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Zusammenfassung

Evolutionäre Algorithmen (EA) sind Optimierungswerkzeuge, welche auf Darwins Evolu-
tionstheorie und Mendels Genetik basieren. In ihrer über 30-jährigen Geschichte, haben
sie sich einen Ruf als gute Löser für schwere Probleme erarbeitet. Diese Diplomarbeit
betrachtet die Skalierbarkeit von EAs und ihre Anwendbarkeit auf große Probleme. Li-
teratur zu diesem Thema wird in vier Gruppen vorgestellt:

− Ansätze zur Verbesserung allgemein anwendbarer EAs, welche auf einer Hypothese
über die den EAs zu Grunde liegende Theorie basieren (Building Block Hypothese);

− parallele EAs, welche die Ausführungszeit unter Einsatz zusätzlicher Hardware
verbessern;

− EAs die problemspezifische Operatoren verwenden; und

− mehrstufige Systeme, welche EA beinhalten.

Die Ansätze der ersten beiden Gruppen haben flexible Algorithmen zum Ziel, welche
leicht auf eine Vielzahl von Problemen angewendet werden können. Die beiden letztge-
nannten Ansätze opfern diese Flexibilität zu Gunsten verbesserter Performanz auf einem
spezifischen Problembereich.

Diese Arbeit untersucht experimentell die Skalierbarkeit von evolutionären Clustering-
Algorithmen. Clustering Probleme sind allgemein und auch speziell zur Untersuchung
von EAs von Interesse. Der allgemeine Reiz von Clustering liegt in der verbreiteten
Anwendung in vielen Wissenschaftsbereichen; das Clustering Problem ist nicht nur auf
die Informatik beschränkt. Diese Arbeit betrachtet Clustering basierend auf paarweisen
Ähnlichkeiten, welches die allgemeinste Modellierung des Problems ist. Für die Analyse
von EAs ist Clustering auf Grund der verwendeten Repräsentation von Lösungskandi-
daten interessant. Die gewählte Kodierung führt zu einer hohen Abhängigkeit zwischen
vielen Variablen innerhalb eines Lösungskandidaten; dies erhöht die Schwierigkeit des
Problems für EAs.

Zur experimentellen Skalierbarkeitsanalyse sind skalierbare Testdaten notwendig, wel-
che als dünn-besetzte paarweise Ähnlichkeitsmatritzen erstellt werden. Ein einfacher EA,
welcher als Referenz eingeführt wird, zeigt schlechte Skalierbarkeitseigenschaften für die-
se Probleme. Mit wachsender Problemgröße nimmt die Laufzeit schneller als quadratisch
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zu. Schon für ein Problem mit 2.000 Objekten beträgt die durchschnittliche Laufzeit bis
zum Erreichen zufriedenstellender Lösungen über 20 Minuten. Dadurch ist der Referenz-
algorithmus für große Probleme nicht geeignet.

Verschiedene Erweiterungen des Referenzalgorithmus werden vorgeschlagen. Diese in-
tegrieren problemspezifisches Wissen in Form von speziellen Rekombinationsoperatoren
und durch die Hybridisierung mit Cluster-Heuristiken. Insgesamt ergeben sich durch
Kombinationen der vorgeschlagenen Operatoren 126 verschiedene Algorithmenkonfigu-
rationen, welche für Probleme mit bis zu 2.000 Objekten getestet werden. Als Ergebnis
der Experimente lässt sich feststellen, dass eine intelligente Initialisierung alleine, ohne
Hybridisierung und mit Standard-Rekombinationsoperatoren, keine verbesserte Skalier-
barkeit erreichen kann. Es finden sich aber Algorithmen, welche durch Cluster-basierte
Rekombination oder durch die Hybridisierung mit einem hill-climbing Algorithmus. So
ist es möglich, Probleme mit 2.000 Objekten durchschnittlich in unter drei Sekunden
zu lösen. Es werden Laufzeiten erreicht, die fast linear mit der Problemgröße skalieren.
Probleme mit bis zu 100.000 Objekten werden mit einer durchschnittlichen Laufzeit von
deutlich unter 1.000 Sekunden gelöst.

Die Algorithmuskonfigurationen die mit guter Performanz gemessen wurden werden
im nächsten Schritt erweitert. Die Verbesserungen basieren auf bekannten zweistufigen
Clustering EAs. Die vorgeschlagenen Verfahren clustern in der ersten Stufe ein grö-
ßenreduziertes Problem mit einem EA. Anschließend wird die berechnete Population
verwendet, um den EA der zweiten Stufe zu initialisieren, welcher dann auf dem original
Problem arbeitet. Zur Größenreduktion werden zwei Möglichkeiten vorgeschlagen: die
Komprimierung des Suchraums durch das Zusammenfassen von Objekten zu Objekt-
gruppen und das Zerlegen des Problems in mehrere kleinere Probleme, welche unabhän-
gig voneinander in der ersten Stufe bearbeitet werden. Die experimentelle Auswertung
zeigt, dass der Ansatz mit Objektgruppen Potential zur weiteren Reduzierung der Lauf-
zeit hat, während das Zerlegen des Problems die Laufzeit nicht weiter verbessert. Der
Test des zweistufigen Ansatzes mit guten Algorithmuskonfigurationen zeigt eine verrin-
gerte Robustheit, da nun manche zuvor erfolgreiche Konfiguration regelmäßig nur lokale
Optima erreicht. Andere Konfigurationen hingegen zeigen beträchtliche Verbesserungen
der Laufzeit, z.B. erreicht die beste Konfiguration beständig zufriedenstellende Lösungen
mit nur 30% der Laufzeit, die ein einstufiger EA in der selben Konfiguration benötigt.
Probleme mit bis zu 100.000 Objekten können so mit einer durchschnittlichen Laufzeit
von 200 Sekunden gelöst werden.

Abschließend lässt sich sagen, dass für die Clusteringprobleme evolutionäre Ansätze
als Basis für erfolgreiche, gut skalierende Methoden dienen können. Dies setzt jedoch
die Integration von problemspezifischem Wissen an passenden Stellen voraus. Obwohl
ein Standard EA flexibel genug ist, um ohne großen Aufwand für Clustering Probleme
angepasst zu werden, sind Standard Operatoren nicht ausreichend um gute Leistung
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oder Skalierbarkeit zu erzielen. Der Standard EA ist nicht geeignet zum Lösen großer
Probleme.

Sollen große Probleme mit wenig Aufwand gelöst werden, so kann der Entwurf von
problemspezifischen Operatoren zu kostspielig sein. Hier empfiehlt es sich den Algorith-
menentwurf auf einer problemspezifischen Heuristik aufzubauen, auch wenn die Heuristik
anfällig ist nur lokale Optima zu erreichen. In Kombination mit einem EA hat dieser An-
satz trotzdem gute Resultate gezeigt: der hybride Algorithmus ist zum einen schneller
als ein Standard EA im Erfolgsfall und zum anderen erfolgreicher als die nicht-hybride
Anwendung der Heuristik.

Ist jedoch bestmögliche Leistung ein Hauptaugenmerk, so kann der hybride Algo-
rithmus weiter optimiert werden, indem problemspezifische Operatoren oder zweistufige
Verfahren eingeführt werden. Diese Optimierungen können die Leistung nochmals be-
trächtlich verbessern. Jedoch sind sie aufwändiger zu entwickeln und erhöhen die Feh-
leranfälligkeit auf Grund reduzierter Robustheit.
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1 Introduction

Evolutionary algorithms (EA) are optimization techniques that are based on the prin-
ciples of Darwinian evolution and Mendelian genetics. In their history of more than 30
years, they have gained a good reputation for solving hard problems. Nowadays, EAs
are applied to a wide variety of problems and are used both in industry and research. A
major source of this success is the flexibility of the evolutionary approach; a standard EA
can be adapted to many problems with little effort. The result will most likely not out-
perform a problem-specific optimizer, but the EA has a good chance to yield acceptable
results in a feasible time, at least for smaller problem instances.

In this thesis, we focus on the scalability of EAs and their suitability to tackle large
problems. Throughout the history of EA research, the topics of scalability and per-
formance have received a considerable amount of attention. However, the underlying
theories of EAs have remained incomplete, so most insight on their scalability and on
performance improving measures is gained through experimentation. We will review
related work in four groups:

− approaches to improve general EAs, based on a hypothesis about EA theory (build-
ing block hypothesis);

− parallelized EAs, which speed up execution through additional hardware;

− EAs that include problem-specific operators; and

− multi-level systems that make use of EAs.

Approaches of the first two groups are aimed towards flexible algorithms, which can still
be adapted to many problems; the latter two approaches give up flexibility to improve
on a specific problem domain.

Our own research on EA scalability will also be done in an experimental manner.
We will evaluate EAs on the problem domain of clustering, which is interesting both in
general and for EA research. The general appeal of clustering stems from its wide use in
many diverse fields, which gives it importance also beyond the area of computer science.
We especially focus on pairwise similarity-based clustering, which is the most general
model of the problem. With respect to EA analysis, the attractiveness of clustering lies
in the encoding of clustering solutions for EA processing. The employed encoding leads
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to a high interdependency between many variables, a factor that poses a hard challenge
for EAs.

In this thesis, we will evaluate the scalability of EAs on the clustering problem and
investigate their suitability to process large-scale problems. We will test a general EA
that uses standard operators and design EAs that contain problem-specific modifications.
Our findings are that the runtime of the general EA scales at least quadratically with
problem size, which renders the approach computationally infeasible for moderately large
problems. Using problem-specific knowledge, various algorithms exhibit a near-linear
scalability and are able to solve very large problems in feasible time. We will also test
the further extension of good algorithms to two-level EAs; this allows an additional
runtime reduction of up to 70%.

In Chapter 2 we give an introduction to the topics of EAs and clustering, and review
literature on EA scalability in general and on clustering EAs. Chapter 3 details the
goals of this study and presents the derived methodology. Our approaches on scalability
improvements are presented in Chapters 4 and 5 according to the two problem-specific
classes mentioned above. Chapter 6 summarizes and concludes this thesis.



2 Background and Previous Work
We present required background information for the topics in this thesis and review
relevant literature. In this chapter, we introduce evolutionary algorithms, the target of
our investigation, as well as clustering, the test problem we use to conduct our analysis.
We then review relevant literature on two aspects of EAs; our aim is a broad overview
of scalability and performance enhancing techniques for EAs and an in-depth survey of
previous work in EAs for clustering.

2.1 Introduction to Evolutionary Algorithms
Evolutionary algorithms, or evolutionary computing, subsumes problem solvers rooted in
the principles of Darwinian evolution and Mendelian genetics. This section presents the
historic roots of EAs, gives a contemporary definition, and introduces the terminology
used in the field.

2.1.1 From Historic Roots to a General Definition
The foundation for current EAs had been laid multiple times by multiple researchers,
starting in the 1960s and 70s. Genetic algorithms (GA) were introduced by Holland [43],
evolutionary strategies (ES) by Rechenberg [73], and evolutionary programming (EP) by
Fogel et al. [31]. Genetic programming (GP), the fourth traditional EA dialect, was
introduced by Koza [55] in the early 1990s.

Most EAs are population-based problem-solving techniques that largely follow the
general scheme of selection, recombination, and mutation in Algorithm 2.1. At the
beginning of the field, the traditional EA categories mentioned above had distinctive
differences regarding specifics of the general EA flow. Each category had its standard
answers to questions, such as whether crossover is to be used or not, whether also parent
individuals or only offspring are eligible to progress to the next generation, or whether
individuals are represented in binary form, as real numbers, or as trees.

The different substreams grew together around the beginning of the 1990s, and nowa-
days many variants of EAs are blends of the traditional forms. In 1997, Fogel summarized
that EAs “involve the reproduction, random variation, competition, and selection of con-
tending individuals in a population. These form the essential essence of evolution, and
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Algorithm 2.1: EvolutionaryAlgorithm
begin1

Initialize population;2

Evaluate population and assign a fitness to each individual;3

while Termination condition is not fulfilled do4

Select parents from population;5

Crossover parents to produce offspring;6

Mutate offspring;7

Evaluate offspring and assign a fitness to each one;8

Select individuals for the next generation;9

end10

once these four processes are in place, whether in nature or in a computer, evolution is
the inevitable outcome”. [30]

2.1.2 Evolutionary Algorithm Terminology
Literature about EAs has spawned a colorful terminology, which mixes terms from tra-
ditional optimization techniques with biologically inspired ones. On a high level, an
EA is a population-based search, which denotes that multiple individuals are considered
simultaneously.

A single individual represents a candidate solution, also called a phenotype, for the
problem at hand. The low-level view of an individual refers to the bare data stored in
the population data structure, the so called chromosome or genotype. The link between
the phenotype and the genotype is established by a representation, a mapping that
states how candidate solutions are encoded into the machine readable chromosome that
is processed by the EA.

The genotype of an individual, the chromosome, is usually a complex data structure,
such as an array of integers. The single elements of the chromosome are referred to as
genes, variables, or loci (singular: locus). The possible values a gene can take are called
allele.

The EA scheme in Algorithm 2.1 recreates a population in discrete iterations. This
is called a generational EA, each iteration is called a generation. To create the next
generation, parent individuals are selected from the population and used for crossover,
also called recombination. This process mixes information from multiple parents to create
one or more offspring or children. The offspring undergo mutation, which is an operator
that (slightly) modifies their chromosome.

A more elaborate description of EA terminology, along with explanatory examples,
can be found in introductory textbooks, e.g., [28] by Eiben and Smith.
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2.2 Introduction to Clustering
Clustering is a widely used technique with applications in many diverse fields, such
as biology, health care, market research, image processing, or data mining [32], just
to name a few. This section gives a definition of clustering and presents traditional
clustering methods.

2.2.1 A Definition of Clustering
In a recently published book, Xu and Wunsch state about a definition of clustering:

“Clustering algorithms partition data objects (patterns, entities, instances,
observances, units) into a certain number of clusters (groups, subsets, or cat-
egories). However, there is no universally agreed upon and precise definition
of the term clusters.” [89]

In this thesis, we define clustering as the task of partitioning a set of n objects, V =
{o1, . . . , on} into k subsets, so-called clusters, such that the partition C = {C1, . . . , Ck},
Ci ⊆ V fulfills

− ⋃
Ci∈C Ci = V , the clusters cover all objects;

− ∀i, j : i 6= j ⇒ Ci ∩ Cj = ∅, clusters do not overlap; and

− ∀Ci ∈ C : Ci 6= ∅, C contains no degenerate clusters.

Each partition C of V that adheres to those conditions is a valid clustering, but one
usually aims at finding partitions that have certain beneficial properties. An exact
definition of “beneficial” cannot be given in general, since the perceived quality of a
clustering highly depends on the high-level problem to be solved.

The general agreement between most quality measures for clusterings is that all ask
for some form of intra-cluster density and inter-cluster sparsity. In an extensive survey
of clustering algorithms, Xu and Wunsch state “Most researchers describe a cluster by
considering the internal homogeneity and the external separation, i.e., patterns in the
same cluster should be similar to each other, while patterns in different clusters should
not” [88].

This definition requires a notion of similarity or dissimilarity between the objects in
V . Depending on the problem at hand, this notion can be inherent in the problem,
e.g., as an n × n similarity or distance matrix for the objects in V , or the similarity of
objects can be determined based on their features, e.g., through calculating the distance
of vectors in a d-dimensional Euclidean space.
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2.2.2 Traditional Clustering Methods
Traditional clustering methods are divided into hierarchical and partitional methods.

Hierarchical Clustering

Hierarchical clustering subsumes methods that create a hierarchy of clusterings C1 . . . Cn,
where C1 refers to the trivial clustering of assigning all objects to a single cluster and
Cn is the opposite trivial clustering of assigning each object to its own cluster. An
in-between clustering Ci can be derived from clustering Ci+1 by merging two clusters.
Hierarchical methods that start with the singleton clustering Cn and progress through
merge operations are called agglomerative clustering. Opposite strategies that start with
a single large cluster and repeatedly split clusters are called divisive clustering.

In practice agglomerative methods are more popular than divisive ones, since they
are computationally less expensive: the number of possible cluster pairs for merging is
quadratic in the number of current clusters, the number of choices to split a cluster is
exponential in the number of contained objects. Most agglomerative methods merge
the clusters which are closest with respect to a certain distance function. Examples are
single linkage clustering, which calculates the distance of two clusters based on the closest
objects in the clusters, and average linkage clustering, which averages the distance of all
objects in one cluster to all objects in the other cluster.

Hierarchical methods have the potential to provide detailed results, e.g., through the
representation of the produced hierarchy as a dendrogram, a special binary tree that
depicts which clusters have been merged/split and what inter-cluster distance they had.
The disadvantage of hierarchical methods is the inflexibility that an object can never be
reallocated after it has been assigned. Their computational costs are usually high, since
n iterations of at least linear cost are performed, which results in an overall complexity
of at least O(n2).

Partitional Clustering

As opposed to finding a hierarchy of clusterings, partitional methods optimize a single
clustering. The basis for partitional clustering is a criterion function that maps each
clustering of the data set to a quality value. A partitional clustering algorithm optimizes
this function.

The non-trivial clustering that globally optimizes a given criterion function is usually
not known. The number of all possible clusterings is exponential in n, and the problem
is NP-hard [8]. Thus, traditional partitional methods perform a heuristic search for a
clustering that optimizes the criterion function. Most take the desired number of clusters
as a predefined input parameter.
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A popular partitional method is k-means clustering. It operates on a set of real-
valued vectors, V ⊆ Rd. K-means is often used with the summed squared error criterion
function, that asks to minimize the summed distance of each object to the centroid
(average vector) of its cluster. The algorithm is randomly initialized. It calculates all
cluster centroids and reassigns each node to the closest centroid. This is repeated until
a stable solution is found.

The complexity of k-means is in O(nkd), which is faster than hierarchical clustering
in most cases. But it suffers from drawbacks, such as convergence to a local optimum
and inflexibility in the found cluster shapes. For example, the summed squared error
criterion gives preference to hyper-spherical clusters.

2.2.3 Modern Clustering Methods
Due to its applicability in many fields, clustering gets much interest from a large number
of researchers. The number of papers on clustering has more than doubled from 2000 to
2008 [89] and a great variety of clustering algorithms has been conceived.

For example, current clustering algorithms

− use combinatorial search methods to solve clustering, based on both classical meth-
ods, such as simulated annealing, and modern nature-inspired methods;

− tackle clustering with graph-theoretic approaches;

− employ neural networks for clustering;

− cluster based on estimates of the probability distributions that underlie the input
data;

− use kernel-based learning algorithms.

Many algorithms combine traditional methods with newer approaches, such as hybridiz-
ing nature-inspired search techniques with variants of the k-means algorithm.

An extensive review of clustering algorithms can be found in [49] by Jain, the most
recent comprehensive review is [88] by Xu and Wunsch, and [52] by Kettenring presents
a survey of current applications of clustering throughout all fields.

2.3 Previous Work on the Scalability and Performance
of Evolutionary Algorithms

The topics of scalability and performance have a long history in evolutionary algorithm
research. In the beginning, EAs had spawned hope for general problem solvers that
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exhibit good performance over a wide problem range. During the 1980s “The central
theme of research on genetic algorithms has been robustness, the balance between effi-
ciency and efficacy necessary for survival in many different environments” [34]. But in
the 1990s, the goal of finding a black-box optimizer superior to random search in general
was proven impossible with the “no free lunch” theorem [85].

Nowadays, much research on improving the scalability and performance of EAs is still
ongoing; even if a holy grail of optimization cannot be found, performance improvements
on a smaller problem range are still being desired. Various approaches have been pro-
posed to improve scalability. We present examples of previous work categorized into
four groups: EAs that use linkage discovery techniques, parallelized EAs, EAs that in-
clude problem-specific knowledge, and EAs that are used as a component in a multi-level
system.

2.3.1 Building Blocks and Linkage Discovery

The goal to produce good EAs that are still applicable to a wide problem range has
attracted many researchers that follow the building block hypothesis introduced by Gold-
berg [34]. According to the hypothesis, an EA develops good quality solutions in a
hierarchical approach: First, short high-quality subsets of the genome, so-called building
blocks (BB), are evolved. The building blocks then combine and cover larger genome
areas with beneficial configurations until a globally optimal individual is found.

The hypothesis has spawned many EAs aimed at allowing good building blocks to be
inherited to offspring with only a low probability of being disrupted. The probability of
disruption depends on how tightly the genes of a building block are “linked”; a property
that is inherent in the used representation and crossover operators. Gene linkage is
best understood by an example: Let us assume a 6 bit problem that consists of two
independent 3 bit subfunctions a0...2 and b0...2. Two possible encodings of this problem
as a 6 bit string are E1 : a0a1a2b0b1b2 and E2 : a0b0a1b1a2b2. Under one-point crossover,
encoding E1 has a tighter pairwise linkage between genes of the individual subfunctions
than encoding E2. For example, the probability to disrupt a building block for problem
a0...2 is 2

5 for E1 and 4
5 for E2.

If sufficient prior knowledge about a problem was available, a practitioner could de-
sign a representation that explicitly maps related genes to neighboring positions on the
genome. This would give coadapted genes a high probability of being inherited together
under one-point or many-point crossover. Such prior knowledge is usually not available.
To compensate for this, researchers have investigated EAs that discover linkage groups
(related genes) automatically and exploit them during crossover.
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Munetomo and Goldberg classify techniques for linkage discovery in three groups [66]:
direct detection of bias in probability distributions, direct detection of fitness changes
by perturbations, and indirect detection along genetic search of building blocks.

1. Examples of the first group are some estimation of distribution algorithms (EDA).
EDAs are similar to EAs but instead of crossover they generate and sample a prob-
abilistic model. Some EDAs include techniques for linkage discovery; for example,
the extended compact genetic algorithm (ECGA) [40] tries to minimize the com-
plexity of the probabilistic model, which leads to the summarization of correlated
genes. Bayesian optimization algorithms (BOA) [71] model probability distribu-
tion as a Bayesian network, a representation that relies on conditional probabilities
and thus is able to discover correlated genes.

2. Examples of the second group are enhanced messy genetic algorithms. Messy EAs
encode individuals through movable (gene, allele) pairs, thus removing the physical
gene linkage of fixed position genes [35]. The gene expression messy genetic algo-
rithm (GEMGA) [5] uses a two-phase linkage-learning process. It first analyzes all
individuals through systematic perturbations. Each gene is perturbed randomly
to detect if its current value is optimal in the neighborhood. All neighborhood-
optimal genes are assigned to an initial linkage set. Genes with a high probability
of co-occurrence in the initial linkage sets then build the final linkage sets. The
GEMGA crossover combines detected linkage sets of parent chromosomes.

3. Algorithms of the third group do not detect linkage directly but have been shown
to develop tight linkage through their representation and operators. The link-
age learning genetic algorithm (LLGA) [14] is an example of this group. LLGA
represents a genome as (gene, allele) combinations that are positioned on a ring
structure and interspaced by empty, “non-coding”, segments on the ring. Each
genome contains all possible (gene, allele) combinations; phenotypes are derived
by circling the ring from a random starting point and selecting the first allele value
for each gene. Crossover selects a random segment in one parent and grafts it
into the other. Studies of LLGA show that the linkage of a building block during
crossover increases if the BB is either completely transferred from one parent to
the other or not disrupted by crossover in the receiving parent.

An extensive survey of linkage learning techniques can be found in [15]; [76] surveys
algorithms of the second and third category, and [51] gives an elaborate non-technical
introduction to linkage-learning. Many published studies report favorable results for
linkage-learning EAs, such as better performance than simple EAs [40] or linear con-
vergence times for some problems [5][14]. But most test problems that have been used
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in those studies are concatenations or hierarchies of independent, small (up to 5 bit)
problems. Large problems constructed in this way are especially well-suited to building
block approaches, since they are fully decomposable into the single building blocks.

Today, the validity of the building block hypothesis is a controversial topic among
researchers. Some defend it with pragmatic reasons, such as “all things are made out
of building blocks, whether they be tables, giraffes or computer programs” [80]. Others
find “The widespread belief that genetic algorithms are robust by virtue of their schema
processing is [. . . ] more the result of salesmanship than logical analysis” [84] and note
“The various claims about GAs that are traditionally made under the name of the
building block hypothesis have, to date, no basis in theory, and, in some cases, are
simply incoherent” [86].

2.3.2 Parallelization
For most EAs, parallelization is a straight-forward way to speed up execution, due to an
inherently parallel program flow. Most operations require only one or two individuals
as input: recombination, mutation, and evaluation of independent individuals can all
be performed in parallel. In a generational EA, synchronization is only needed at the
beginning of a new generation to select parents and at the end to construct the next
generation. Simple parallelization approaches utilize this: A central process manages a
single population and distributes parallelizable workload to slave processes. This model
is known as the master/slave model or farming model. It can easily be applied to many
(generational) EAs. The possible speedup is limited, according to Amdahl’s law [4], by
the percentage of serial work, which the central process performs.

Achieving further speedup requires to either parallelize the intrinsic serial tasks [7] or
to depart from the general EA scheme towards algorithms that are designed for parallel
execution. Algorithms that follow the latter proposal are grouped into coarse-grained
and fine-grained models [1][11][74]:

1. Parallel EAs of the coarse-grained model, also called island model or deme model,
consist of multiple, largely independent subpopulations [61]. Each computing node
manages a single population and executes a regular EA. According to a defined
migration strategy, such as “every m generations”, the different subpopulations ex-
change a number of individuals with neighboring subpopulations. This EA variant
automatically introduces a niching effect, which prevents a single individual from
quickly taking over the whole population, which has been reported as beneficial
for population diversity.

2. The fine-grained model, also called diffusion model, neighborhood model, or cellular
model, is an extreme case of the island model [2]. Each individual is assigned to
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its unique processing node. All nodes are connected in a certain pattern, such as
a grid, to form a structured population. Each node is self-scheduled in selecting
parent individuals from its neighboring nodes, generating offspring, and deciding
on the possible replacement of its individual with newly generated offspring.

Unlike the parallelization of traditional EAs, which results in a very predictable
speedup, the specialized parallel EAs constitute new evolutionary approaches. Re-
searchers have reported some positive results, such as superlinear speedup, but as is
the case with non-parallel EAs, the theory behind those algorithms is far from complete.
Implementations of the parallel EA approaches presented above are surveyed in [1], [11],
and [74].

2.3.3 Using Problem-specific Knowledge
The “no free lunch” theorem [85] states that all black-box search algorithms have an
equal average performance over the space of all possible problems. This means that an
EA pays for good performance on a certain class of problems with worse performance on
other types of problems. This is acceptable if one looks for an EA with good performance
and scalability for a limited problem range. In this case, performance can be actively
tuned towards a certain problem-type with the inclusion of problem-specific knowledge
in the EA.

The EA flowchart (Algorithm 2.1) allows many possibilities to include problem-specific
knowledge. We present four categories by example, depending on the use of informed
initialization, informed operators, a problem-specific representation, and hybridization
with traditional techniques.

1. The impact of a problem-specific initialization is analyzed in [81] for four real-world
problems. The authors derive initial populations from good solutions that have
been found by heuristics. A good solution is mass-mutated with varying mutation
rates (from 0% to 100%) and used to seed the initial population. A 0% mutation
rate corresponds to a population that is seeded with identical copies of the good
solution, a 100% mutation rate corresponds to a completely random initialization.
The authors find that low mutation rates for the mass-mutation result in a higher
average fitness of the best individual. But with lower mass-mutation rates, variance
in the fitness of the best individual is also reduced. For some problems, the overall
best result was only obtained with a purely random initial population.

2. An example for EAs that use problem-specific operators is the algorithm for a multi-
day scheduling problem given in [23]. In the paper, the problem is formulated
as an integer linear program (ILP). The authors first compare a traditional ILP
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solver with a standard EA that uses a random initial population, binary-coded
individuals, one-point crossover, and bitwise mutation. The traditional ILP solver
fails to find feasible solutions for problems of 200 variables. The standard EA is
able to find feasible solutions for up to 300 variables but shows an exponential
growth in the number of required function evaluations. The EA is then enhanced
with problem-specific operators: e.g., for each day, crossover chooses the schedule of
the parent with higher resource utilization; mutation modifies infeasible solutions
to become feasible. The problem-specific EA is successfully applied to problems of
up to 1 million variables and exhibits sub-quadratic growth of computational time.

3. A step further than just problem-specific operators goes the introduction of a
problem-specific representation. An example is the EA for a spanning-tree problem
in electrical distribution planning presented in [12]. The authors find drawbacks in
two early EA approaches, which both represent solutions as straightforward binary
strings over the possible tree edges; included edges are marked with 1s. Traditional
operators create many infeasible solutions in this case, since only a small subset of
the binary strings represents valid tree structures. This is countered by a crossover
that builds offspring as spanning trees in the union of parental tree edges. The
authors claim that this improvement does not support timely convergence, since
large structures in the parent trees are unlikely to survive recombination. They
suggest to represent spanning trees by storing direct precedence relationships be-
tween nodes as seen from a fixed root. A novel crossover selects random paths
in one parent and injects them to the other in a feasibility preserving manner.
Experimental evaluation for a fixed number of generations shows that this novel
approach has, on average, identified twice as many correct edges than the tradi-
tional EA. The result of the improved EA with a standard representation lies in
between.

4. The furthest-reaching extension to traditional EAs is a hybridization with problem-
specific techniques, which yields so-called memetic algorithms [69]. Newly cre-
ated offspring can be subjected to a variation of classical optimization approaches,
ranging from hill-climbing improvement to highly specialized problem-dependent
heuristics. Memetic algorithms for clustering problems will be discussed in Sec-
tion 2.4.2, further examples for a wide range of real-world applications can be found
in [41].

2.3.4 Multi-level Approaches
The approaches mentioned so far, which are used to improve scalability and performance,
amend the inner workings of an EA. A different direction is taken by researchers that
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modify the outside environment around EAs and use them only as part of a multi-level
problem solving workflow. We group the presented examples in two-level EAs, EAs as
part of a sequential workflow, and EAs as high-level controllers in hyper-heuristics.

1. Two-level EAs have been introduced in situations where a given EA was compu-
tationally infeasible for large problem sizes. Section 2.4.4 will describe example
two-level EAs for the clustering problem in more detail: An algorithm by Gündüz-
Öğüdücü and Uyar performs a first-level EA run on a compacted version of the
given problem and then unpacks the results to seed a second-level run; a clustering
algorithm by Korkmaz uses an EA first on partial versions of a problem and then
builds a complete solution from found subsolutions in a second EA run.

2. An example that uses an EA only for one level in a sequential workflow is given
in [44] for a vehicle routing problem with time windows; an optimization problem
aimed at both minimizing the number of vehicles and the total traveled distance.
The problem is usually approached by traditional search techniques, but the au-
thors find that for large problems, a neighborhood search is unlikely to reduce the
number of vehicles, since this requires extensive changes to a given solution. They
propose a two-level approach that first optimizes the number of vehicles using an
EA and then optimizes the traveled distance of the best solution with a tabu search.
Experiments place the proposed algorithm “among the best methods” for smaller
problems and show that it is “very competitive for very large problem instances”.
A reversed approach is introduced in [17] where the authors first employ a heuristic
and use an EA in the second level. The paper deals with a problem in airline crew
scheduling: the planned trips of one month need to be assigned to the employees
schedules, so that all trips are covered and constraints on the schedules are met.
Each schedule should have a high workload, as to cover the trips with the minimum
number of employees. The authors first build as many complete, high quality
schedules as possible with a heuristic. This procedure leaves a number of open
trips, which the heuristic failed to assign. In the second level, an EA is used to
combine the leftover trips into schedules. This approach reduces the time needed in
the EA-phase, since the EA only deals with a limited subset of the initial problem.

3. Recent approaches combine EAs and traditional heuristics in a hierarchical manner,
to obtain so called hyper-heuristics [9]. Unlike common meta-heuristics, which
operate on the space of solutions, a hyper-heuristic works on the space of low-
level heuristics developed for the problem. One possible variant employs EAs as
the high-level search. An example for this approach is shown in [21] for a trainer
scheduling problem. The system uses 12 low-level heuristics, and the EA evolves a
sequence for their application in order to construct a solution. The authors show
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in experiments that the hyper-heuristic system outperforms both a traditional EA
and the sole application of the low-level heuristics.

Other authors use genetic programming to design heuristics from scratch. Both [10]
and [57] find the evolved heuristics for bin-packing and a version of the knapsack
problem to be on par with human-designed heuristics.

2.4 Previous Work on Evolutionary Algorithms for
Clustering

Clustering problems, especially those that have traditionally been solved with partitional
clustering methods, can be seen as combinatorial optimization problems with the goal to
find an optimal solution to the criterion function. Clustering optimization problems are
known to be NP-hard [8]. According to current knowledge, this renders it impossible
to reliably find an optimal solution in an acceptable amount of time.

Evolutionary algorithms have earned themselves a reputation as a good heuristic for
solving hard optimization problems. Thus it is little surprise that they have been applied
to clustering problems. First clustering EAs appeared at the beginning of the 1990s as
adaptions of the simple genetic algorithm to the clustering problem [56] [6]. Since then,
a variety of implementations has been developed, and more sophisticated representa-
tions and operators, as well as hybridizations with other search techniques have been
introduced.

Cole gives one of the first reviews of EAs for clustering in her thesis [18], a survey on
metaheuristics for clustering by Rayward-Smith [72] includes several EA approaches, and
Hruschka et al. present a recent survey of EAs for feature-based clustering [47], which
is an extension of their previous work [68]. The majority of previous work deals with
feature-based clustering, especially for clustering vectors in Rd. Thus, in this review, we
specifically note algorithms that can handle similarity or distance information directly.

This section gives a short overview of EAs for clustering. We survey various represen-
tations and their genetic operators, describe hybridization approaches that combine EAs
with other techniques, discuss possible objective functions, and give special consideration
to approaches that either focused on large problems or scalability improvements.

2.4.1 Representations and Operators

The basis for designing an EA is the representation that maps the phenotypical problem
to a genotypical data structure. The chosen representation then constraints the range
of standard genetic operators for crossover and mutation, and is the basis for custom
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problem-based operators. The majority of clustering EAs uses direct or centroid-based
representation, but medoid-based representations and others have been used as well.

Direct Representations

A direct representation, sometimes called label-based representation or group number
encoding, explicitly stores the assignment of each object to a cluster. Due to its simplicity
the direct representation is used by most early work, e.g., in the form of bit strings to
group data into two clusters [56] or as n× k binary matrices that have a single 1 in each
column [6]. In later work, integer strings of length n are more common; they store a
cluster number 1 . . . k for each object [75] [26].

The papers referenced above employ standard genetic operators; they recombine two
parents through one-point, many-point, or uniform crossover and perform mutation
through bit-flips or random reassignment of group numbers. A drawback of this combi-
nation is the resulting context-insensitivity: two individuals that represent equal solution
candidates, such as 11122|2233 and 22233|3311 for a problem with 9 objects, can pro-
duce a different offspring, e.g., 111223311 for one-point crossover at the marked position.
To counter this, some authors use normalization in their algorithms, e.g., by permuting
the group numbers in one parent to match those of the second during crossover [58] [64].
A positive effect of this strategy on solution quality is found by Choi and Moon [16].
Kim et al. [53] formalize the normalization process through the introduction of a labeling-
independent distance between two individuals and a geometric crossover based on this
distance.

Hruschka et al. use special crossover and mutation operators with a direct represen-
tation in their clustering genetic algorithm (CGA) and evolutionary algorithm for clus-
tering (EAC) [46]. CGA employs a crossover similar to the one presented by Falkenauer
in [29]: a subset of clusters in one parent is chosen and copied into the second parent.
In the second parent “the unchanged clusters [...] are maintained and the changed ones
have their unaffected objects allocated to the corresponding nearest clusters (according
to their centroids)”. EAC knows two problem-specific mutations. The first one splits a
single cluster into two, assigning membership based on the distance to initially selected
seeds. The second eliminates a cluster, assigning its objects to the remaining clusters
based on their distance to cluster centroids.

Uyar and Gündüz-Öğüdücü also use a crossover that is independent of the labels
stored in a direct representation [83]. The object-focused operator randomly selects an
uncovered object and a parent. The selected object and all other uncovered objects in
its cluster then form a new cluster in the offspring. This process is repeated until all
objects are covered.
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Most algorithms that use a direct representation are able to handle similarity-based
clustering, even if they have not been initially designed to do so. Exceptions of this are
algorithms that use cluster centroids in their criterion function or that employ special
centroid-based operators, such as CGA and EAC.

Centroid-based Representations

A centroid-based representation stores k feature vectors for a k-clustering problem, called
centroids. The assignment of objects to clusters is then indirectly determined by assign-
ing each object to the closest feature vector. Common to most approaches is to store the
centroid vectors coded as real numbers, e.g., [13], [59], and [63], but a variety of genetic
operators is used.

When treating each feature vector as a single locus, traditional two-point [13] and uni-
form crossover [63] can be applied. In order to increase the likelihood of well-distributed
centroids in the offspring, [13] sorts the genotype according to the coordinates of the first
dimension. Linear crossover in [59] combines two parent centroids linearly to produce
an offspring centroid. Merz and Zell suggest a special distance-based crossover, termed
replacement recombination operator in [63]: For two parents a and b, they match the
centroids in parent b to those in parent a according to their distances and replace un-
matched, “far-away” centroids in parent a randomly with centroids of parent b that are
not exclusively assigned.

A commonly used mutation operator for real coded centroids is Gaussian perturba-
tion [13] [59], which randomly moves the centroid in the search space. Merz and Zell
suggest a distance-based mutation [63], which creates a new centroid by searching a ran-
dom cluster for the object most distant to the center; this object replaces a randomly
selected centroid.

A more exotic centroid-based approach is proposed by Xiao et al. in [87]. They encode
centroid coordinates in quantum-inspired Q-bits, which hold probabilities for each bit to
be zero or one. Their algorithm repeatedly collapses the Q-bits into a binary state, runs
several generations of a standard centroid-based algorithm, and “rotates” the Q-bits so
that “the use of quantum-gate rotation is to emphasize the searching direction toward”
the best individual.

Medoid-based Representations

Medoid-based representations are similar to centroid-based ones, but have the additional
constraint that cluster centers have to coincide with an object o ∈ V . This allows a
simple representation by listing the index of each medoid object. Such a representation
is used in [60] and [77]. The crossover operator pools the parent medoids and divides
them again randomly to create two offspring. Mutation is performed through random
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replacement of medoids. The same representation is used in [65] but with traditional
one-point crossover.

Medoid-based methods are suitable for similarity-based clustering. Unlike centroid-
based methods that define cluster centers as unconstrained coordinates, medoid-based
methods fix the centers to representative objects. But unlike direct encoding, which
explicitly assigns each object to a cluster, medoid-based methods still require a decoding
step to produce the final solution. This decoding requires a full similarity matrix in
order to compare each object to every medoid. If only sparse similarity data is available,
medoid-based algorithms are not suitable.

Others

Other than the above mentioned representations, some less common methods are used
for EA clustering as well. Speer et al. base their algorithm on a minimum spanning
tree (MST) of the data set [79]. Solutions are represented by “deleted edges” in the
MST, which then induce a clustering through the remaining connected components.
Crossover is done by pairing up the deleted edges of two parents randomly and passing
on the deleted edge of either parent with equal chance. Mutation randomly exchanges a
deleted and a non-deleted edge. In their original work, the EA is used for feature-based
clustering, but this approach is also suitable for similarity-based clustering, if the data
set allows to create an MST.

Another less common representation is based on linkage encoding, which is used in
[27], [39], and [54]. In this encoding, individuals are strings of n object indexes, with
the interpretation that the entry j on the i-th position corresponds to a link of oi to oj.
A clustering solution is calculated based on the connected components in the induced
graph. Similar to a direct encoding, this representation maps many genotypes to the
same phenotype. Both [27] and [54] allow forward links only and limit the number
of incoming edges to 1 for each node that does not point to itself. This results in a
one-to-one mapping of genotypes and phenotypes.

Linkage encoding allows the use of traditional one-point and uniform crossover. Tra-
ditional operators are reported to work well, since they pass on much structure of the
parent clusters to the offspring while merging and splitting clusters automatically. This
has been used for algorithms that perform a search for the correct number of clusters,
since solutions with variable k can be easily represented with a fixed-length genome.
The assignment of each node to a cluster can be derived from the linkage encoding
without involving distances or similarities. Thus the resulting algorithms are generally
able to deal with sparse similarity-based clustering, as long as the criterion function is
compatible as well.
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2.4.2 Hybridization

Several previous approaches introduce further methods to improve the algorithms de-
scribed above. A common strategy to achieve better results and/or faster convergence
is the hybridization of an EA with local search methods or traditional heuristics.

Out of the above algorithms, [26], [75], and [79] introduce neighborhood hill-climbing
to optimize the produced offspring; small perturbations, such as swapping deleted and
non-deleted MST edges or reassigning single objects, are tested for their effect on the
overall fitness. If they have a positive effect the update is accepted, otherwise it is
reversed; this procedure can be repeated several times. The EA in [75] is also amended
with a tabu list that prevents the algorithm from considering individuals again that have
already been evaluated before.

Other EAs for clustering have been hybridized with traditional partitional clustering
techniques. For example, [46] and [63] use k-means iterations to optimize centroids or
to produce an updated labeling for a direct encoding.

2.4.3 Objectives

The suitability of an objective or criterion function in a clustering EA is highly dependent
on the problem at hand. No general function exists that is able to differentiate a “good”
clustering from a “bad” one, since even the interpretations of good and bad are usually
problem dependent. Each criterion function usually gives a certain preference to some
special form of solution. For example, single-linkage clustering often results in elongated
clusters, k-means clustering and other algorithms that are based on the summed squared
error criterion lead to spherical clusters.

Important for choosing a proper objective function is also the question whether the
clustering algorithm takes a fixed number of clusters, k, as an input parameter or needs
to determine the best value automatically. The former usually poses no problems, but
the latter approach needs to consider certain aspects of the criterion function. Most
functions have their global optimum in one of the trivial clusterings, e.g., the summed
squared error equals zero for k = n.

To find a good k, independent of the preferences of a single criterion, some previous
work uses multi objective evolutionary algorithms (MOEA); algorithms that discover a
front of Pareto optimal solutions. Most MOEAs for dynamic-k clustering in the literature
employ two contradicting objectives so that one is optimal for singletons and the other
one for a single cluster. Multi objective clustering EAs are based on traditional MOEAs,
such as the clustering EAs by Du et al. [27] based on NPGA [45], Chen and Wang [13]
and Mukhopadhyay and Maulik [65] based on NSGA-II [22], and Handl and Knowles [39]
based on PESA-II [20].
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Demir et al. compare multiple variants of MOEAs for clustering in [24], including the
algorithm of Handl and Knowles and a version of [83] that is adapted to work with the
SPEA2 [90] multi objective algorithm. Their study presents various objective functions,
which we summarize as a good example of the existing variety.

Min-max-cut (MMC) sums the ratio of inter-cluster similarity over intra-cluster simi-
larity for each cluster, based on a similarity function s. It is to be minimized and reaches
its global optimum for k = 1 cluster:

MMC(C) =
∑
Ci∈C

cut (V \ Ci, Ci)∑
ox,oy∈Ci s (ox, oy)

(2.1)

cut (V \ Ci, Ci) =
∑
ox∈Ci

 ∑
oy∈V \Ci

s(ox, oy)


Connectivity (CO) is also optimal for k = 1 cluster and is to be minimized. It sums
up penalty values by considering the L nearest neighbors of each object, with NNox(j)
denoting the j-th nearest neighbor of ox, and assigns a penalty if they lie in separate
clusters:

CO(C) =
∑
ox∈V

L∑
j=1


1
j

, @Ci ∈ C : ox ∈ Ci ∧ NNox(j) ∈ Ci
0 , otherwise

(2.2)

Overall deviation (OD) considers the distance of objects to their cluster medoids µ,
based on a dissimilarity function d. It is to be minimized and reaches its global optimum
for k = n clusters:

OD(C) =
∑
Ci∈C

∑
ox∈Ci

d (ox, µi) (2.3)

Global silhouette (GS) is also based on dissimilarities. The index calculates a silhouette
value for each object ox, based on comparing the average dissimilarity of ox to its own
cluster, a (ox), with the average dissimilarity to the next similar cluster, b (ox). The
value is to be maximized and optimal for k = n clusters:

GS(C) = 1
k

∑
Ci∈C

 1
|Ci|

∑
ox∈Ci

sil (ox)
 (2.4)

sil (ox) = b (ox)− a (ox)
max {a (ox) , b (ox)}

a (ox) =


1

|Ci|−1
∑
oy∈Ci\ox d(ox, oy) , |Ci| > 1

0 , otherwise
(ox ∈ Ci)

b (ox) = min
Cj∈C\Ci

 1
|Cj|

∑
oy∈Cj

d(ox, oy)

 (ox ∈ Ci)
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Further objective functions have been used in other studies, but not all of them are
compatible with similarity-based clustering. Minimizing the number of clusters is the
most simple objective to counteract a criterion function that reaches its global optimum
for k = n clusters. Within-cluster variation functions are optimal for k = n clusters,
e.g. the total within-cluster variation (TWCV). TWCV sums the squared distances of
all objects to their cluster centroids. Other within-cluster variation functions use, e.g.,
distances instead of squared distances or medoids instead of centroids.

2.4.4 Large Problems, Scalability and the focus on EA Improvement

So far we have presented a general survey of clustering EAs. We now focus on previous
work relevant for researching and improving the scalability of clustering EAs. We group
this work into publications that focus on large problem sizes or introduce special measures
to handle large problems on the one hand and publications that focus on the systematic
comparison of various clustering EAs on the other hand.

Clustering Large Problems with EAs

Both Jie et al. [50] and Gasvoda and Ding [33] use clustering EAs with very large data
sets. Both studies use a prototype (centroid) based representation, which allows for a
chromosome length that only depend on the number of clusters k and the number of
features per item, but not on the number of objects n.

Jie et al. use an EA that clusters objects with mixed numerical and categorical feature
data, which they test with randomly generated objects. The largest data set consists of
80,000 objects with 9 numerical and 11 categorical features. Independent experiments
for varying both the number of clusters in the test data and the number of objects are
performed and a linearly dependent CPU time is found for both cases. The paper lacks
information regarding the termination condition that determines at which point in the
EA run the presented CPU times are measured. Experiments have been repeated only
5 times, which is a rather small number for the evaluation of a probabilistic algorithm.

Gasvoda and Ding use an EA to cluster large numerical data, which they test for up
to 250,000 objects. Based on an EA that uses a standard centroid-based representation
and traditional genetic operators, they introduce preprocessing of the data set to reduce
the time required for calculating a k-means like fitness function. Their work tests two
preprocessing strategies: random sampling and summarization. In the first case the
fitness calculation is based on a random subset of the input data, in the second case a
grid is laid on the feature space and a weighted summary-vector is calculated for each
grid cell, based on the feature vectors contained in the cell. The resulting algorithms
are evaluated for a fixed number of generations and compared to each other as well as
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to a traditional k-means algorithm. They find that the new EAs produce better quality
results than pure k-means and that random sampling beats the summary scheme.

Tasoulis and Vrahatis [82] introduce a special objective function with the intention
to speed up EA clustering. In standard EAs most computational effort is spent on
evaluating the objective function for each individual in each generation. To reduce this
effort their work presents the window density function (WDF), an objective suitable
for feature-based clustering. An individual is represented through k window centers
around which a hyper-cube of fixed size is imagined. The fitness of an individual is then
derived from the summed density of objects inside all windows, a calculation that can
be performed in sublinear time with orthogonal range search techniques. Their work
presents several differential evolution algorithms that employ WDF and compares the
achieved results to a traditional clustering technique. The experimental evaluation of
the performance improvement or a comparison to other EA-based clustering techniques
is not part of the publication.

Clustering EAs by Gündüz-Öğüdücü and Uyar [37] as well as by Korkmaz [54] in-
troduce reduction techniques to cope with large problems. Both works are based on
representations that require individuals of length n (direct and linkage-based) and see
the necessity to reduce problem sizes to allow efficient processing. A comparison of the
resulting two-level EAs to unaltered algorithms is not discussed in either case.

Gündüz-Öğüdücü and Uyar reduce the search space by combining multiple objects
heuristically; all objects are merged with their nearest neighbors. The compressed prob-
lem is then clustered by an EA as stage one of the overall process. Based on the resulting
clustering for the compressed problem, an initial population for the original problem is
derived by unpacking the combined nodes. A normal EA run is conducted as the second
stage to further refine the node assignment.

Korkmaz uses a similar approach that consists of a two-level clustering EA. First the
data set is randomly divided into s non-overlapping subsets. A multi-objective EA is
used to cluster each subset independently, which generates s Pareto fronts as the result
of stage one. In the second stage the optimal number of clusters k in the data set is
estimated using the elbow criterion on the Pareto fronts. A k cluster solution is selected
for each subset and the s · k resulting clusters are then processed in a second EA run to
decide which clusters should be combined.

Comparing Improvements to Clustering EAs

Several works focus on comparing either EA methods to different clustering techniques
or on comparing different improvement ideas implemented in a basic EA for clustering.
We are interested to see how experiments in those cases are designed and what results
are reported.
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Paterlini and Krink [70] experimentally evaluate various methods for medoid-based
clustering. They test a GA-variant, particle swarm optimization, and differential evolu-
tion, as well as k-means and random search. The test problems for their study are taken
from the popular UCI machine learning repository with problems up to 870 objects. To
compare the various approaches, the number of fitness evaluations for each algorithm is
set to a fixed limit of 100,000 and the resulting solution qualities are compared. The
study shows an advantage for the differential evolution algorithm over the others, which
reached the best result for all test data.

Sheng and Liu [77] introduce a hybrid k-medoid algorithm (HKA) which contains a k-
means like search heuristic: after applying the regular genetic operators, each individual
is optimized by exploring the nearest neighbors of the current medoids as alternative
cluster centers. The optimization is performed in a hill-climbing sort of fashion and
accepts only improvement steps. The work evaluates HKA on biological gene expression
data sets of up to 3,000 objects and compares it to older non-hybridized EA approaches.
Experiments record the run-time until convergence and the solution quality for a fixed
number of fitness evaluations. Results show that HKA converges much faster and also
reaches a better final fitness than its competitors. But the latter finding needs to be
viewed with caution, since the comparison algorithms are judged by the fitness measure
of HKA even though they are guided by their original objective functions during the
search.

Dias and Ochi [26] amend a basic direct encoding EA with various improvement ideas.
They add a hill-climbing hybridization to the best individual, which they execute once
or for repeated times; introduce the possibility to increase the number of clusters in
order to find better quality solutions; and test resetting the population, based on mass-
mutations of the best individual, every time a new best individual is found. In total,
seven algorithms are created in addition to the basic algorithm, each using various com-
binations of the introduced improvements. All algorithms are evaluated by running for
a fixed number of iterations on artificial problems of up to 500 objects. A clear winner
cannot be found, since no algorithm achieves the best performance for all tested problem
sizes. But the authors show that each improved version (all of them using some form of
hill-climbing) outperforms the basic algorithm.

Alves et al. [3] work on improving the performance of the EAC algorithm presented
earlier. They propose various improvement ideas for the baseline algorithm, but initially
do not combine them. Improvements to mutation adjust the probabilities of the split
and eliminate operators based on either cluster quality or on past operator performance.
When eliminating a cluster, the baseline algorithm assigns each element to the closest
centroid, this scheme is simplified by adding all nodes to the same target, which saves
computational time. The modified algorithms are evaluated on artificial and biological
problems of up to 900 objects. The termination condition is either the achievement of a



2.4 Evolutionary Algorithms for Clustering 33

reference fitness or a fixed generation limit, whichever happens first. The authors report
the CPU time used by each algorithm until termination but give no details on which
cause triggered the termination. An ANOVA analysis is performed to compare the results
of different data sets and fitness functions but no specifics on the analysis are reported.
The changes that showed statistically significant improvements are combined in a new
fast EAC (F-EAC) algorithm. The evaluation of F-EAC shows that it outperforms all
other options.





3 Methodology

We define the goal of this study and decide on the experimental methodology. In this
chapter we first explain the goal of this study based on our understanding of scalability,
we then introduce our design for scalable test problems, and finally we conceive the
detailed experiment design. The last section summarizes the resulting methodology.

3.1 Defining the Goal of this Study
Evolutionary algorithms have become known as good optimizers for NP-hard problems,
but their underlying theories are still incomplete. Thus, most insight on EAs is gained
through experimentation. But many researchers restrict their experiments to relatively
small genome sizes of a couple of hundred variables. Quite often, experiments are only
performed for a single problem size. Such setups allow no insight on the scalability of
newly proposed methods. This raises our interest in the suitability of EAs to efficiently
search on very large genomes.

For the purpose of this study, we define scalability as the behavior of performance over
changing problem sizes. Due to the probabilistic nature of EAs, “performance” allows
for a variety of interpretations; such as the achieved solution quality, required run-time,
resource usage, and the probability to find a satisfying solution. We focus mainly on
run-time, the traditional performance metric used to evaluate deterministic algorithms.
Our detailed reporting metrics are presented in Section 3.3.1.

Achieving a general insight on EA scalability is a desirable goal. But without a
sound theoretical background, scalability can only be evaluated experimentally, which
limits us to a small problem range. Previous research has used test problems that have
been especially designed to fit the analyzed algorithms, such as problems constructed
from many small building blocks, which we described in Section 2.3.1. We decide to
investigate clustering problems, since they allow for large-sized problems that have a
high interdependency between many variables. For example, under a direct encoding,
the move of a single object to a different cluster changes its relation to all other objects
in both the old and the new cluster. Also, clustering is important beyond the area of
computer science because of its wide use in many diverse fields. While many clustering
algorithms only deal with feature-based data, we decide to use problems that are given



36 3 Methodology

by pairwise similarities among objects in a data set. This is a more general model of
clustering and allows to process feature-based and similarity-based data alike.

In short, the goal of this study is an analysis of EAs for the clustering problem that
focuses on the behavior of run-times over changing problem sizes.

3.2 Scalable Test Problems
To conduct experiments over changing problem sizes, we need test problems of variable
sizes. We see two requirements for suitable test problems: In order to meaningfully
compare algorithm runs on different problem sizes, all test problems should exhibit
similar characteristics that scale well with size. In order to rate the quality of an achieved
solution, an optimal or nearly optimal solution should be known. We know of no real-
world data set for clustering that fits the required conditions and thus we decided to
create artificial test problems.

Our problem generator probabilistically builds sparse similarity matrices. The em-
ployed algorithm is similar to a graph generator by Gündüz-Öğüdücü and Uyar [37]:

Algorithm 3.1: ProblemGenerator
begin1

Input: int n, int k
Assign each object to a random cluster 0 . . . k − 1;2

for 5n times do /* Add sim. entries: */3

obj1 ← Choose a cluster and one of its objects randomly;4

if (Random number in [0, 1]) ≤ 0.7 then /* intra-cluster */5

obj2 ← Choose a different object in the cluster of obj1 randomly;6

Create an intra-cluster entry for obj1, obj2;7

else /* inter-cluster */8

obj2 ← Choose a different cluster and one of its objects randomly;9

Create an inter-cluster entry for obj1, obj2;10

foreach object 0 . . . n− 1 do /* Check intra-cluster sim. */11

while intra-cluster similarity sum < inter-cluster similarity sum do12

Create an intra-cluster entry for the object and a random partner;13

end14

The first step randomly assigns n objects to k clusters. We then add similarity entries
for randomly chosen object pairs to the similarity matrix. Finally, we run a check
procedure that guarantees a minimum intra-cluster similarity per object. When adding
an entry to the sparse similarity matrix, we randomly decide whether an intra-cluster
(70%) or inter-cluster (30%) connection should be created and draw a matching object
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pair randomly. We chose the same ratio of intra-cluster to inter-cluster entries as in [37].
The similarity values are drawn from a normal distribution with µintra−cluster = 0.75,
µinter−cluster = 0.25. We chose σ = 0.25 to generate some overlap between the sampled
intra-cluster and inter-cluster values. A too small standard deviation would result in
clusters that could be easily separated. If values outside the range [0, 1] are sampled,
they are discarded and redrawn.

The problem generator adds 5n similarity entries to each cluster problem, which cor-
responds to an expected node-degree of 10 in the induced similarity graph. This scales
the number of non-zero entries in the similarity matrix linearly in the number of objects.
Thus, problems of different sizes exhibit equal properties regarding the expected number
of intra-cluster and inter-cluster similarity entries as well as their similarity values.

The generation process does not assure that the initial clustering chosen in the first
step is the best clustering for the resulting problem. But the initial assignment drives the
problem generation: intra-cluster entries are created with a higher probability and higher
expected similarity than inter-cluster entries. Thus, the initial clustering is likely to
achieve intra-cluster density and inter-cluster sparsity. To further increase this likelihood,
the final step in Algorithm 3.1 asserts that for each object, the summed intra-cluster
similarity is at least as high as the inter-cluster sum. Otherwise, additional intra-cluster
entries are added.

To guide a search on the generated problems, we need to decide on a criterion function.
From the list of functions presented in Section 2.4.3, we select the min-max cut (Equa-
tion 2.1), which considers both intra-cluster and inter-cluster similarities. For easier
visualization, we set our objective function to 1

1+MMC to obtain a maximization problem.
For easier comparability, we report values of the objective function relative to a reference
value; the reference fitness is the objective value achieved by the initial clustering during
problem generation.

3.3 Design of Experiments
We have set the goal of this study above and decided on the test problems for our
experiments. We now design the reporting metrics to measure performance. Then we
decide on the detailed experiment setup. We conduct some initial experiments with a
base algorithm for this purpose.

3.3.1 Reporting Metrics

Our goal is to observe the behavior of run-times over changing problem sizes. But the
target of our study is a stochastic search, which has no inherent state of being “finished”.
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The execution of an EA can be terminated at any point in time and earlier termination
usually results in solutions of lower quality.

A Suitable Termination Condition

For practical use, EAs are usually equipped with one or more termination conditions.
Examples by Eiben and Smith are the achievement of a predefined solution quality, the
exhaustion of maximally allowed CPU time or fitness evaluations, the absence of major
fitness improvement over a period of time, and the violation of a minimally required pop-
ulation diversity [28]. In our case, a termination condition that limits a time dependent
variable is infeasible since those are our measurement goals. We decide to terminate an
algorithm run

1. if a minimum solution quality is reached, which we consider as a successful run, or

2. if fitness of the best individual has converged, which we consider as an unsuccessful
run.

We base the exact definition of fitness convergence on insight of initial experiments
and discuss it in the next subsection. In order to find a suitable minimum fitness for the
definition of success, we consulted results reported in literature.

Various authors use the adjusted Rand index [48] as a flexible quality measure to com-
pare two clusterings. The index rates pairwise co-assignment of objects and is normalized
to yield results around zero for random partitions and 1 for perfect agreement. In [25]
and [39], results of search are compared to known solutions; in [78] results of different
clustering techniques are compared against each other. Reported values of the index lie
in the range of 0.9 to 1.0 for good results. We choose this range as a reasonable target
quality.

We need to translate the target quality of the adjusted Rand index to a fitness value
of the MMC function. For this, we experimentally investigate their correlation, based on
the evaluation of systematically distorted reference solutions. Experiments are performed
for 200 randomly generated clustering problems with n = 500, k = 10. We perturb the
reference assignment by 1%, 2%, . . . 20%, 25%, . . . 50%, 60%, . . . and 90%. On each level
both the relative MMC fitness and the adjusted Rand index are measured. Figure 3.1
presents a scatter plot of the obtained results. Based on a target of 0.95 for the adjusted
Rand index, we opt for a minimum MMC fitness of 85% of the reference fitness.

Measured Variables

An algorithm run terminates as soon as one of the termination conditions is fulfilled.
Thus, not all runs terminate successfully. We decided to run repeated experiments for
each problem size and report
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Figure 3.1: Scatter plot showing the correlation of the adjusted Rand index and MMC
fitness, obtained through the evaluation of systematically distorted clustering solutions. A
value of 0.95 is marked for the adjusted Rand index.

− the success rate (SR), which is the percentage of successful runs,

− the average success run-time (SRT), which is the mean run-time of the successful
runs, and

− the expected run-time (ERT).

If an algorithm run terminates without success, one possibility is to restart the run
with a different seed. This idea is the basis of ERT. To calculate ERT we measure the
average run-time for unsuccessful runs (URT) as well. ERT can be defined recursively
as

ERT = SR · SRT + (1− SR) (URT + ERT) , (3.1)

This equation can be expressed in a closed form as

ERT = SRT + 1− SR
SR URT . (3.2)

3.3.2 A Base Algorithm
We design a simple EA for clustering. The base algorithm is used in initial experiments
to decide on some specifics of the experiment setup. It also serves as a reference point to
compare improved EAs. The base algorithm uses a direct representation that encodes so-
lutions as s string of length n, the number of objects to cluster. Each gene carries a value
in the range 0 . . . k − 1 to denote a cluster number. A population of 100 individuals is
randomly initialized. We employ binary tournament selection and generational replace-
ment with 1 elite individual. Reproduction is performed by uniform crossover with a
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crossover rate of 1.0, i.e., it is always applied. The probability used in uniform crossover
is set to 0.5, i.e., each parent has an equal chance to pass on its allele values. We use
random resetting mutation, i.e., offspring are mutated by the reassignment of genes to a
random cluster. We term the expected number of mutated genes the “mutation count”
and set the per-gene mutation rate to mutation-count

genome-length . Initially we choose a mutation count
of 1, i.e., each gene is mutated with a probability of 1

genome-length . As decided in Section
3.2, the clustering criterion is MMC (Equation 2.1); fitness is calculated as the value
of 1

1+MMC relative to a reference clustering, which needs to be maximized. We initially
terminate a run if no relative fitness improvement of more than 1% can be observed for
at least 500 consecutive generations.

3.3.3 Experimental Setup

The methodology we have defined so far leaves some open questions that we answer
based on initial experiments. We use them to decide on a testing strategy, to validate
the initially chosen parameters of the base algorithm, and to find a termination condition
that reliably detects fitness convergence.

The Testing Strategy and a Statistical Analysis of Experiment Results

The experimental evaluation of an EA is influenced by two sources of randomness: EAs
are stochastic search methods; the result of each run depends on the initial random
number seed. On top of this, our test problems are randomly generated. Approaches in
literature usually sample a few test problems and perform multiple runs on each; e.g.,
the authors of [39] run 10 problems 21 times each and average the combined results.

This might introduce unknown correlations, thus we suggest to randomly sample the
space of all EA runs on all test problems. This is achieved by the independent random
sampling of pairs of seeds. One seed is used to generate a test problem and the second
to seed the EA run. We compare the suggested testing strategy with the traditional
approach in literature by an initial experiment.

Figure 3.2 shows the run-times of successful runs out of 1,000 evaluations on 500-object,
10-cluster problems. Two test strategies are compared: (i) sampling 10 test problems
and performing 100 EA runs on each, and (ii) sampling 1,000 EA runs out of the space
of all runs on all problems. The success rates for both cases are similar; 35.7% for (i) and
36.2% for (ii). The fitted probability distributions indicate a log-normal distribution of
the results. We confirm this by Lilliefors’ normality test [19], which rejects the normality
hypothesis at the 5% significance level and cannot reject the log-normality hypothesis.

Assuming a log-normal distribution, we use a t-test [42] to compare both result sets.
The hypothesis that both samples stem from the same distribution cannot be rejected at
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(b) 1000 independent problem/seed combinations

Figure 3.2: Histograms and probability plots for two different test configurations of
problems with 500 objects and 10 clusters; the graphs show a fitted normal and log-normal
distribution.

the 5% significance level. This confirms the validity of the suggested testing strategy. For
the initial experiments above, we have used a total of 1,000 evaluated configurations. But
to conduct further experiments in a feasible time, we decide to evaluate 200 randomly
sampled pairs of a problem and an assigned seed. 200 pairs are generated once for each
problem size. We then use the same combinations of problem and seed as input to all
algorithm configurations.

Tuning the Base Algorithm Parameters

The parameters we have set for the base algorithm have been chosen intuitively, based
on our previous experience with clustering EAs [24][37][83]. To assure their validity and
explore the potential for improvement, we perform a small number of tests with different
population sizes, mutation counts, and probabilities used in uniform crossover. The tests
are run for a problem with 200 objects and 10 clusters, according to the test strategy
defined above. We evaluate the following options:

1. Population size: 80, 100, 120

2. Mutation count: 0.5, 1, 2
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Figure 3.3: Scatter plot of SRT and SR for varying population size (pXX), selection
probability in uniform crossover (xoYY ) and mutation count (mut-ZZ ).

3. Selection probability used in uniform crossover: 0.5, 0.6

Figure 3.3 presents the average SR and SRT found in experiments on 200-object, 10-
cluster problems. Configurations with a mutation count of 2 are worse in both SRT and
SR than the depicted configurations and lie outside the plotted region. We see that a
smaller population size decreases SRT but comes at the risk of a lower SR. We decide
to keep the initial population size of 100 as a good compromise. A lower mutation
count is clearly beneficial when moving from 2 to 1. Lowering it further to 0.5 results
in faster runtimes with not too much influence on the success rate. Thus we update
the base algorithm to use a mutation count of 0.5. A clear trend cannot be seen for
varying selection probability in uniform crossover. We keep the initial setting of the
base algorithm, since a probability of 0.5, which gives equal chance to both parents, is
most common in literature.

Detecting Fitness Convergence

In the initial experiments, we had defined fitness convergence in the base algorithm
if no relative fitness improvement of more than 1% can be observed for at least 500
consecutive generations. To check the validity of this convergence criterion, we conduct
initial experiments on large problems up to a size of 5,000 objects. This reveals a steep
drop in success rates, from 43% for 500 objects, over 27% for 1,000 objects to only 6.5%
for 5,000 objects.

We manually inspect the fitness plots of single runs. They show a decreasing slope for
the fitness of the best individual with growing problem size. Thus the fixed time frame
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of the initial convergence criterion fails to scale for large problems and terminates runs
prematurely.

We perform a set of experiments with a relaxed termination condition that uses a
time frame of 10,000 generations. Based on studying the resulting fitness plots we devise
an updated termination condition: a run is considered as unsuccessful if the increase in
relative fitness over the past 20% of generations falls below 1%; this termination condition
is first tested once 125 generations have passed. This allows every run to continue for at
least 125 generations. For example, in generation 125, the fitness levels of generations
100 and 125 are compared to check for the minimum relative fitness increase.

3.4 Summary
We summarize the experimental methodology, which we developed in this chapter:

− Test problems are artificially generated (Algorithm 3.1).

− For each problem category (number of objects and number of clusters), we fix 200
independent randomly sampled problem/seed pairs.

− Fitness is calculated as 1
1+MMC relative to a reference value.

− A fitness of 0.85 is considered a success.

− An unsuccessful run is terminated if the relative fitness improvement in the last
20% of the generations falls below 1%; the condition is tested on generations ≥ 125.

− The base algorithm uses a population size of 100, uniform crossover with a selection
probability of 0.5, and mutates each gene with a 0.5

genome-length probability.





4 Improving Operators with
Problem-specific Knowledge

We propose several ideas for introducing problem-specific knowledge into the operators
of a simple evolutionary algorithm. Knowledge can be introduced in various steps of the
general EA flow-chart, thus we categorize our proposals into modifications of initializa-
tion, crossover, and the introduction of hybridization approaches.

In this chapter we introduce our modifications, present the experimental setup we use
to evaluate the modified algorithms, summarize the achieved results and conclude on the
impact of these modifications on scalability.

4.1 Modifications to Initialization, Crossover and
Hybridization

The base evolutionary algorithm, described in Section 3.3.2, uses general, out-of-the-
box, operators in order to solve the clustering problem. Based on a direct encoding of
a solution candidate as a string of cluster numbers, an initial population is randomly
generated and then subjected to uniform crossover and a standard mutation. We propose
modifications to this process, in order to implement problem specific knowledge in the
algorithmic flow. We suggest two problem-specific initialization schemes in addition
to random initialization, two alternative crossover operators, and two approaches on
hybridizing the EA with improvement heuristics.

Across all categories we employ the concept of a “similarity heuristic”, which reassigns
objects in a solution candidate based on the summed similarity values of an object
calculated per cluster. For a given clustering solution which assigns the objects into
clusters C1, C2, . . . , Ck we define

Si(u) =
∑
v∈Ci

s(u, v) (4.1)

as the similarity sum of object u with respect to cluster i, using the pairwise similarity
function s(u, v). Algorithm 4.1 describes the similarity heuristic. It takes a set of objects



46 4 Improving Operators with Problem-specific Knowledge

and a solution candidate as inputs and then reassigns the objects to clusters for which
they have the highest similarity sum.

Algorithm 4.1: SimilarityHeuristic
begin1

Input: List<ObjectId>objList, int[ ] objAssignment
Randomly shuffle objList;2

foreach u in objList do3

Calculate Si(u) for i = 1 . . . k;4

objAssignment [u]← arg maxi=1...k Si(u);5

end6

4.1.1 Alternative Initialization Schemes
In addition to random initialization, which creates a solution by assigning a cluster
number that is uniformly drawn from 1 . . . k to each object, we introduce two alterna-
tive schemes. Based on the similarity heuristic introduced above we define the heuristic
initialization, and based on minimum spanning trees (MST) we define the MST Initial-
ization.

The Heuristic Initialization

The heuristic initialization is based on the random initialization with an additional post-
processing of the random solution, which is subjected to one full run of the similarity
heuristic. Thus all objects are reassigned, looking at them in a random order and placing
each one into the cluster for which it achieves the highest similarity sum.

The MST Initialization

The MST initialization is based on a minimum spanning tree of the weighted graph
G = (V,E,w) where V , |V | = n, represents the objects to be clustered and each entry
s(u, v) in the sparse similarity matrix corresponds to an edge e(u, v) with w(e(u, v)) =
1 − s(u, v). In the clustering of graphs, MSTs have been used for a long time and are
known to provide identical solutions to single-link clustering [36]. In the context of EAs
Handl and Knowles have used MSTs for initialization: in their first paper that made
use of MSTs, they repeatedly removed the longest edge from an MST to seed the initial
population of a dynamic-k algorithm [38].

We use Kruskal’s Algorithm to calculate an MST of G which yields G′ = (V,E ′) with
|E ′| = n−1. To generate a k-clustering based on G′, k−1 edges have to be removed and



4.1 Modifications to Initialization, Crossover and Hybridization 47

the remaining connected components induce the clustering. Instead of just selecting the
k − 1 least similar edges, we introduce two modifications that prevent the generation of
singleton clusters and allow us to generate different k-cluster solutions.

We define an edge e(u, v) ∈ E ′ as eligible for removal only if degG′(u) > 1 and
degG′(v) > 1, which assures that the removal of e does not create a singleton cluster.
Then we select k − 1 edges randomly out of the (k − 1) + f least similar eligible edges,
which are removed to induce a solution candidate. The parameter f introduces a certain
freedom in choosing which edges should be removed and allows for the generation of
multiple solution candidates based on a single MST.

4.1.2 Alternative Crossover Operators
The base EA uses uniform crossover to breed offspring based on two parent solution
candidates. In combination with the employed direct encoding, this crossover method
assigns each object the cluster number of either parent with equal chance. It is easily
seen that this combination is not the best choice for clustering problems; e.g., two parents
describing the same clustering but using permuted cluster numbers will create a differing
offspring. To overcome this drawback we introduce two alternative crossover operators,
the matching crossover and the cluster-based crossover.

The Matching Crossover

Matching crossover is an adaption of uniform crossover, which introduces an additional
preprocessing step. Under the direct encoding each unique clustering solution has k!
possible genome representations; thus mixing the cluster numbers of two parents does
not necessarily carry along any meaningful information. To compensate for this, we
introduce a matching step that adjusts the cluster numbers in one parent to match those
in the other parent. We aim to give “similar” clusters a higher chance of being labeled
with the same cluster number in both parents. A similar approach has been used in [58]
and [64], which adapted cluster numbers in the parents “in such a way that the difference
between the two parent solutions is as small as possible.”

To match cluster pairs we first count the number of co-assignments for all k2 pairs of
cluster numbers and then match those clusters which have the largest overlap. Algorithm
4.2 presents the employed preprocessing step in detail. After the matching process a
regular uniform crossover is performed.

The Cluster-based Crossover

We introduce cluster-based crossover as a family of crossover operators following a com-
mon scheme that aims at preserving whole clusters during the crossover process. A
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Algorithm 4.2: MatchNumbering
begin1

Input: int[ ] p1, int[ ] p2
coAssignment← new int[k][k];2

for i = 0 to n− 1 do /* Calculate co-assignment */3

coAssignment [p1 [i]] [p2 [i]] + +;4

match← new int[k];5

while not all clusters are matched do /* Match clusters */6

find the unmatched clusters i, j with maximal coAssignment[i][j];7

match [i]← j;8

for i = 0 to n− 1 do9

p1 [i]← match [p1 [i]];10

end11

similar idea has been suggested by Falkenauer in [29]; he proposed to inject a subset of
clusters of one parent unaltered into the other, resolving ambiguities in object assign-
ment in favor of the newly injected clusters. This approach increases the total number
of clusters and, depending on the problem, can create solution candidates that violate
constraints. Falkenauer suggested to repair the resulting offspring through problem-
dependent heuristics.

We decide on a slightly different approach by assigning different roles to the parents.
Unlike uniform crossover or matching crossover, where both parents played an equal role,
in cluster-based crossover one parent acts as the primary parent. Cluster-based crossover
then creates one offspring from two parents in the following three steps:

1. In the first step, a number of clusters, say k1, in the primary parent are selected for
inheritance according to a certain selection strategy. The selected clusters are then
copied to the offspring unaltered. The objects assigned in this step are excluded
from any further processing.

2. In the second step, k − k1 clusters of the secondary parent are selected, choosing
those clusters that are still the most intact, i.e. those which have the highest
percentage of yet unassigned objects. The yet unassigned objects in the selected
clusters are added to the offspring, substituting their cluster numbers to prevent
numbering collisions with the clusters selected in the first step.

3. After the first two steps a number of objects remains “homeless”, namely those
that belong in both parents to a cluster that has not been selected. The third and
final crossover step assigns the homeless objects to a cluster according to a certain
homeless strategy.
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Algorithm 4.3: ClusterCrossover
begin1

Input: int[ ] p1, int[ ] p2
offspring ← new int[n], initialize with −1;2

CI ∈ 2k ← selectPrimaryClusters(p1);3

totalII , assignedII ← new int[k];4

for i = 0 to n− 1 do5

if CI
p1[i] = 1 then6

offspring [i]← p1 [i];7

assignedII [p2 [i]] + +;8

totalII [p2 [i]] + +;9

Set CII ∈ 2k selecting the clusters with minimal assignedII
totalII

values until10

|CI|+ |CII| = k;
for i = 0 to n− 1 do11

if CII
p2[i] = 1 and offspring [i] = −1 then12

offspring [i]← subst(p2 [i]);13

assignHomeless ({i : offspring [i] = −1});14

end15

Algorithm 4.3 describes the cluster-based crossover scheme in pseudo-code. Two steps
in the crossover scheme allow for varying implementations, namely the selection strategy
in the first step and the homeless strategy in the third step.

We suggest two alternatives for both steps, using either a random or an informed
strategy for both cases. For the selection strategy we suggest to either

− randomly decide for each cluster in the primary parent whether it gets inherited
to the offspring, giving equal probability to both cases. Thus the expected number
of inherited clusters is k2 . Alternatively we

− aim to keep the best clusters in the primary parent by deterministically selecting
the k2 clusters which have the lowest value of inter-cluster similarity over intra-
cluster similarity.

For the homeless strategy we suggest to either

− assign a random cluster number to the homeless objects, or

− run the similarity heuristic on the incomplete offspring, giving the homeless objects
as the input.
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4.1.3 Hybridization Approaches

As the last group of modifications we introduce two approaches to hybridize an EA
with local search methods. We decide to invoke the introduced hybridization just before
the regular mutation step happens, which allows the hybridized algorithm to keep its
property of theoretically being able to mutate every solution candidate into every other
solution candidate. Also some additional experiments, which we do not present here,
showed no substantial difference when invoking the hybridization after the mutation.
We introduce two approaches to hybridization, the similarity heuristic hybridization and
the hill-climbing hybridization.

The Similarity Heuristic Hybridization

Our first hybridization executes the similarity heuristic, described earlier in Algorithm
4.1, for all newly generated solution candidates. The similarity heuristic hybridization
processes all objects of the solution candidate in a random order, assigning them to the
clusters for which they have the highest similarity sum.

The Hill-climbing Hybridization

Hybridizing an EA with the similarity heuristic gives no guarantee that the performed
reassignments lead to an improvement in overall fitness. To compensate for this short-
coming, we also introduce the computationally slightly more expensive hill-climbing
hybridization. The general structure of the hill-climbing hybridization is very similar
to the similarity heuristic hybridization, as it also reassigns all objects in a random or-
der. But instead of selecting the new cluster of an object heuristically, the hill-climbing
hybridization guarantees to perform the assignment that results in the highest fitness
improvement.

To accomplish this, the change in fitness for each possible assignment of an object is
calculated. Due to the nature of the min-max cut objective function, we do not need
to completely recalculate the fitness for each assignment from scratch. The change in
fitness can be quickly assessed, if the inter-cluster and intra-cluster similarity sums for all
clusters are known and all Si(u) (Equation 4.1) values of the object under consideration
have been calculated. For example, if object u is moved from cluster a to cluster b, the
updated min-max cut (MMC ′) can be derived from the current one (MMC) as

MMC ′ = MMC − interClusterSum(a)
intraClusterSum(a) + interClusterSum(a) + Sa(u)

intraClusterSum(a)− Sa(u) (4.2)

− interClusterSum(b)
intraClusterSum(b) + interClusterSum(b)− Sb(u)

intraClusterSum(b) + Sb(u)
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The main computational effort for both hybridizations is spent on calculating the
similarity sums, Si(u), between each object and every cluster. Those values change with
the reassignment of objects and can thus only be calculated as soon as an object is
considered for reassignment. Computational complexity is easiest described using the
graph interpretation of a problem as in Section 4.1.1: Calculating all Si(u) values for
a single object needs O(deg(u)) time to consider all non-zero similarity values. When
iterating over all objects each edge in the graph is involved exactly twice, once for each
of its endpoints. This leads to a total complexity of O(2|E|+ k|V |) = O(|E|+ k|V |) to
calculate the similarity sums and to find the best out of k clusters for all |V | nodes. In
the similarity heuristic hybridization all involved operations are of an additive nature,
the hill-climbing hybridization on the other hand requires an additional O(k|V |) floating
point divisions to calculate Equation 4.2 for each object and each cluster.

4.2 Experimental Setup
Based on the operators presented above, we define configuration sets for initialization,
crossover, and for the mutation and hybridization step. In this section we describe the
defined configuration sets and present details about the machine we use to evaluate them.

All algorithm configurations for evaluation adhere to the general algorithm settings
we have introduced in Section 3.3.3, using a generational EA with a population size of
100, binary tournament selection, a single elite individual, and a termination condition
that stops an algorithm if the fitness of the best individual has not increased by more
than 1% over the latest 20% of the elapsed generations.

4.2.1 System Setup
We evaluate all configurations on a machine with 4 dual-core, hyper-threading Intel
Xeon CPUs running with 2.6 GHz that provides 2 GB of RAM to a 32 Bit Fedora 6
Linux operating system. Our evaluation setup runs 4 test instances in parallel, recording
elapsed real-time, the average population fitness, and the fitness of the best individual
for each generation. 200 problems are independently generated for each problem size and
evaluated with common random numbers per problem for each algorithm configuration.

4.2.2 Evaluated Configurations
For initialization we decide to set up experiments with initial populations that are gen-
erated by different mixes of the proposed initialization methods. The MST initialization
is configured with an f value of 5; for 10 cluster problems this gives

(
9+5

9

)
= 2002 com-

binations to sample initial individuals, enough to create a diverse population while only



52 4 Improving Operators with Problem-specific Knowledge

Table 4.1: Algorithm configurations used for initialization
Initialization type (% of individuals)

Random Heuristic MST
rand-init 100
heur-init 100
heur-rand-init 50 50
mst-init 100
mst-rand-init 50 50
heur-mst-init 50 50
heur-mst-rand-init 33 34 33

Table 4.2: Algorithm configurations used for crossover
Uniform Matching Cluster-based

Selection Homeless strategy
uform-xo 3

match-xo 3

clust-xo random random
clust-xo-kb keep-best random
clust-xo-hh random heuristic
clust-xo-kb-hh keep-best heuristic

Table 4.3: Algorithm configurations used for mutation and hybridization
Mutation count Hybridization

Similarity Heuristic Hill-climbing
mut05 0.5
mut05-heur 0.5 3

mut05-hill 0.5 3

considering the least similar edges for removal. Table 4.1 lists the set of initialization
methods.

For crossover we elect to evaluate all configurations of the proposed operators, thus
choosing uniform crossover, matching crossover, and the four possible strategy settings
for cluster-based crossover. Table 4.2 lists the set of crossover operators.

For mutation we have not suggested any changed operators and always use a standard
mutation with a mutation count of 0.5, meaning that each variable is mutated with a
probability of 0.5

genome-length . We have proposed two hybridizations which we execute before
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the mutation step is performed. Accordingly, we evaluate three configurations, namely
standard mutation used either alone or in combination with the similarity heuristic or
hill-climbing. Table 4.3 lists the set of mutation and hybridization settings.

4.3 Experimental Results
The 7 initialization schemes, 6 crossover configurations, and 3 mutation configurations
described above result in a total of 126 different configurations for the evolutionary
algorithm. We initially assessed all configurations on 10-cluster problems consisting of
100, 500, 1000, and 2000 objects. The complete measurement results along are presented
in Appendix A.

We find that crossover and hybridization are the main factors in achieving high success
rates; three configuration settings in these areas constantly result in near-perfect (≥ 97%)
success:

− The hill-climbing hybridization, regardless of the chosen crossover or initialization,

− Cluster-based crossover with a random selection strategy and a heuristic homeless
strategy, regardless of the chosen hybridization or initialization, and

− Cluster-based crossover with a random selection strategy and a random homeless
strategy in combination with the similarity heuristic hybridization, regardless of
the chosen initialization.

Algorithm configurations with other crossover and hybridization settings show greatly
varying results in success, sometimes exhibiting near-constant failure. To allow for a
further classification of the algorithm configurations, we look in detail on the fitness
development during an algorithm run. Based on the development of the fitness of the
best individual and the average population fitness in the algorithm runs, we classify the
observed results into families of algorithm configurations, shown in Table 4.4.

In the area of initialization settings we find the heuristic initialization to be dominant.
All initialization mixes containing heuristically initialized individuals exhibit a behavior
similar to a pure heuristic initialization. The MST initialization on the other hand shows
a varying dominance. Mixing MST initialized individuals with randomly initialized
individuals results sometimes in a behavior similar to a purely MST initialized population
and in other cases similar to a purely randomly initialized one.

The following subsections present the classes we found in more detail and show exem-
plary fitness plots for each class. We first analyze the impact of the similarity heuristic
hybridization in those settings that do not show near-perfect success, then we look at the
results found for various combinations of crossover and initialization in a non-hybridized
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Table 4.4: Families of algorithm configurations exhibiting similar behavior, * is a place-
holder for all settings in a category, heur* stands for all initializations that include heuristic
initialization
Class Crossover Initialization Hybridization

S1 * * mut05-hill
S2 clust-xo, clust-xo-hh * mut05-heur
S3 clust-xo-hh * mut05

H1 clust-xo-kb, clust-xo-kb-hh, match-xo heur*, rand mut05-heur
H2 clust-xo-kb, clust-xo-kb-hh, match-xo, uform-xo mst, mst-rand mut05-heur
H3 uform-xo heur*, rand mut05-heur

M1 uform-xo, match-xo heur*, rand, mst-rand mut05
M2 uform-xo mst mut05
M3 match-xo mst mut05
M4 clust-xo * mut05
M5 clust-xo-kb heur*, rand mut05
M6 clust-xo-kb-hh heur*, rand mut05
M7 clust-xo-kb, clust-xo-kb-hh mst, mst-rand mut05

setting, and lastly we discuss the findings on the configurations that constantly show
near-perfect success.

4.3.1 The Similarity Heuristic Hybridization in Unsuccessful Runs
Algorithm configurations which employ the similarity heuristic and do not exhibit near-
perfect success fall into one of three classes H1 to H3, depending on crossover and
initialization. Figure 4.1 shows exemplary fitness plots for each class. We find that
configurations that have not been initialized with the MST initialization or a combination
thereof with random initialization (classes H1, H3) show an initial increase in fitness of
the best individual, whose value at least doubles and then converges until generation 20.
Configurations using the MST or MST/Random initialization (class H2) show little to
no improvement in the fitness of the best individual.

We further observe that the average population fitness for nearly all configurations
(classes H1, H2) drops to a value close to zero, doing so in an instant for MST or
MST/Random initialized populations and over a course of at most 5 generations for
other initializations. The only exception is class H3, comprised of configurations that use
uniform crossover with any initialization but MST or MST/Random. Those algorithm
configurations show an average fitness that is distinctly different from zero.

We hypothesize that the observed behavior has two reasons: First, we suspect the
heuristic hybridization to produce a lot of degenerate solution candidates, clusters that
contain at least one empty cluster and thus have a fitness value of zero. Since the
heuristic solely considers the summed similarity of an object towards each cluster, a
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(a) H1: match-xo, mut05-heur, heur-init
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(b) H2: clust-xo-kb-hh, mut05-heur, mst-rand-init
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(c) H3: uform-xo, mut05-heur, heur-rand-init

Figure 4.1: Exemplary fitness plots for classes H1 to H3. The y-axis shows fitness values,
averaged over 200 runs; the x-axis shows the number of generations. Graphs on the left
show the 500-object problem, those on the right show the 2,000-object problem.

cluster with many objects of little similarity can seem more favorable than a smaller
cluster with objects of higher similarity. Thus a solution candidate with an imbalance
in cluster sizes might grow its largest cluster up to the point where one of the smaller
clusters looses all of its members.

If degenerate solutions are selected for crossover, the informed crossover operators
might work to preserve it; e.g., Algorithm 4.2 of the matching crossover will pair two de-
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Table 4.5: Percentage of degenerate individuals in the population, tracked over 10 gen-
erations of the match-xo, mut05-heur, heur-init algorithm (averages of 200 runs)

Problem size Generation
0 1 2 3 4 5 6 7 8 9

100 0.85 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
500 0 0.09 0.57 0.87 0.94 0.95 0.96 0.95 0.95 0.95
1000 0 0 0.08 0.57 0.87 0.94 0.95 0.95 0.95 0.95
2000 0 0 0 0.12 0.66 0.91 0.95 0.95 0.96 0.96

generate clusters and thus prevents an offspring from recovering. Only uniform crossover
has a high chance of populating all clusters during crossover, since it is unlikely that two
identically numbered clusters are both degenerate, if only a few degenerate clusters exist.
Accordingly class H3 shows a non-zero average population fitness.

Our second hypothesis relates to the particularly disastrous failure of the MST initial-
ization. If the assumptions about the similarity heuristic hybridization are true, then
an initialization scheme that produces a high imbalance in cluster sizes would reinforce
the tendency towards failure. Thus we suspect the MST initialization to produce such
solution candidates, which would explain the instant drop in average fitness.

To check the likelihood of our hypotheses we collected additional statistics for two
exemplary algorithm configurations. Table 4.5 shows the number of degenerate solution
candidates during the first 10 generations of an algorithm configured with match-xo,
mut05-heur, and heur-init. The results clearly show that nearly all solution candidates
in the population consist of degenerate individuals as we have assumed. We ran the same
algorithm with a modified similarity heuristic, in which we divide the summed similarity
between an object and a cluster by the number of edges that connect that object to the
cluster. An object is then assigned to the cluster with the highest average similarity.
This should remove the effect that a cluster with many objects of little similarity is
too attractive. We find that with the changed similarity heuristic, the percentage of
degenerate clusters decreased drastically: e.g., for the 100-object problems, the algorithm
configuration of Table 4.5 resulted in less then 5% degenerate individuals in generation 9.
But if run for a greater number of generations, the algorithm with the updated similarity
heuristic always converged at a low fitness level and never found a satisfying solution. The
improve percentage of degenerate individuals suggests that further research on updates
to the similarity heuristic might be worthwhile. But we could not perform those in the
scope of this work.

To check our second assumption, we collected statistics of the MST initialization, to get
insights on the probability that the removal of an MST-edge creates a very small cluster
of just a couple of nodes. Such clusters would be especially susceptible to degeneration



4.3 Experimental Results 57

and a high occurrence of them will explain the observed behavior in class H2. Averaging
over the MST-initialized individuals of all 200 problems in each size category, we counted
the number of very small clusters. We find that for the 100-object problem 3.2 clusters
contain 3 or less objects, for the 500-object problem 6.8, for the 1000-object problem 8.2,
and for the 2000-object problem 8.5 clusters contain 3 or less objects. This confirms our
assumption about the MST initialization.

4.3.2 Modified Crossover and Initialization without Hybridization

In the case where crossover and initialization are not hybridized with a local search, only
the cluster-based crossover with a random selection and a heuristic homeless strategy
shows near-perfect success. Other crossover operators show varied success, which in most
cases depends on the chosen initialization scheme as well.

The following subsections describe the classes of algorithm configuration M1 to M7.
We first look at those cases where uniform or matching crossover is applied, then on
those using variations of cluster-based crossover.

Uniform and Matching Crossover

Results for algorithm configurations that use uniform or matching crossover are shown
in Figure 4.2 as exemplary fitness plots. In all combinations, where initialization is
not purely MST based, the algorithm configurations fall into class M1. Similar to all
instances we find that, independent of the configuration details, the average population
fitness closely follows the fitness of the best individual on all runs. Both values increase
rather slowly, which results in rather high average run-times to success.

We see the cause for the observed behavior in a reduction of the EA to a pure local
search after some generations. On a detailed inspection of some configurations we found
that, using uniform crossover, after 250 generations nearly all runs show genetic con-
vergence, meaning over 95% of the genes have the same allele value on over 95% of the
individuals. The required generations to see the same effect for matching crossover is
only slightly higher (Table 4.6). The required generations to convergence generally drop
with growing genome size; this is most likely rooted in the smaller mutation rate for the
larger problems, since each gene is mutated with a probability of 0.5

genome size . Once genetic
convergence has occurred, matching crossover behaves exactly like uniform crossover; if
both parents largely agree in their clusters and assigned cluster numbers the renum-
bering algorithm has no effect. Crossover can then only introduce small changes to an
individual, which act in unison with mutation like a parallel execution of multiple local
searches. This local search process is responsible for most of the time spent in such
algorithms, since the generations required until success reach to the thousands.
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(a) M1: uform-xo, mut05, heur-init
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(b) M2: uform-xo, mut05, mst-init

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

Fitness of the best individual
Average population fitness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250

Fitness of the best individual
Average population fitness

(c) M3: match-xo, mut05, mst-init

Figure 4.2: Exemplary fitness plots for classes M1 to M3. The y-axis shows fitness
values, averaged over 200 runs; the x-axis shows the number of generations. Graphs on
the left show the 500-object problem, those on the right show the 2,000-object problem.
Fitness increases too slow to prevent premature termination for large problems with an
intelligent initialization.

The usage of initialization methods that are not purely MST based have two effects.
First of all, an intelligent initialization starts the algorithm run with a higher fitness of the
best individual. This can lead to premature termination of a run, since the termination
condition asks for a minimum relative increase in this value over a time-frame that
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Table 4.6: Generations to genetic convergence for the mut05, rand-init algorithm using
uform-xo and matching-xo (based on 200 runs). Q3 denotes the upper quartile.

Problem size Uniform Crossover Matching Crossover
Median Q3 Maximum Median Q3 Maximum

100 162 184 253 245 293 486
500 197 214 284 212 234 322
1000 176 187 242 188 202 244
2000 171 178 198 178 186 322

depends on the number of elapsed generations. This effect can be seen especially in the
2000-object problem, which nearly never reaches success if an intelligent initialization is
used.

To allow an analysis of the effect of intelligent initialization, in spite of premature
termination, we look at the cleaned success rates of the 500 and 1000-object problems.
The termination condition is first checked after 125 generations have elapsed. A couple
of runs that use intelligent initialization are terminated at this point or the closely
following generations. Thus we remove all runs that terminate before generation 200 and
calculate the cleaned success rates shown in Table 4.7, which are based on only those
runs that terminate at a later generation. We still see lower success rates compared
to random initialization. Together with the measured success run-times this suggests
that algorithm runs starting from an intelligent initialization reach their local optimum
faster, but usually converge at a lower quality optimum. We did not show details for
MST/random initialization, since its initial fitness increase is so slow that premature
termination generally happens. Tests with a relaxed termination condition suggested
that it behaves along the lines of the other presented initialization schemes and shows
early convergence at a low fitness value.

Configurations that combine uniform or matching crossover with a pure MST initial-
ization show a behavior different from the initializations discussed above. Since most
MST-initialized runs are terminated very early, we have again tested the configuration
with a relaxed termination condition. We find that common to both crossovers is an
initial decline in the average population fitness to almost zero; a behavior that fits to
the susceptibility of MST-initialized individuals to yield solutions that quickly result in
degenerate clusters, as we found in combination with the similarity heuristic. In com-
bination with uniform crossover (class M2) the average population fitness manages to
recover after a while and approximates the value of the best individual. But further on,
the run fails to reach a local optimum of any notable quality through the subsequent
local search.
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Table 4.7: Cleaned success rates for uniform or matching crossover with various initial-
ization methods

Initialization Uniform Crossover Matching Crossover
500 objects 1000 objects 500 objects 1000 objects
Runs SR Runs SR Runs SR Runs SR

rand-init 200 0.33 200 0.41 200 0.40 200 0.38
heur-init 200 0.28 163 0.29 199 0.24 162 0.33
heur-mst5-init 196 0.26 158 0.37 198 0.28 168 0.29
heur-mst5-rand-init 195 0.22 168 0.26 198 0.22 161 0.26
heur-rand-init 199 0.25 164 0.32 196 0.26 154 0.34

In the case of matching crossover (class M3) the average fitness does not recover for
problem sizes of 1000 or more objects. We observed some algorithm runs in detail and
found that most individuals contain small clusters that are not degenerate in size but
consist only of objects with a mutual similarity of zero; a combination that also leads to
a zero MMC fitness. This phenomenon is most likely caused by situations where non-
overlapping clusters of just a few objects are matched during crossover and thus cause
unrelated objects to end up in the same cluster.

Cluster-based Crossover

The results seen from algorithms that employ cluster-based crossover without any hy-
bridization is greatly dependent on the chosen strategies for cluster selection and home-
less assignment. If both tasks are done randomly, the resulting configuration falls into
class M4, which is shown in Figure 4.3. General fitness behavior is similar to uniform
or matching crossover: the average population fitness approximates the fitness of the
best individual and both start to improve closely together. But the improvement rate
for cluster-based crossover is much lower than what we see with uniform or matching
crossover. This explains the lack of success for algorithm configurations in this class,
since the fitness increase is too slow to prevent the termination of an algorithm run.

In additional experiments on the 1000-object problems, using a relaxed termination
condition, we find that for cluster-based crossover with heuristic initialization the av-
erage fitness of 200 runs at generation 10,000 is 0.25; uniform crossover with random
initialization, on the other hand, reaches an average fitness of 0.75 in the same number
of generations. A likely reason for the observed behavior is the effect of the random
assignment of homeless nodes. By chance most homeless nodes will be assigned to the
“wrong” cluster during this step. This assignment is then later on preserved for all clus-
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Figure 4.3: Exemplary fitness plots for class M4. The figures plot fitness values vs. the
number of generations. The graph on the left shows the 500-object problem, the one on
the right shows the 2,000-object problem. The plots are averaged over 200 runs of the
clust-xo, mut05, heur-init algorithm with the standard termination condition disabled.

ters that are selected in a primary parent; this might drastically limit the possibility to
generate good offspring during crossover.

Unlike other crossovers, class M4 also contains the purely MST initialized configura-
tion. This is due to the possibility to reject the “large cluster” in both parents during
the first breeding round. If this happens, nearly all objects end up homeless and are
randomly assigned. Thus this configuration closely resembles a random initialization.

Algorithm configurations of cluster-based crossover with a keep best selection strat-
egy show a more varied behavior. Class M5 contains those configurations that use a
random homeless strategy combined with any initialization but MST or MST/Random
initialization. Exemplary fitness plots are shown in Figure 4.4(a). Common to those
configurations is a drop of the average population fitness to nearly zero in about 20
generations, while the fitness of the best individual does not improve. A detailed look at
the best-cluster selection shows that usually the largest clusters in the primary parent
are kept; a behavior that matches the characteristics of the min-max cut, which reaches
its overall optimum for a single large cluster. Due to the random assignment of homeless
objects, each cluster receives about 1

k
-th of them, which leads to the further growth of

large clusters. Thus over time some large clusters keep growing, while the remaining
clusters loose most objects. The small clusters suffer a similar fate as those in class M3
and thus the fitness of most individuals drops to zero.

If cluster-based crossover is used with a keep best selection strategy and a heuristic
homeless strategy it shows a different behavior. Class M6 contains those configurations,
again for all initializations but MST or MST/Random initialization. Exemplary fitness
plots are shown in Figure 4.4(b). Unlike the random homeless strategy, the algorithm
configurations in this class show an increase in the average population fitness and also
improve on the fitness of the best individual. This shows that the heuristic homeless
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(a) M5: clust-xo-kb, mut05, heur-init
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(c) M7: clust-xo-kb-hh, mut05, mst-init

Figure 4.4: Exemplary fitness plots for classes M5 to M7. The y-axis shows fitness
values, averaged over 200 runs; the x-axis shows the number of generations. Graphs on
the left show the 500-object problem, those on the right show the 2,000-object problem.

strategy allows for more appropriate assignments, it prevents the large clusters from
taking in unfitting objects. Applying the similarity heuristic only to few objects prevents
the drawback described in 4.3.1 of creating degenerate clusters. Still, the larger the
problem size gets, the smaller the achieved improvement in this class. We suspect this
is caused by a limited capability to explore the search space, since the deterministic
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selection tends to choose the large clusters of the primary parent, which leads to them
always being kept intact.

Class M7 contains algorithm configurations using cluster-based crossover with a keep
best selection strategy in combination with a MST or MST/Random based population
initialization, regardless of the chosen homeless strategy. Exemplary fitness plots are
shown in Figure 4.4(c). We observe that these configurations are generally not able to
improve the fitness of the best individual by a significant amount, while the average
population fitness approximates the fitness of the best individual. If pure MST initial-
ization takes place, the average fitness converges quickly, for combined initialization this
process takes considerably longer and is usually interrupted by the termination condi-
tion. Upon a detailed inspection of several algorithm runs, we find that the single large
cluster of MST-initialized individuals has the most favorable MMC addend and is thus
always inherited completely if an MST-initialized individual is chosen as the primary
parent. This allows the oversized cluster to spread to the whole population, which then
converges at a low local optimum.

4.3.3 Configurations Resulting in Near-Perfect Success

After having looked in detail at those algorithm configurations that fail to reach a sat-
isfying solution quality reliably, we now turn to the configurations that do. We find
that in those configurations, hybridization is the most dominant factor that affects al-
gorithm behavior. We first describe the characteristics of those algorithms employing
the hill-climbing heuristic, then present the results achieved with cluster-based crossover
in combination with the similarity heuristic hybridization and finally discuss the non-
hybridized cluster-based crossover.

The Hill-climbing Heuristic

The largest group of successful algorithms is made up of configurations that use the
hill-climbing hybridization (class S1). This results in constant success, regardless of the
selected crossover or initialization scheme. We find that these algorithms find a satisfying
solution quickly, requiring no more than 15 generations to do so. Exemplary fitness plots
are shown in Figure 4.5(a).

To see the unbiased effect the involved hill climber has on performance, we conducted
some iterative local search experiments. The 200 problem instances of each problem
size are iteratively processed by the hill-climbing hybridization, starting from a single
initial solution candidate. Table 4.8 presents the achieved success rates and the average
required iterations to success, when repeating the hill-climbing for at most 500 iterations.
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(a) S1: uform-xo, mut05-hill, rand-init
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(b) S2: clust-xo, mut05-heur, rand-init
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(c) S3: clust-xo-hh, mut05, rand-init

Figure 4.5: Exemplary fitness plots for classes S1 to S3. The y-axis shows fitness values,
averaged over 200 runs; the x-axis shows the number of generations. Graphs on the left
show the 500-object problem, those on the right show the 2,000-object problem.

We find that only the smallest problem size had a high probability of being trapped
in a local optimum, with success rates below 50% and even zero success on heuristically
initialized individuals. The latter is most likely caused by initial individuals which
contain a degenerate cluster, a condition that is likely to appear for small problems (cf.
Table 4.5). For the larger problem sizes, satisfying success rates of around 80% are
achieved.
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Table 4.8: Success rates and average iterations till success for iterative hill-climbing on a
single solution candidate, based on the hill-climbing hybridization

Initialization 100 500 1000 2000
SR Iter. SR Iter. SR Iter. SR Iter.

rand-init 0.44 4.9 0.89 8.6 0.82 11.1 0.86 13.3
heur-init 0.88 6.6 0.85 9.6 0.87 12.5
mst5-init 0.30 2.9 0.69 6.6 0.70 8.4 0.76 9.8

This renders our EAs that employ the hill-climbing heuristic similar to the approaches
presented in Section 2.4.2, which combine k-Means with an EA. Thus the main focus of
the EA lies no longer on the performed crossover and mutation, but on compensating
the shortcoming of a heuristic that might result in local optima of undesired quality for
some initial solution candidates.

Cluster-based Crossover with the Similarity Heuristic Hybridization

Earlier we saw that some algorithm configurations that use the similarity heuristic hy-
bridization nearly never reach successful results. We found the reason for this in the
tendency of the heuristic towards growing large clusters. If used in conjunction with
cluster-based crossover, configured with a random selection strategy (class S2), the al-
gorithm is able to counter those effects and achieve satisfying results. Exemplary fitness
plots are shown in Figure 4.5(b).

The root for this change in behavior is most likely the possibility of cluster-based
crossover to eliminate large clusters in those cases when they are not chosen to be kept
in the primary parent. This can prevent solution candidates from degenerating and
thus allows the algorithm to reach higher quality solutions. But looking at the average
population fitness of this class, we find that it shows only a low fitness and no clear
improvement during the run. This indicates that most solution candidates are still
degenerate and only a few reach good results.

Non-hybridized Cluster-based Crossover

Algorithm configurations in class S3 use cluster-based crossover with a random selection
strategy and a heuristic homeless strategy, without any hybridization. The fitness plots
in Figure 4.5(c) show that in this case not only the fitness of the best individual, but
also the average population fitness exhibit a good improvement. This shows that this
crossover configuration has the chance to transfer beneficial properties of the parents to
offspring: heuristically assigning homeless nodes results in appropriate clusters, which
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allows a fitness growth. The abandonment of using the similarity heuristic on all objects
prevents degeneration of solution candidates, which impaired the average fitness in the
previous class.

Although the required generations until success are more than for the hybridized
approaches, the achieved run times are still in line with those found for the algorithms
using hill-climbing hybridization. This shows that the time spent per generation is less
in the non-hybridized case; which is in line with our expectations, since we do not have
to pay the hybridization costs. We will compare the achieved run-times in depth in the
following section.

4.4 The Impact on Scalability
In the previous sections of this chapter we have presented various ideas for introducing
problem-specific knowledge into an evolutionary algorithm for clustering. In extensive
experiments we found that our suggestions can easily miss the target of improving per-
formance, if they are used in a bad combination. Many of the analyzed algorithm
configurations resulted in a serious degradation of success, which we could explain in
most cases by the interaction between the used genetic operators.

We will not look at those unsuccessful configurations in any greater detail, but fo-
cus our attention on the remaining cases. Here we find two large groups that showed
mostly consistent results: First, non-hybridized algorithms that keep the initial uniform
crossover or use the closely related matching crossover. They exhibited run-times and
success rates similar to the initial simple EA. Second, those algorithm configurations
that constantly result in near-perfect success.

In the remainder of this section, we will first discuss the suitability of minor changes,
such as introducing only improved initialization, to improve scalability. Second, we will
have an in-depth look at the scalability of the very successful configurations and analyze
how they behave for even larger problem sizes.

4.4.1 Using Intelligent Initialization with Traditional Crossover
The base algorithm shows unfavorable performance for problems of up to 2,000 objects.
Fitting a power function to SRT over problem size (SRT = a · sizeb + c) results in
an exponent of b = 2.41 with a 95% confidence interval of (2.19, 2.63). This strongly
indicates worse than quadratic scalability; the average SRT for a 2,000-object problem
takes already longer than 20 minutes. Thus the basic algorithm is unsuitable for large
problems.

The other algorithms of class M1 in Section 4.3.2 also show only a slow fitness im-
provement; success rates range from 25% to 45%. Using intelligent initialization reduces
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Table 4.9: Average generations and run-time to success, expected run-time for algorithms
using uniform crossover or matching crossover with intelligent initialization. Runs that are
faster than random initialization are printed in bold.

Uniform Crossover 100 500 1,000

Initialization Gen. SRT ERT Gen. SRT ERT Gen. SRT ERT

rand-init 310 1.40 2.93 3683 50.62 189.69 9141 251.28 743.40
heur-init 204 1.09 2.61 2724 38.39 172.49 6852 190.32 819.01
heur-mst-init 100 0.75 2.87 2758 39.30 190.32 7870 215.79 675.11
heur-mst-rand-init 104 0.76 3.93 2570 36.18 236.36 7414 204.64 1003.49
heur-rand-init 210 1.13 2.96 2793 39.64 208.57 7023 193.43 749.25

Matching Crossover 100 500 1,000

Initialization Gen. SRT ERT Gen. SRT ERT Gen. SRT ERT

rand-init 373 1.99 4.41 3506 52.11 155.99 9112 259.86 834.90
heur-init 196 1.33 4.57 2807 42.36 216.21 6840 198.67 766.13
heur-mst-init 69 0.76 3.68 2736 42.09 181.98 7373 211.66 903.39
heur-mst-rand-init 74 0.80 5.42 2800 42.26 237.49 7668 220.91 1018.88
heur-rand-init 262 1.62 4.30 2712 41.40 210.06 7543 216.84 778.44

the time required until convergence, but also reduces the average fitness level that the
algorithm has reached upon convergence, thus resulting in lower success rates. Replac-
ing uniform crossover with the similar matching crossover has a more mixed effect; for
varying initialization schemes and problem sizes both increase and decrease of success
rates and the times required to convergence can be observed.

To research the potential of the modified configurations for improved performance, we
need to weigh the benefits of decreased run-time against the drawbacks of the simulta-
neously decreasing success rate. For this reason we will look at the expected run-time
(Equation 3.2), which combines both factors.

In Table 4.9 we have compiled the average number of generations and the average
run-time to success, as well as the expected run-time of the algorithms in class M1.
The data for the 500 and 1000-object problems is based only on the cleaned results,
as described in Section 4.3.2. Thus we omit the MST/Random initialization and the
2000-object problem, since we lack enough reliable results in those cases.

The data shows that all configurations that use an intelligent initialization finish in
less generations and less time than the corresponding algorithm with purely random
initialization. But if the lower success rates are taken into account, when calculating
the expected run-time, only few configurations turn out to be faster than random ini-
tialization. Even worse, no configuration shows reliably better results for all problem
sizes. Thus we conclude that the introduction of intelligent initialization alone does not
promise much success for improved scalability.
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4.4.2 Using Improved Crossover and Hybridization
In Section 4.3.3 we have looked at algorithm configurations that reliably exhibit near-
perfect success rates coupled with much faster run-times than the simple EA. To evaluate
the scalability of those algorithms we will run further experiments on problems of even
larger size for configurations that are most promising to achieve the best performance.
The following subsections describe how we select those configurations, how we evaluate
them, and present the observed results.

Selecting Configurations for further Evaluation

To get deeper insight on the scalability of the successful algorithm configurations it is
required to evaluate them with larger-sized problems. In order to do this in a feasible
time, we decide to select only a small subset of algorithm configurations.

In Section 4.3.3 the successful configurations have been categorized into three classes
S1 to S3. Out of those the algorithms in class S2 showed a good fitness development for
the best individual but a rather low average fitness in the population. This behavior has
been attributed to the negative effects of applying the similarity heuristic hybridization
to all individuals. Thus we will not further consider the algorithms in this class.

In the remaining classes we rank all configurations for each evaluated problem size
based on the average run-time to success. We consider those configurations for further
analysis that reach top performance for at least one problem size or show no statistically
significant difference to the top performer. Table 4.10 gives the results of two-sample
t-tests, which compare the fastest configurations to the top-performer for both classes
S1 and S3. We have not included the 100-object problems in this consideration; it is too
easily solved and thus results in a very different ranking than the larger problem sizes,
giving preference to simplicity over intelligent operators (cf. Appendix A).

We include algorithm configurations in the further evaluation if the t-test cannot reject
the null hypothesis that the measured results originate from the same distribution as
those of the top performer at a statistical significance of 1%. The p-Values that fall into
this range are printed bold in Table 4.10. This results in the selection of six algorithm
configurations for further evaluation:

− clust-xo-kb-hh, mut05-hill, heur-init

− clust-xo-kb-hh, mut05-hill, heur-rand-init

− clust-xo-kb-hh, mut05-hill, mst-init

− match-xo, mut05-hill, heur-init

− clust-xo-hh, mut05, heur-init

− clust-xo-hh, mut05, mst-init
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Table 4.10: t-tests comparing configurations to the fastest algorithm in each group
Algorithms using the hill-climbing heuristic (class S1)

Problem Size Rank Configuration SRT p

500 1 clust-xo-kb-hh, mut05-hill, heur-init 1.24
2 clust-xo-hh, mut05-hill, heur-init 1.27 < 10−3

3 match-xo, mut05-hill, heur-init 1.31 < 10−21

4 clust-xo-kb, mut05-hill, mst-init 1.32 < 10−24

5 clust-xo-kb-hh, mut05-hill, mst-init 1.34 < 10−32

1000 1 clust-xo-kb-hh, mut05-hill, mst-init 1.83
2 match-xo, mut05-hill, heur-init 1.84 0.521
3 clust-xo-kb-hh, mut05-hill, heur-init 1.84 0.417
4 clust-xo-kb, mut05-hill, mst-init 1.89 0.002
5 clust-xo-kb, mut05-hill, heur-init 1.89 < 10−3

2000 1 clust-xo-kb-hh, mut05-hill, heur-rand-init 2.52
2 clust-xo-kb-hh, mut05-hill, heur-init 2.56 0.010
3 clust-xo-kb-hh, mut05-hill, heur-mst-init 2.60 < 10−6

4 clust-xo-hh, mut05-hill, mst-init 2.62 < 10−5

5 clust-xo-hh, mut05-hill, heur-init 2.63 < 10−8

Algorithms using Cluster-based Crossover (class S3)

Problem Size Rank Configuration SRT p

500 1 clust-xo-hh, mut05, heur-init 1.31
2 clust-xo-kb, mut05, heur-rand-init 1.40 < 10−25

3 clust-xo-kb, mut05, mst-init 1.46 < 10−43

1000 1 clust-xo-hh, mut05, heur-init 1.65
2 clust-xo-hh, mut05, heur-rand-init 1.76 < 10−17

3 clust-xo-hh, mut05, mst-init 1.77 < 10−18

2000 1 clust-xo-hh, mut05, heur-init 2.95
2 clust-xo-hh, mut05, mst-init 2.96 0.313
3 clust-xo-hh, mut05, heur-rand-init 3.02 < 10−5

The updated Experimental Setup

We evaluate the selected algorithms with an experimental setup that closely resembles
the system we have used earlier and described in Section 4.2. But in the meantime our
hardware platform was updated to a 64 Bit Fedora 10 Linux and equipped with a total
of 16 GB RAM.

We also choose to update the measurement code which previously recorded the elapsed
real-time. Elapsed time is now measured based on the elapsed CPU-time of the process,
as it is reported by a call to getProcessCpuTime of the com.sun.management.Oper-
atingSystemMXBean interface [67]. This change aims to provide more robust measure-
ments, independent from other system load that executes in parallel.
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Figure 4.6: Run-times and required generations for the improved evolutionary algorithms

We conduct experiments again on 10-cluster problems, with problem sizes of 500,
1,000, 2,000, 5,000, 10,000, 25,000, 50,000, 75,000, and 100,000 objects. Even though
we already measured data for the 3 smallest sizes, we evaluate the selected algorithms
again to allow for comparability with the updated experimental setup.

Scalability of the improved Algorithms

We have evaluated the performance of the selected algorithm configurations using the
experimental setup described above. Tables A.2 and A.3 on page 96 present the measured
run-times for initialization and searching and the required generations to success. During
all evaluation runs only one run of the clust-xo-hh, mut05, mst-init configuration did
not reach a successful fitness level in the problem category of size 100,000. All other
configurations achieved a 100% success rate.

We find that the average number of generations that are required to reach a successful
fitness grows sub-linearly (Figure 4.6 top right). It is especially low when using the hill-
climbing heuristic together with the cluster-based crossover, a combination that finds an
acceptable solution in at most 7 generations even for the largest problem size.
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Listing 4.1: Java source used to test linear scalability in problemSize
1 // Generate so r t ed array o f Object IDs
2 ArrayList<Integer > permute = new ArrayList<Integer >(problemSize + 1 ) ;
3 for ( int i =0; i<problemSize ; i++)
4 permute . add ( i ) ;
5
6 // Now permute them
7 int n = permute . s i z e ( ) ;
8 while (n > 1) {
9 int idx = rand . next Int (n ) ; // 0 <= idx < n

10 n−−;
11 int tmp = permute . get (n ) ;
12 permute . s e t (n , permute . get ( idx ) ) ;
13 permute . s e t ( idx , tmp ) ;
14 }

The same cannot be said about the average run-time required for initialization (Figure
4.6 bottom left) or the average run-time spent in each generation (Figure 4.6 bottom
right). In both cases the observed times increase faster than linear with increasing
problem size; this is especially evident when comparing the slope for problems smaller
than 10,000 objects with the slope for larger problem sizes.

The observed scalability is to be expected for the MST initialization, since it sorts all
edges in the induced similarity graph when using Kruskal’s Algorithm and thus cannot
be faster than O(|E| log |E|). But for the heuristic initialization and the time it takes
to process a single generation, we would expect linear scalability in the number of ob-
jects, since all involved loops iterate over either the number of clusters (which we kept
constant), the number of objects, or the non-zero similarity values (which are linear in
the number of objects in our test problems).

To trace the cause of the more-than-linear increase in run-time we have carefully
reviewed our source code and the ECJ framework on which it is built for any hidden
time consumption that might explain the observed behavior. We could not find any
explanation in the code and have thus decided to run a simple subset of the whole
application to see if the cause lies with the execution environment. The code in Listing
4.1 creates a permuted array of problemSize object indices; it is used, e.g., to create
the order in which objects are processed by the similarity heuristic or the hill-climbing
hybridization. The code is obviously linear since it contains only two loops that iterate
problemSize and constant time operations otherwise.

Figure 4.7 presents the measured CPU times for executing 500 repetitions of the per-
mutation code. The results are averages of 15 runs, which we have performed twice:
once measuring process CPU time and once measuring thread CPU time. When using
the OperatingSystemMXBean to capture the total CPU time of the Java process, the
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Figure 4.7: Measured CPU times of the complete JVM process and of the user thread
only, for the O(n) benchmark in Listing 4.1

measurement not only includes time spent in user code but also all work that the Java
Virtual Machine performs in helper threads, such as garbage collection or object final-
ization. When measuring CPU time with a ThreadMXBean, only the total time spent
executing the main thread is considered. We see that the time spent in the main thread
closely resembles a linear curve, while the total process time grows much faster.

This observation supports our belief that the non-linear scalability of the clustering
EA, which we observed above, is not rooted in the algorithm itself but rather in the
implementation and/or the execution environment. Further pinpointing the exact cause
would exceed the scope of this work. A carefully crafted implementation in a lower-level
language might very well scale linearly for the time spent in heuristic initialization and
the search time used per generation. Of course, due to the increase in the required
generations to success, the resulting algorithm will still scale faster than linear with
respect to its total execution time. But the sub-linear increase in required generations is
a vast improvement over the simple EA, whose required generations increase faster than
linear.



5 Search Space Reduction by
Multi-level Approaches

In the previous chapter we explored the incorporation of problem-specific knowledge into
an evolutionary algorithm. We found several good algorithm configurations, which we
ran successfully on problems of up to 100,000 objects. We now evaluate the possibility to
further improve those algorithms by extending them to a multi-level system as described
in Section 2.3.4.

Multi-level approaches have already been used for clustering problems. In Section
2.4.4, we presented two multi-level EAs for clustering. One of them compresses the
search space by combining multiple objects to object-groups. The other cuts the search
space into disjoint subsets. Both methods perform a first-level EA run on the problems
of reduced size and then construct a final solution by running a second-level EA.

In this chapter, we propose two multi-level approaches, adapted from the reviewed
literature. We design a system that (i) uses object-groups to compress a problem and
one that (ii) cuts a problem into disjoint parts by snowball sampling. For each system, we
describe the designed algorithm, perform initial experiments to find suitable parameters,
and evaluate the configured methods on large problems.

For reasons of simplicity, we test the proposed approaches only with four success-
ful algorithms from the previous chapter. We chose an unhybridized EA with cluster-
based crossover (random selection, heuristic homeless assignment) and a hill-climbing
hybridized EA with cluster-based crossover (keep-best selection, heuristic homeless as-
signment); both are combined with heuristic and MST-based initialization.

5.1 Using Object-Groups to Compress a Problem
Our first two-level evolutionary algorithm for clustering is inspired by a “search space re-
duction” technique of Gündüz-Öğüdücü and Uyar [37]. In their paper, they heuristically
combine objects of a 4,000-object clustering problem to obtain a 1,000-object problem.
First, their proposed EA is run for a predefined number of generations on the reduced
problem. Thereafter, they restore the best solution of the first level to the full 4,000
objects and use it to seed 10% of the initial population for the second-level. The au-
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thors reason that this allows to include high-quality individuals in the initial second-level
population, while keeping a high diversity.

Our proposed approach follows a similar strategy. But we initialize the full second-
level population with results of the first-level run; instead of using only the best first-
level individual, we use the complete first-level population. This allows us to keep all
information that was obtained at the first level and carries the diversity of the first-level
population to the next level. Algorithm 5.1 presents our overall system, which contains
two EA runs. We use the same EA configuration for both levels, except for the initial
population. The system is compatible with all configurations that we presented in the
previous chapter.

In the remainder of this section, we describe the details of the object-grouping heuris-
tic, find appropriate parameters for the system, and compare the performance of the
resulting two-level approach to the single-level EAs of the previous chapter.

5.1.1 The Object-grouping Heuristic

Algorithm 5.2 presents the search space compression, which combines objects of the orig-
inal similarity matrix (SM) to groups of size groupSize that constitute the compressed
similarity matrix SM ′. Object-groups are created sequentially; i.e., a new group is only
opened after the previous group has been filled. Each new group is seeded by an unas-
signed object (Line 7). The remaining objects are searched among the nearest neighbors
of the current group members (Line 12); if all neighbors are already assigned to a group
a random object is added (Line 14).

Once all objects have been assigned, the compressed similarity matrix, which stores
similarity between pairs of object-groups, is built (Line 17). The similarity between two
object groups o1 ⊆ V and o2 ⊆ V is set to

s(o1, o2) :=
∑
ox∈o1

∑
oy∈o2

s(ox, oy) . (5.1)

The restoration of the search space (Algorithm 5.1, Line 4) is straightforward. We
create one initial individual for the second-level EA out of each individual in the final
first-level population. During the restoration, each object in the new initial individual
is assigned the cluster number of its corresponding object-group.

5.1.2 Finding a Suitable Algorithm Configuration

Similar to the implementation by Gündüz-Öğüdücü and Uyar, we plan to run the first-
level EA for a predefined number of generations. This leaves two open parameters for the
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Algorithm 5.1: CompressingEA
begin1

Input: SimilarityMatrix SM , int groupSize, int gen
SM ′ ← compress(similarityMatrix := SM , size := groupSize);2

pop′ ← runEA(problem := SM ′, generations := gen) ; /* First-level run */3

pop← uncompress(population := pop′);4

runEA(problem := SM , initialPopulation := pop) ; /* Second-level run */5

end6

Algorithm 5.2: compress
begin1

Input: SimilarityMatrix SM , int groupSize
Output: SimilarityMatrix SM ′

SM ′.n←
⌈
SM.n
groupSize

⌉
;2

SM.origSM ← SM ;3

SM ′.objectMap[ ]← new int[SM.n], initialized with -1;4

Queue addOrder ← permute objects 0, . . . n− 1 of SM ;5

for i = 0 to SM ′.n− 1 do6

/* Seed the next object-group */
addObject← dequeue unassigned object from addOrder;7

SM ′.objectMap[addObject]← i;8

PriorityQueue neighbors← new PriorityQueue, initialize with the similarity9

entries of addObject;10

for j = 1 to groupSize− 1 do11

/* Add the nearest unassigned neighbors to the group */
addObject← most similar unassigned neighbor in neighbors;12

if addObject = null then13

addObject← dequeue unassigned object from addOrder;14

SM ′.objectMap[addObject]← i;15

neighbors.add(similarity entries of addObject);16

/* Build the similarity entries for SM ′ */
foreach entry of SM.similarity do17

i′ ← SM ′.objectMap[entry.i];18

j′ ← SM ′.objectMap[entyr.j];19

SM ′.similarity(i′, j′)+ = entry.value;20

end21
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two-level clustering EA: the number of generations in the first level and the object-group
size. We design initial experiments to find a good configuration for both parameters.

We assume that the first level, which processes the compressed problem, is able to find
medium-quality solutions to the original problem faster than a single-level EA, since the
smaller genome should reduce runtime. We further assume that the first-level EA cannot
find solutions of satisfactory quality to the original problem since it lacks the flexibility
to assign objects in the same object-group to different clusters; this is likely to prevent
the fine-tuning of a coarse solution.

We need to determine a good cutoff point for the first-level run. If the first level is run
too short, it might not yield the full benefit of finding a medium-quality fitness faster; if
it is run too long, it might waste time on a medium-quality fitness that cannot be further
improved. It is computationally infeasible to cover a large range of cutoff points through
initial experiments with the two-level EA. Large-size test data sets of 200 problems take
multiple hours or even days for evaluation. We thus select a cutoff point based on an
estimated runtime, which we derive from a simplified experiment: We run the first level
(FL) for a large enough number of generations to cover the interesting range of cutoff
points. At each generation we observe the fitness of the uncompressed population. Based
on this observation and the statistics for a single-level algorithm (EA), which we collected
in Chapter 4, we estimate the runtime of the multi-level algorithm.

Simply put, our estimation assumes that the second-level run (SL) takes as long to
succeed, as the single-level algorithm takes from the point of comparable quality. We
set this point to the highest generation in the single-level run where average and best
fitness are still below the respective values of the second-level initial population. Our
calculation of the estimated runtime, RTest, can be expressed as:

RTest(g) = RTFL(g) + RTest
SL(g) (5.2)

= RTFL(g) +
[

RTQ≥EA(0.85,∞)− RTQ<EA

(
Qbest

FL (g),Qavg
FL (g)

) ]
. (5.3)

RTFL(g) denotes the runtime the first-level spent up to generation g, Q∗FL(g) denotes
the best/average fitness, when uncompressing the first-level population at generation
g. RTQ≥EA(best, avg) denotes the runtime spent by the single-level algorithm up to
the first time that the average or best fitness exceed or equal the argument values,
RTQ<EA(best, avg) denotes the runtime spent by the single-level algorithm up to the last
time that the average and best fitness fall below the argument values.

Figure 5.1 gives an example for the RTest calculation. Figure 5.1(a) shows the fitness of
the uncompressed population vs. elapsed runtime that we found in the experiment. The
horizontal lines mark the average and best fitness after generation 10. Figure 5.1(b) is an
averaged fitness plot of a single-level EA with the same configuration, based on the ex-
periments we ran in Chapter 4. In generation 23, the plotted fitness of the best individual



5.1 Using Object-Groups to Compress a Problem 77

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

P
o

p
u

la
tio

n
 q

u
a

lit
y

Elapsed runtime (sec)

Best individual
Average fitness

(a) Uncompressed fitness of initial experiment
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(b) Fitness vs. runtime, results of Chapter4

Figure 5.1: Exemplary calculation of the estimated runtime for the two-level EA based
on object-groups. The fitness of the first-level run in generation 10 is marked. The corre-
sponding fitness in the single-level EA falls between generations 22 and 23 (dashed lines)

falls below the corresponding marker, but the average fitness is still higher. Generation
22 is the highest generation for which both plotted values are lower than the marked
levels. Thus the average runtime of generation 22 defines RTQ<EA

(
Qbest

FL (10),Qavg
FL (10)

)
and the average runtime of generation 23 defines RTQ≥EA

(
Qbest

FL (10),Qavg
FL (10)

)
.

To conduct the initial tests, we uncompress the population after each generation and
report statistics on the uncompressed population. The computational time used for the
uncompressing and reporting is not attributed to the runtime of the first-level EA. We
test four successful configurations of Chapter 4 with varying group sizes. The tested
group sizes are 5, 10, 50, and 100 objects per group. Based on the average generations a
single-level EA requires to succeed (Figure 4.6), we limit the interesting range of cutoff
points to 25 generations for unhybridized configurations and to 7 generations for hybrid
EAs. Due to time constraints, those settings are tested on a limited selection of problem
sizes: 10,000, 25,000, 50,000, and 75,000 objects.

Table 5.1 shows the estimated runtimes that result from the initial experiments. For
each algorithm configuration and each combination of object-group size and problem
size, the fastest estimated runtime is presented alongside the cutoff generation for which
it was achieved. We find that independent of the specific algorithm configuration and the
problem size, an object-group size of 100 objects always results in the fastest estimated
runtime. We decide to fix this group size for the final evaluation.

As for the best cutoff generation, we see similarities between algorithm configura-
tions with the same initialization method. The majority of heuristically initialized runs
achieves the best estimated runtime for a first-level EA that runs two generations. The
group of MST initialized configurations shows a strong tendency towards fewer gener-
ations and achieves most often the fastest runtime for 0 first-level generations. This



78 5 Search Space Reduction by Multi-level Approaches

Table 5.1: Results of initial experiments to determine the fastest configuration for the
object-grouping two-level EA. The tables show the fastest estimated runtimes (in seconds)
and their associated cutoff generation for all combinations of group size and problem size.

(a) clust-xo-hh, mut05, heur-init

10,000 objects 25,000 objects 50,000 objects 75,000 objects
Group Size Cutoff RTest Cutoff RTest Cutoff RTest Cutoff RTest

5 4 29.6 2 126.9 2 340.3 0 620.0
10 5 31.6 5 128.5 7 338.2 8 605.4
50 0 26.2 2 96.3 4 239.4 3 417.9
100 0 21.1 1 87.7 2 223.3 2 387.2

(b) clust-xo-hh, mut05, mst-init

10,000 objects 25,000 objects 50,000 objects 75,000 objects
Group Size Cutoff RTest Cutoff RTest Cutoff RTest Cutoff RTest

5 3 27.6 3 95.6 3 214.6 3 354.5
10 4 27.6 4 92.3 3 200.2 3 352.8
50 0 16.4 0 49.5 0 184.7 3 336.0
100 0 15.0 0 44.2 0 111.3 0 221.9

(c) clust-xo-kb-hh, mut05-hill, heur-init

10,000 objects 25,000 objects 50,000 objects 75,000 objects
Group Size Cutoff RTest Cutoff RTest Cutoff RTest Cutoff RTest

5 2 21.1 3 80.9 3 210.7 3 277.5
10 2 20.8 3 74.2 2 171.1 3 261.5
50 0 23.0 2 65.9 2 150.0 2 248.6
100 0 19.9 2 62.1 2 137.7 2 230.7

(d) clust-xo-kb-hh, mut05-hill, mst-init

10,000 objects 25,000 objects 50,000 objects 75,000 objects
Group Size Cutoff RTest Cutoff RTest Cutoff RTest Cutoff RTest

5 2 25.1 3 75.4 3 191.6 1 349.3
10 1 22.2 2 59.5 2 153.5 2 264.1
50 0 17.9 0 48.0 2 140.1 2 241.0
100 0 15.3 0 46.6 2 130.4 2 231.5
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corresponds to initializing a single-level EA by an MST of the compressed similarity ma-
trix. This indicates that the first-level EA cannot achieve much significant improvement
that is worth to spend time on. Only on very large problems does a first-level run of 2
generations result in a better estimated runtime.

We decide to fix the first-level generations at 2 for heuristically initialized config-
urations. For MST initialized ones, we run the first-level EA for 1 generation, as a
compromise between 0 and 2 being the best cutoff points.

5.1.3 Performance of the Approach

We have evaluated the object-grouping multi-level system in combination with four dif-
ferent EA configurations on a range of large-scale problems. The complete results are
given in Table B.1 on page 99. Three of the four configurations show a 100% success
rate; their runtimes (averaged over 200 test problems) are visualized in Figure 5.2 and
compared to the runtimes of a single-level EA with the same configuration.
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Figure 5.2: Comparison of the object-grouping multi-level EAs to the single-level EAs of
the previous chapter.
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We find that for unhybridized EAs, the presented runtime estimates underestimated
the time required for the second level. For example, the heuristically initialized configu-
ration had an estimated runtime of 387 seconds for 75,000 objects, but the true SRT is
above 400 seconds. Still, the true runtimes are an improvement over the corresponding
single-level EA. The multi-level system is able to reduce the required runtime by up to
40%.

The unhybridized, MST initialized EA shows a worse result: the multi-level version
frequently converges to local optima, which results in low success rates in the range of
6% to 20%. SRT decreases by at most 20% compared to the single-level EA. This renders
the clust-xo-hh, mut05, mst-init object-grouping EA infeasible for successful clustering.

For the hill-climbing hybridized EAs, we find that the true runtimes have been overes-
timated. All second-level runs find a solution of acceptable quality in at most 2 genera-
tions. Both initialization techniques result in successful EAs; the heuristically initialized
configuration achieves a consistently better SRT than the MST initialized one. Com-
pared to a single-level EA, the heuristically initialized EA is able to reduce the required
runtime by up to 70%.

In short, we can say that the object-grouping multi-level system allows respectable
performance improvements at the cost of reduced robustness. For example, in combina-
tion with the clust-xo-kb-hh, mut05-hill, heur-init configuration, the two-level approach
sets a new record SRT for the 100,000-object problem of only 200 seconds; but in com-
bination with the clust-xo-hh, mut05, mst-init configuration, the two-level approach is
unsuccessful and frequently trapped in local optima.

5.2 Cutting a Problem by Snowball Sampling

Our second two-level evolutionary algorithm for clustering is inspired by a “search space
division” technique of Korkmaz [54]. In his paper, he randomly cuts a feature-based
data set into s subsets, in order to handle a 700-object data set with an EA that had
before only been used for problems of up to 150 objects. Each subset is clustered by an
independent multi-objective EA run for a predefined number of generations. Thereafter,
he determines a suitable number of clusters, c, based on characteristics of the Pareto
fronts. The author notes that any number equal to or larger than the true number of
clusters is suitable for c. In the second level, he processes the c · s partial clusters of all
subproblems by the clustering MOEA to determine which ones should be merged.

We design a similar two-level approach, but change certain details to better suit our
test problems and previous algorithms. Our test data is represented as a sparse similarity
matrix, thus not all object pairs are connected in the induced similarity graph. If we cut
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Algorithm 5.3: CuttingEA
begin1

Input: SimilarityMatrix SM , int numParts, int gen
SM ′[ ]← cut(similarityMatrix := SM , parts := numParts);2

for i = 0 to numParts− 1 do /* First-level runs */3

pop′[i]← runEA(problem := SM ′[i], generations := gen);4

pop← splice(population := pop′[ ]);5

runEA(problem := SM , initialPopulation := pop) ; /* Second-level run */6

end7

the set of objects randomly, most likely each subset would be highly disconnected. To
counter this, we use snowball sampling to create the subsets.

The second-level EA in the original paper is restricted to process only the partial
clusters. Thus objects that have been grouped together in the first level cannot be
separated. We follow a similar strategy as in the previous section to increase flexibility
of the second level. The results of the clustered subsets are combined and seed the
initial population for a fully flexible second-level EA. Algorithm 5.3 summarizes our
overall approach.

In the remainder of this section we describe the details of snowball sampling used to
cut the data and propose two splicing heuristics to recombine partial clusters. We find
appropriate parameters for the system, evaluate its performance and compare it to the
single-level EAs of the previous chapter.

5.2.1 The Snowball Sampling
Algorithm 5.4, which is based on snowball sampling, divides a given problem into multiple
parts. Snowball sampling originates from social sciences. It refers to a sampling scheme
in which a set of initial candidates is instructed to recruit their friends, which in turn
recruit their friends and so on. In an information technology environment, this sampling
process has been used, e.g., in social network studies [62].

We use a snowball sampling approach instead of a random division of the problem,
because of the sparse test problems. The test problems have an expected node degree
of 10 in the induced similarity graphs (cf. Section 3.2). Thus, a random division of the
search space bears the high risk to detach objects from all their neighbors. Our version
of snowball sampling is designed to reduce this risk.

Algorithm 5.4 seeds each subset with a random object (Line 5) and progresses the
subset construction from the selected seeds. In its original context, snowball sampling
is usually performed with multiple initial candidates, who are all asked to refer multiple
friends. We simplify this scheme so that each object refers only one neighbor, the most
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Algorithm 5.4: cut
begin1

Input: SimilarityMatrix SM , int parts
Output: SimilarityMatrix SM ′[ ]
partID[ ]← new int[SM.n], initialized with -1;2

Queue addOrder ← permute objects 0, . . . n− 1 of SM ;3

Stack backtrack[ ]← new Stack[parts];4

for i = 0 to parts− 1 do /* Seed each snowball */5

addObject← dequeue unassigned object from addOrder;6

partId[addObject]← i;7

backtrack[i].push(addObject);8

while not all objects are assigned do /* Grow the snowballs in parallel9

*/
for i = 0 to parts− 1 do10

/* Search a candidate among neighbors of snowball objects */
while backtrack[i] not empty do11

addObject← most similar unassigned neighbor of top element;12

if addObject = null then backtrack[i].pop() else break;13

if addObject = null then14

addObject← dequeue unassigned object from addOrder;15

partId[addObject]← i;16

backtrack[i].push(addObject);17

/* Copy the similarity entries to the SM ′[ ] members */
foreach entry of SM.similarity do18

if partId[entry.i] = partId[entry.j] then19

SM ′[partId[entry.i]].similarity(entry.i, entry.j)← entry.value;20

end21

similar one (Line 12). The referred object is added to the same subset and refers the next
object, and so on. Only if an object has no more unassigned neighbors, we backtrack
until a feasible connection is found (Line 13).

We hope this approach results in a cut for which holds: (i) subsets are connected, (ii)
the neighborhood of an object contains nodes that belong to the same cluster, and (iii)
each subset contains a good mix of objects from all clusters. (i) is supported by the basic
behavior of the sampling process: new objects are found along edges in the similarity
graph; an unconnected object is only added as the last resort (Line 14). (ii) is achieved
since we give preference to high similarity edges, which are likely to refer an object of
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the same cluster as the current referee. (iii) is a desirable goal, so that the first-level EA
can find a clustering that fits the overall problem. The goal seems contradicting to (ii);
but the available edge with the highest quality does not necessarily lead to an object
of the same cluster (otherwise the clustering task would be trivial). Thus, the snowball
creation is able to “switch” to an object of a different cluster; once this occurs, the newly
involved cluster is likely to be further sampled for a while, until another switch occurs.

5.2.2 The Splicing Heuristics

The first-level EA processes each subset of the problem independently. Thereafter, we
construct an initial population for the second-level EA that is based on the clusters
of the subsets. We propose to select one individual per subset population and splice
them in order to form a single new solution candidate for the second level. We select
the individuals from the subset populations according to their fitness, starting with the
best. This assures that the first second-level solution candidate is combined of the best
solutions in each subset, the second one is combined of all second-best solutions, and so
on.

For s subsets and a k-clustering problem, the splicing is presented with s · k partial
clusters, which need to be combined to a single k-cluster solution. We propose two
heuristics for this combination, which are based on the summed similarity between each
pair of partial clusters. The unrestricted splicing heuristic is free to combine the partial
clusters in any possible way to form k clusters. The restricted splicing heuristic forms
each of the k clusters out of exactly one partial cluster per subset.

The Unrestricted Splicing Heuristic

The unrestricted approach uses single-linkage clustering as a heuristic to combine the
partial clusters. Pairs of partial clusters are processed in descending order of their
pairwise similarity; for each pair of partial clusters, the components in which they are
contained are merged, until only k clusters are left. This corresponds to building an
MST-clustering on the fully connected graph of partial clusters.

The Restricted Splicing Heuristic

The restricted approach is a modified single-linkage splicing, which is constrained to only
combine partial clusters that belong to different parts. The restricted splicing algorithm
utilizes components, a data structure that describes how to build a final cluster out
of partial clusters. Similar to the unrestricted approach, pairs of partial clusters are
processed in descending order of their pairwise similarity; but the components in which
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they are contained are only merged if they are compatible, meaning that the resulting
combination would not contain two partial clusters that belong to the same part.

For example, for k = 3 and s = 3, the partial cluster 2 in part number 1 is initialized
with the component (−21−), partial cluster 0 in part 2 is initialized with (− − 02). If
the pair 21, 02 has the highest pairwise similarity, their components are combined to
form (−2102). The second similar pair might be 10, 12 and the algorithm forms the
component (10−12). If the third similar pair is 10, 21, the corresponding components are
incompatible, since they both contain a partial cluster for part 2. The algorithm cannot
combine them and advances to the next pair of partial clusters.

The restricted splicing heuristic processes all pairs of partial clusters, building larger
and larger components. Once all positions in a component are filled, it is closed and
forms an initial cluster for the second-level solution candidate. Above procedure does
not guarantee that all components are closed, once all pairs of partial clusters have
been processed. For example, the exemplary situation above might result in the final
components (201122), (10−12), (−2102), and (0001−). Since k = 3, there is one excessive
component, but no further combinations are possible. In this case, the heuristic splits
up excessive components and redistributes their partial clusters among the remaining
open components on a first fit basis. This allows to close all remaining components and
a valid solution candidate for the second level has been built.

5.2.3 Finding a Suitable Algorithm Configuration

The proposed two-level approach has open parameters for which we need to find a
suitable configuration. As for the object-grouping EA, the number of generations for
the first level is a variable. Further parameters are the number of subparts in which we
cut the problem and the decision between the two proposed splicing heuristics.

As before, we perform initial experiments to determine the parameters. This time
we are more skeptical about the suitability of the designed approach: Even though the
snowball sampling is intended to cut a problem into “meaningful” subparts, there is the
risk that too much similarity information is lost to allow for a good clustering. Thus,
we run more conservative initial experiments: The first-level EA is run for a number of
generations sufficient to achieve fitness convergence in the subproblems. We then test
whether the resulting initial configuration leads to an improved second-level run.

We evaluate configurations with a variable number of subparts in combination with
both splicing heuristics. Due to time constraints, we limit ourselves to the 50,000-object
problem in the initial experiments. The initial experiments are conducted for 2, 5, and 10
subparts. The first level is run for 30 generations in combination with the unhybridized
EA and for 7 generations in combination with the hill-climbing hybridization.
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Table 5.2: Average generations to success spent in the second level of cutting EA for
50,000-object problem. The total generations of a single-level EA are shown for comparison.

clust-xo-hh, mut05 clust-xo-kb-hh, mut05-hill
Subparts Splicing heur-init mst-init heur-init mst-init

2 unrestricted 17.2 18.8 2.2 8.9
2 restricted 14.8 15.5 2.0 2.5
5 unrestricted 32.8 32.7 5.0 8.3
5 restricted 30.8 30.8 4.8 4.0
10 unrestricted 32.6 32.8 5.1 5.9
10 restricted 34.1 34.4 5.2 4.9

Single-level EA 31.5 29.8 5.9 5.7

The combination of snowball sampling with MST initialization showed a problem
during the experiments: if a snowball is re-seeded because its backtracking stack emptied
(Algorithm 5.4, Line 14), the resulting subproblem is not connected. This leads to a
failure of the MST initialization, since too many connected components are discovered. In
a productive environment this could be fixed in two ways. An updated MST initialization
could check the number of connected components in the input problem and remove less
than k − 1 edges; or an updated cutting algorithm could insert an explicit edge with
weight zero to connect multiple seeds in a single snowball. For the purpose of analyzing
the suggested two-level approach, we decide to ignore the erroneous problems and report
results only on unproblematic runs. In every MST initialized configuration at most 25%
of all runs are affected.

Table 5.2 presents the average generations that the two-level EA has spent in the
second level. We compare those to the time a single-level EA takes for the same prob-
lem class to infer a configuration for the final evaluation. With respect to the splicing
heuristics, the restricted splicing is superior to the unrestricted splicing in most cases.
For restricted splicing, we see a consistent increase in the required generations with an
increasing number of subparts. Thus we choose a 2-subpart configuration and restricted
splicing for further evaluation. Other configurations are not very promising and some
even worsen the average generations required for the second-level run to succeed.

The final open parameter is the number of generations for the first-level run. The
selected configuration improves the average generations to success by 14.3 or 16.7 for
unhybridized and by 3.2 or 3.9 for hybridized algorithms. Thus the effort of spending 30
or 7 generations on the first level respectively, as was done for the initial experiment, is
too high to achieve an overall decrease of runtime. Figure 5.3 presents the population fit-
ness that was recorded in the initial experiment, similar to the object-grouping approach:
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(a) clust-xo-hh, mut05, heur-init
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(b) clust-xo-hh, mut05, mst-init
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(c) clust-xo-kb-hh, mut05-hill, heur-init
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Figure 5.3: Fitness development of the resulting population, when applying the restricted
splicing heuristic to a 2-subpopulation first-level run

after each generation the splicing heuristic was applied and the resulting population was
evaluated. We see a very regular increase in fitness, and no obvious candidate for the
number of first-level generations can be inferred from the plots. In order to start the
second level with a good initial population, we decide to set the number of first-level
generations rather high but still below the gain we have over a single-level EA. We
choose to run the first-level EA for 10 generations for unhybridized configurations and
3 generations for hybridized ones.

5.2.4 Performance of the Approach

We have evaluated the cutting multi-level system in combination with four different
EA configurations on a range of large-scale problems. The complete results are given
in Table B.2 on page 100. All configurations reach success rates above 99%. But in
conjunction with the selected parameters for the cutting system, no EA configuration is
able to outperform a single-level approach with respect to the average runtime.
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In all configurations, the average number of generations that the second level requires
until success, is lower than the generations required by a corresponding single-level EA.
But the attainable reduction is not large enough to make up for the computational time
spent on the first level. For example, for the 50,000-object problems we see a benefit
of 1.6 or 3.8 generations for unhybridized configurations and 1.6 or 1.9 generations for
hybridized configurations. These values are below the ones of the initial experiments,
due to the reduced number of first-level generations.

There is the possibility that a different number of first-level generations allows the
cutting multi-level EA to achieve a faster SRT than a corresponding single-level EA.
But in the light of the experimental results we have seen so far, we expect no noteworthy
improvement.

The worse performance in comparison to the object-grouping approach is reasonable:
In the object-grouping approach, a single first-level run is performed on a problem of size
n

group-size ; due to the reduced genome size, the first-level EA is able to process a certain
amount of generations faster than an EA that works on the uncompressed problem.
The cutting approach, on the other hand, performs s runs on problems of size n

s
for a

problem that is cut into s subproblems. Thus, the effort to process a certain amount
of generations once per subproblem is approximately the same as processing the same
number of generations in a single-level EA that works on the complete problem. Speedup
can only result from a faster convergence in the first-level runs, which might result from
the reduced problem size. This was the case in the original paper [54] for feature-based
data. But for our sparse pairwise similarity problems, the subproblems do not carry
enough information in order to quickly converge to a good clustering.





6 Summary, Conclusion and Outlook
In this thesis, we have discussed scalability issues of evolutionary algorithms. We pre-
sented a general survey on this topic and found clustering to be an interesting problem
for our own studies. Based on our understanding of scalability as the behavior of per-
formance over changing problem sizes, we designed scalable test data for the pairwise
similarity-based clustering problem. A simple EA, which we introduced as the base al-
gorithm, exhibited an unfavorable scalability; runtimes increase more than quadratically
with growing problem size. With an average runtime to success of more than 20 minutes
for a 2,000-object problem, the base algorithm is unsuitable for large problems.

We proposed several modifications to the base algorithm in the form of problem-
specific knowledge in custom initialization and crossover operators and hybridizations
with clustering heuristics. We evaluated various combinations of the suggested modifica-
tions: In total, 126 different clustering EAs have been tested on problems of up to 2,000
objects. We found that intelligent initialization alone, used in an unhybridized algorithm
that employs traditional crossover, cannot improve scalability. However, algorithms with
a cluster-based crossover or a hill-climbing hybridization showed pleasing performance.
For example, the 2,000-object problem could be solved in an average time of less than
three seconds. Furthermore, runtimes were found to increase in a near-linear manner
with growing problem size. We could successfully solve problems of up to 100,000 objects
with an average runtime below 1,000 seconds.

Based on two-level EAs in the literature, we extended the successful EA configurations
to follow a similar approach. Our proposed methods first process a size-reduced problem
with a clustering EA; they then use the resulting population to seed a second-level EA.
We suggested two approaches for the size reduction: search space compression by sum-
marization and cutting the input problem into multiple smaller subproblems for the first
level. Experimental evaluation showed that the summarization by grouping multiple
objects has the potential for further runtime reduction. The alternative approach to cut
the search space into subproblems had no positive effect. We tested the object-grouping
system in combination with good algorithm configurations that we found for the single-
level EA. We learned that the multi-level approach decreases robustness, since some of
the configurations consistently converged to local optima only, but also allows substan-
tial runtime improvements. The best multi-level configuration consistently discovered
solutions of acceptable quality in only 30% of the time required by the corresponding
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single-level EA; the 100,000-object problems were solved with an average runtime of 200
seconds.

We can conclude that, in the studied problem domain, evolutionary approaches can
successfully serve as the basis for well-scaling methods. But this requires an appropriate
integration of problem-specific knowledge. Although a standard EA is flexible enough to
be quickly adapted for clustering, standard operators alone are not sufficient to achieve
good performance or scalability and make it infeasible to solve large problems.

If large problem sizes need to be handled with little effort, the development of problem-
specific evolutionary operators might be too costly. In such situations, we can advise to
base algorithm design on a problem-specific search heuristic, even if it is prone to fail by
getting stuck in local optima, and then hybridize the heuristic with a simple EA. We had
a good experience with such hybrid EA configurations: they outperformed a standard
EA in terms of runtime and surpassed the success rates of non-evolutionary heuristic
use.

If performance is a main objective, the hybrid EA can be further optimized by problem-
specific operators or multi-level approaches. These optimizations allow substantial per-
formance improvements but require more effort during their development and increase
the risk of failure due to a decreased robustness of the resulting algorithm.

In this work, we could only cover the experimental evaluation on a set of synthetically
generated test problems. In order to support our results and to broaden the insight
on clustering EAs, further experiments on real-world data sets will be required. Not in
the scope of this work were general techniques for improving EA performance and their
applicability to the clustering problem. The usage of parallelization is certainly possible
and, in the master/slave model, will allow a predictable speedup. Attention should
be given to the prospects of applying linkage learning techniques to large clustering
problems. Because of the high genome interdependency, clustering poses an extremely
tough problem for linkage learning and studies in this direction might yield interesting
results.



A Experimental Results for Chapter 4

This appendix presents the detailed results of the experiments in Chapter 4.

A.1 The Initial Evaluation of All Configurations
We have evaluated various algorithm configurations in Chapter 4, which we grouped into
a total of 13 classes (Table 4.4 on page 54). This appendix presents the runtimes and
success rates for all classes in Table A.1 on the next page.

Each algorithm was evaluated on four problem sizes, ranging from 100 objects to 2000
objects; 200 independent algorithm runs have been performed in each category. For each
size, we give the achieved success rate (SR), the average run-time to success (SRT), and
the expected run-time (ERT), as defined in Section 3.3.1.
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A.2 Results for Successful Configurations and Large
Problems

In Section 4.4.2 we have selected some of the successful algorithm configurations for
further evaluation. We have evaluated them up to problem sizes of 100,000 objects.
This section presents the detailed measurement results, average over 200 runs as above.

For each tested configuration we show the measured CPU time, split up into initial-
ization time and search time, the average number of generations until success, and the
average time spent to process a single generation.

Table A.2: Evaluation of algorithms using cluster-based crossover with a heuristic home-
less strategy

clust-xo-hh, mut05, heur-init

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 3.3 3.7 4.8 4.2 5.7 20.5 41.3 66.7 97.4
Search Time 2.4 2.9 3.4 9.5 24.5 117.7 319.7 577.7 892.2

Total Time 5.7 6.6 8.2 13.7 30.2 138.2 361.0 644.4 989.6

Generations 10.1 12.0 14.4 18.0 21.5 27.1 31.5 34.5 37.1
Time / Gen. 0.2 0.2 0.2 0.5 1.1 4.3 10.2 16.7 24.1

clust-xo-hh, mut05, mst-init

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 2.7 3.1 3.9 3.4 3.6 11.5 17.6 28.1 38.8
Search Time 3.5 3.9 4.7 9.6 24.0 111.7 309.7 561.9 893.4

Total Time 6.1 7.0 8.6 13.0 27.7 123.3 327.3 590.0 932.2

Generations 13.3 12.5 14.3 17.1 20.0 24.9 29.8 33.0 35.5
Time / Gen. 0.3 0.3 0.3 0.6 1.2 4.5 10.4 17.0 25.1
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Table A.3: Evaluation of algorithms using the hill-climbing heuristic
clust-xo-kb-hh, mut05-hill, heur-init

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 3.2 3.9 5.0 4.2 5.6 20.3 41.4 66.4 94.7
Search Time 2.3 3.0 3.2 7.2 18.2 80.9 236.6 386.0 585.9

Total Time 5.6 6.9 8.2 11.5 23.9 101.3 278.0 452.3 680.6

Generations 2.0 2.8 3.0 3.7 4.0 5.0 5.9 6.0 6.2
Time / Gen. 1.1 1.1 1.1 2.0 4.6 16.2 40.0 64.3 94.3

clust-xo-kb-hh, mut05-hill, heur-rand-init

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 3.2 4.1 4.9 4.4 4.8 16.5 28.6 46.4 65.7
Search Time 2.4 3.1 3.3 7.7 17.8 81.9 242.1 390.0 627.7

Total Time 5.6 7.2 8.2 12.1 22.6 98.4 270.7 436.4 693.4

Generations 2.2 2.9 3.0 4.0 4.0 5.0 6.0 6.0 6.5
Time / Gen. 1.1 1.0 1.1 1.9 4.4 16.4 40.5 64.8 96.8

clust-xo-kb-hh, mut05-hill, mst-init

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 2.5 3.2 3.9 3.3 3.7 11.4 17.7 28.3 38.0
Search Time 3.3 4.0 4.6 8.6 21.5 81.7 216.3 370.9 548.0

Total Time 5.9 7.2 8.5 11.9 25.2 93.1 234.0 399.2 585.9

Generations 2.9 3.1 3.9 4.4 5.0 5.2 5.7 5.9 6.0
Time / Gen. 1.1 1.3 1.2 1.9 4.3 15.7 38.1 62.4 91.3

match-xo, mut05-hill, heur-init algorithm

Problem Size 500 1,000 2,000 5,000 10,000 25,000 50,000 75,000 100,000

Init. Time 3.3 3.8 4.7 4.2 5.7 20.4 41.3 66.0 95.0
Search Time 2.6 3.0 3.3 8.1 20.4 97.0 267.4 466.7 736.7

Total Time 5.9 6.8 8.1 12.3 26.1 117.4 308.7 532.6 831.7

Generations 3.0 3.3 4.0 5.0 5.6 6.7 7.7 8.2 8.9
Time / Gen. 0.8 0.9 0.8 1.6 3.7 14.4 34.7 56.65 82.5
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B.1 The Object-grouping Multi-level EA
Table B.1: Detailed average runtime and generations that were spent by the successful
object-grouping multi-level EAs. The shown configurations achieved 100% success, the
clust-xo-hh, mut05, mst-init configuration had a low SR and is not presented here.

clust-xo-hh, mut05, heur-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 4.1 10.5 22.1 34.3 46.1
2nd-level runtime 24.2 84.4 215.0 378.2 561.9

Total runtime 28.3 94.9 237.1 412.5 608.0

1st-level generations 2.0 2.0 2.0 2.0 2.0
2nd-level generations 11.0 13.6 15.6 16.8 17.7

Total generations 13.0 15.6 17.6 18.8 19.7

clust-xo-kb-hh, mut05-hill, heur-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 5.1 12.3 29.0 48.2 66.1
2nd-level runtime 10.7 26.2 59.2 98.8 137.6

Total runtime 15.8 38.5 88.2 147.0 203.7

1st-level generations 2.0 2.0 2.0 2.0 2.0
2nd-level generations 1.0 1.0 1.0 1.0 1.0

Total generations 3.0 3.0 3.0 3.0 3.0

clust-xo-kb-hh, mut05-hill, mst-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 4.9 10.5 20.9 31.9 41.4
2nd-level runtime 11.1 30.4 89.3 167.5 243.5

Total runtime 16.0 40.9 110.2 199.4 284.9

1st-level generations 1.0 1.0 1.0 1.0 1.0
2nd-level generations 1.0 1.2 1.7 1.9 2.0

Total generations 2.0 2.2 2.7 2.9 3.0
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B.2 The Cutting Multi-level EA
Table B.2: Detailed average runtime and generations that were spent by the cutting
multi-level EAs. All configurations had a success rate > 99%.

clust-xo-hh. mut05. heur-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 24.6 62.6 137.5 220.2 324.9
2nd-level runtime 35.4 142.5 385.1 706.7 1091

Total runtime 60 205.1 522.6 926.9 1415.9

1st-level generations 10.0 10.0 10.0 10.0 10.0
2nd-level generations 16.7 22.9 27.7 30.9 32.9

Total generations 26.7 32.9 37.7 40.9 42.9

clust-xo-hh. mut05. mst-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 23.2 58.4 124.9 205.9 301.5
2nd-level runtime 35.9 144.3 386.8 721.4 1119.9

Total runtime 59.1 202.7 511.7 927.3 1421.4

1st-level generations 10.0 10.0 10.0 10.0 10.0
2nd-level generations 16.8 23.2 28.2 31.5 33.6

Total generations 26.8 33.2 38.2 41.5 43.6

clust-xo-kb-hh, mut05-hill, heur-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 25.0 61.4 130 218.4 322.3
2nd-level runtime 19.5 74.5 218.2 437.6 671.4

Total runtime 44.5 135.9 348.2 656 993.7

1st-level generations 3.0 3.0 3.0 3.0 3.0
2nd-level generations 2.0 3.0 4.0 4.8 5.0

Total generations 5.0 6.0 7.0 7.8 8.0

clust-xo-kb-hh, mut05-hill, mst-init

Problem Size 10,000 25,000 50,000 75,000 100,000

1st-level runtime 22.9 53 112.1 184.3 275.5
2nd-level runtime 25.6 87.6 215.1 394.9 646.6

Total runtime 48.5 140.6 327.2 579.2 922.1

1st-level generations 3.0 3.0 3.0 3.0 3.0
2nd-level generations 3.1 3.8 4.1 4.4 4.9

Total generations 6.1 6.8 7.1 7.4 7.9
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