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Abstract

Human romantic relationships are studied via system dynamics methodology. Starting point is a time-invariant linear
model of two individuals without interaction with environment. Specifically, time-dependent fluctuations both in the
source terms and the system parameters are introduced and examined in their consequences where also more realistic non-
linear modeling is proposed and analyzed.
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1. Introduction

Strogatz [9] first suggested in a 1-page contribution and later in his book [10] analyzed love affairs via dif-
ferential equations.1 This unusual approach was picked up by an Italian–Austrian group [3,5,6] for a serious
try to model such relationships by simple mathematical models composed of ordinary differential equations
but under a little more realistic circumstances. Recently another attempt [7] was made to explain also the
dynamics of love triangles. Related discrete dynamical models have recently been proposed in [2].

In the present contribution, we follow the differential equation approach once more. After reviewing the
time-invariant linear model, a nonlinear model with more realistic bounded return functions is proposed. Spe-
cial attention will be focused on the influence of time-varying source terms and time-varying system param-
eters.2 To show the difference between earlier and new results clearly, we start with the case of constant
source terms and constant system parameters (explanation and results) and then go to the model with
time-varying source terms and system parameters, both periodic and stochastic ones.

Finally, an outlook for treating the more complicated case of love triangles is addressed.
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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2. Classical linear and nonlinear models of love

We begin with the linear model of Strogatz [9] for two individuals (also a starting point in [7]), but with an
additional constant source term representing the appeal (or repulsion if negative), as suggested in [5]:
dR
dt
¼ aRþ bJ þ f ; ð1Þ

dJ
dt
¼ cRþ dJ þ g: ð2Þ
Specifically, R(t) is the love (or hate) of individual 1 for individual 2, J(t) is the love (or hate) of individual 2 for
individual 1. The coefficients a and b specify the ‘‘romantic style’’ of individual 1, and c and d that of individ-
ual 2. For example, parameter a describes the extent to which person 1 is encouraged by his/her own feelings,
and b is the extent to which he/she is encouraged by the feelings of person 2. f expresses how person 2 appeals
to person 1, and g how person 1 appeals to person 2. The resulting dynamics is two-dimensional, governed by
the corresponding initial conditions and the four system parameters a, b, c and d as well the two input terms f

and g. All the parameters are assumed to be constant in these two equations. It is entertaining, to classify the
romantic styles for a specific pair of lovers depending on the signs of a, b, c and d, and also to contemplate
the romantic forecast for the various pairings, influenced by the sign and the magnitude of f and g as well the
initial conditions. As noted by Sprott [7], the above modeling of Rinaldi [5] is more realistic since it allows
feelings to grow from a state of indifference and provides an equilibrium not characterized by complete
apathy.

As mentioned by Strogatz [9], the simplest model of the ill-fated romance between Romeo and Juliet is one
with
a ¼ 0; b < 0; f ¼ 0; c > 0; d ¼ 0; g ¼ 0: ð3Þ
It describes the essence as follows: Juliet is in love with Romeo, but Romeo is a fickle lover in the presented
version of the story. The more Juliet loves him, the more he begins to dislike her. But when she loses interest,
his feelings for her warm up. She, on the other hand, tends to echo him. Her love grows when he loves her, and
turns to hate when he hates her. The governing equations for their love are those of undamped oscillators, and
the sad outcome of their affair is, of course, a never-ending cycle of love and hate. At the very least, they man-
age to achieve simultaneous love only during one-quarter of the time.
2.1. Cautious lovers in linear formulation

As introduced by the other papers mentioned above, the model used in the present discussion is a minimal
one with the lowest possible number of state variables, namely, only the interaction between the two persons
are taken into account, while the rest of the world does not participate in the love dynamics. In contrast to
some of the other papers discussing all possible exotic combinations in the sign of system parameters, we deal
with the most generic situation of such couples which are composed of cautious individuals (see [5,6]). The
signs of all parameters will be fixed according to the phenomena oblivion, return and instinct according to
[5]. The oblivion describes the forgetting process and gives rise to a loss of interest in the partner. It explains,
for example, the typical exponential decay of the love R of individual 1 for individual 2 which takes place after
the death or estrangement of individual 2 (i.e., a,d < 0). In contrast, the return and the instinct are sources of
interest. More precisely, the return, i.e., the pleasure of being loved increases with the love of the partner (i.e.,
b,c > 0) while the instinct is sensitive only to the partners appeal (physical, intellectual, financial, etc.) (i.e.,
f,g > 0). Since both oblivion and return depend on one state variable only, synergism is assumed to be neg-
ligible. Very significant is the assumption that all factors of the relationship (typical for linear systems) are
independent from each other (assumed to be true within the nonlinear modeling, too). In addition, the per-
sonalities and the appeals of the individuals do not vary in time, which rules out, for instance, the longer-
termed aging, learning and adaption processes, for instance, as well as daily or weekly activities affecting fast
fluctuations of feelings.
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It follows that the starting point for the model of pair of cautious lovers is described by the equations
dx1

dt
¼ �a10x1 þ b10x2 þ F 10; ð4Þ

dx2

dt
¼ �a20x2 þ b20x1 þ F 20; ð5Þ
where all parameters ai0, bi0 and Fi0, i = 1,2, are constant and positive (for simplification, we do not split the
terms Fi0 into appeal and reactiveness coefficient as in [5]). The terms of bi0xj are called the return functions,
and bi0 are called the reaction parameters. The linear model (4) and (5) can be written for the state vector
x = [x1,x2]T in the standard form _x ¼ Axþ u where dots denote derivatives with respect to time and
A ¼
�a10 b10

b20 �a20

� �
; u ¼

F 10

F 20

� �
: ð6Þ
Such a system is sometimes called positive because the matrix A has nonnegative off-diagonal elements and the
vector u has positive components. It is assumed that they are completely indifferent to each other when they
meet the first time, i.e., x(0) = 0.

Under the assumptions of linearity, the system parameters have to fulfill the condition
b10b20 < a10a20 ð7Þ

to make the positive system asymptotically stable. If this were not the case, i.e. b10b20 P a10a20, then the sys-
tem would become unstable, corresponding to unrealistic unbounded feelings. However, for nonlinear model,
(7) is not a necessary condition, which will be discussed later. The characteristic properties of the linear model
are discussed (and proven) in detail in [5], and they are reviewed as follows for completeness.

Under condition (7), a cyclic behavior is not possible for a linear model with constant parameters. The equi-
librium point �xT ¼ ½�x1;�x2� can be found to be
�x1 ¼
a20F 10 þ b10F 20

a10a20 � b10b20

; �x2 ¼
a10F 20 þ b20F 10

a10a20 � b10b20

: ð8Þ
Eq. (8) shows that �xi > 0; i ¼ 1; 2. Thus, beginning with zero initial conditions, x1(t) P 0 and x2(t) P 0 for all
t > 0, finally reach a steady-state �x. This means that in the case of cautious lovers with positive appeals, they
will never become antagonists, i.e., at least one of xi(t) is negative (hate).

Fig. 1 shows the dynamic behavior of the system with parameter values of a10 = 2, a20 = b10 = b20 = 1,
F10 = 2, F20 = 1. If two individuals meet for the first time assuming x(0) = 0, they will develop positive feelings
tending toward the positive equilibrium value �x. The system has positive eigenvalues only, i.e., the equilibrium
of system (6) cannot be a focus. In other words, the transients of xi(t) cannot be damped oscillations, and they
are strictly increasing under the zero initial conditions, i.e., _xiðtÞ > 0; i ¼ 1; 2, for all t > 0, as shown in Fig. 1.
However, for nonzero initial conditions, one of two variables xi(t) can first decrease and then increase (see
trajectory A! �x in Fig. 1) or vice versa (see trajectory B! �x). Assume that a couple is at equilibrium and
that individual 2 has, for some reason, a sudden decline of interest in the partner. The consequence is that
individual 1 will suffer during the whole transient bringing the couple back to equilibrium, namely, x1

decreases along the trajectory A! �x.
It is known that the system generally has two different exponential decay rates, characterized by two dom-

inant time constants, when approaches to the equilibrium. The two straight trajectories are extreme cases
where the two functions ðxiðtÞ � �xiÞ; i ¼ 1; 2 decay exponentially at the same rate. The slowest decay occurs
along a trajectory which has a positive slope, the fastest decay along the other trajectory with negative slope.
Two further remarkable properties are also revealed. First, an increase in the reaction parameter bi0 and the
appeal term Fi0 of individual i gives rise to an increase in the love of both individuals at equilibrium, i.e., larger
�xi values. Secondly, an increase in b10 or b20 causes an increase of one dominant time constant and an decrease
of another. When b10b20 approaches a10a20, one tends to infinity and another tends to 1/(a10a20).

Summarizing all these properties, the romantic relationship between cautious lovers can easily be described.
First, individuals with positive appeal are capable of establishing a steady love relationship. The emotional
pattern of two cautious people falling in love is quite regular: beginning with complete indifference, then love
growing continuously until a plateau is reached. The level of plateau is higher for couples with higher reaction



Fig. 1. Trajectories (continuous lines) and nullclines (dotted lines) of the system according to [5]. The straight trajectories are identified by
the two eigenvectors.
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and appeal, respectively. Finally, couples with high reaction respond promptly during the first phase of their
romantic relationship, but are slow in reaching their plateau. Together with Eq. (8), this means that there is an
inverse correlation between the time needed to reach the equilibrium and the final quality (�x1 and �x2) of the
relationship. Thus, passions that develop too quickly are associated with poor romantic relationships.

2.2. Cautious lovers with nonlinear return functions

In a next step, the linear return function Ri = bi0xj will be replaced more realistically for cautious lovers.
Since an unbounded behavior cannot be realistic, it is more appropriate by assuming that, for positive values
of xj, the return function Ri is positive, increasing, concave and bounded, and it is negative, increasing, convex
and bounded for negative values of xj. To meet these requirements, the point-symmetric models
R1 ¼ b10

x2

1þ e0jx2j
; R2 ¼ b20

x1

1þ e0jx1j
ð9Þ
are proposed. Fig. 2 shows the corresponding graph. It is noted that monotonically increasing return functions
are typical for cautious individuals.

In passing, we note that the boundedness of the return function is a property that must hold also for non-
cautious people, and it represents the psycho-physical mechanisms that prevent people from reaching danger-
ously high stresses. However, it may not always be monotonically increasing for noncautious individuals when
pressure and involvement are too high.

The following mathematical model with constants Fi0, i = 1,2, will first be investigated, namely
_x1 ¼ �a10x1 þ b10

x2

1þ e0jx2j
þ F 10; ð10Þ

_x2 ¼ �a20x2 þ b20

x1

1þ e0jx1j
þ F 20: ð11Þ



Fig. 2. Return function Ri of cautious individuals.
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To find the equilibriums, let _x1 ¼ 0 and _x2 ¼ 0, leading to
�x1 ¼
1

a10

b10�x2

1þ e0j�x2j
þ F 10

� �
; �x2 ¼

1

a20

b20�x1

1þ e0j�x1j
þ F 20

� �
: ð12Þ
The two equations in (12) represents two curved nullclines, respectively. The fixed point(s) �xT
i ¼ ½�xi1;�xi2� can

easily be found as the intersection point(s) of the two lines. Since the equations determining the fixed points
for each pair of �xi1 and �xi2 are quadratic, they can be calculated explicitly for both cases �xi1;�xi2 > 0 and
�xi1;�xi2 < 0, respectively. It is found that a positive pair of �x11;�x12 > 0 exists for all conceivable parameter com-
binations. However, there may be two negative solution pairs, �x21;�x22 < 0 and �x31;�x32 < 0, depending on spe-
cific values of the system parameters. The latter two fix points may degenerate into one for some special
combination of parameters.

In the linear case under condition (7), the two nullclines are degenerated into two straight lines, and only
one intersection point exists, as shown in Fig. 1. This is an asymptotically stable fixed point in form of a stable
node which is a global attractor. In the nonlinear case, however, condition (7) is not necessary, and a greater
variety is possible depending on the values of parameters b10 and b20. The following are two typical cases.

The case of b10b20 < a10a20 (i.e., Eq. (7) holds, is shown in Fig. 3a with the parameter set of Fig. 1 supple-
mented by e0 = 0.2). The two nullclines only intersect at one point in the first quadrant. Therefore, the number
of attractors remains the same as in the linear case, i.e., there is only one stable node attractor in the first quad-
rant. The case is similar to the linear case qualitatively, and the couple is called a robust one.

For another choice of system parameters, the number of attractors may increase. Consider a case with
parameters a10, a20, F10, F20, and e0 the same as in Fig. 3a, but b10 = 4, b20 = 3 so that Eq. (7) is violated,
i.e. b10b20 > a10a20. There exist three equilibriums, as shown in Fig. 3b. Two of them, �x1 and �x3, are stable
nodes in the first and the third quadrants, characterizing one plateau of love, and another one of hate, respec-
tively. The third attractor �x2 is an unstable saddle point between the two stable nodes, also in the third quad-
rant. Although the basin of attraction for the fixed point of love ð�x1Þ is larger than that for the plateau of hate
ð�x3Þ, there is some danger that the relationship ends in antagonism ð�x3Þ. In this case, the relationship is a
fragile one.



Fig. 3a. Evolution of the feelings in a robust couple for different initial conditions.

Fig. 3b. Evolution of the feelings in a fragile couple for different initial conditions.

1540 J. Wauer et al. / Applied Mathematics and Computation 188 (2007) 1535–1548
It is noted that the represented portrait of a fragile couple, not discussed in [5,6], is a romantic style only for
the case of nonlinear return functions and condition (7) does not hold. It is realistic, but could not be described
by a linear model.
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3. Linear model with time fluctuations

We now return to the linear model Eqs. (4) and (5) but replace the input source terms Fi0 by time-fluctu-
ating Fi(t) and replace the system parameters ai0, bi0 by time-varying ai(t) and bi(t), respectively. Both
deterministic and stochastic variations of such terms will be considered. Furthermore, the two coupled
first-order governing Eqs. (4) and (5) can be decoupled, leading to two independent second-order equations
as follows:
€xi þ a1 þ a2 �
_bi

bi

 !
_xi þ a1a2 � b1b2 þ _ai � ai

_bi

bi

 !
xi ¼ _F i þ aj �

_bi

bi

 !
F i þ biF j; j 6¼ i; i; j ¼ 1; 2:

ð13Þ
Realistically, the appeal function Fi and its derivative must be bounded since Fi describes the reaction of the
individual i to the appeal of the partner j. We assume that the stability condition (7) is satisfied.
3.1. Oscillating source terms

First we consider that case in which the system parameters are constant, i.e., ai(t) = ai0, bi(t) = bi0, i = 1,2,
and only the source terms fluctuate. Eq. (13) are then simplified to
€xi þ ða10 þ a20Þ _xi þ ða10a20 � b10b20Þxi ¼ _F iðtÞ þ aj0F iðtÞ þ bi0F jðtÞ; j 6¼ i; i; j ¼ 1; 2: ð14Þ

Obviously, this are the equations of motion for two damped oscillators under external excitations with the
same natural circular frequency
x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a10a20 � b10b20

p
ð15Þ
of the corresponding undamped system and the same damping coefficient
D ¼ a10 þ a20

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a10a20 � b10b20

p : ð16Þ
It is clear that D > 1 under the condition (7), and the oscillators in (14) are over-damped.
We assume harmonic fluctuations
F iðtÞ ¼ F i0ð1þ ci0 cos XtÞ; i ¼ 1; 2 ð17Þ

for the source terms where (for simplification) the rhythm, i.e., the circular frequency X is the same for both part-
ners and a phase angle is not taken into consideration. It is straightforward to find the complete solutions
xiðtÞ ¼ e�Dx0t Aie
ffiffiffiffiffiffiffiffi
D2�1
p

x0t þ Bie
�
ffiffiffiffiffiffiffiffi
D2�1
p

x0t

� �
þ aj0F i0 þ bi0F j0

a10a20 � b10b20

þ
aj0F i0ci0 þ bi0F j0cj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � X2Þ2 þ ð2DXÞ2
q

� cos Xt þ arctan
2DX

x2
0 � X2

 !
� F i0ci0Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � X2Þ2 þ ð2DXÞ2
q sin Xt þ arctan

2DX

x2
0 � X2

 !
; i ¼ 1; 2

ð18Þ
for Eq. (14) where Ai and Bi are constants determined according to the initial conditions. Eq. (18) shows that
the steady-state solutions are also harmonic functions with circular frequency X. Fig. 4 depicts a trajectory for
the system under the zero initial conditions with the same parameter values as in Fig. 1, and c10 = c20 = 1 and
X/x0 = 2. After the transient terms are damped out, the steady-state trajectory is an elliptic orbit in the x1–x2

state plane. The center of the orbit is the fixed point �x in Fig. 1. It should be noted that due to the strong
damping (for the system data chosen, D = 1.5 results), the magnitude of the stationary cycle which for
X! 0 is the largest, decreases monotonically with increasing X without any pronounced resonance phenom-
enon and vanishes asymptotically when X!1.



Fig. 4. Evolution of the feelings in a linear couple with harmonically fluctuating source terms.
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3.2. Oscillating system parameters

If the appeal functions Fi, i = 1,2 are constants, i.e., Fi(t) = Fi0, but the system parameters are time-fluctu-
ating, the governing second-order differential equations read
€xi þ a1ðtÞ þ a2ðtÞ �
_biðtÞ
biðtÞ

 !
_xi þ a1ðtÞa2ðtÞ � b1ðtÞb2ðtÞ þ _aiðtÞ � aiðtÞ

_biðtÞ
biðtÞ

 !
xi

¼ ajðtÞ �
_biðtÞ
biðtÞ

 !
F i0 þ biðtÞF j0; j 6¼ i; i; j ¼ 1; 2: ð19Þ
Obviously, they are the equations of motion of damped oscillators under both parametric and external exci-
tations. Assume the time variations of the system parameters ai(t) and bi(t), i = 1,2 to be harmonic, i.e.,
aiðtÞ ¼ ai0ð1þ di0 cos XtÞ; i ¼ 1; 2; ð20Þ
biðtÞ ¼ bi0ð1þ di0 cos XtÞ; i ¼ 1; 2: ð21Þ
For simplicity, the circular frequency here is assumed to be the same for all parameters. Even though, there are
not longer mono-frequent fluctuations but periodic ones with an infinite number of harmonic components
with frequencies in form of whole-numbered multiples of X as the basic one. Fig. 5 shows the trajectory of
Fig. 5. Evolution of the feelings in a linear couple for harmonically fluctuating system parameters.
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the system evolution for the same parameters as in Fig. 1, with d10 = d20 = 2, X/x0 = 2 and zero initial con-
ditions. Obviously, the steady-state orbit differs from an elliptic one.

Taking into consideration that for the assumed cautious lovers, there is such a large damping involved that
the free motions are creeping motions and not oscillations it becomes clear that for such a system parametric-
excited vibrations as a typical instability of Hill’s equation cannot appear. Introduced perturbations are
decreasing and steady-state orbits in the x1, x2 phase space can only be induced by the appearing external exci-
tation terms. It follows that for cautious lovers, variations in system parameters need not to be considered if
only the qualitative dynamic behavior is to be investigated.

3.3. Oscillating source terms and system parameters

In the previous two sections, the harmonic fluctuations are assumed in either the source terms or the system
parameters. For the more complicated case where the variations appear in both the source terms and the sys-
tem parameters, the result is shown in Fig. 6 with the same parameter values as in Figs. 4 and 5. It is seen that
the steady-state trajectory is similar to that of Fig. 5.

For simplicity, only one circular frequency X is assumed for all harmonic fluctuations. In reality, different
partners have different periods in love feelings, and the periods are also different for the oblivion ai(t), the
return bi(t) and the appeal Fi(t). It is also noted that no combination of different harmonic functions is con-
sidered in the above cases, and the treatment is analogous if the fluctuations are periodic instead harmonic.

3.4. Random fluctuations in both source terms and system parameters

To take random disturbance into consideration, the following stochastic process is introduced
F

nðtÞ ¼ cos hðtÞ; dh ¼ Xdt þ rdBðtÞ; ð22Þ

where X and r are positive constants, and B(t) is a unit Wiener process. By adding a random phase in the

harmonic process, the stochastic process n(t) is called the randomized harmonic process. This randomized har-
monic process was proposed independently by Dimentberg [1] and Wedig [11], and can be used to model a
variety of random phenomena. It reduces to a pure sinusoidal signal when r = 0. Parameter X gives the peak
location of the spectral density, and r represents the level of stochasticity. The process has a narrow peak
when r is small. As r increases, the spectral density becomes increasingly flat.

Now the stochastic process n(t) can be used to replace the harmonic process cosXt in the corresponding
state equations for a variety of situations to investigate effects of the random fluctuations. For randomly fluc-
tuating source terms as well as the system parameters, for instance, we have the equations of motion
ig. 6. Evolution of the feelings in a linear couple with both harmonically fluctuating source terms and system parameters.
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Fig. 7. Steady-state feelings of a linear couple with weak random fluctuations.
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_x1 ¼ �a10½1þ d10nðtÞ�x1 þ b10½1þ d10nðtÞ�x2 þ F 10½1þ c10nðtÞ�; ð23Þ
_x2 ¼ �a20½1þ d20nðtÞ�x2 þ b20½1þ d20nðtÞ�x1 þ F 20½1þ c20nðtÞ�; ð24Þ
where n(t) is given by relation (22). Monte Carlo simulations were carried out to investigate system behaviors
for the stochastic system, Eqs. (23) and (24), while keeping the system parameters the same as those when
obtaining Figs. 4 and 5, namely, a10 = 2, a20 = 1, b10 = b20 = 1, d10 = d20 = 2, c10 = c20 = 1, F10 = 2,
F20 = 1, and X = 2x0. Fig. 7 shows results obtained for the two cases of r = 0 and r = 0.1, respectively.
The case of r = 0 corresponds to a harmonic disturbance, and the result shown in the figure is the steady-state
trajectory and is periodic. In the case of r = 0.1, corresponding to weak stochasticity, the love relationship
deviates from that of the periodic trajectory, and forms a distribution of relationship. At a higher stochasticity
level of r = 0.5, the deviation is much wider, as shown in Fig. 8. At some time instants, the change of feeling of
each partner may be quite dramatic, and the change is not exactly predictable. In general, cautious lovers have
lower stochasticity level.
2 4 6 8 10
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4

4.5

5

5.5

σ = 0
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2x

1x

Fig. 8. Steady-state feelings in a linear couple with strong random fluctuations.
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4. Nonlinear model with time fluctuations

In general, no analytical solution can be found when the return functions are nonlinear. Assuming small
nonlinearities e0� 1 in Eq. (9), the nonlinear return function Ri can then be approximated as
RiðxjÞ ¼ xjð1� e0jxjjÞ; i; j ¼ 1; 2: ð25Þ

In this case, a perturbation analysis can be performed to compute solutions originating from those of the

linear case. The resulting co-domain of the variables xj, j = 1,2, is not allowed to exceed a value of about
xj � 1/(2e0) because only for xj(t) 6 1/(2e0) an increasing absolute value of the return function is ensured. It
follows that for an accurate perturbation analysis, the absolute values of the fixed point coordinates have
to be restricted to numbers not significantly greater than these limiting values. On the other hand, the system
is strongly damped for cautious robust lovers, so that – this is well-known from the discussion of correspond-
ing Duffing oscillators – the difference between the linear and the nonlinear models may be insignificant using
perturbation analysis.

In cases where the absolute values of the fixed point coordinates exceed the given limiting values, a pertur-
bation analysis is no longer applicable, and only numerical simulations are promising. Such simulations are
straightforward for deterministically fluctuating source terms and system parameters, due to the low system
order. Results are shown in Fig. 9 for the nonlinear model under harmonically oscillating source terms with
parameters of Fig. 3a, and with c10 = c20 = 1 and X/x0 = 2. As shown in Fig. 9, the solution for the harmonic
input is periodic, but no longer harmonic due to the nonlinearity (for the data chosen the effect is small). The
center of the steady-state orbit in Fig. 9 is expected to coincide approximately with the fixed point �x1 in
Fig. 3a. Except that the solution is no longer harmonic, no further significant effects of the nonlinear return
function are observable.

For the case of a fragile couple, for which condition (7) does not hold, the steady-state orbit under harmon-
ically oscillating source terms may be about either equilibrium point �x1 or �x3, depending on the initial condi-
tions. Fig. 10 shows two different trajectories corresponding to two different initial conditions for the same
system parameters as those in Fig. 3b, and with c10 = c20 = 1 and X/x0 = 2. The initial conditions
x1(0) = 0 and x2(0) = �1.656 lead to a steady-state orbit about �x1; thus the couple ends in love. The initial
conditions x1(0) = �0.95 and x2(0) = �0.95 lead to another steady-state orbit near �x3, indicating that finally,
the couple is hating each other.
Fig. 9. Evolution of the feelings in a nonlinear robust couple with harmonically fluctuating source terms.



Fig. 10. Evolution of the feelings in a nonlinear fragile couple with harmonically fluctuating source terms.
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Similar phenomena can be found for more complex deterministic fluctuations in the system parameters, or
in both the source terms and system parameters.

For the case of nonlinear return functions and stochastic disturbances in both the source terms and the sys-
tem parameters, the linear return functions b10x2 in Eq. (23) and b20x1 in Eq. (24) are replaced by the nonlin-
ear ones given in Eq. (9). Figs. 11 and 12 show stationary trajectories for a nonlinear robust couple with
parameters of Fig. 3a, and c10 = c20 = 1, d10 = d20 = 2 and X/x0 = 2. The centers of the steady-state orbits
in Figs. 11 and 12 coincide approximately with the fixed point �x1 in Fig. 3a. Similar effects of the stochastic
disturbance are observed as those in the linear case. A higher stochasticity of r = 0.5 causes the love relation
ship more unstable, as shown in Fig. 12. However, the love relationship is still in place. Similar to the case of
harmonic fluctuations, no significant effects of the nonlinear return functions are found.

The situation is more complicated for a fragile couple under random disturbance. Beginning from the same
initial conditions, the outcomes may be very much different if random disturbances are present. Fig. 13 shows
two different trajectories for the same system with parameters same as those in Fig. 3b, with c10 = c20 = 1,
d10 = d20 = 2, and under the same initial conditions of x1(0) = 0 and x2(0) = �1.656 as in Fig. 10. The two
steady-state trajectories are totally different. One is around the attraction point �x1, and the couple is in love
relationship. The other is around the attraction point �x3, and the couple ends in hate relationship. Therefore, a
random event may cause a relationship to deteriorate.
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Fig. 11. Steady-state feelings of a nonlinear robust couple with weak random fluctuations.
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Fig. 12. Steady-state feelings in a nonlinear robust couple with strong random fluctuations.
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Fig. 13. Two possible outcomes of a nonlinear fragile couple with random fluctuations.
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5. Discussion

The dynamics of romantic relationships of two individuals are significantly more complex when time fluc-
tuations of source terms and system parameters are taken into consideration. It is clear that time-independent
personalities and appeals are an academic idealization. In reality, there are short- and long-termed fluctuations
of personal feelings due to, for instance, biological cycles and varying stresses from the daily job. While it is
straightforward to introduce such an emotional patterns into the mathematical model, it is difficult to measure
parameter values quantitatively. For couples with all kinds of exotic feeling, a never-ending list of new phe-
nomena may be expected. However, the variability is to be expected to be more limited for couples of cautious
individuals. One interesting effect is the cyclic change of love about a stationary center of steady love for a
couple governed by linear state equations, or a so-called robust couple governed by equations with nonlinear
return functions. For a fragile couple, there is a second stable fixed point of stationary hate, and the cyclic
behavior may occur about either of the two centers. A more complex irregular motion pattern surrounding
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both centers with alternating love and hate of different time spans might appear during different time periods,
but it seems very seldom for cautious lovers with strong damping.

Closing the discussion, it may be noted that the examination of love triangles with time-varying fluctuations
is another example of particular interest. Assume that individual 1 has feeling for two other individuals 2 and
3, who do not know each other. Then the simplest mathematical model for such a case would be four-dimen-
sional (see [7]),
_x12 ¼ �a1ðtÞx12 þ b1ðtÞðx2 � x3Þ þ F 1ðtÞ; ð26Þ
_x2 ¼ �a2ðtÞx2 þ b2ðtÞx12 þ F 2ðtÞ; ð27Þ
_x13 ¼ �a1ðtÞx13 þ b1ðtÞðx3 � x2Þ þ F 1ðtÞ; ð28Þ
_x3 ¼ �a3ðtÞx3 þ b3ðtÞx13 þ F 3ðtÞ: ð29Þ
It is obvious that the feeling of x1 for x2(x3) is weakened by the feeling of x1 for x3(x2), More complicated
linear and nonlinear models are possible, and rich phenomena can be discovered.

6. Concluding remarks

Romantic relationships of cautious lovers are discussed when time varying effects are included. The feelings
are modeled in form of two state equations with time varying source terms or/and system parameters. Both
harmonic and random time fluctuations are considered. While analytical results can be obtained for harmon-
ically fluctuating source terms (and system parameters) within the linear formulation, numerical simulation
must be carried out for the other situations. The results show that linear and nonlinear robust couples of cau-
tious individuals with time-fluctuating feelings tend to a cyclic emotional behavior about a fixed point of love
while for nonlinear fragile couples, more complex patterns of emotional feelings are possible.
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