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Abstract: In machine tools of parallel structure with two or three translatory degrees of freedom the 
rotatory degree of freedom is kinematically locked. Yet due to geometric faults, for example 
assembly errors or different geometries due to production tolerances, such machine tools exhibit an 
additional rotational behavior. Stresses within the structure occur leading to deflections of the tool 
center point, and thus, reducing the quality of the workpiece. For compensating these errors an 
adaptronic strut which can be implemented within such a machine tool has been developed. The strut 
comprises a piezoceramic sensor-actuator unit for controlled correction of those static and quasi-static 
deflections. Piezoceramic elements were chosen due to their high positioning accuracy and the small 
installation space required. The functional principle of a scale with a vibrating string is used for 
measuring the external load. Finally, an optimal control design for compensation is presented.  

1. Introduction 

Fig. 1 shows a machine tool with parallel kinematics of three translatory degrees of freedom. Due to 

geometric errors such as assembly errors or differing geometries due to production tolerances stresses 

within the structure resulting in deflections of the tool center point (TCP) of the machine tool. Thus, 

the quality of the workpiece is reduced. An adaptronic strut as shown in Fig. 2 has been developed 

for compensating such errors. The strut, similar in shape to conventional struts in machine tools, is 

cut in two halves and a piezoelectric sensor-actuator unit is implemented in-between, giving the strut 

an additional degree of freedom.  

The geometric deflections in focus of this contribution are mostly static or quasi-static, and thus, only 

inducing static or quasi-static signals on the piezoelectric sensor element. However, due to the 

internal leakage resistance of piezoceramic materials such signals are not measurable [1, 2]. By 

adapting the functional principle of a scale with a vibrating string a work-around for this problem was 

found. A string, which was mounted along the strut, as can be seen in Fig. 2, is excited by a solenoid. 

A dynamic signal is induced on the strut and onto the piezoelectric sensor. This signal can easily be 



acquired and using frequency counters or phase-locked loops (PLL) its frequency course can be 

determined [5]. Equation (1) describes the relation  
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between the eigenfrequency f0 of the string and pre-stress T on the string, with length lS , cross-

sectional area A and density ρ of the string. Thus, by measuring the frequency the external load on the 

strut can be determined. Further information about this functional principle can be found in [4, 5, 6].  

  
Figure 1: Parallel kinematics machine tool with three 
translational degrees of freedom [3]. 

Figure 2: Adaptronic strut [4]. 

2. Control concept for adaptronic strut 

The simplest mechanical model of the adaptronic shown in Fig. 2 is a three-body oscillator as shown 

in Fig. 3. The upper and lower halves of the strut are lumped masses m1 and m3, respectively, the 

piezoelectric element in-between is represented by m2. The springs ci and dampers di represent 

corresponding material properties, the force F represents external influences such as constraint forces 

on the strut.  

 
Figure 3: Three-body oscillator as lumped mass approach for modeling the adaptronic strut.  

 

The equations of motion for the system shown in Fig. 3 in state space form read 
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with state space vector z representing positions and velocities of the lumped masses, actuator force 

u=Fr and disturbance force us=F.  

Using the principle of Least Quadratic Regulator (LQR) the parameters for a state controller for this 

single variable system can be determined. The controller force Fr becomes 
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with state vector z. The control vector r is chosen such that the quadratic cost functional 
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is minimized. The scalar κ > 0 is a value for the cost of the controller input whereas Q is a positive, 

semi-definite matrix weighting the system state. For more information on determining the controller 

parameters using LQR, see [7, 8, 9].  

For realizing the state controller described above the system state must be known. However, since not 

all system states are measured an additional element must be introduced. The so-called Luenberger 

observer estimates the system states according to  
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The observer matrix l is chosen such that the eigenvalues of the observed system are further on the 

left of the imaginary axis than the eigenvalues of the controlled system. This guarantees that the 

observer is faster than the controller. That can easily be achieved using the pole placement procedure 

according to Ackermann since according to Föllinger [8] the two sets of eigenvalues can be set 

independently.  

3. Simulation results 

To test the efficiency of the developed state controller the three-body oscillator was modeled within 

the commercial multi-body software program MSC.Adams. The co-simulation interface to 

MATLAB/ SIMULINK was used for realizing the controller and the observer within the system. The 

exchange interval between these two programs was set to ∆t = 0.1 ms which equals the maximum 

step size of the BDF integrator used.  

As initial conditions for all simulations presented in the following all system states, i.e. both, 

positions and velocities of the bodies, are set to zero. The system experiences the influence of an 

external disturbance force  
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the tip deflection of the strut, i.e. the position x3  of body m3, is the control variable.  



 

F – pre-filter, F = 1 

H – integrator, H(s) = 1/s 

G – plant with LQR controller 

C – compensation element 

 

 

 

Figure 4: LQR state controlled system under 
influence of external disturbance force F 

Figure 5: Closed-loop system with position 
feedback 

 

Fig. 4 depicts the reaction of the controlled system on the disturbance force F (6). A steady state 

control error is remaining. Thus, the presented control concept is not sufficient and has to be 

enhanced. Adding an additional feedback path as shown in Fig. 5, an improvement of the control can 

be achieved. The required control elements in detail are a pre-filter set to F = 1, an integrator H = 1/s 

in the feedback path, the LQR controlled system G and a compensation element C. This compensator 

is set using the root locus procedure [10, 11] such that an optimal system behavior and a large 

stability margin are obtained. A simple proportional element proved to be sufficient.  

As depicted in Fig. 6 the steady state error vanishes if the enhanced control concept is used. The 

influence of the external disturbance force is compensated quickly. The actuator force required for 

this control operation can be seen in Fig. 7.  

  
Figure 6: LQR-PI controlled system under 
influence of external disturbance force F 

Figure 7: Actuator force 

 

In the following the presented control concept derived by the simple lumped mass approach is used 

for more advanced models of the strut. In a first enhancement the lumped masses are substituted by 

flexible bodies. Fig. 8 depicts the strut comprising upper and lower halves with the piezoelectric 



element in-between. With the tip deflection of the strut as control variable and using the same 

parameters for the control concept presented the efficiency of the designed control configuration 

under the same influence of external force F (6) is shown in Fig. 9. 
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Figure 8: Simple model of adaptronic strut with 
flexible bodies 

Figure 9: LQR-PI controlled system under the 
influence of external disturbance force F 

 

Using the CAD data for accurate modeling of the geometry of the strut the model depicted in Fig. 10 

arises. Again the tip deflection of the strut is used as control variable and the same settings for the 

control parameters are used. Fig. 11 shows the response of the controlled system to an external 

disturbance force F’ = ½ F. At the reduced magnitude of the applied external force it can already be 

seen that the simple control concept reaches its limits when used with the accurate model. However, 

since mainly static and quasi-static loads are in focus of the application, higher loads might still be an 

issue of compensation if they are slowly changing. Therefore, further studies on this subject must be 

done.  

  
Figure 10: Accurate model of adaptronic strut by 
use of CAD data 

Figure 11: LQR-PI controlled system under 
influence of external force F’=1/2 F 



4. Conclusions 

An adaptronic strut for compensating static and quasi-static errors in machine tools with parallel 

kinematics has been presented. The functional principle of a scale with vibrating string was used for 

measuring the occurring loads with piezoelectric elements. The developed control concept for the 

strut was tested on three different models of the strut: a lumped mass model, a flexible body model 

and finally a flexible body model by CAD data. Future studies include the integration of one or more 

controlled struts in a model of a machine tool and further investigations of the behavior of the 

enhanced machine tool during machining processes like turning or milling.  
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