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ABSTRACT

An adaptronic strut, developed for compensation of the influence of geometric faults in machine tools with parallel
kinematic structure, is examined. A simple oscillator model of the strut is built. First, the equations of motions
for this simplified model are derived analytically. These information are used for designing a single variable
state control based on the principles of the optimal least quadratic regulator (LQR). Afterwards, the controller
concept is extended applying an additional PI-controller. Secondly, the strut is modeled using the commercial
multi-body system simulation software Msc.Adams. The required system state which is not explicitly given
within Msc.Adams primarily has to be estimated. For this task a Luenberger observer is implemented. A
similar single variable state control is developed and both designs are compared among themselves when the
adaptronic strut is examined under external loads. Finally, the strut is implemented into the model of the
complete machine tool and its influence on the behavior of the machine tool is treated.
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1. INTRODUCTION

Machine tools with parallel kinematic structure recommend themselves due to their stiffness and dynamics.
However, due to geometric faults in parts of the machine tool, such as differing geometries resulting, for example,
from production tolerances and assembly errors, stresses within the structure occur. These stresses can lead to
deflections of the tool center point (TCP), reducing the quality of the workpiece. In addition, machine tools with
ideally three translational degrees of freedom, as shown exemplarily in Fig. 1, exhibit a full three-dimensional
behavior. Translational deflections can be compensated by additional movement of the guiding skids, for the
compensation of rotational deflections the adaptronic strut shown in Fig. 2 was developed. The strut is similar

Figure 1. Parallel kinematic machine tool with three
translational degrees of freedom.

Figure 2. Adaptronic strut1.
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in shape to a general strut in machine tools separated in two halves with a piezoelectric transducer unit placed
in-between. For the model considered within this paper this description is sufficient. The additionally required
components as well as the complete functional principle of the strut is described in1–3.

2. PHYSICAL MODEL

For designing a state controller, in a first step the adaptronic strut can be reduced to a simple oscillator with
three masses as shown in Fig. 3. The lower and upper half of the strut are represented by masses m1 and

Figure 3. Oscillator with three masses.

m3, respectively, the piezoelectric transducer is represented by mass m2. The positions of the three bodies are
described by the corresponding coordinates xi (i ∈ {1, 2, 3}). The stiffness coefficients ci can be calculated
to ci = EiAi

`i
using Hookes Law F

A = σ = Eε = E ∆`
` , with Young’s Modulus Ei, approximated cross-

sectional area Ai and length `i of the three parts of the adaptronic strut. The material damping is described
by approximated parameters di. The system experiences the influence of the external disturbance load F ,
representing ‘process loads’ and it is controlled by the piezoelectric transducer, whose actuating force Fr is
acting on body m2 and reacting on body m1. Within this contribution we concentrate on the actuating force
and only marginally consider the dependency between the actuator force Fr and the required voltage U . For low
voltage signals the linear piezoelectric constitutive equations

Tp = cE
pqSq − ekpEk (1)

Di = eiqSq + εS
ikEk (2)

apply with Tp and Sq being stress and strain in the piezoelectric material and Ek and Di being the electric
field and the electric displacement. Thus, for a stack actuator the force due to the applied voltage U then is
Fr = kU , where k is an abbreviation for geometry and material properties of the actuator1. In case of large
voltage signals the hysteretic dependency between actuator voltage and actuator force can be described using
elementary superposition, hysteresis and creep operators, whose non-linear influence can be compensated by
inverse control, see Kuhnen et al.4–6.

2.1. Analytical description

Written in matrix form the equations of motion of the system shown in Fig. 3 read

Mẍ + Dẋ + Cx = fFr + fSF (3)

with vectors x = [x1, x2, x3]T , f = [−1, 1, 0] and fS = [0, 0,−1]T , as well as mass matrix M = diag(mi),
damping matrix D and stiffness matrix C, where

D =




d1 + d2 −d2 0
−d2 d2 + d3 −d3

0 −d3 d3


 and C =




c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3


 (4)



with coefficients di such that the convenience hypothesis D = αM + βC is fulfilled.
Introducing the state variable vector zT = [ẋT , xT ], the equations of motion (3) can be rewritten in state space
form

ż = Az + b u + bS uS (5)

with

A =
[ −M−1D −M−1C

I 0

]
, b =

[
M−1f

0

]
, bS =

[
M−1fS

0

]
. (6)

In the system considered the plant output shall be the position x3 of mass m3. Thus, the observer matrix reduces
to the observer vector c =

[
0 0 0 0 0 1

]
, i.e. y = c · z = x3.

2.2. Linear Quadratic Regulator

The examined system is a single variable system with input u = Fr and disturbance uS = F . For specifying the
parameters of the controller in the state space approach an optimal Linear Quadratic Regulator (LQR) is used.
The structure of the state controlled system is shown in Fig. 4.

Figure 4. State control7.

With the controller force becoming
Fr = −rT z (7)

the constant gain r of the linear state feedback is sought such that the quadratic cost functional

J =
1
2

∞∫

0

[
zT (t)Qz(t) +

1
κ

F 2
r

]
dt (8)

is minimized with κ being positive and Q being a positive semi-definite matrix. The solution of this minimization
problem is

r = κ bT P (9)

with P being the unique positive definite solution of the algebraic Riccati equation7, 8

PA + AT P + Q− κ P bbT P = 0. (10)

The scalar κ is a measure for the cost of the controller input9, the matrix Q is chosen such that the product
zT Qz represents a modified potential and kinetic energy of the system. With zT = [ẋT ,xT ] it reads

Q =
[

wkinM 0
0 C + C∗

]
. (11)

The scalar wkin is a measure for the weighting of the kinetic energy within the quadratic cost function (8). The
higher wkin is set, the higher the motion of the system is considered in the setting of the controller parameters.
Thus, it is a measure of the damping properties of the controller.



Using the matrix C∗, the positioning of the three bodies of the system can be influenced. In the system
considered, the position x3 of mass m3 is the controlled variable. Thus, the matrix is set to

C∗ =




0 0 0
0 0 0
0 0 C∗


 (12)

with the scalar weight C∗. For wkin = 1 and C∗ = 0, the product zT Qz actually equals the total energy of the
system.

2.3. Simulation Results

The represented results are shown for different values of wkin and C∗, each modifying the matrix Q, the corre-
sponding cost function (8), and therefore the controller matrix r. To examine the damping of the controller, the
system damping is set to zero during all simulations, i.e. D = (dij) = 0. The initial conditions of the system are
zero velocities and positions xi = 0. It is disturbed by the external force

F = 2kN · σ(t− 0.05s). (13)

In Fig. 5, the influence of wkin on the position x3 is depicted. For wkin = 1, there is only very small damping
and the system is oscillating about a mean value xm, which can be calculated by

xm =
F

ctot
= F (

1
c1

+
1
c2

+
1
c3

). (14)

It easily can be seen that for increasing wkin the damping of the system increases as well, such that x3 converges
to a limit value xe 6= 0. This limit is a measure for the remaining control error.

Fig. 6 shows the influence of C∗ on the controller effect. For these simulations wkin = 1e5 is set, thus the
damping effect described above occurs. An increase of C∗ leads to two results. It increases the damping of the
system similarly to an increase of wkin, but it also reduces the remaining control error.
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Figure 5. Influence of wkin, with C∗ = 0.
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Figure 6. Influence of C∗, with wkin = 1e5.

To achieve a zero steady-state error, an additional controller system has to be implemented. In Fig. 7, a possible
set-up including an output feedback is shown. The state controlled system (A, b, c, r) presented above can be
rewritten as a new system with (A∗ = A − b · r, b, c). It is represented by the transfer function block G. In
the feedback path, H is a simple integrator, representing a sensing element, and in the forward path, C is a
proportional element. The prefilter F is set to one.



Figure 7. Closed loop system structure with integrator
in feedback and proportional element in forward path.
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Figure 8. Nyquist contour of open loop with integra-
tor and proportional element, stability margin.
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Figure 9. Root locus of closed loop with integrator and
proportional element, position of roots for C=1e12.

Using the root locus procedure for a closed loop system10, an optimal value for the proportional element P can
be achieved. The root locus of the examined system is shown in Fig. 9. For C = 1e12, an optimal system
behavior is achieved with dominating zeros far away from the imaginary axis. The large stability margin of the
closed loop according to the Nyquist criterion can be seen in the Nyquist contour of the open loop, depicted
in Fig. 8. The efficiency of using both controllers is shown in Fig. 10. The maximum deflection of x3 is less than
in most cases of single use of the LQR state controller and there is no remaining steady-state error.
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Figure 10. Use of LQR state controller in combination with PI feedback controller.



3. TRANSFER INTO NUMERICAL MODEL

Additionally, the oscillator system shown in Fig. 3 was modeled using the multi-body software Msc.Adams,
building the basis for the implementation of the flexible adaptronic strut into the complete model of the machine
tool with parallel kinematics. To implement the developed control concept described above, the interface to the
control software Matlab/Simulink was used. During the simulation, however, the complete state vector z,
necessary for the application of the state controller, is unknown.

3.1. Full State Observer (Luenberger Observer)

To estimate the complete state vector z of the examined system (A, b) and the output measurement y, a
Luenberger observer is introduced. With observer feedback vector `, the state vector can be approximated by

˙̂z = Aẑ + bu + ` (ŷ − y). (15)

According to Föllinger7, the eigenvalues of the closed-loop system (A, b) are not shifted if an observer is im-
plemented into the system. Their number is simply enhanced by the number of eigenvalues of the observer.
As long as the plant is observable and controllable, the eigenvalues of both, controller and observer, can be set
separately. Since the considered system is both observable and controllable, applying this separation theorem is
valid. Finally, it must be ensured that the designed observer is faster than the controller. Thus, the observer
poles must be placed further on the left of the imaginary axis than the closed-loop poles7. The evaluated eigen-
values for the controlled closed-loop system are listed in Tab. 1. Using the pole placement procedure according
to J. Ackermann7, the poles for the observer are set as listed in Tab. 2, resulting in the observer feedback vector
` in eq. (15).

λ1,2 −3.959e3± 1.31e5i

λ3,4 −1.345e3± 1.91e5i

λ5,6 −4.437e3± 9.66e5i

Table 1. Eigenvalues of A∗ = A− b r.

λ1,2 −4.97e4± 166i

λ3,4 −5.00e4± 333i

λ5,6 −5.03e4± 167i

Table 2. Eigenvalues of L∗ = A− ` c.

3.2. Co-Simulation Model

The resulting block diagram with controller, observer and plant is shown in Fig. 11. Controller 1 is the pro-
portional element, controller 2 is the integrator. The state controller contains the control vector r determined
in section 2. The disturbance onto the system is described within the external load block, the ADAMS model
contains the plant and its interface. The data exchange interval between the two software programs is set to
t = 0.1ms, identical to the maximum integration step size.

Figure 11. Matlab/Simulink block diagram for co-simulation with Msc.Adams.



3.3. Simulation Results

The parameters of the controller used for the co-simulation are determined according to the LQR method
described in section 2. The chosen settings are: wkin = 1e5, C∗ = 1e16, C = 1e12 and no damping of the
system, i.e. D = (dij) = 0. Like in the analytical study, the system is excited by the external disturbance
described by (13). In Fig. 12 the simulation results of the controlled system are presented. A steady-state error
occurs, if solely the LQR state controller is used. This control error can be resolved by switching on the PI
control element. In comparison with the simulation results of the analytical description, the maximum deflection
of x3 is larger when both controllers are used. The same holds for the steady-state error for the sole use of the
LQR controller. Since the required observer is faster than the state controller, this behavior might solely be a
result of the non-variable exchange step size of the co-simulation.
The performance of the designed observer during this simulation is depicted in Fig. 13.
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Figure 12. Msc.Adams-Matlab/Simulink cosimula-
tion: influence of LQR controller and PI feedback con-
troller on control variable x3.
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Figure 13. Comparison of position ŷ estimated by the
observer with actual position y = x3.

4. IMPLEMENTATION OF ADAPTRONIC STRUTS INTO MACHINE TOOL

After finishing the design of the controller for the three-body oscillator, the concept must be transferred onto the
complex flexible multi-body model of the adaptronic strut shown in Fig. 14. This procedure was chosen since

Figure 14. Msc.Adams flexible multi-body model of the
adaptronic strut.

Figure 15. Msc.Adams model of examined machine tool
with adaptronic struts at positions 2,3,5 (ad235).



the development of a separate, perfectly fitting control concept for this flexible multi-body model of the strut
is rather extensive: The large number of modal coordinates required for describing the flexible behavior of the
struts lead to a big quantity of state variables making the handling costly and expensive.

Eventually, the strut must be implemented into the machine tool, as exemplarily shown in Fig. 15 for three
adaptronic struts. Both, the compensation efficiency as well as the mechanical behavior of the machine tool,
depend on number and position of the substituted struts. Furthermore, the machining process, e.g. drilling or
milling, as well as the location within the machine workspace during these processes, influence the decision about
number and position of struts.
In a first step, the influence of the stiffness of the machine tool depending on number and position of the
exchanged adaptronic struts is examined. The frequency response Gxx of the TCP to a process load is depicted
in Fig. 16. The implementation of an adaptronic strut reduces the lowest resonance frequencies of the machine
tool due to a decrease of its stiffness. The number of the exchanged struts influences the stiffness only marginally,
as long as only one strut of a pair per guiding skid is substituted.
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Figure 16. Influence of number and position of adaptronic struts onto the stiffness of the machine tool, shown exemplarily
by the frequency response Gxx of the position of the TCP to a process load.

5. CONCLUSIONS AND OUTLOOK

In this contribution a control concept for a reduced model of an adaptronic compensation unit for machine
tools with parallel kinematics has been presented. With a combination of an optimal state controller and a
feedback PI controller the influence of external stepwise static disturbances can be abolished. Thus, the concept
is applicable for compensation of static and quasi-static errors within machine tools. For estimating the complete
state vector for the use of the state controller a Luenberger observer was established and implemented in a
co-simulation model. To determine the influence of number and position of the adaptronic struts on the behavior
of the machine tool, a frequency response analysis has been made.
Intended future studies include the control of one or more adaptronic struts within the machine tool. The
extension of the single variable control to a multivariable control is essential. Depending on the position of the
tool center point in the workspace, the compensation of (quasi-)static errors shall be achieved. Furthermore,
machining processes such as drilling and milling shall be considered. An extension of the frequency domain
required for compensation might be necessary for this purpose.



ACKNOWLEDGMENTS

Financial support of this research in the frame of the Priority Programme No. 1156 “Adaptronik in Werkzeug-
maschinen” by the German Research Foundation (DFG) is gratefully acknowledged.

REFERENCES
1. C. Rudolf, J. Wauer, J. Fleischer, and C. Munzinger, “An approach for compensation of geometric faults in

machine tools”, Proc. IDETC/CIE Conference, ASME (DETC2005-84241), 2005.
2. C. Rudolf, J. Wauer, J. Fleischer, and C. Munzinger, “Measuring static and slowly changing loads using

piezoelectric sensors”, Proc. 10th Int. Conference on New Actuators (P015), pp. 540–543, 2006.
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