
damping coefficient D and the parameter a

Fig. 5 Influence of the parameters k1, k2, k3 of a cubic friction cha-
racteristic on the phase plot (e.g. section k2 = 0)

Concluding this paper it can be stated that the occuring phase plots of the ”mass-on-a-belt”-oscillator are strongly dependent
on the chosen friction characteristisc.
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