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Universiẗat Karlsruhe
Karlsruhe, 76128, Germany

waltersberger@itm.uni-karlsruhe.de

Jörg Wauer
Institut für Technische Mechanik
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ABSTRACT
Many structural imperfections such as cracks or delaminations of plies in composites can be typically modeled as
unilateral constraints, in particular if breathing of the gaps due to these defects is involved. Imperfections of such
a kind are also of interest in rotor dynamics. The described problems basically have in common that the math-
ematical model results in systems of Differential-Algebraic-Equations that are valid only almost everywhere due
to switching conditions. Especially for the usage in parameter estimation an efficient simulation of such systems
is imperative and hence modal model reduction techniques are often applied. Model reduction with underlying
continuous systems introduces artificial rigidity. In conjunction with unilateral contact problems this requires– as
known for systems of rigid bodies– a consistent calculation of the non-smooth transition from one contact config-
uration to the upcoming one. This paper presents an efficient method to deal with this problem. Upon applying
Hamilton’s Principle and spatial discretization, the equations of motion are derived comprising both normal and
tangentially frictional contact regions.
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1 INTRODUCTION
Systems with friction and normal contact play an important role in machinery dynamics. As publications give
evidence, many issues in rotor dynamics are associated with contact problems:

• problems of rotor systems with unilateral constraints due to normal contact such as rotors with cracks, cp.
review [17], or delamination, e.g. [19, 18];

• problems with frictional contacts due to rotor-stator rubbing, e.g. [20, 5] or due to loose parts impacting on
rotating parts, e.g. [4];

• stability problems due to internal friction, however, often modeled as viscous damping, e.g. [7, 6].

Most of the publications contribute to this class of problems in rotor dynamics with simplifying assumptions
on the contact situation, which are not necessarily inaccurate, but could be difficult to modify as to dealing with
more complex situations. A modeling method of such a kind is to employ stiff elastic structural members like
unilateral spring-dashpot elements to model normal contact, i.e., a force can only be transmitted if it is not a tensile
one. Apart from the fact that the ideal contact withstiffness→∞is impossible to simulate in finite time, there
arise other problems even for finite parameters. It is reported in [12] (and references therein) that parameter tuning
of spring-dashpot contact elements to fit simulations to measurements of harmonically forced bending vibrations
of mutually contacting beams was infeasible in general. A set of parameters turned out to be very sensitive to the
excitation frequency and hence cannot be interpreted as a set of pure material constants. Such modeling techniques
tend to be tuning of parameters rather than deriving parameters from physical models. This is common practice
and not meant to be criticized in general. However, it might be recommendable to use more abstract tuning
parameters that are more convenient to apply. This benefit costs the lack of a direct physical interpretation. In
conjunction with vibro-impact problems it is often proposed, as for instance in [8] and eventually in [12], to use
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Figure 1: a) Sketch of potential contact.b) Coulomb friction disc and polygonal approximation (dashed).

restitution coefficients. One obvious benefit compared to spring-dashpot elements is the reduction of the number
of parameters to be tuned from 2 to 1.

The drawback of restitution methods are the difficulties that arise with multiple contacts. The local application
of restitution methods, i.e., only at that place where the contact happens, in general yields erroneous results in
rigid-body dynamics, since the results– in some cases– can only be explained by supposing tensile contact forces,
which is an inconsistence. It is also known for a long time that the local application of unilateral impenetrability
conditions is another source of inconsistency with rigid bodies: The conclusion that contact no longer persists if
the required contact force becomes a tensile one is in general not correct, compare [3]. Theoretical aspects of
existence and uniqueness of consistent solutions of unilaterally constrained systems are considered in [11, 15, 10],
for the application of consistent restitution methods in rigid-body dynamics see [14], for instance.

As will be seen, the same problems arise with continuous structures after discretization. Many investiga-
tions in dynamics of continuous rotor systems base on discretized models, be it modally discretized structures,
FE-structures, etc.. It seems therefore worthwhile to reproduce the theory of non-smooth systems with multiple
frictional contacts particularly with regard to continuous rotor systems.

The paper is organized as follows:

• Derivation of the discrete equations of motion of continuous structures with unilateral frictional contacts in
a rotating reference frame. This is done upon application of Hamilton’s Principle and discretization of the
variational formulation according to the Ritz method.

• Investigation of stationary solutions. It turns out that centrifugal effects significantly affect the stationary
solutions. The formulation is extended so that it can take some spacial cases of contact friction into account
even for stationary solutions.

• Derivation of consistent transition conditions for the non-smooth motion.
• Presentation of a modeling example: Rotating shaft with through-width delamination.

2 EQUATIONS OF MOTION
In what follows, the theory of frictionless unilateral constraints for rotor systems in [16] is briefly reproduced,
however, now with friction taken into account.

2.1 Hamilton’s Principle for rotating systems with frictional unilateral contacts
Figure 1a depicts an inertial system~a = (~a1 ~a2 ~a3)ᵀ and a rotating (constant angular velocity~Ω) frame~b =
(~b1

~b2
~b3)ᵀ, each with orthonormal basisvectors~ak,~bk, so that~a~aᵀ = ~b~bᵀ = I ∈ R3×3 equals the identity matrix.

It is thereby assumed that the scalar products between the vectors are evaluated according to the rules of matrix
multiplication.

Given two elastic bodiesV (k), k = 1, 2, or two separate parts of one body, whose boundaries∂V (k) are
subdivided into disjoint setsΓ(k)

σ , Γ(k)
u ,Γ(k)

c , where stress-, displacement- or impenetrability boundary conditions
are applied, respectively. The potential contact point is formally denoted by theclosest-point-operatorcp(·). The
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impenetrability condition can thus be expressed by a gap functiong as

g(~x, ~u(~x)) ≥ 0 onΓ(1)
c (1)

with the related definition and variation

cp(~x) = arg min
~y∈V (2)

|~x− ~y| , (2)

g (~x, ~u (~x)) = −
(
~x + ~u(1) (~x)− cp(~x)− ~u(2) (cp(~x))

)
· ~n(1), (3)

δg = n(1) ·
(
−δ~u(1) + δ~u(2)

)
(4)

wherein~u(k), ~n(1) are displacement vectors and normal unit vectors, respectively. Omitted superscribting is meant
to be read:~u(~x) = ~u(k) if ~x ∈ V (k).

Hamilton’s Principle reads

∫ t1

t0

(δ(T − U) +

Wvirt︷ ︸︸ ︷
(W0 + Wc)) dt = 0, (5)

with kinetic energyT and elastic potential energyU , the latter one as usual expandable to comprise other forces
that have a potential and that are not taken into account in the virtual workWvirt.

Upon partial integration in the time domain and exploiting vanishing variations at the time boundariest0, t1,
the variation of the kinetic energy can also be written as

δT = −
∫

V

ρδ~r · ~̈r dV (6)

with densityρ andV = V (1) ∪ V (2), ~r = ~x + ~u, Lagrangian reference point~x. Expressing the displacement with
respect to the rotating frame and thereafter calculating acceleration and the variation yields

~u = ~bᵀu; u = (u1 u2 u3)ᵀ, (7)

~̈r = ~bᵀü + 2~Ω× ~bᵀu̇ + ~Ω× (~Ω× (~x + ~bᵀu)), (8)

δ~r = δuᵀ~b. (9)

The virtual work in Eq. (5) is the sum of the usual partW0, which does not take the contact into account, and the
partWc that includes traction on the contact boundary:

W0 =
∑

k=1,2

(∫

V

~f · δ~u dV +
∫

Γσ

~t ∗ · δ~u dΓ
)(k)

, (10)

Wc =
∑

i=1,2

∫

Γ
(i)
c

~t (i) · δ~u(i) dΓ (11)

=
∫

Γ
(1)
c

(λNδg + ~λT · δ~uT ) dΓ. (12)

Herein is~f a given volume force inV , is~t ∗ the prescribed stress vector onΓσ and is~t the unknown stress vector
in the still unknown contact zoneΓc. Equation (12) follows from~t (2) = −~t (1), i.e.,Actio=Reactioand from the
decomposition of the stress vector into normal and tangential part. Eventually, Eq. (12) follows from Eq. (4).
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The still unknown contact zone can be made constant by expanding it toΓ(1)
c = ∂V (1) \ Γ(1)

σ \ Γ(1)
u and thereby

demanding

λN ≥ 0, g ≥ 0, λNg = 0, (13)

~̇uT · ~λT → Min, (14)

µλN − |~λT | ≥ 0 (15)

for all ~x ∈ Γ(1)
c . The optimization problem (14) with auxiliary condition (15) is an alternative expression for

the well known Coulomb friction law. Either one states, seeFig. 1b, that the friction force~λT is antiparallel to
the relative sliding velocitẏ~uT in case of sliding, whereas in case of sticking(|~̇uT | = 0 ) the magnitude of the
constraint force is bounded byµλN > 0 with the friction coefficientµ. The formulation as optimization problem
(14, 15) is known as theMaximum Dissipation Principle[15].

Equations (13-15) ensure that the integrant in Eq. (12) does not contribute to the integral value if the contact is
open, i.e.g > 0, since the third condition in Eq. (13) ensures in this case thatλN = 0 and thus, with Eq. (15), that
|~λT | ≤ 0, which is only possible for~λT = ~0. Equations (13) are called theSignorinicomplementarity conditions.
Together with Eqs. (14, 15) they define the frictional contact problem according to Coulomb’s friction law.

2.2 Discretization
The discretization process consists of two tasks:
1.) Discretization of the displacementsu and referring variations in Eq. (7):

u = Φ(~x)ᵀq(t), δuᵀ = δqᵀΦ(~x), (16)

with appropriately chosen admissible ansatz functionsΦk(~x) ∈ R3, k = 1, . . . , n, which are concatenated in
Φ(~x) = (Φ1(~x), . . . ,Φn(~x))ᵀ ∈ R3×n andn generalized coordinatesq = (q1, . . . , qn)ᵀ.
2.) Discretization of the unknown contact interaction forces in normal and tangential direction and the referring
contact laws (13-15). The gap function is thereby assumed to be given in a linear formulation after disretization,
which is a reasonable assumption on little gap breathing. The referring normal contact force is discretized by
appropriate ansatz functions as well, whereby the column matrixλN contains their weighting factors:

g = gN (~x)ᵀq + gN (~x), δg = δqᵀgN (~x), (17)

λN (~x, t) = ΛN (~x)ᵀλN (t), ΛN (~x) = (ΛN1(~x), . . . , ΛNm(~x))ᵀ ∈ Rm, λN = (λN1 . . . λNm). (18)

TheSIGNORINI inequality conditions (13) are approximated by discretization through weighted averaging inΓ(1)
c

to ensure that the inequalities are at least satisfied on an average:

∫

Γ
(1)
c

ΛNgᵀ
N dΓ

︸ ︷︷ ︸
Jᵀ

N

q +
∫

Γ
(1)
c

ΛNgN dΓ
︸ ︷︷ ︸

jN

≥ 0, λN ≥ 0, λᵀ
N

(∫

Γ
(1)
c

ΛNgᵀ
N dΓq +

∫

Γ
(1)
c

ΛNgN dΓ
)

= 0. (19)

In order to preserve meaningful inequalities, the weighting functions must be non-negative inΓ(1)
c . As to the

discretisation of the contact laws (13-15) it is assumed for the sake of brevity that they have to be satisfied only
at a numbers of discrete points~xk ∈ Γc, which can be accomplished by employing Dirac delta functionsΛNk

=
δ(~x − ~xk) as force ansatz functions in Eqs. (18,19). This means that Eqs. (14,15) simultaneously hold at each of
these points:

The auxiliary condition (15) of the optimization problem is non-differentiable. By approximating the friction
disc, seeFig 1b, by a polygon that is spanned by an even number ofr unit vectors~ei so that each vector is part
of a pair~ei = −~ej , one gets for each contact point~xk a discretized and differentiable optimization problem of the
form

q̇ᵀgT

r∑

i=1

βiei → Min, βi ≥ 0, µλN −
r∑

i=1

βi ≥ 0, (20)
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wherebygᵀ
T q̇ andei are coordinate column matrices of the tangential velocity and spanning vectors~ei, respec-

tively, with respect to a local tangential coordinate system and~λT =
∑

βi~ei.
The auxiliary conditions of the optimization problem (20) are differentiable and thus the referringKuhn-Tucker

conditions[1] for the optimum exist and read here

0 ≤ Bᵀ
kg

ᵀ
Tk

q̇ + 1kzk ⊥ βk ≥ 0; 0 ≤ µkλNk
− 1ᵀ

kβk ⊥ zk ≥ 0, (21)

whereinBk = [e1 . . . er]k, 1k = (1 1 . . . 1)ᵀ
k, βk = (β1 . . . βr)

ᵀ
k andzk is a slack variable for the friction force

auxiliary condition of the optimization problem. The propertya⊥ b for a pair of fitting column matrices is an
expression for the orthogonalityaᵀb = 0. The subscriptsk in Eq. (21) indicate that parameters may depend on
the contact position~xk.

Upon discretization of the Hamilton functional in Eqn. (5) – here with the simplifying assumption of negligible
geometrical non-linear effects – by means of the displacement and variation approximations in Eq. (16) and
application of the reformulation of the kinetic energy variation in Eqs. (6-9) one eventually ends up with

Mq̈ + (G + D)q̇ +

Q︷ ︸︸ ︷
(K + P)q = f + JNλN + JT λT , (22)

0 ≤ Jᵀ
Nq + jN ⊥ λN ≥ 0, (23)

0 ≤ Jᵀ
T q̇ + Ez ⊥ λT ≥ 0; 0 ≤ µλN −EᵀλT ⊥ z ≥ 0 . (24)

Equations (24) are obtained from Eqs. (21) by taking all contact points into account withλT = (βᵀ
1 . . . βᵀ

s )ᵀ,
z = (z1 . . . zs)ᵀ and all parametersgTk

Bk,1k, µk appropriately concatenated in the matricesJT ,E,µ, respec-
tively. In Eq. (22)M denotes thepd (positive definite) and symmetric mass matrix,G the skew-symmetric
gyroscopic matrix,D the pd and symmetric damping matrix, comprising internal damping effects, for instance
modeled asRayleigh-damping and external damping effects,P is the skew-symmetric damping matrix due to ex-
ternal damping in the rotating reference frame. The overall stiffness matrixK = K0+Kc comprises elastic effects
in the symmetric and here presumedlypd matrixK0 and centrifugal effects by

Kc = −Ω2

∫

V

ρΦWkΦᵀ dV , (25)

where moreover is assumed that the angular velocity vector with magnitudeΩ is parallel to thek-th coordinate
axis in the rotating frame~b, i.e. ~Ω = Ω~bk. This impliesWk = diag(1− δik; i = 1, 2, 3) and hence thatKc is nsd
(negative semi-definite). For more details on the derivation of the system matrices see [16].

Equations (22-24) define a system ofDifferential Algebraic Equations(DAE) that describes the motion as long
as no zero crossings in the inequalities occur. If this happens, additional assumptions – transition laws – have to
be made, which are discussed in section 4.

3 STATIONARY SOLUTIONS
Systems with friction are in general hysteretic and thus dependant on their evolution history. Any investigation
of stationary solutions therefore requires additional restrictive presumptions to define special cases that can be
considered non-hysteretic.

3.1 Formulation as Linear Complementarity Problem
In this section it is assumed that the systems allow the application of a contact force law similar to (13-15) obtained
by replacing~̇uT in the objective function by~uT , i.e.

λN ≥ 0, g ≥ 0, λNg = 0; ~uT · ~λT → Min, µλN − |~λT | ≥ 0 (26)

uT = gᵀ
T q + g0T (27)

and hence also presuming that the tangential displacements initially vanish and that in case of a non-sticking
contact the displacement history were such that~uT evolved rectilinearly and unidirectionally and therefore the
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friction force be again anti-parallel to~uT , seeFig. 1b (~̇uT replaced by~uT ). Furthermore, it is assumed that the
tangential displacement is linear affine in the generalized coordinatesq after discretization, whereby Eq. (27)
already shows the decomposition in a local tangential reference frame.

The discretisation of the contact laws is analogous to Eqs. (20-24), however, now with~uT replacing~̇uT , i.e.,
Eq. (27) replacinggᵀ

T q̇. Since stationary solutions are sought, all time derivatives and time-dependant excitations
are omitted in Eq. (22). Elimination of the generalized coordinatesq reduces Eqs. (22-24) to

0 ≤



Jᵀ
NQ−1JN Jᵀ

NQ−1JT 0
Jᵀ

T Q−1Jᵀ
N Jᵀ

T Q−1JT E
µ −Eᵀ 0




︸ ︷︷ ︸
A




λN

λT

z




︸ ︷︷ ︸
x

+




jN + Jᵀ
NQ−1f

jT + Jᵀ
T Q−1f
0




︸ ︷︷ ︸
b

⊥



λN

λT

z


 ≥ 0. (28)

This algebraic problem is known asLinear Complementarity Problem– abbreviated LCP(A,b) – where for given
matricesA,b any solutionx is sought. To the authors’ knowledge there is no general existence condition for
solutions of a LCP, but only for special cases: The LCP (28) is guaranteed to have a – not necessarily unique –
solution for a symmetric andpd matrixQ [2], i.e. vanishing external damping and subcritical rotational speed. It
also has a solution for vanishing friction andpd – but not necessarily symmetric – matrixQ [16].

4 TRANSIENT SOLUTION
The DAEs (22-24) are solved for a constant constraint configuration as long as the inequalities show no zero
crossing from above. If this happens, consistent transitions to the new constraint configuration have to be calculated
[14].

4.1 Frictional Constraints Transition
For the following considerations only these constraints are relevant that are active as equality in Eqs. (23,24) or
are just about to become active or inactive since a zero crossing was just detected at time−t solely within the
frictional constraints (24) and the normal forcesλN in the conditions (23). It now hast to be decided, which
constraints remain active at+t and thus further hold as equality. Since the relative tangential velocity+~̇uT at +t
for constraints that just started sliding has the same direction as the tangential acceleration+~̈uT , the friction law
(14) holds also on acceleration level and therefore~̈uT replaceṡ~uT . An analogous reasoning as in section 3.1 yields
a complementarity formulation for the accelerations+q̈, however, now with a matrixgᵀ

T
+q̈ + g1T expressing

the coordinates of̈~uT in a local tangential coordinate frame. With+q = −q and+q̇ = −q̇ only jumps in the
accelerations can occur and therefore eliminating+q̈ yields a LCP

0 ≤



Jᵀ
NM−1JN Jᵀ

NM−1JT 0
Jᵀ

T M−1Jᵀ
N Jᵀ

T M−1JT E
µ −Eᵀ 0




︸ ︷︷ ︸
A




λN

λT

z




︸ ︷︷ ︸
x

+




jN + Jᵀ
NM−1f∗

jT + Jᵀ
T M−1f∗

0




︸ ︷︷ ︸
b

⊥



λN

λT

z


 ≥ 0 (29)

with f∗ = f − (G+D)−q̇+(K + P)−q. SinceM is pd and symmetric, it can be shown that the LCP(A,b) here
always has a solution. It is again noted that the matricesJN ,JT , . . . in the LCP (28) are not identical with those
in LCP (29) since the latter ones only comprise the active constraints.

The LCP (29) is for vanishing−q̇,− q̈ also suitable to judge preloaded systems wether or not given stationary
initial conditions−q can be beard without forcing sticking frictional contacts to glide.

4.2 Impact Laws
When displacement constraints are about to be violated, i.e., a zero crossing within the Signorini Conditions (23)
is detected, a percussive impact occurs, which will be classically treated by means of a restitutional impact law as
usually done in rigid-body dynamics.

Immediately before impact, the set of active constraints be expanded by the constraints that just have been
touched and reduced by those constraints that are about to become inactive, i.e. whose referring entries inJᵀ

N
−q̇

are positive. The problem now is to decide which of those constraints remain active immediately after the impact
at +t. This decision requires additional assumptions. One has to expect velocity jumps from−q̇ to +q̇, which are
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Figure 2: Rotating beam with delaminated region.

the new initial velocities for the upcoming constraint configuration. As usual it is assumed that during the impact
the positions do not change, i.e.+q = −q. Upon assuming infinitely short impact duration and neglecting non
impulsive forcesf in Eq. (22), integration of the referring equation yields

M+q̇ = M−q̇ + JN λ̂N + JT λ̂T , (30)

0 ≤ Jᵀ
N

+q̇ + εJᵀ
N
−q̇ ⊥ λ̂N ≥ 0, (31)

0 ≤ Jᵀ
T

+q̇ + ġ0T + Ez ⊥ λ̂T ≥ 0; 0 ≤ µλ̂N −Eᵀλ̂T ⊥ z ≥ 0 . (32)

The complementarity conditions (31) express a restitution law that permits opening contacts without normal im-
pulsesλ̂N transmitted. The matrixε = diag(εk) carries the restitution coefficients for each contact. The com-
plementarities (32) express the Kuhn-Tucker conditions for the polygonally approximated, compare section 2.2,
tangential impact law

+~̇uT · ~̂λT → Min, µλ̂N − |~̂λT | ≥ 0, (33)

whereby(̂·) indicates the referring integral over the infinitely short impact duration. As done above, Eqs. (30-32)
can be transformed to a LCP, which can be shown to always have a not necessarily unique solution sinceM is pd.

5 EXAMPLE: DELAMINATED ROTATING EULER-BERNOULLI BEAM

The model was already presented in [18]. It consists of Euler-Bernoulli beamsi = 1, . . . , 4 (beam cross section
areaA, second order area momentsI2, I3 , elastic modulusE, lengthL), each one allowing longitudinal and lateral
displacementsu(i) = (u(i)

1 , u
(i)
2 , u

(i)
3 )ᵀ with appropriate matching and boundary conditions, seeFig. 2.

5.1 Derivation of System Matrices

Here, the continuous system is discretized by employing eigenfunctionsϕ`(ξ), 0 ≤ ξ ≤ 1, ` = 1, . . . , n of the
self-adjoint non-rotating problem as Ritz ansatz functions for the Hamilton functional in Eq. (5).
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With u =
(
u(1)ᵀ

. . .u(4)ᵀ)ᵀ
, one obtains from the variation of the elastic potential

δU =
∫ 1

ξ=0
D[δu]ᵀD[u] dξ =

∑
k

∑
` δqk

∫ 1

ξ=0

D[ϕk]ᵀD[ϕ`] dξ

︸ ︷︷ ︸
K0kl

q` (34)

with the operator

D[·] = diag
(D(i)[·]) ,D(i)[·] =




√
EA(i)/L(i) ∂(·)

∂ξ 0 0

0
√

EI2
(i)/L(i)3 ∂2(·)

∂ξ2 0

0 0
√

EI3
(i)/L(i)3 ∂2(·)

∂ξ2


(35)

the elastic stiffness matrixK0 = [K0kl], for instance, which is diagonal due to self-adjointness (orthogonality of
eigenfunctions).

The gap function, see Eq. (3), is here simply the opening of the delamination, i.e.g = u
(3)
3 − u

(2)
3 ≥ 0 and

hence Eq. (17) corresponds to

g = (0 . . . 0 − 1 0 . . . 0 1 0 . . . 0)

Φ(ξ)ᵀ
︷ ︸︸ ︷[
ϕ1 . . . ϕn

]
︸ ︷︷ ︸

gN (ξ)ᵀ




q1

...
qn


 (36)

with appropriately distributed zeros and ones in the first matrix. Accordingly, the tangential relative displacement,
see Eqs. (20, 27), is given by

uT =

(
u

(2)
1 − u

(3)
1

u
(2)
2 − u

(3)
2

)
=

(
0 . . . 0 1 0 . . . 0 − 1 0 . . . 0
0 . . . 0 1 . . . 0 − 1 0 . . . 0

) [
ϕ1 . . . ϕn

]

︸ ︷︷ ︸
gT (ξ)ᵀ




q1

...
qn


 . (37)

The derivation of the other system matrices is similar, as shown in [16], but omitted for the sake of brevity.

5.2 Simulation Results
The required solutions of the LCPs (28,29) are obtained by means of a modified version ofLemke’s algorithm, see
[9].

The beam depicted inFig. 2 (length 1m, width=height=0.02m, density 7500kg/m3, delaminated region from
x=0.1m to x=0.9m, beam heights at delamination 0.011m and 0.009m) rotates in the gravitational field (9.81 m/s2)
with rotational speed near the first gravitational resonance at 21 Hz. Various simulations with varying rotational
speeds indicate that significant gap vibrations with partially closed gaps only occur in the vicinity of the first
gravitational resonance. Already at the second gravitational resonance dominant centrifugal forces prevent the gap
from closing. The influence of interfacial friction is negligible since the relative tangential displacements, see Eq.
(37), turns out to be very small at the actual rotational speed.

The discretized system has 16 degrees of freedom (dof) corresponding to mass-normalized eigenshapes of the
non-rotating model. Nonlinear effects can be retrieved in the phase plots.Fig. 3a shows scaled plots for the first
three modes. However, the nonlinear effects are small. Even for such unrealistically long delamination regions as
assumed in this example, the nonlinearity due to changing contact configurations is hardly to recover in the power
spectrum density. Here, the power spectrum density inFig. 3c is obtained from displacements in the rotating
frame at a position in the undamaged region of the beam. There is virtually no significant peak beside the one
stemming from the gravitational excitation. One must therefore conclude that a failure identification procedure
based upon the determination of the harmonic distortion is not suitable with gravitationally harmonically excited
and delaminated rotating beam structures like depicted inFig. 2.

As to the convergence of the numerical method it was observed that the solution of the discussed exact method
with domain stitching could also be approximately obtained with a penalty method. To this end, the penetrationgi
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Figure 3: a) Phase plots of first 3 modal coordinates at steady state vibration near first gravitational resonance
at 21 Hz. b) Gap opening at middle of gap – Penalty solution for time comparison only, see Fig. d).c) Power
spectrum of displacement in a undamaged region of the beam.d) Time comparison exact method vs. moderately
stiff penalty approach.

of the i-th contact, see Eq. 17, is penalized with a forceλNi = −max(0, cpgi + dpġi) and friction is neglected.
The penalty parameters stiffnesscp and dampingdp had to be appropriately tuned to fit the penalty solution to
the exact solution for different restitution coefficientsei. Fig. 3d shows the computation time comparison of
MATLAB implementations for reduced models with an increasing number of dof. Penalty methods require the
usage of special solvers for stiff differential equations (here with MATLAB ode15s) whereas the exact model
still can be treated with ordinary Runge-Kutta solvers (here ode45), which are usually much faster than the stiff
counterparts. This confirms the major drawback that is often asserted for penalty methods with vibro-impact
systems, see [13]. The penalty solution depicted inFig. 3b for the case of ideally plastic impacts (ei = 0) is
obtained by employing penalty spring-dashpot elements with greatly reduced stiffness and damping and serves
only as the penalty counterpart for fair computation time comparisons. The computation time for less compliant
an thus more realistic elements should be even higher.

6 CONCLUSION
A modeling process was presented for continuous rotor systems with frictional contacts. It bases on the derivation
of the equations of motion as DAEs for structural variant systems due to changing contact configurations. Under
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some kinematical linearity assumptions (i.e. small and not explicitly time-dependant gap functions) it could be
shown that stationary solutions necessarily exist at subcritical rotational speeds for frictionless systems and for
frictional systems without external damping. At present, no theory can decide in general wether solutions exist at
supercritical rotational speed and indeed there are cases in which they do not.

Moreover, consistent contact transition conditions were formulated since solely locally applied restitution-,
impenetrability- and friction-laws show inconsistent results. Hence, the application of the derived more complex
transition conditions is in general also required with coarsely discretized continuous structures and not only in rigid
body dynamics.
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