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Introduction

From the 1950s to the 1970s, stability problems of structural members subjected to follower forces
attracted very much attention. Meanwhile it seems to be clear (see [4], for instance) that many of
such problems are academic and structural members subjected to fluid flow loading belong to the few
representatives of non-conservative mechanical systems of practical relevance.

A special type of this problem class is a cantilevered bar subjected to a transverse follower force
of fluid jet, which during the early 1970s (see [5,8], for example) was studied in many details. The
investigations were based on linear models taking into consideration some pre-deformation due to
the time-independent loading or on a simplified geometrically non-linear theory. In addition, the
treatment was focused on a special arrangement producing the follower force of fluid jet. Since i)
a consistent geometrically nonlinear theory of elasticity for such problems is available now (see [6,9]
where the academic problem of a cantilever subjected to follower tip moment was treated) and ii)
other specifications of tip jets are interesting to be discussed, the described problem is re-considered
here.

In a first step, a sufficiently consistent formulation of the governing boundary value problem
is presented, where two different mechanisms of fluid jet loads are discussed. The corresponding
variational equations are derived next where a non-dimensional notation is introduced. This non-
dimensional formulation is the key to recognizing the important parameters influencing the stability
behavior and the flutter load, in particular qualitatively but also quantitatively.

Physical Model

Consider a slender beam of length L and mass per unit length µS = ρA (ρ mass density, A cross-
sectional area) with narrow rectangular cross-section (thickness h height H) so that the smaller of
the bending stiffnesses EI2 and the torsional stiffness GIT are much smaller than the other bending
stiffness EI1, see Fig 1a. All data are assumed to be constant. One end of the beam is rigidly fixed
and there is introduced a Cartesian reference frame {OeXeY eZ} with origin O coinciding with the
centroid S(Z = 0) of the cross-sectional area, where the unit base vectors eX ,eY correspond with
the symmetry axes of that cross-section and eZ is directed along the non-deformed bar axis. Due to
the deformations (displacements u, v, w and a torsional angle ϕ), the centroid S(Z) of a general cross-
section located at the position ZeZ displaces to s with a corresponding changed orientation denoted
by the body-fixed reference frame {oexeyez} with origin o coinciding with location s of the deformed
cross-sectional centroid, where ez, ey correspond with the symmetry axes of the actual cross-section
(which itself remains undeformed) and ez is the outside normal of that cross-section.

Two layouts of follower fluid jet load are considered, see Fig. 1b and c. The first one is that intro-

a) b) c)

Figure 1. Bar Model, Coordinate Systems and Layouts of Fluid Jet Load.

duced by [5] and [8]. In this case, the bar has a uniform circular bore of certain suitable diameter along
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the Z-axis (in un-deformed state), through which an incompressible fluid (e. g., water) at constant
speed U0 is flowing. A nozzle is connected at the free end of the beam with the hole such that the
fluid leaves the system in the deformed state at the centroid s(Z = L) in the form of a jet following
the end cross-section in its actual state shooting into the ey(Z = L)-direction.

The second specification is geared to that one suggested by Como [2] and Wohlhart [10] here also
at the tip end. To make their academic follower force practicable, a slender rigid attachment of mass
M and length H with a central hole as a model of a jet engine is appropriately fixed at the end
cross-section along ey(Z = L) where air is coming in with speed U0 at Y = −H/2 and exhaust gas is
leaving with larger speed U1 > U0 (neglecting the fuel mass rate against the air flow rate) at Y = H/2
so that a transverse follower propulsion in the −ey-direction results.

Formulation

The governing boundary value problems are derived based on the assumptions as follows: The fluid
is inviscid. Rotary inertia and shear deformation of the beam are neglected as well as gravity effects.
Then, Hamilton’s principle
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will be applied where T is the kinetic energy of the open system to be considered, V is the corre-
sponding potential energy and Wvirt contains the virtual work of all non-conservative forces and the
contributions of mass transport over the open boundaries.

Independently from the two follower force realizations, there are the energy contributions
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of the structural member together with its virtual work term
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characterizing external and internal damping in a linear formulation which is sufficient.
Two alternative fluid flow contributions to kinetic energy and virtual work representing the distinct

follower force concepts have to be added. In case 1 where fluid flows through the central hole of the
bar and leaves at the nozzle following the end cross-section into ey(L)-direction (here in such a form
that the fluid speed within the nozzle remains unchanged), there is an additional kinetic energy
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If the shortening of the bar were to be taken into consideration, a supplement would occur that would
not significantly modify the stability analysis.

In case 2 (assuming that the fluid mass within the attached engine is negligible compared to M)
the kinetic energy of the jet engine

T (2) =
1
2


M(u2

,t + v2
,t) +

MH2

12
ϕ2

,t


Z=L

and the contribution of the fluid jet
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have to be added. Also in this case, the shortening of the bar end (together with the inclination angle
v,Z(Z = L)) can easily be taken into account.
It is straightforward now to evaluate Hamilton’s principle for both cases to get the respective

governing boundary value problems.
It will be mentioned that, for a consistent post buckling analysis or the examination of interacting

oscillations in both lateral directions of the beam, a geometrically nonlinear theory of elasticity to
the cubic order (see [1], for instance) or a nonlinear elastica theory (see [3,7], for instance) should be
applied.

Evaluation and Results

In a first step, the steady deformation state is determined which is for both follower force realizations
a pure time-independent bending about the stiffer of the two main inertia lateral axes without torsion:

u0(Z, t), ϕ0(Z, t) ≡ 0, v0(Z, t) = v0(Z) where
EI1v0,ZZ = −µFU

2
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1 − U2
0 )(L− Z) (case 2).

Taking now solutions of the form

u(Z, t) = u0 +∆u(Z, t), v(Z, t) = v0 +∆v(Z, t), ϕ(Z, t) = ϕ0 +∆ϕ(Z, t)

and substituting them into the governing nonlinear boundary value problems, we get – linearizing
in the ∆-quantities – the variational equations as the starting point for the stability analysis. As
expected the coupled boundary value problem in ∆u and ∆ϕ constitute the lateral buckling problem
while the other decoupled one in ∆v describes simple damped oscillations.
Introducing non-dimensional variables and parameters, it becomes obvious that besides two char-

acteristic damping coefficients De and Di the stiffness ratio GIT /(EI2) together with the slenderness
(kS/L)2 may drastically influence the eigenvalues as a function of the load parameter µFU
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GITEI2 (case 2). The stability behavior will be discussed in detail where,

in particular, some qualitative results not given in [5,8] will be presented.
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