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Deutsche Zusammenfassung

Visualisieren von Netzwerken ist eine Aufgabe, die in einer Vielzahl von Anwendungsberei-
chen auftritt, in denen Daten mathematisch als Graph modelliert werden und für einen
menschlichen Betrachter veranschaulicht werden sollen. Ziel ist dabei in der Regel, eine
möglichst effektive Darstellung des Graphen in der Ebene zu finden, also eine Darstellung,
die für den Betrachter leicht zu lesen ist und gleichzeitig die zu vermittelnde Information
objektiv wiedergibt, sei es zur Exploration von unbekannten Zusammenhängen oder zur
Präsentation von bekanntem Wissen.

Die graphische Darstellung eines Knotens bzw. einer Kante des Graphen hängt einerseits
von geometrischen Attributen wie Position, Größe oder Form ab und andererseits von
rein graphischen Attributen wie Farbe, Muster oder Helligkeit. In meiner Dissertation
beschäftige ich mich mit den geometrischen Aspekten der Netzwerkvisualisierung, dem
sogenannten Graphenzeichnen. In der Regel werden Knoten durch Punkte repräsentiert,
deren Koordinaten geeignet zu bestimmen sind. Kanten werden üblicherweise als einfache
offene Kurven zwischen ihren Endpunkten dargestellt. Unter anderem unterscheidet man
beim Graphenzeichnen zwischen eingebetteten Graphen, also Graphen für die bereits eine
initiale Zeichnung vorliegt, und abstrakten Graphen, die lediglich durch Knoten- und
Kantenmengen definiert sind.

Die Arbeit ist in fünf Themenbereiche gegliedert. Dabei beschäftige ich mich in den
ersten drei Bereichen mit Netzwerkvisualisierungsproblemen, die aus unterschiedlichen
Anwendungen heraus motiviert sind, während die beiden letzten Themen eher theoretisch
motiviert sind.

Schematische Linienpläne. Die erste Anwendung ist das Erstellen von schematischen
Karten oder Linienplänen, wie sie vorwiegend zur Darstellung von öffentlichen Verkehrs-
netzen eingesetzt werden. Hier geht es darum, einen durch die geographische Lage der
einzelnen Stationen und ihrer Verbindungen bereits eingebetteten Graphen so zu schemati-
sieren, dass die Lesbarkeit für visuelle Navigationsaufgaben erhöht wird. Dabei werden die
zulässigen Kantenrichtungen eingeschränkt, Knicke entlang von Verkehrslinien minimiert
und Kantenlängen maßstabsunabhängig vereinheitlicht – ohne allerdings das ursprüngliche
Layout zu sehr zu verzerren. Ein besonderes Augenmerk liegt auch auf dem Erstellen von
beschrifteten Linienplänen, also Netzwerkvisualisierungen, die ausreichend Platz bieten
um alle Stationen überlappungsfrei mit ihrem Namen zu beschriften. Das bereits ohne
Beschriftungen als NP-schwer bekannte Problem modelliere ich als gemischt-ganzzahliges
lineares Programm und evaluiere den Ansatz anhand von drei Fallstudien. In Bezug auf
die Qualität der Ergebnisse ist meine Methode bisherigen Ansätzen weit überlegen.

Ein weiteres Problem, das häufig bei der Visualisierung von Linienplänen auftritt, ist
die Darstellung von parallel verlaufenden Verkehrslinien entlang gemeinsamer Kanten. Üb-
licherweise wird jede Bus- oder Bahnlinie stetig und in einer eindeutigen Farbe entlang der
benutzten Kanten des zugrundeliegenden Netzwerks gezeichnet. Dabei kann es – trotz der
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Planarität des Netzwerks – zu Kreuzungen kommen. Nur manche dieser Kreuzungen sind
durch die Topologie des Netzwerks unvermeidlich. In meiner Dissertation betrachte ich daher
erstmals die Minimierung solcher Linienkreuzungen. Mit dynamischer Programmierung
wird das Problem optimal für Kreuzungen entlang einer einzelnen Kante im Netzwerk
gelöst. In einer verwandten Problemstellung geht man davon aus, dass die Position der
Linien in ihren jeweiligen Endstationen bereits gegeben ist. In diesem Fall gebe ich einen
Algorithmus zur optimalen Linienanordnung für beliebige planare Netzwerke an.

Dynamische Landkarten. Der zweite Anwendungsbereich entstammt wiederum der
Kartographie, diesmal geht es jedoch um die Darstellung dynamischer, interaktiver Karten,
in denen der Nutzer kontinuierlich den Kartenausschnitt und -maßstab entsprechend seinen
Anforderungen wählen kann. Im Gegensatz zur Visualisierung statischer Karten sind hier
viele typische Fragestellungen noch offen. Ich beschäftige mich in dieser Arbeit mit zwei
Problemen: der Beschriftung von Punkten und der Generalisierung von Polygonzügen.
Unter dem Begriff der Generalisierung versteht man in der Kartographie die Anpassung der
Darstellungskomplexität von Objekten in der Karte an ihren Maßstab. Das Generalisieren
von Polygonzügen (z.B. in Straßen- oder Flussnetzwerken) für einen festen Maßstab ist
algorithmisch recht gut verstanden. In Bezug auf das kontinuierliche Zoomen in interak-
tiven Karten ergibt sich jedoch das Problem, dass es mit den bisherigen Methoden zu
Diskontinuitäten kommen kann, z.B. wenn eine Gebirgsstraße beim Herauszoomen für die
Darstellung ab einem gewissen Maßstab aufgrund des eingeschränkten Platzes plötzlich
eine Serpentine weniger aufweisen soll. Um solche Diskontinuitäten zu vermeiden stelle
ich einen Algorithmus vor, der zunächst die beiden Polygonzüge in charakteristische Ab-
schnitte unterteilt und dann eine Zuordnung der Abschnitte bestimmt, die bezüglich eines
geeigneten Abstandsmaßes optimal ist. Dadurch wird erreicht, dass bei der Interpolation
semantisch äquivalente Abschnitte während des Zoomens ineinander übergehen. Anhand
mehrerer Beispiele vergleiche ich die Interpolation entsprechend der berechneten optimalen
Zuordnung der Abschnitte mit einer gewöhnlichen linearen Interpolation; dabei zeigt sich,
dass die Verfälschung der Polygonzüge bei der vorgestellten Interpolation weit geringer
ausfällt als bei einer linearen Interpolation.

Ein zweites Problem im Zusammenhang mit dynamischen Landkarten ist das konsistente
Beschriften von Kartenobjekten bei Nutzerinteraktion. Beim Herauszoomen aus einem
Kartenausschnitt haben die vorhandenen Ortsnamen bei konstanter Schriftgröße auf dem
Bildschirm einen wachsenden Platzbedarf in der Karte, so dass es zu Verdrängungseffekten
kommt und bestimmte Namen ausgeblendet werden müssen. Eine Beschriftung heißt
konsistent, wenn jeder Ortsname in höchstens einem Intervall von Maßstäben sichtbar ist.
Die Beschriftungsintervalle sollen so gewählt werden, dass integriert über alle Maßstäbe
möglichst viele Ortsnamen sichtbar sind. Ich zeige die NP-Vollständigkeit des Problems
und stelle Approximationsalgorithmen für mehrere Varianten vor.

Phylogenetische Bäume. Phylogenetische Bäume sind Binärbäume, die in der Biologie
die evolutionären Verwandtschaftsbeziehungen zwischen verschiedenen Spezies darstellen.
Ein solcher phylogenetischer Baum ist jedoch meist nur eine Hypothese der realen Abstam-
mungsverhältnisse und so lassen sich für die gleiche Menge von Spezies unterschiedliche
Bäume erstellen, die auf ihre Gemeinsamkeiten untersucht werden sollen. Ein visueller
Vergleich zweier Bäume ist mit einem Tanglegram möglich, einer Gegenüberstellung der
beiden planar gezeichneten Binärbäume, so dass die Blätter (die den Spezies entsprechen)
auf zwei parallelen Geraden angeordnet sind und je zwei sich entsprechende Blätter mit-
einander durch eine Zwischenbaumkante verbunden werden. Im Allgemeinen kreuzen sich
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diese Interbaumkanten. Das Problem ist also, zwei planare Baumlayouts zu finden, die
die Kreuzungsanzahl der Interbaumkanten minimieren. Ich zeige die NP-Vollständigkeit
bereits für vollständige Binärbäume. Für diesen Fall gebe ich einen Festparameter- und
erstmals einen Approximationsalgorithmus an. Außerdem beschreibe ich eine neue Heuristik
für allgemeine Binärbäume, die sich in einer experimentellen Evaluation allen bisherigen
Algorithmen als deutlich überlegen erweist und oft sogar eine optimale Lösung findet.

Überdeckungskontaktgraphen. Ein klassisches Resultat in der Graphentheorie besagt,
dass sich jeder planare Graph als Kontaktgraph von Kreisen in der Ebene darstellen lässt.
Andererseits geht es in vielen geometrischen Optimierungsproblemen darum, beispielsweise
Punkte durch andere geometrische Objekte (z.B. Kreise oder Polygone) in einer gewissen
Weise optimal zu überdecken. Überdeckungskontaktgraphen kombinieren die beiden Frage-
stellungen: Gegeben ist eine Menge S von zu überdeckenden Objekten (z.B. Punkte) und
eine Klasse von Überdeckungselementen (z.B. Kreise). Gesucht ist eine Überdeckung von S,
so dass jedes Objekt von genau einem Element überdeckt wird und die Überdeckungsele-
mente sich höchstens berühren. Dadurch wird der Überdeckungskontaktgraph (ÜKG) mit
der Knotenmenge S definiert, in dem eine Kante zwischen zwei Knoten genau dann besteht,
wenn sich die zugehörigen Überdeckungselemente berühren. Ich betrachte die beiden Fragen,
ob zu gegebenem S ein zusammenhängender ÜKG existiert und ob sich ein gegebener
Graph als ÜKG auf S realisieren lässt. Ich zeige, dass sich das Zusammenhangsproblem
unter bestimmten Voraussetzungen effizient lösen lässt und dass das Realisierungsproblem
NP-schwer ist.

Konsistente Strahlen im Raster. Der letzte Teil meiner Arbeit beschäftigt sich mit
einem sehr grundlegenden Visualisierungsproblem von gerasterten Strecken in der Git-
tergeometrie. Übliche Rastermethoden, die auf dem Schnitt von euklidischen Strecken
mit einem Pixelgitter beruhen, weisen Konsistenzprobleme auf, wenn mehrere Strecken
gleichzeitig betrachtet werden. Beispielsweise ist der Schnitt zweier Strecken nicht immer
eine zusammenhängende Pixelmenge. Ich stelle vier Axiome auf, die die Konsistenz von
Rasterstrecken garantieren. Für den Spezialfall von Strahlen, die von einem gemeinsamen
Ursprung ausgehen, beweise ich eine untere Schranke für den Hausdorffabstand zwischen
euklidischem Strahlensegment und zugehöriger konsistenter Rasterstrecke. Gleichzeitig
gebe ich ein System von konsistenten Strahlen mit passender oberer Schranke an; das
System ist in diesem Sinne also asymptotisch optimal.
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Chapter 1

Introduction

Our world is—and has always been—a world of networks. But only over the last decade
network theory has become a hot research topic (reflected, for example, in several mono-
graphs on network theory and analysis [Bar03, Wat03, BE05, NBW06]), and it has also
triggered a lot of media response, especially on social networks: the relationships of the
9/11 terrorists [Kre02], the spread of SARS in the 2002/03 outbreak [MPN+05], the myth
of “six degrees of separation” between any two individuals [Wat03] (popular examples link
actors through film roles to the American actor Kevin Bacon or mathematicians through
co-authorships to Paul Erdős), or even the spread of obesity [CF07] are explained by the
analysis of a network, that is, a set of nodes (in the above examples human individuals)
and links between them that represent some relationship depending on the context. The
growing popularity of social networking web sites like Facebook, MySpace, or LinkedIn
additionally increases the public awareness of the networks of our friends, colleagues, and
family, which form the invisible basis of our social lives.

But networks span more than “just” our society. One of the first example of a network
one might think of is clearly the Internet. Physically, it is a network of computers (the
nodes) that are linked by communication channels like broadband cables or satellite links.
Additionally, the Internet is often used as a synonymous term for the World Wide Web,
which is a network of web sites that are connected by hyperlinks. Social networks also
use the Internet infrastructure: one obvious example are the social networking web sites
mentioned before, another example is the network based on email contacts in a group
of individuals. Similarly to computer networks, there are (mobile) telephone networks,
where individual phones are linked to the closest transmission tower or switching center,
which in turn is linked to other network nodes. Based on this physical network, especially
intelligence services and the police are interested in the network defined by phone contacts
between individuals. Further examples are electricity, gas, and water networks, where
nodes are, for example, individual households or distribution stations, and links are cables
or pipelines. Leaving the area of man-made technological networks, there are networks in
biology, for example, protein interaction networks, where nodes are proteins that are linked
through the metabolic processes in which they are involved. Evolutionary (or phylogenetic)
trees are networks of species connected through common ancestors. In medicine, there
is a trend to redefine and group diseases by the collection of genes and proteins that are
active in affected cells rather than by the observable symptoms. Just because two tumors
look similar under the microscope does not necessarily mean that this holds true on the
gene and protein level. This means nothing less than considering diseases as nodes in a
network, where one disease is linked to another by a gene that is associated to both of
them [GCV+07]. In economics, the relationships between companies, for example, based on
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mutual shareholding, form a network just as the trade links do between different countries.
In engineering, examples of networks are circuits of electronic components or inheritance
relations between classes in a software project. A final example are transportation networks
like road networks or public transport networks. Nodes in transportation networks can
be road junctions, bus stops, train stations, or airports. In road networks two nodes are
connected if there is a road between them, in public transport networks connections are
established through a direct transportation service (for example, adjacent stops on a bus or
train line or direct flight connections). This list of examples is far from being comprehensive,
but it shows how entangled we are in networks of all kinds from the microscopic level of
our cells to the macroscopic level of global communication.

One characteristic feature of all these networks is that they are hardly visible to our
eyes. Links between two entities are either abstract relations like friendship, hyperlinks, or
metabolic processes, or they are concrete links in physical networks like an electricity cable
or the asphalt of a road. While abstract relations are inherently invisible, we might be
able to see a few links of a physical network. But the full network to which these links
belong is usually considered at a regional or even global scale that we cannot overlook—it
is simply a matter of size.

How can we still deal with such networks? The answer is visualization. Visualization,
that is, the graphical representation of the nodes and links of a network, is an essential
tool for exploring, analyzing, and communicating networks. A lot of the recent publicity of
network theory is not only due to striking scientific results but also to the availability of
appealing visualizations that can be used, for example, to illustrate newspaper articles. One
should beware, though, of regarding visualization primarily as a means to generate beautiful
pictures. It is much more than that. Visualizations aim at faithfully representing the
information contained in the given data. A carefully designed visualization is a very efficient
means to communicate information, to explore data, and to stimulate new insights—or as
Tufte [Tuf01] puts it: “Often the most effective way to describe, explore, and summarize a
set of numbers—even a very large set—is to look at pictures of those numbers.”

Network visualizations usually depict nodes as dots or disks and links as arcs connecting
the corresponding nodes; conversely, this visualization style is known as node-link diagram.
Furthermore, nodes are usually labeled with the name of the entity that they represent.
This is necessary to relate nodes in the visualization to nodes in the actual network. Visual
variables like color or size can be used to encode additional node properties. If links are
not just binary, but carry a weight or some other information, then the corresponding arcs
can also be labeled or varied in their appearance. A visualization example from medical
research is given in Figure 1.1, which shows the aforementioned human disease network
identified by Goh et al. [GCV+07]. A rather different visualization style, though still a
node-link diagram, is used in Figure 1.2, which visualizes protein interactions in molecular
pathways of a cancer cell in the style of a schematic metro map [HW02]. These two
examples already demonstrate that there is no such thing as a general-purpose visualization
style for all networks, not even in the same area of molecular networks in human cells.
Good network visualizations are tailored for a specific task and a specific network at hand.
While Figure 1.1 is well suited for exploring the network by identifying unknown patterns
in the network structure, the main purpose of Figure 1.2 is communicating the authors’
findings in a clever way by taking advantage of the readers’ familiarity with metro maps.

Why is visualization so important when dealing with networks? What makes a drawing
of a network superior to a simple list or matrix of nodes and links? As humans we perceive
our environment primarily through vision. Visual perception has evolved over the history
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Supporting Information Figure 13 | Bipartite-graph representation of the diseasome. A disorder (circle) and a gene (rectangle) are connected if the gene is implicated in the disorder. The size of the circle represents the number of distinct genes associated with the disorder. Isolated disorders (disorders having no links to other disorders) are not shown. Also, only genes connecting disorders are shown.
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Cancer
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Gastrointestinal
Hematological
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Muscular
Neurological
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Ophthamological
Psychiatric
Renal
Respiratory
Skeletal
multiple
Unclassified

5233 Placental steroid sulfatase deficiency
5170 Ovarian hyperstimulation syndrome
4291 Cerebral cavernous malformations
3558 Ventricular fibrillation, idiopathic
3512 Total iodide organification defect
3260 Premature chromosome condensation w/ microcephaly, mental retardation
3229 Pigmented adrenocortical disease, primary isolated
3212 Persistent hyperinsulinemic hypoglycemia of infancy
3144 Optic nerve coloboma with renal disease
3037 Multiple cutaneous and uterine leiomyomata
2785 Hypoplastic left heart syndrome
2385 Creatine deficiency syndrome, X-linked
2354 Congenital bilateral absence of vas deferens
2327 Chronic infections, due to opsonin defect
1614 Yemenite deaf-blind hypopigmentation syndrome
1611 XLA and isolated growth hormone deficiency
1586 Weissenbacher-Zweymuller syndrome
1580 Warfarin resistance/sensitivity
1565 Vitamin K-dependent coagulation defect
1555 VATER association with hydrocephalus
1545 Unna-Thost disease, nonepidermolytic
1542 Ullrich congenital muscular dystrophy
1528 Trismus-pseudocomptodactyly syndrome
1526 Trifunctional protein deficiency
1519 Transposition of great arteries, dextro-looped
1518 Transient bullous of the newborn
1490 Thanatophoric dysplasia, types I and II
1476 Tauopathy and respiratory failure
1475 Tarsal-carpal coalition syndrome
1466 Sweat chloride elevation without CF
1456 Subcortical laminar heterotopia
1446 Stevens-Johnson syndrome, carbamazepine-induced
1438 Stapes ankylosis syndrome without symphalangism
1432 Spondylocarpotarsal synostosis syndrome
1414 Solitary median maxillary central incisor
1401 Skin fragility-woolly hair syndrome
1396 Silver spastic paraplegia syndrome
1383 Severe combined immunodeficiency
1376 Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis
1361 Schwartz-Jampel syndrome, type 1
1347 Sandhoff disease, infantile, juvenile, and adult forms
1335 Robinow syndrome, autosomal recessive
1325 Rhizomelic chondrodysplasia punctata
1297 Pyruvate dehydrogenase deficiency
1267 Prolactinoma, hyperparathyroidism, carcinoid syndrome
1265 Progressive external ophthalmoplegia with mitochondrial DNA deletions
1263 Prion disease with protracted course
1239 Pneumothorax, primary spontaneous
1238 Pneumonitis, desquamative interstitial
1232 Pituitary ACTH-secreting adenoma
1229 Pigmented paravenous chorioretinal atrophy
1227 Pigmentation of hair, skin, and eyes, variation in
1183 Papillary serous carcinoma of the peritoneum
1174 Pallidopontonigral degeneration
1164 Osteoporosis-pseudoglioma syndrome
1153 Ossification of the posterior longitudinal spinal ligaments
1140 Oligodontia-colorectal cancer syndrome
1133 Oculofaciocardiodental syndrome
1119 Norwalk virus infection, resistance to
1113 Noncompaction of left ventricular myocardium
1105 Newfoundland rod-cone dystrophy
1104 Nevus, epidermal, epidermolytic hyperkeratotic type
1096 Neurofibromatosis-Noonan syndrome
1090 Neural tube defects, maternal risk of
1080 Nephrogenic syndrome of inappropriate antidiuresis
1057 Myokymia with neonatal epilepsy
1056 Myoglobinuria/hemolysis due to PGK deficiency
1050 Myelomonocytic leukemia, chronic
1016 Mitochondrial complex deficiency
1002 Methylcobalamin deficiency, cblG type
1001 Methionine adenosyltransferase deficiency, autosomal recessive
982 Melorheostosis with osteopoikilosis
969 Medullary cystic kidney disease
959 Mastocytosis with associated hematologic disorder
945 Mandibuloacral dysplasia with type B lipodystrophy
942 Malignant hyperthermia susceptibility
930 Lynch cancer family syndrome II
913 Lower motor neuron disease, progressive, without sensory symptoms
891 Leukoencephalopathy with vanishing white matter
868 Laryngoonychocutaneous syndrome
847 Keratosis palmoplantaria striata
845 Keratoderma, palmoplantar, with deafness
843 Keratitis-ichthyosis-deafness syndrome
833 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome
830 Jervell and Lange-Nielsen syndrome
809 Infundibular hypoplasia and hypopituitarism
803 Immunodysregulation, polyendocrinopathy, and enteropathy, X-linked
792 Hystrix-like ichthyosis with deafness
785 Hypoplastic enamel pitting, localized
780 Hypoparathyroidism-retardation-dysmorphism syndrome
734 Hyperkeratotic cutaneous capillary-venous malformations
733 Hyperkalemic periodic paralysis
727 Hyperferritinemia-cataract syndrome
701 Homozygous 2p16 deletion syndrome
699 Homocystinuria-megaloblastic anemia, cbl E type
679 High-molecular-weight kininogen deficiency
665 Hemosiderosis, systemic, due to aceruloplasminemia
646 Hearing loss, low-frequency sensorineural
626 Greig cephalopolysyndactyly syndrome
604 Glutathione synthetase deficiency
594 Glomerulocystic kidney disease, hypoplastic
584 Giant platelet disorder, isolated
558 Fuchs endothelial corneal dystrophy
549 Foveomacular dystrophy, adult-onset, with choroidal neovascularization
545 Focal cortical dysplasia, Taylor balloon cell type
544 Fluorouracil toxicity, sensitivity to
539 Fibular hypoplasia and complex brachydactyly
535 Fibrocalculous pancreatic diabetes
527 Fatty liver, acute, of pregnancy
474 Emery-Dreifuss muscular dystrophy
471 Elite sprint athletic performance
463 Dystransthyretinemic hyperthyroxinemia
461 Dyssegmental dysplasia, Silverman-Handmaker type
453 Dysalbuminemic hyperthyroxinemia
452 Dyggve-Melchior-Clausen disease
441 Dopamine beta-hydroxylase deficiency
439 Dissection of cervical arteries
438 Disordered steroidogenesis, isolated
434 Dilated cardiomyopathy with woolly hair and keratoderma
422 Dermatofibrosarcoma protuberans
418 Dentinogenesis imperfecta, Shields type
396 Cyclic ichthyosis with epidermolytic hyperkeratosis
379 Craniofacial-skeletal-dermatologic dysplasia
378 Craniofacial-deafness-hand syndrome
377 Craniofacial anomalies, empty sella turcica, corneal endothelial changes
357 Conotruncal anomaly face syndrome
347 Colonic aganglionosis, total, with small bowel involvement
344 Cold-induced autoinflammatory syndrome
329 Chylomicronemia syndrome, familial
320 Choreoathetosis, hypothyroidism, and respiratory distress
313 Cholesteryl ester storage disease
294 Cerebrovascular disease, occlusive
292 Cerebrooculofacioskeletal syndrome
287 Central hypoventilation syndrome
279 Cavernous malformations of CNS and retina
275 Carpal tunnel syndrome, familial
217 Bone mineral density variability
210 Blepharophimosis, epicanthus inversus, and ptosis
198 Beta-2-adrenoreceptor agonist, reduced response to
192 Beare-Stevenson cutis gyrata syndrome
182 Bannayan-Riley-Ruvalcaba syndrome
171 Attention-deficit hyperactivity disorder
162 Athabaskan brainstem dysgenesis syndrome
144 Arrhythmogenic right ventricular dysplasia
137 Apparent mineralocorticoid excess, hypertension due to
129 Anxiety-related personality traits
126 Anterior segment anomalies and cataract
117 Angiotensin I-converting enzyme
107 Analgesia from kappa-opioid receptor agonist, female-specific
96 Alternating hemiplegia of childhood
92 Alpha-thalassemia/mental retardation syndrome
87 Alpha-1-antichymotrypsin deficiency
77 Aldosterone to renin ratio raised
53 Adrenal hyperplasia, congenital
26 Achondrogenesis-hypochondrogenesis, type II
18 Acampomelic campolelic dysplasia

Figure 1.1: Visualization of the human disease network by Goh et al. [GCV+07]. Nodes are shown
as disks (diseases) and rectangles (genes). There is a link between a disease and a gene
if the gene is associated to the disease. The size of the nodes symbolizes the number of
genes that are associated to this disease. Colors indicate a classification of the diseases,
for example, light blue identifies cancer.

of mankind into a very powerful system that is highly efficient, for example, in recognizing
certain (geometric) patterns in what we see, sometimes even imposing them where they
do not exist. The research area of information visualization is concerned with mapping
abstract data in a meaningful way into a two- or three-dimensional space such that we
may quickly identify regularities and irregularities in the data, see the excellent work of
Tufte [Tuf01, Tuf90, Tuf97] or the comprehensive collection of classic papers in information
visualization by Card et al. [CMS99] for more details. Network visualization is thus a
sub-discipline of information visualization. Nodes are placed (mostly) in the plane and are
connected by arcs. In a good drawing this allows us to quickly see whether two nodes are
connected by a sequence of links, whether a node is linked to a large or a small number
of neighbors, whether the local connectivity structure of two nodes is similar, whether
there are central nodes that have short distances to most other nodes, which parts are
disconnected and so on. Take Figure 1.1 as an example that efficiently provides answers
to these questions. At the same time, a bad drawing can inhibit seeing such network
properties. For example, spatial proximity of two nodes is often seen as a visual clue for
proximity in the network—but in a poor visualization these two concepts of proximity need
not correlate.

In a textual or matrix-based description of a network, especially a large network, it is
very difficult for a human to infer network properties as those mentioned above. Conversely,
computer vision is still bad in discovering unknown patterns in images, whereas many
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Figure 1.2: Visualization of the protein network of molecular pathways in a cancer cell [HW02]. The
metro-map metaphor is used to depict each pathway as a distinctly colored transport
line, where two adjacent nodes are related either by inhibition or by activation.

structural network properties like centrality measures or clusterings can be efficiently
computed from digital network representations, even for very large networks, see the mono-
graph on network analysis by Brandes and Erlebach [BE05]. This is an ideal precondition
for exploiting synergy effects: perform an initial computation of typical attributes in
the network and use a suitable algorithm to produce a visualization of the network that
highlights these algorithmically obtained features; subsequently, we can apply our visual
skills to (interactively) explore the network drawing, discover expected or unexpected
patterns, and finally state and confirm a hypothesis about the data.

The use of visualizations for exploring networks predates modern computer visualization
techniques, see Freeman’s article on the history of visualizing social networks [Fre00]. For
example, Moreno [Mor53] describes in his book how he used hand-drawn visualizations
to explore relational sociological data in his early studies from the 1930s. In those days
working with network visualizations, however, was a time-consuming and tiring trial-and-
error process until the drawing was satisfying [BKR+99]. Obviously, manual drawings are
feasible only for rather small networks.
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Figure 1.3: Comparison of three subway maps of New York [Kic08]: the current official map with
a geographically accurate layout (left), a schematic map proposed by Kick Design
(middle), and Vignelli’s official schematic map from 1972 (right).

In cartography, visualizations even date back to the earliest map-like wall paintings from
the stone age. Maps depict, among other things, various geographic networks, for example,
roads, rivers, or region boundaries. The important difference between geographic and
abstract networks is that nodes in a geographic network usually represent geographic sites
that have a canonical position on a map defined by the map projection. These positions
may be altered, for example, in a schematic public transport map, but the acceptable
distortion of the original geometry of the network is clearly limited. Figure 1.3 shows a
comparison of three different visualizations of the subway network of New York. The map
on the left overlays a road map with the geographically accurate course of the subway
lines. The map in the middle trades geographic accuracy for clarity of the network; it
was recently proposed by the graphic designers of Kick Design [Kic08]. The map on the
right is a historic official map by Massimo Vignelli from 1972 that abstracts even more
from geography, for example, by simplifying the shape of Manhattan and the East River.
All three maps have their advantages and disadvantages depending on the usage of the
map. While schematic maps are easier to use for navigating on the subway network, the
combined road and subway map is better suited for usage above and below ground.

In the visualization examples given above, we have distinguished between abstract and
geographic networks. We can further characterize the examples by the intended usage of
the visualization. On the one hand, there are explorative visualizations used mainly by
researchers and practitioners in order to gain an understanding of the network at hand. In
a visual exploration process, the user often invokes certain network analysis algorithms
and produces many different visualizations in his search for meaningful patterns. Card
et al. [CMS99] use the phrase “using vision to think” to describe this visual exploration
process. Ideally, the visualizations can be modified interactively, for example, to zoom in
at interesting parts or to move some nodes manually. This also reflects Shneiderman’s
visual information-seeking mantra “overview first, zoom and filter, then details on de-
mand” [Shn96]. On the other hand, there are network visualizations with the purpose
of communicating the network to colleagues, decision makers, or the general public. In
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such a case the author or designer of a visualization wants to convey certain aspects of
the network by means of a network drawing. A metro (or subway) map, such as the one
of New York in Figure 1.3, is a clear example of a visualization intended to communicate
the network to the passengers. A metro map is not about finding hidden patterns in the
network, but about clearly depicting its topology. Above all, it must be an easy-to-use
tool for route planning and travel information. Hence, readability and usefulness as a
navigational aid should be the prominent aspects in the design of a metro map. But also
an initially explorative visualization, such as Figure 1.1, that leads to a researcher’s actual
insight is suitable as a means of communicating the findings to the readership of an article.
If the reader is able to rediscover the same patterns in an illustration that have been
discovered by the author, the author’s arguments may be much more convincing.

Network visualization is a topic that involves researchers from various fields. Cognitive
science can help answering general questions about the perception of visualizations and
thus may provide guidelines for designing effective visualizations, that is, visualizations
that convey the intended information in an easy-to-read manner. Researchers from
the application fields, such as sociology, biology, or cartography, can provide valuable
insights into what properties visualizations of networks in their field must highlight and
how this should influence the network layout. Computer science, finally, is concerned
with mathematically modeling networks as combinatorial structures called graphs and,
subsequently, with designing algorithms to compute graph layouts, that is, positions of
nodes and links in the plane (Chapter 2 formally introduces the concepts of graphs and
graph layouts). Graph layouts are characterized by their topology and their geometry and
we can abstract from many rendering questions that concern only the final display of the
network like the use of colors or shapes to represent nodes.

The area of computer science that deals with the theory and algorithmic questions of
graph layouts is known as graph drawing. The topic is covered by the annual International
Symposium on Graph Drawing (GD)1 and by three monographs [dBETT99, KW01, NR04].
If a network visualization problem is viewed from the perspective of graph drawing, the
application domain typically dictates a set of basic constraints for the layout, for example,
that links must be drawn as straight lines. The graph layout problem is then formulated as a
constrained optimization problem that asks for a graph layout that satisfies the constraints
and optimizes one or more aesthetic criteria in order to enhance its readability, for example,
minimization of the number of link crossings. We have mentioned node labeling as an
important part of network visualizations; labeling adds another level of complexity to the
layout problem. For maximum readability the labels must be unambiguously placed at their
nodes and they may not occlude other labels or any part of the network itself. Many of the
optimization problems arising in the field are NP-hard, that is, there is little hope for efficient
exact algorithms. Hence, there is a need for suitable approximation algorithms or good
heuristics, especially for large networks. Moreover, network visualizations are nowadays
often beyond static graphics printed on paper. In dynamic interactive settings, where users
can zoom and pan the display and the visualization is animated, many new problems arise.
This applies in particular to the visualization of geographic networks. For example, consider
the visualization of an interactive map on a mobile device. Herman et al. [HMM00] surveyed
graph drawing from the perspective of information visualization including a discussion on
navigation and interaction techniques used in network visualization.

1see http://www.graphdrawing.org

http://www.graphdrawing.org
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Thesis Outline
In this dissertation we address five network visualization problems that occur primarily
in cartography and biology. We present complexity results for the problems, as well
as algorithms to solve them, at least heuristically or approximately. We also address a
geometric representation of networks that is different from node-link diagrams, and we
investigate problems caused by grid-based display media such as computer screens. The
following is a brief summary of the results obtained in the individual chapters.

Chapter 2 – Preliminaries
We introduce the necessary background from information visualization and graph drawing.
Furthermore, we repeat the basic concepts of NP-completeness and polynomial-time
reductions that are necessary for the understanding of our complexity results. Finally,
approximation algorithms, fixed-parameter algorithms, and mathematical programming
are introduced as important concepts to deal with NP-hard problems.

Chapter 3 – Metro Maps: Layout and Labeling
We investigate the layout and labeling of schematic public transport maps, also known
as metro maps. The input is a geographic network whose nodes and links need to be
placed with as little distortion as necessary such that all lines in the layout are horizontal,
vertical, or 45°-diagonal and typical aesthetic criteria of metro maps are optimized. We
describe a set of design rules obtained from a careful inspection of real-world maps and
subsequently model the layout problem as a mixed-integer program. We also show how
the space requirements for station labels can be taken into account. In a detailed case
study we evaluate the applicability of our method on the basis of three real-world example
networks by comparing our results to the official metro maps and, where available, to the
results of previous algorithms. In terms of visual quality and conformance to the design
rules our method is superior to previous approaches.

Chapter 4 – Metro Maps: Line Crossings
Our second problem arises again in the visualization of metro maps. Public transport
networks frequently have the property that parts of the network infrastructure are used
by multiple transport lines. In the visualizations this fact is usually displayed by bundles
of colored parallel lines (each of which represents one transport line) drawn along the
underlying network links. Two lines in a bundle cross if their relative order is changed
between two stations. We were the first to consider the problem of minimizing these line
crossings, and we give exact algorithms for two variants of the problem.

Chapter 5 – Dynamic Maps: Morphing Polylines
Next, we study a problem that arises in interactive dynamic maps where users can zoom
continuously. In such maps the level of detail of the displayed content must be adapted
continuously to the selected scale. This process is known as generalization in cartography.
A special case is the generalization of polygonal chains (also called polylines). For static
maps there are established line simplification algorithms for that purpose, but they are not
suitable to produce smooth animations for continuous zooming. We present a dynamic-
programming algorithm that computes an interpolation between two representations of the
same polyline but at different scales. Our interpolation minimizes the visible movement
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and maps semantically equivalent parts of the polylines to each other. Since links in a road
or river network are typically represented as polylines, we can apply our algorithm to each
individual network link; this extends our interpolation to whole geographic networks. The
successful applicability of our method is finally exemplified in a case study for real-world
road, river, and region-boundary data; our method produces interpolations with far less
distortion than regular linear interpolations.

Chapter 6 – Dynamic Maps: Labeling

Another problem arising in dynamic maps is the labeling of network nodes or map features
in general. In static maps, the basic requirements for labeling are that features are
unambiguously labeled and that no two labels overlap. Dynamic maps add new constraints
to label placement, namely that labels do not suddenly change their positions and that
labels do not flicker, that is, disappear and reappear several times during zooming and
panning. Under these constraints the goal is to maximize the number of visible labels—
analogously to static map labeling. We model the dynamic label placement problem in
three dimensions, where scale is the third dimension. We prove the hardness of this new
problem even for quite simple variants and give a collection of approximation algorithms.

Chapter 7 – Optimal Tanglegram Layout

Tanglegrams are pairs of binary trees on the same set of leaves, as they appear, for example,
as phylogenetic trees in biology. Such trees represent different evolutionary hypotheses.
Biologists need to find similarities and differences of the trees in order to assess their
plausibility. In a tanglegram drawing, the two trees face each other with their leaves
arranged on two parallel lines. Each leaf of one tree is connected to the corresponding leaf
in the other tree by an inter-tree edge. We study the problem of minimizing the number
of inter-tree edge crossings, show its NP-hardness even for complete binary trees, and
give exact, approximate, and heuristic algorithms. We compare our algorithms in a first
comprehensive experimental study with each other and with previous algorithms. Our
heuristic is far superior to its competitors and even finds optimal solutions in many cases.

Chapter 8 – Cover Contact Graphs

Here, we deal with an alternative representation of networks, where nodes are represented
as geometric objects (for example, disks) and a link between two nodes is realized if two
objects touch each other; such a representation is called a contact graph. Additionally, we
are given a set of geometric seed objects in the plane (for example, points) and require that
each node object covers (that is, contains) exactly one seed object. In this case, the set of
objects form a so-called cover contact graph (CCG). We are interested in two questions for
this new class of geometric graph representations: (a) for a given set of seeds, is there a
connected CCG and (b) can a given network be realized as a CCG on a given set of seeds?
We show that under certain conditions, we can find a connected CCG efficiently and we
show that the realization problem is NP-hard.

Chapter 9 – Consistent Digital Rays

Finally, we consider a very basic and classic visualization problem, namely how to represent
line segments (in particular, ray segments) on a grid-based medium like a computer screen;
these representations are called digital line segments. Conventional methods generate



9

visually pleasing representations, but these representations often have consistency problems
if multiple line segments interact; for example, the intersection of two digital line segments
might be a disconnected set of grid points. We propose a set of simple axioms that
consistent line segments must satisfy. We show a lower bound on the Hausdorff distance
between Euclidean and corresponding consistent digital line segments for the special case of
rays from a fixed origin. At the same time, we give a construction of a family of digital rays
that realizes this lower bound asymptotically, that is, our digital rays are asymptotically
worst-case optimal.



10 Chapter 1: Introduction



Chapter 2

Preliminaries

In this chapter we give a brief overview over the main concepts in visualization, graph
theory and graph drawing, complexity theory, and algorithms for NP-hard problems that
are referred to in this work. We do, however, assume a basic knowledge of algorithmic
and complexity-theoretic concepts (for example, the big-O notation for worst-case running
times). Introductions to these concepts are found in the standard textbooks on algo-
rithms and complexity theory, see, for example, Cormen et al. [CLRS01] and Garey and
Johnson [GJ79].

2.1 Visual Variables
Visualization and graphic design are broad research fields in their own right, and it is
clearly beyond the scope of this thesis to review the state of the art in information
visualization. Entry points into the literature are Tufte’s classic books on information
design [Tuf01, Tuf90, Tuf97], the collection of articles by Card et al. [CMS99], a survey
chapter by Görg et al. [GPQX07], and Ware’s textbook [War04], which considers the topic
from the perspective of human perception.

We restrict ourselves in this short section to the introduction of Bertin’s concept of
visual variables, which is very useful to separate the network visualization problem into
an algorithmically interesting layout problem, and an independent rendering problem.
Jacques Bertin, a French cartographer, published one of the first theoretic foundations
of information visualization based on his cartographic experience in his seminal book
“Sémiologie graphique” (1967), which was later translated into German and English [Ber83].
He presented a coherent framework of how to encode information in the symbols used
in maps or other graphic representations. The position of a symbol is defined by its
x- and y-coordinates (in three-dimensional graphics by x-, y-, and z-coordinates). This
corresponds to two (or three) positional variables. In addition, Bertin defined the six
retinal variables size, value (brightness), texture, color, orientation, and shape. Figure 2.1
illustrates how these variables affect the appearance of a symbol. About 30 years later,
MacEachren [Mac95] extended the original set of variables, which Bertin intended for paper
maps, in order to reflect the potential of new electronic display media. Examples of the
extended set of visual variables are transparency and crispness, as well as acoustic and
temporal variables that must be observed over time and require more user attention. In
this thesis we restrict ourselves to visualizations that use the original set of visual variables
and hence can (in principle) be printed on paper.
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Figure 2.1: Bertin’s visual variables divided into positional variables (center) and retinal vari-
ables [Ber83].

In terms of network visualization, the retinal variables can be used to represent additional
attributes of nodes and edges in a drawing. Numeric attributes, such as node and edge
weights, are best visualized using the variables size and value that are perceived in an
ordered fashion; the variable size can even encode quantitative information, that is, we can
infer numeric differences from size differences. For categorical attributes, such as group
memberships of nodes, the four remaining retinal variables should be used.

The positional variables are used to actually place the nodes and links in the plane.
The topology and the geometry of a network visualization are fully determined by the
positional variables as long as the retinal variables shape, size, and orientation remain
unused. This is the case, for example, in the popular node-link diagram visualizations,
where nodes are represented as points or unit-size disks and links are represented as arcs.

Hence, for node-link diagrams, we can divide the network visualization problem into a
layout problem that is concerned with the positioning of nodes and links, and an independent
rendering problem that is concerned with assigning color, value, and texture to the graphical
symbols. In this thesis we are focused on algorithmic solutions for the layout problem
that determine the geometric and combinatorial structure of the network visualization.
Solutions to the rendering problem, for example choosing a set of colors, can be obtained
by applying the general guidelines for graphic design [Tuf90]. Note that, although the
majority of research in graph drawing deals with the layout problem, there are also a few
algorithmic approaches to the rendering problem, for example, Dillencourt et al. [DEG07]
compute node colors so that perceptually dissimilar colors are assigned to connected nodes.

2.2 Graphs and Graph Drawing
We have already mentioned in Chapter 1 that networks are mathematically modeled as
graphs and that graph drawing is the research area in computer science that deals with
computing and analyzing layouts of graphs. In this section we introduce some basic
concepts from graph theory and graph drawing.
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2.2.1 Graphs
Although the notions graph and network are often used synonymously, we refer to a network
as the concrete relational node and link data in an application, for example, a road network
or a social network. A graph, on the other hand, is an abstract mathematical structure
that consists of two sets: a set of vertices that correspond to the nodes of a network, and
a set of edges that correspond to the links. We denote a graph as a tuple G = (V,E),
where V = {v1, v2, . . . , vn} is the set of vertices and E = {e1, e2, . . . , em} is the set of edges.
Each edge e ∈ E is an unordered pair e = {u, v} ⊆ V of distinct vertices u 6= v. If the graph
is directed, that is, the relation between vertices is not symmetric, then we write e = (u, v)
for an edge directed from u to v. In both cases, we often use the abbreviation uv to denote
the undirected or directed edge between u and v; for an undirected graph we have uv = vu.
If not stated otherwise, all our graphs are undirected. We may assign vertex weights to
a graph by defining a function ω : V → R that assigns to each vertex v the weight ω(v).
Similarly, we may assign edge weights to a graph by defining a function ω̂ : E → R that
assigns to each edge e the weight ω̂(e). Two vertices u and v are called adjacent if there is
an edge uv ∈ E. The edge uv is incident to its end vertices (or endpoints) u and v, as well
as to all other edges incident to u or v. The degree deg(v) of a vertex v is the number of
edges that are incident to v. The degree of G is the maximum degree of its vertices. A
graph is vertex-labeled if there is a function λ : V → Λ that assigns a label λ(v) to each
vertex v, where λ(v) is an element in the set Λ of labels. Labels are typically strings or
integers. Analogously one could also assign labels to edges.

A path in G is a sequence P = (v0, v1, . . . , vk) of vertices such that vivi+1 ∈ E for
0 ≤ i ≤ k − 1, that is, there is an edge between any two consecutive vertices in P . The
length of P equal k, the number of edges in P , and it is denoted as |P | = k. A path P
contains a vertex v (written v ∈ P ) if v = vi for some 0 ≤ i ≤ k; P contains an edge e
(written e ∈ P ) if e = vivi+1 for some 0 ≤ i ≤ k − 1. If all vertices of P are distinct, we
say that P is a simple path. A subpath P ′ of P is a contiguous subsequence of the vertices
of P , that is, P ′ = (vi, vi+1, . . . , vj) for some 0 ≤ i ≤ j ≤ k. If v0 = vk then P is called a
cycle; a cycle is simple if the subpath (v1, . . . , vk) is simple. A graph that does not contain
any cycles is called acyclic.

We say that a graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. For a subset V ′ ⊆ V of the vertices of G the subgraph induced by V ′ is the
graph G[V ′] = (V ′, {uv ∈ E | u, v ∈ V ′}). A graph G is connected if there is a path
between any pair of vertices in G. Otherwise the graph is disconnected and consists of two
or more connected components, that is, inclusion-maximal connected subgraphs of G.

There are some subclasses of graphs that are relevant in this thesis. A graph G = (V,E)
is called bipartite if the vertex set V can be partitioned into two disjoint sets A and B,
A∪B = V , such that for every edge uv ∈ E we have u ∈ A and v ∈ B (or vice versa), that
is, no two vertices in A and no two vertices in B are adjacent.

An acyclic graph is called a forest, and a connected forest is called a tree. Tree vertices v
with deg(v) = 1 are called leaves, vertices v with deg(v) > 1 are called internal vertices. A
tree T = (V,E) is binary (or, in general, d-ary for d ≥ 2) if deg(v) ≤ 3 (deg(v) ≤ d+ 1)
for every vertex v ∈ V . A rooted d-ary tree T = (V,E) is a d-ary tree with a distinguished
root vertex r ∈ V of degree deg(r) ≤ d. Vertices in rooted trees are commonly called
nodes1 [CLRS01] and we adopt this notation. The depth of a node v in a rooted tree T is
the length of the unique shortest path from v to the root r, and the height of T is equal

1The notion node is thus used for both network nodes and vertices in rooted trees. The correct meaning
will be clear from the context.
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to the maximum depth of its nodes. A tree T is called complete if the depth of all leaves
equals the height of T . A node u 6= v on the path from a node v to the root is called an
ancestor of v, and, conversely, v is called a descendant of u. A direct ancestor (descendant)
of a node v is an ancestor (descendant) u such that uv ∈ E. The direct ancestor of a
node v is called its parent, the direct descendants of v are called its children. Two nodes
with the same parent are siblings. For two nodes u and v the lowest common ancestor
lca(u, v) of u and v is the unique node with maximum depth that is an ancestor of both u
and v. Finally, the subtree rooted at v is the subgraph of T that is induced by v and the
descendants of v.

2.2.2 Graph Drawing
Two-dimensional graph drawing is concerned with embedding a graph G = (V,E) in the
plane R2. In the popular node-link diagram representation style the drawing (or layout) of
a graph G is a function Γ : V ∪E → R2 that maps each vertex v ∈ V to a point Γ(v) ∈ R2

and each edge uv ∈ E to a simple open curve Γ(uv) with endpoints Γ(u) and Γ(v). If
an edge uv is drawn as a straight-line segment we use the notation Γ(uv) = Γ(u)Γ(v) to
denote the straight-line segment between Γ(u) and Γ(v). In terms of the visual variables
introduced in Section 2.1, a drawing Γ thus assigns the positional variables in the underlying
network visualization problem. Although a graph and its layout are two different objects,
we often do not distinguish explicitly between the two. For instance, we may say “the
edge e is a straight-line segment” meaning “the graphical representation Γ(e) of the edge e
is a straight-line segment.” It will be clear from the context whether we refer to the graph
or to its drawing.

A drawing Γ is called planar if for any two edges e and e′ in E the curves Γ(e) and Γ(e′)
do not intersect. A graph that admits a planar drawing is called a planar graph. A planar
drawing Γ subdivides the plane into topologically connected regions called the faces of Γ.
There is one unbounded region called the external face; all other faces are called internal
faces. Two faces are adjacent if their boundaries intersect in an edge. Edges and vertices
on the boundary of a face are incident to that face.

A planar drawing Γ induces for each vertex v a counterclockwise circular ordering of
its incident edges. We can define an equivalence relation on the set of planar drawings of
a planar graph G, where two drawings are considered equivalent if for all vertices of G
the circular orderings of their incident edges are identical. Each equivalence class of this
relation is called an embedding and contains all topologically equivalent drawings of G. A
planar graph together with an embedding is called an embedded planar graph or simply a
plane graph.

If in a drawing Γ of a graph G all edges are drawn as straight-line segments between
their endpoints, then this graph and its drawing are called a geometric graph. If such a
drawing Γ is planar, G and Γ are called a plane geometric graph. Note that in a geometric
graph the vertex positions determine the full graph layout.

The general graph layout problem is easy to state:

Given a graph G, find a nice drawing Γ of G.

The whole difficulty of the problem lies in the word “nice”. We need to map the nodes
and links of a network, which usually stems from some application domain, into the plane
such that the resulting visualization highlights the desired features of the network at hand
(or stimulates the identification of hidden features) and additionally satisfies the domain-
specific aesthetic requirements. As Eppstein put it: “If it’s important that a graph has
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certain properties, it’s important to communicate those properties in a drawing” [Epp08].
Now the graph properties and layout requirements can be very different depending on
the network itself and the specifics of the application domain. For example, layouts of
directed acyclic graphs are often drawn hierarchically with all edges pointing into the same
direction in order to show the graphs’ acyclicity; planar graphs are usually required to be
drawn without edge crossings. Also the domain-specific aesthetics can differ. For example,
in some domains compact drawings are important, while others require that edges are
drawn as straight-line segments or rectilinearly. It is clear that, for example, the layout of a
phylogenetic tree (as in Chapter 7) differs considerably from the layout of a metro map (as
in Chapter 3). Tree layouts are usually expected to be layered hierarchical drawings with
the root as the topmost node. In a metro map, on the other hand, preserving a general
sense of a city’s geography is required so that users who know the city can quickly locate
their departure and arrival stations on the map. Hence it is important in order to make
good drawings that “you understand what [application-specific] structure in the graph you
want to convey and what kind of drawing will best convey it” [Epp08].

Di Battista et al. [dBETT99, Chapter 2] distinguish drawing conventions, aesthetics, and
constraints as three classes of requirements for a “nice” drawing. Drawing conventions are
fundamental rules that must be globally satisfied by the drawing in order to be admissible.
Common examples are orthogonal drawings, octilinear drawings (edges are orthogonal or
45°-diagonal), straight-line drawings, polyline drawings, grid drawings, or planar drawings.
Figure 2.2 shows six drawings of a planar graph according to different drawing conventions.
For example, straight-line, orthogonal, and octilinear drawings all belong to the more
general class of polyline drawings, in which each edge is drawn as a sequence of line
segments joined by so-called bends. In Figure 2.2c, for example, the vertices are linearly
arranged on a line and edges are drawn as semicircles above or below that line. Aesthetics
specify optimization criteria whose degree of compliance affects the readability of a drawing
under some drawing convention. Typically these comprise minimizing edge crossings in
a non-planar drawing, minimizing area or total edge length, minimizing the variance of
edge lengths, minimizing the number of edge bends, maximizing the angular resolution, or
maximizing symmetries in the drawing [BFN85, STT81]. Purchase et al. [PCJ96] performed
an empirical study that showed the positive effects of minimizing crossings and bends on
the readability of graph drawings. Finally, layout constraints affect local properties of the
drawing, for example, they can restrict the relative positions of a subset of vertices or edges.
In terms of these three concepts, the graph layout problem is reformulated as follows:

Given a graph G, find a nice drawing Γ of G under the given drawing conventions
that satisfies all layout constraints and optimizes the aesthetics.

Many of the aesthetic criteria lead to NP-hard optimization problems, at least for
general graph classes or in the variable-embedding scenario. Additionally, not just one but
several aesthetic criteria are usually relevant for the application. Different aesthetics are
often in conflict with each other; hence a weighted sum of criteria or a prioritized sequential
optimization can be used to compute a well-balanced and “nice” layout.

We mention two popular algorithmic frameworks for graph drawing that are occasionally
referred to in this thesis. A more comprehensive overview of algorithms is found in the
standard textbooks on graph drawing [dBETT99, KW01, NR04].

A popular method that is applicable to all kinds of graphs is the spring-embedder (or
force-directed) method. It is based on a physical analogy: vertices are considered as objects
that repel each other like electrically charged particles, and edges are considered as springs
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Figure 2.2: Six drawings of a planar graph. Note that the embeddings in (c) and (d) are the same,
and that the embeddings in (e) and (f) are the same.

that connect two objects and hence impose an attracting force on them. Using iterative
optimization methods like gradient descent or simulated annealing, an equilibrium of this
physical system is computed. As an example of a typical layout produced by a spring
embedder see Figure 1.1 in Chapter 1. Additional optimization criteria can easily be
implemented in the existing framework as long as they are modeled as physical forces.
Spring embedders are attractive since they do not impose any restrictions (for example,
planarity or acyclicity) on the graphs—any graph can be drawn. The aesthetic criteria are
modeled implicitly through the forces in the physical system. These forces can be weighted
according to the respective importance of each criterion. Spring-embedder visualizations
are implemented in most of the available graph visualization tools [Wil01].

The topology-shape-metrics approach [Tam87] is a popular framework for computing
orthogonal (or rectilinear) layouts. It proceeds in three steps. In the first step the graph is
planarized by computing an embedding that uses a small number of edge crossings; each
edge crossing becomes a dummy vertex in an equivalent augmented planar graph. The
rectilinear crossing minimization problem is NP-hard [GT01]. The second step determines
an orthogonal representation that defines the sequence of bends along each edge such that
the total number of bends is minimum. The bend minimization problem can be solved
efficiently using a network flow algorithm [Tam87, GT96]. Finally, in the compaction phase,
the coordinates of vertices and bends are determined such that the resulting drawing has
minimum possible area; dummy vertices are finally removed. The compaction problem can
again be solved by a network flow algorithm [Tam87, GT96]. In the topology-shape-metrics
framework a prioritization of three aesthetics is used: crossing minimization is the most
important criterion; for the crossing-minimal embedding a representation with minimum
number of bends is computed; finally, this representation is drawn in the minimum possible
area.
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In the discussion so far, we assumed a node-link diagram representation of the graph, in
which the layout problem and the rendering problem are independent. We note, however,
that there are also graph representations in which vertices have different sizes or vertices
and edges are labeled. Then, ideally, the known space requirements of vertex symbols or
labels are already taken into account when solving the layout problem. For placing labels,
this extended layout problem is called graph labeling [KM99a]. If, in contrast, the layout is
computed independently of the prospective space consumption, it may happen that not all
labels can be placed or that vertex symbols overlap.

Other forms of graph representations comprise contact or intersection graphs, where
vertices are represented as geometric objects (symbols) and edges are realized as contacts
or intersections of two such symbols. Contact representation of graphs are studied in
Chapter 8. For rooted trees there is the Treemap representation [Shn92] in which tree nodes
are represented as (nested) rectangles and edges as inclusions between rectangles, that is,
each parent rectangle contains all child rectangles (and consequently all its descendants).

2.3 Complexity

Many of the problems considered in this thesis turn out to be NP-hard or NP-complete.
The theory of NP-completeness is a basic part of theoretical computer science and in-
troductions are found in various textbooks, for example, in the classic books by Garey
and Johnson [GJ79] or Cormen et al. [CLRS01, Chapter 34]. Here, our aim is to provide
an intuition of the complexity classes P and NP, as well as of the important concept
of a polynomial-time reduction. For a detailed and formal introduction we refer to the
textbooks mentioned before.

The class P consists of all computational problems that are solvable in polynomial
time by a deterministic algorithm, that is, their time complexity is O(nk), where n is
the input size and k is some constant independent of n. An algorithm in the class P is
also called an efficient algorithm, although this is to be understood in a theoretical sense
only. Algorithms with a time complexity of, say, Θ(n100) are not at all efficient in practice.
The class NP, on the other hand, consists of the problems that are non-deterministically
solvable in polynomial time. This definition is equivalent to the somewhat more tangible
definition that a problem is in NP if any potential solution can be verified in polynomial
time and if there is a positive probability of guessing a correct solution (in case there is
one). Clearly, any problem in P is also contained in NP , so we have P ⊆ NP . One of the
most important and famous open questions in theoretical computer science is whether the
converse holds or not, that is, whether P = NP or not. It is widely believed that P 6= NP .

As an example, consider the well-known Boolean satisfiability problem 3-Sat. In an
instance of 3-Sat we are given a Boolean formula ϕ in conjunctive normal form (CNF) with
(at most) three literals per clause, that is, ϕ = c1∧c2∧· · ·∧cm is the conjunction of the set of
clauses C = {c1, c2, . . . , cm}. Each clause ci ∈ C is a set of three literals ci = {li,1, li,2, li,3}
corresponding to the disjunction (li,1 ∨ li,2 ∨ li,3). Each literal li,j , finally, is a variable or
the negation of a variable in the set U = {x1, x2, . . . , xn} of variables. We call ϕ a 3-CNF
formula. The formula ϕ is satisfiable if there is a truth value assignment for the variables
in U such that ϕ evaluates to true. Obviously, 3-Sat is a problem in the class NP since it
is straight-forward to verify whether a given variable assignment satisfies all clauses and
since guessing a particular variable assignment has probability 1/2n.



18 Chapter 2: Preliminaries

x1 x2 x3 x4 x5 x6

c1

c2

c3

c4

c5

c6

c7

Figure 2.3: Variable-clause graph of a planar 3-Sat formula.

Next, we introduce the notion of reducibility among problems, which in turn leads
to the fundamental concepts of NP-hardness and NP-completeness. In the theory of
NP-completeness, we usually deal with decision problems2, that is, problems where the
answer to any input is “yes” or “no”. Very briefly, this allows to relate the problem to the
theory of formal languages by encoding input instances as words over some alphabet Σ.
The “yes”-instances define a language L ⊆ Σ? and the decision problem reduces to deciding
whether the word corresponding to a given input instance is contained in L.

So consider a decision problem Q. We say that Q is polynomial-time reducible to another
decision problem R, in short Q ≤P R, if there is a polynomial-time algorithm A that
transforms any input instance I of Q into an input instance A(I) of R such that A(I) is
a “yes”-instance of R if and only if I is a “yes”-instance of Q. In other words, this means
that we can solve problem Q for an instance I by first applying algorithm A to I and
subsequently solving problem R for A(I).

Now a problem Q is said to be NP-hard if any problem in NP is polynomial-time
reducible to Q, that is, Q is at least as hard as any problem in NP . If additionally Q ∈ NP
we say that Q is NP-complete. The most important implication of the notion of NP-
completeness is that finding a polynomial-time algorithm for a single NP-complete problem
immediately implies P = NP. Moreover, to show the NP-hardness of a problem Q it
suffices to reduce a single known NP-hard problem R to Q, that is, to show R ≤P Q. The
fact that any problem in NP can be reduced to Q follows from the transitivity of the
reducibility relation ≤P .

The 3-Sat problem mentioned before is a well-known NP-complete problems [GJ79].
We close this section by presenting the closely related satisfiability problem Planar3-Sat,
which is used in most of the NP-hardness proofs in this thesis. An instance of Planar3-
Sat is a Boolean 3-CNF formula ϕ as in the 3-Sat problem that has the additional
property of being planar. The planarity of ϕ is defined through the planarity of the induced
variable-clause graph Gϕ = (Vϕ, Eϕ), where the set of vertices Vϕ = U ∪ C is the set of
variables and clauses of ϕ and the set of edges Eϕ = {xc | x ∈ U, c ∈ C, {x,¬x} ∩ c 6= ∅} ∪
{xixi+1 | 1 ≤ i ≤ n− 1} ∪ {xnx1} connects each clause to the three variables that appear
in it; additionally, Eϕ connects all variables in a cyclic manner. Lichtenstein [Lic82] showed
the NP-completeness of Planar3-Sat. Knuth and Raghunathan [KR92] showed that
the variable-clause graph Gϕ of a planar 3-CNF formula ϕ can be drawn on a grid of
polynomial size as follows: the vertices of the variables are boxes arranged on a horizontal
line and the vertices of the clauses are drawn as the centers of properly nested three-legged
combs that attach to the respective variables either from above or from below, see the

2Note that an optimization problem Q can be transformed into a corresponding decision problem Q′ by
asking whether there exists a solution of Q for which the value of the objective function is above (or
below) some threshold value K.
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example in Figure 2.3. The edges that cyclically connect the variables are omitted, but
it is clear that they can be inserted into the drawing without causing any edge crossings.
The geometric nature of such a drawing of the variable-clause graph can be exploited in
many NP-hardness proofs that involve some geometric reasoning, see Chapters 6 and 8.

The usual approach for reductions from Planar3-Sat is to model each variable vertex
as a geometric variable gadget that can geometrically encode the values true and false.
The legs of the combs are modeled as literal gadgets that absorb the truth values of the
respective Boolean literals and transmit them into the clause gadgets that model the clause
vertices of the variable-clause graph. Now the trick is to design the geometric gadgets
such that the resulting overall geometric structure has a certain property if and only if the
underlying Boolean formula is satisfiable. This means that the geometric decision problem
for this property is NP-hard.

2.4 Approaches for NP-hard Problems
In the final section of this chapter we mention three algorithmic concepts to deal with
NP-hard problems. First of all, if exact solutions cannot be computed efficiently then at
least computing provably good suboptimal solutions might be feasible. Second, it might
be possible to efficiently find exact solutions for some relevant subset of input instances.
Third, the size of relevant input data might be small enough to use a general (but in the
worst case exponential-time) solution method for the problem. For further reading on
algorithmic approaches for NP-hard problems we refer to Hromkovic [Hro03].

2.4.1 Approximation Algorithms
The fact that a problem is NP-hard does not necessarily mean that it is hopeless to tackle
it algorithmically. Approximation algorithms are one way to face NP-hard problems by
computing near-optimal solutions efficiently. So let Q be an NP-hard optimization problem,
that is, an optimization problem whose corresponding decision problem is NP-hard, and
let I be an input instance for Q. We assume that we have a polynomial-time algorithm A
that computes feasible, but in general non-optimal solutions for Q. By A(I) we denote the
value of the objective function for the solution that algorithm A computes for input I. The
value of the objective function for the optimal solution of instance I is denoted as OPT(I).

Let’s first consider a minimization problem. This means that OPT(I) ≤ A(I) for all
input instances I. Algorithm A is called a factor-ρ approximation algorithm (or simply a
ρ-approximation) for ρ ≥ 1 if

OPT(I) ≤ A(I) ≤ ρ ·OPT(I)

for any input I. For a maximization problem, we have conversely A(I) ≤ OPT(I) for all I.
Algorithm A is called a factor-(1/ρ) approximation algorithm (or (1/ρ)-approximation) for
ρ ≥ 1 if

(1/ρ) ·OPT(I) ≤ A(I) ≤ OPT(I)

for any input I. Clearly, it is desirable to have ρ as small as possible in order to obtain
solutions that are as good as possible.

Some minimization (maximization) problems allow polynomial-time ρ-approximations
((1/ρ)-approximations) for ρ = 1 + ε and any ε > 0, that is, the optimum can be
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approximated arbitrarily well. An algorithm that takes as an input not only the problem
instance I, but also a value ε > 0 and then computes a (1 + ε)-approximation (or a
(1/(1 + ε))-approximation) for I is called a polynomial-time approximation scheme (PTAS)
if its running time is polynomial in the size of I. The running time of a PTAS may, however,
increase exponentially as ε decreases; for example, a running time of O(n1/ε) is valid for a
PTAS, where n is the size of I. If the running time of A is polynomial in both the size
of I and 1/ε then A is called a fully polynomial-time approximation scheme (FPTAS). A
valid running time for an FPTAS is, for example, O(n2(1/ε)4).

Not all NP-hard optimization problems can be approximated equally well. There are
problems for which no constant-factor approximation can exist if P 6= NP; there are
also problems that allow a k-approximation for some constant k, but they cannot have
a PTAS if P 6= NP. The general approach for showing hardness of approximation of an
optimization problem Q is to reduce an instance I of an NP-hard decision problem R
in polynomial time to an instance I ′ of Q such that the following holds (in the case of
a minimization problem). If I is a “yes”-instance of R then OPT(I ′) ≤ f(I ′) for some
function f of the instance, and if I is a “no”-instance of R then OPT(I ′) > α · f(I ′),
where α is a constant > 1 or, more generally, some function depending on the size of the
instance, for example, log(|I ′|). Then, since the reduction introduces a gap of α between
“yes”- and “no”-instances, an α-approximation for Q could be used to decide R; hence no
such α-approximation can exist if P 6= NP.

For further details and examples of approximation algorithms we refer to the textbooks
by Vazirani [Vaz01] and Cormen et al. [CLRS01, Chapter 35].

2.4.2 Fixed-Parameter Algorithms
Although approximation algorithms are a promising approach for many hard problems,
exact solutions are certainly preferable over approximate ones, if not even necessary in
some applications. Here we present an approach for computing exact solutions to problems
that are NP-hard. Clearly, this takes in general exponential (or worse) running time; the
aim is, however, to find algorithms that still run efficiently for certain restricted problem
instances.

The concept of parameterized algorithms for NP-hard problems is based on the idea to
split off some parameter k from an input instance I of size n and then consider the running
time of an algorithm in terms of n and k. The goal is to find algorithms, in which the
“combinatorial explosion” is restricted to the parameter k, and the input size n appears
only in polynomial terms. If k is small in typical problem instances then such an algorithm
may indeed be able to find exact solutions reasonably fast.

More formally, the input instance of a parameterized problem is a tuple (I, k), where I
is the actual problem instance of size n and k is a separate parameter, typically an integer.
As an example for a parameterized problem, consider the problem VertexCover. A
vertex cover in a graph G = (V,E) is a subset C ⊆ V of the vertices such that for each
edge uv ∈ E at least one endpoint is contained in C, that is, {u, v} ∩ C 6= ∅. The problem
VertexCover is then defined as follows: Given a graph G = (V,E) and a non-negative
integer k, is there a vertex cover C ⊆ V of size |C| ≤ k?

An algorithm A for such a parameterized problem is called a fixed-parameter or fixed-
parameter tractable (FPT) algorithm, if the running time of A for the input (I, k) is
O(f(k) · nO(1)), where n is the size of I and f is an arbitrary computable function
independent of n. The problem VertexCover, for example, has a very simple FPT-
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algorithm3 with a worst-case running time of O(2k ·n); the algorithm is based on a bounded
search tree technique with a search tree of size 2k [DF98].

An FPT-algorithm is thus indeed computationally tractable for fixed k; depending
on the function f , it may even be useful in practice as long as k is small enough. For
further reading on parameterized complexity and fixed-parameter tractable algorithms,
and in particular for an introduction to various techniques for developing efficient fixed-
parameter algorithms, we refer to the monographs by Downey and Fellows [DF98] and by
Niedermeier [Nie06].

2.4.3 Mathematical Programming
Mathematical programming is an umbrella term for mathematical optimization problems
that are defined as follows. Given a domain S and a function f : S → R, find an
element x ∈ S that minimizes or maximizes f on S. In this section we consider two
mathematical programming techniques: linear programming and (mixed-) integer linear
programming.

Linear programming is a well-known mathematical optimization method. A linear
program (LP) consists of a set of real variables and a linear objective function which is
optimized subject to a set of linear constraints (equalities or inequalities) in these variables.
An LP in standard form is written as follows:

maximize cTx

subject to Ax ≤ b

x ≥ 0,
(2.1)

where c ∈ Rn is an n-dimensional vector defining the objective function, and A ∈ Rm×n

and b ∈ Rm are an m× n-matrix and an m-dimensional vector, respectively, which define
the constraints for the n-dimensional solution vector x. Note that minimization problems,
linear constraints in alternative forms, or negative variables can always be rewritten in
standard form. The set S = {x ∈ Rn | Ax ≤ b} defines a (possibly unbounded) convex
polytope called the feasible region. A vector in the feasible region is a feasible solution
and we are interested in a feasible solution that maximizes the objective function. If the
feasible region is empty, the LP is infeasible. As an example consider the two-dimensional
(non-standard form) LP

maximize x+ 2y (2.2)
subject to − 9/13 · x+ y ≤ 11/13 (2.3)

13/10 · x− y ≤ 9/5. (2.4)

Each constraint of an LP defines a half space in Rn, see the two half planes corresponding
to (2.3) and (2.4) in Figure 2.4. The feasible region S, which is shaded in Figure 2.4, is
the intersection of the two half planes. The feasible solutions that maximize the objective
function also have a geometric interpretation. In our example the coefficient vector in (2.2)
is c =

(1
2
)
. If we sweep the plane in direction c with a line ` orthogonal to c, then the last

points of S swept by ` are those that maximize (2.2), see point s? in Figure 2.4. The traces
of ` are shown as dashed lines in Figure 2.4. Linear programs can be solved efficiently,
for example, using Karmarkar’s interior-point method [Kar84]. Chandru and Rao give a
survey [CR99b] devoted to linear programming.

3The currently best FPT-algorithm for VertexCover has a running time of O(1.2852k + kn) [CKJ01].
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x

Figure 2.4: Geometric interpretation of a two-dimensional LP. The optimal fractional solution is s∗
and the optimal integral solution is s̄.

Mixed-integer programming is an extension of linear programming and allows for the
use of integer variables instead of insisting on real variables, that is, in a mixed-integer
program (MIP) we demand for the set of variables {x1, . . . , xn} that xj ∈ Z for j ∈ J ,
where J ⊆ {1, . . . , n}. If J = {1, . . . , n}, that is, all variables are integers, the MIP is
called an integer linear program (ILP). If we drop the integrality constraints from a MIP,
we obtain a regular LP, which is called its LP relaxation. If we set x, y ∈ Z in the example
in Figure 2.4, the integer feasible solutions consist of the grid points in S marked by black
dots. Note that the optimal integer solution s̄ is in general far from the optimal solution s?
of the LP relaxation; an optimal integer solution s̄ can in general not be obtained from an
optimal fractional solution s? by simply rounding the components of the vector s? to the
next integers.

Integrality constraints make a continuous problem discrete; if the set of fractional
solutions is bounded, then the number of integral solutions becomes finite. So it seems
solving the more restricted problem is easier. But the opposite is the case: mixed-integer
programming is NP-hard in general [GJ79]. Geometric properties of the LP that are
exploited by efficient solution strategies are lost. On the other hand many hard optimization
problems can be modeled as a MIP. Several successful strategies for solving MIPs have
been developed, for example, branch-and-cut. These methods first solve the LP relaxation
of a MIP and then use sophisticated branching strategies to remove fractional variables
and cut off parts of the feasible region that do not contain an optimal integer solution.
During this process, candidate integer solutions are computed and gradually improved.
The optimality gap between the cost of the currently best integer solution and the lower
bound given by the LP relaxation is an indicator of the solution quality. The time required
to solve a MIP not only depends on its size but also strongly on how “close” the optimal
integer solution is to the solution of the relaxation.

We close this section by giving an example that is a standard trick in MIP modeling
and that will be useful in Chapter 3. Suppose we want to make sure that at least one of
three constraints C1, C2, and C3 is fulfilled, but not necessarily all of them. In other words,
we want to express the disjunction C1 ∨ C2 ∨ C3. Suppose

C1 : x− 3 ≤ 0,
C2 : y ≤ 0,
C3 : x+ y ≤ 0.

Then we introduce three binary variables α1, α2, and α3, that is, variables that are
restricted to the set {0, 1}. We require that at least one of them equals 1 by the constraint

α1 + α2 + α3 ≥ 1. (2.5)
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Now we can formulate the disjunction C1∨C2∨C3 as the conjunction C ′1∧C ′2∧C ′3, where

C ′1 : x− 3 ≤ M(1− α1),
C ′2 : y ≤ M(1− α2),
C ′3 : x+ y ≤ M(1− α3),

(2.6)

and M is a large constant that must be an upper bound on the left-hand sides of the
inequalities. Note that (2.5) and (2.6) form a conjunction of linear constraints, that is,
a valid part of a MIP. It is worth making M as tight a bound on the left-hand sides as
possible—this helps to speed up solving the MIP.

In order to solve a MIP in practice, there are several free solvers (for example, lp_solve4)
and commercial solvers (for example, Ilog CPLEX5) available. Chandru and Rao give a
survey [CR99a] that contains a good overview of the theory of integer programming and of
modeling discrete optimization problems as MIPs. Schrĳver [Sch86] and Bertsimas and
Tsitsiklis [BT97] cover theory and algorithms for (integer) linear programming in detail.

4see http://lpsolve.sourceforge.net
5see http://www.ilog.com/products/cplex

http://lpsolve.sourceforge.net
http://www.ilog.com/products/cplex
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Chapter 3

Metro Maps: Layout and Labeling

A metro map is a schematic diagram of a public transport network that displays the train
stations and the transport lines serving them. Metro maps are usually provided to the
passengers as printed pocket maps or displayed as large posters inside metro stations and
trains. They are designed as simple navigational aids to facilitate using the transport
system, for example, to plan journeys and to assist passengers during their trip. Hence
metro maps are optimized for readability with respect to visual route planning tasks and
navigation. Until today it requires a skilled graphic designer to produce a metro map that
meets all quality requirements. It is a challenging problem in network visualization to
automatically draw high-quality metro maps and it has attracted several research efforts
in recent years. But there is more to metro maps than just drawing the network itself. In
real-world maps each station is labeled by its name. This adds a map-labeling component
to the network visualization problem, which, ideally, is considered simultaneously with
the network-layout problem in order to find a layout that has enough space next to the
stations to place all labels without overlap.

In this chapter we present such a combined approach for drawing and labeling metro
maps. Each individual problem is already NP-hard. Thus we decided to model metro map
layout as a mixed-integer program (MIP) that can be optimized with standard MIP solvers.
Inspired by a large number of real-world examples, we define a set of design rules for
high-quality labeled metro maps. We further split these rules into hard and soft constraints.
The hard constraints must be satisfied and are modeled as linear constraints in the MIP.
The soft constraints must be optimized and are modeled in the linear objective function.
We improve the performance of the MIP formulation using data-reduction heuristics and
advanced functionalities of the MIP solver CPLEX. In three different case studies with
real-world examples we show that our method can compete with most previous approaches
in terms of running time and that our method yields metro-map layouts in a quality that
is comparable to manually designed maps (and far better than previous approaches). The
chapter is based on joint work with Alexander Wolff [NW06, NW].

3.1 Introduction
Nowadays, metro (or subway) maps are natural tools for passengers of public transport
systems in large urban areas around the world. Metro maps support both commuters
and foreign visitors in orienting themselves in often complex and confusing transport
networks. Be it as a poster inside stations and trains or as a pocket map, their aim is to
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Figure 3.1: Poster advertising the Tate Gallery in London by David Booth, 1986.

help passengers to navigate in the network. One common task is visual route planning,
that is, identifying on the map how to get from A to B as fast or as conveniently as possible.
Once on the train, a metro map helps to answer questions like “Where do I have to change
trains?”, “To which line and direction do I need to transfer to?”, and “How many stops
remain before I must get off the train?”. For this kind of questions it is not necessary to
know the exact geography; it can even be hindering. Rather, it is the topology of the
network that is important. This fact was first realized and exploited by Henry Beck, an
engineering draftsman, who created the first schematic map of the London Underground
in 1933 [Gar94]. From then on his ingenious idea spread around the globe so that today
the majority of metro maps are schematic maps that follow more or less the principles
of Beck’s initial drafts [Ove03, Mor96]. The effectiveness of schematic public transport
maps was empirically confirmed in a user study by Bartram [Bar80] that compared the
route planning performance of 32 subjects using a geographic map, a schematic map,
and two textual descriptions of a bus network with seven bus lines. The schematic map
clearly was the best form of representing the network information for the given task. The
longevity of Beck’s design principles in all successive maps of the London Underground
until today is another clear indication for the usefulness and the aesthetic appeal of the
London Underground map. Even artists were inspired by Beck’s tube map, see Figure 3.1.

Beck designed his map according to a simple set of rules: meandering transport lines
are straightened and restricted to horizontals, verticals, and diagonals at 45° (we will
call such a layout octilinear); the scale in crowded downtown areas is larger than in less
dense suburbs in order to create a more uniform use of space; in spite of all distortion, the
network topology and a general sense of geometry, for example, a certain relative position
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Figure 3.2: Web Trend Map 2007 by Information Architects [Inf07].

between stations, is retained. Note that a map designed according to these criteria should
only be used for its intended purpose, that is, to answer navigational questions on the
network. Estimating, for example, geographic distances or travel times from a metro map
can be misleading.

The familiarity of many people with reading metro maps has led to the idea of using
the metro-map metaphor to visualize abstract information without a geographic context.
Sandvad et al. [SGSK01] and Nesbitt [Nes04] use the metro-map metaphor as a way to
visualize guided tours in the Internet and “trains of thoughts”, respectively. Stott et
al. [SRB+05] present a prototype tool to draw project plans in a metro-map style. The
publisher O’Reilly has used the metaphor to visualize its product lines [O’R03], and
Hahn and Weinberg [HW02] draw metabolic pathways in a cancer cell as metro lines
(see Figure 1.2 in Chapter 1). The Tokyo-based information design agency Information
Architects published the Web Trend Map 2007 which shows the most influential web sites
of the year 2007 in the style of the Tokyo metro map [Inf07]. Metro stations represent
web sites, and metro lines represent different topics like technology, news, etc; a web site
providing technology news is then an interchange between the technology line and the news
line. Clearly, some of Beck’s original layout principles need to be adapted since, for example,
visualizations of abstract data usually do not have a given geometric representation.

Moreover, general octilinear graph layout, even without using the concept of metro lines,
is a promising new alternative for various schematic technical and engineering drawings
like cable plans, class diagrams, circuit schematics, etc. which are currently dominated
by orthogonal layouts. The main benefit of octilinear layouts is that they potentially use
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less space and fewer bends while still being very tidy. For example, in VLSI design the
X Architecture [Tei02] is a recent effort for producing octilinear chip layouts. Another
application is to compute schematic layouts of sketches of graphs, a concept introduced by
Brandes et al. [BEKW02].

Drawing metro maps in the style of Beck can be naturally modeled as a graph drawing
problem (see Section 2.2.2), where the stations of the network correspond to the set of
vertices and the physical links between pairs of stations correspond to the set of edges.
Accordingly, a layout algorithm for metro maps has to find positions in the plane for the
vertices and edges such that the resulting drawing satisfies the basic requirements defined
by the drawing conventions and optimizes a set of aesthetic criteria. Manually producing
elaborate metro maps is a very costly and time-consuming process and requires a skilled
graphic designer or cartographer. Thus automating the drawing of metro maps in order to
assist map designers has received increasing attention in recent years by researchers in the
graph drawing and information visualization communities. Avelar and Hurni [AH06] report
that truly easy-to-read schematic maps exist only for few cities, mainly in North America
and Western Europe. As reasons for the scarcity of good schematic maps they name a lack
of funds for map preparation in the tight public transport budgets and a lack of tradition
to disseminate schematic maps. Effective solutions for (semi-) automatically producing
schematic public transport maps can considerably reduce the preparation cost and thus
may serve as an incentive to improve existing maps or to newly introduce schematic maps.
Current geographic information systems (GIS), however, do not provide automatic creation
of schematic maps.

Contributions. In this chapter we propose a novel approach for automating the drawing
of metro maps. We discuss related work in Section 3.2 and introduce the drawing conventions
and aesthetics for metro maps in Section 3.3. Our main contribution is the translation of
the metro-map layout problem problem into a mixed-integer program (MIP) in Section 3.4.
The mixed-integer programming approach is—in contrast to previously suggested methods—
able to distinguish between hard constraints that must be satisfied and soft constraints
that are globally optimized. As a consequence our method is the first to model octilinearity
of the resulting map as a mandatory drawing convention and not just as an aesthetic
optimization criterion. We believe that octilinearity, which is strictly followed by almost all
real metro maps (see [Ove03, Rob05]), is an essential ingredient for tidy and easy-to-read
metro-map layouts. Furthermore, we model label placement for the stations as an integral
part of the layout process, that is, our method reserves enough space to place all station
names without overlap, see Section 3.6. This is fundamentally different from labeling a fixed
drawing where in some situations labels cannot be placed without overlap due to a lack of
space. The drawback of mixed-integer programming over local optimization heuristics is
its potentially long running time. This is due to the fact that many NP-hard optimization
problems can be modeled as a MIP which implies that mixed-integer programming is
NP-hard itself. On the other hand, drawing metro maps is also NP-hard [Nöl05]. Hence,
assuming P 6= NP, efficient algorithms for the problem do not exist. This justifies using
MIP optimization. Furthermore, metro-map layout is an application where interactive
speed is not crucial and where it is worthwhile to spend a reasonable amount of time in
order to get high-quality layouts. Nonetheless, we do address the running-time issue by
implementing heuristic data-reduction and speed-up methods, see Section 3.5. Section 3.7,
finally, analyzes the results of our method in three case studies for the metro networks of
Vienna, Sydney, and London in comparison to layouts produced by previous methods and
to manually designed metro maps.
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3.2 Related Work

The work on road map schematization in the following examples can be seen as a precursor
of metro-map layout. Neyer [Ney99] studied a line simplification problem for polygonal
paths and gave a polynomial-time algorithm to find approximations to these paths using
only a restricted number of orientations. Barkowsky et al. [BLR00] used discrete curve
evolution, an algorithm for polygonal line simplification, to draw schematic maps. As
one example they looked at the lines of the Hamburg subway system. Their algorithm,
however, neither restricts the edge directions nor does it increase station distances in
dense downtown areas. Stations are labeled but no effort is made to avoid label overlap.
Avelar and Müller [AM00, Ave07] implemented an algorithm to modify a given input map
by iteratively moving the endpoints of line segments such that edges approach octilinear
line segments. The algorithm was applied to the street network of Zurich [Ave08], but
not to the transport network of Zurich itself (the transport lines are only superimposed
on the road network). It did not quite succeed, however, in drawing all line segments
octilinearly because vertex positions are calculated as arithmetic means of the best positions
for a number of map constraints (for example, angle and distance constraints for each
incident edge); these constraints are potentially conflicting. Cabello et al. [CdBvD+01]
presented an efficient algorithm for schematizing road networks. Their algorithm draws
edges as octilinear paths with at most two bends and preserves the input topology. In
their algorithm all vertices keep their original positions, which is in general not desired for
drawing metro maps. Cabello and van Kreveld [CvK03] studied approximation algorithms
for aligning points octilinearly, where each point can be placed anywhere in a locally defined
region. Yet, their method does not guarantee to preserve the input topology if points
correspond to vertices of a graph. Merrick and Gudmundsson [MG07] gave an algorithm
for schematizing paths according to a given set of directions. They applied the algorithm
to subway networks by decomposing the network into paths. Their algorithm does not
guarantee, however, that the network’s topology and planarity are maintained.

Jenny [Jen06] has evaluated the amount of distortion that is present in the schematic
map of the London Underground by computing displacement vectors for all stations. His
study illustrates the scale differences between inner city and periphery. The process of
transforming two images, such as a geographically accurate and a distorted schematic map,
into each other is called image warping in computer graphics. Böttger et al. [BBDZ08]
recently presented a dynamic map warping method called warping zoom that combines
zooming and warping. Their method continuously warps between a schematic map with
distorted geography at smaller scales and a geographically accurate map at larger scales.
Such a dynamic map that combines a geographic and a schematic map has the advantage
that there is no loss of context in comparison to using two separate maps.

There are basically two previous approaches concerned exclusively with the automation
of drawing metro maps; see also the survey article of Wolff [Wol07] about the state of the art
in metro-map drawing. The first approach is based on the spring-embedder paradigm that
has been introduced in Section 2.2.2. Initially, Lauther and Stübinger [LS02] sketched a
system that uses a spring embedder to draw orthogonal schematic cable plans. It can be seen
as a precursor of the work of Hong et al. [HMdN06] who adapted a topology-maintaining
spring embedder to the special requirements of metro maps. Their method realizes edges
as straight-line segments and takes edge weights into account as target edge lengths. These
edge weights are determined in a preprocessing step that simplifies the input graph by
collapsing all degree-2 vertices: the weight of each edge in the simplified graph corresponds
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to the number of original edges that it represents. Modeling octilinearity is achieved by
magnetic forces that drag each edge towards its closest octilinear direction. The geometry of
the input network is considered only implicitly by optionally using the original embedding
as initial layout. Having computed the final layout, all degree-2 vertices are re-inserted
on the corresponding edges in an equidistant manner. Station labels are placed in an
independent second step by an interactive map labeling system called LabelHints [dNE08],
which avoids label–label overlaps while label–edge overlaps are not considered.

Stott and Rodgers [SR04] draw metro maps using multi-criteria optimization based on
hill climbing. For a given layout they define metrics for evaluating the number of edge
intersections, the octilinearity and length of edges, the angular resolution at vertices, and
the straightness of metro lines. They define the quality of a layout to be a weighted sum
over these five metrics. Iteratively, they consider alternative grid positions for each vertex
starting with the geographic layout. Only vertex positions that preserve the topology
and improve the quality measure are accepted. The authors observe that the algorithm
gets stuck in local minima which is a typical drawback of local optimization techniques.
They give a heuristic fix that overcomes one class of such problems and use a similar
optional edge contraction step as Hong et al. [HMdN06] to preprocess the input graph.
Subsequently, Stott and Rodgers [SR05] extended their previous method by integrating
horizontal station labeling into the optimization process. For a given labeling they defined
several criteria to evaluate the labeling quality. These criteria measure the number of
occlusions of vertices, edges, and other labels, the position of the label with respect to its
vertex, side consistency for labels on a path between two interchanges, and proximity to
unrelated vertices. After each iteration of vertex movements there is a label-placement
iteration in which the best of eight admissible label positions is selected for each vertex.
The authors experienced occasional label–label overlaps, especially along horizontal edges.
In his PhD thesis [Sto08] Stott weakened this effect by introducing line breaks for long
station names.

Mixed-integer programming has been used occasionally in graph drawing before. Jünger
and Mutzel [JM97] were the first to use integer linear programming (ILP) for a combi-
natorial two-layer crossing minimization problem. Klau and Mutzel [KM99b] gave an
ILP formulation for the compaction phase in the topology-shape-metrics framework that
minimizes the total edge length of the drawing subject to shape constraints depending
on a given orthogonal representation. They extended their model with the placement of
non-overlapping vertex labels in the compaction phase [KM99a]. Binucci et al. [BDLN05]
gave a MIP formulation to minimize the area in the compaction phase in the presence of
vertex and edge labels.

3.3 Model
What are the characteristic properties of a metro map? In order to define the metro-map
layout problem in graph-drawing terms problem we need to find the drawing conventions,
aesthetics, and constraints that distinguish a metro map. Although the layout principles of
real metro maps differ from city to city there are some basic design rules to which almost
all schematic metro maps adhere and that date back to the first tube maps designed by
Beck [Gar94]. Avelar and Hurni [AH06] described some guidelines for designing schematic
maps, but their focus is rather on the rendering problem (use of colors, symbols for points,
background features to retain) and less on the layout of the transport network itself.
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Nonetheless, Avelar and Hurni mentioned octilinearity, topological correctness, and edge
straightening as characteristics of schematic transport maps.

3.3.1 Design Rules
After studying the layout principles of a large number of official metro maps [Ove03, Rob05]
we identified the following design rules for the network layout of metro maps, some of which
(or slight variations thereof) have also been described before [AH06, HMdN06, SR04]:

(R1) Restrict all line segments to the four octilinear orientations1 horizontal, vertical, and
45°-diagonal.

(R2) Do not change the geographical network topology. This is crucial to support the
mental map of the passengers.

(R3) Avoid bends along individual metro lines, especially in interchange stations, to keep
them easy to follow for map readers. If bends cannot be avoided, obtuse angles are
preferred over acute angles.

(R4) Preserve the relative position between stations to avoid confusion with the mental
map. For example, a station being north of some other station in reality should not
be placed south of it in the metro map.

(R5) Keep edge lengths between adjacent stations as uniform as possible with a strict
minimum length. This usually implies enlarging the city center at the expense of the
periphery.

(R6) Stations must be labeled and station names should not obscure other labels or parts
of the network. Horizontal labels are preferred, and labels along the track between
two interchanges should use the same side of the corresponding path if possible.

(R7) Use distinctive colors to denote the different metro lines. This means that edges used
by multiple lines are drawn thicker and use colored copies for each line.

As an example of how these seven rules are implemented in practice, we consider the
Sydney CityRail network that is shown in Figure 3.3. This network is also used later on in
our case study in Section 3.7.2 as a benchmark example since it has been used by Hong et
al. [HMdN06] and by Stott and Rodgers [SR04] before. Figure 3.3a shows the geographic
layout of the suburban part of the CityRail network; Figure 3.3b shows the corresponding
clipping of the official network map drawn by professional graphic designers [Syd08]. Note
how the seven design rules are realized in this map: all lines are octilinear (R1), the
topology is preserved (R2) (hard to see in the city circle to the right of the map—a good
example where non-uniform map scale is used), unnecessary bends are (mostly) avoided
(R3), the mental map is retained (R4), edge lengths are rather uniform (R5), labels are
non-overlapping (R6), and distinct colors are used for the individual lines (R7).

Clearly, each metro map can only be a compromise of the above criteria. For example,
a map with a minimum number of line bends may drastically distort the mental map and,
conversely, strictly preserving the mental map may require a large number of bends.

1Each of the four orientations has two directions, thus the term octilinear.



32 Chapter 3: Metro Maps: Layout and Labeling

(a) Geographic layout. (b) Corresponding clipping of the official
map [Syd08].

Figure 3.3: The Sydney CityRail network.

3.3.2 Formal Model
We now state the metro-map layout problem in graph drawing terms. Let G = (V,E)
be a plane graph. We assume that we know the geographic position Π(v) of each vertex
v ∈ V in the plane. Note that if the input layout of G contains edge crossings, we obtain a
plane graph G′ by introducing dummy vertices that represent the crossings. These will be
preserved by the layout algorithm. As usual n and m denote the number of vertices and
edges of G, respectively. Let L be a line cover of G, that is, a set of paths of G such that
each edge of G belongs to at least one element of L. An element ` ∈ L is called a line and
corresponds to a metro line of the underlying transport network. Let N denote the total
edge size of L, that is, N =

∑
`∈L |`|, where |`| is the number of edges of line `. We denote

the pair (G,L) as the metro graph.
The task is now to find a drawing Γ of (G,L) according to the rules (R1)–(R7). At this

point we ignore rule (R7) which affects only the way Γ is displayed in the end. Furthermore
we postpone the label placement given by rule (R6) to Section 3.6 and concentrate on
rules (R1)–(R5). Some of these rules formulate strict requirements while others are
optimization criteria. Thus we split the remaining requirements into mandatory global
drawing conventions and local constraints, also called hard constraints, and aesthetics, also
called soft constraints, to be optimized. Our hard constraints are:

(H1) For each edge e, the line segment Γ(e) must be octilinear.

(H2) For each vertex v, the circular order of its neighbors must agree in Γ and the input
embedding.

(H3) For each edge e, the line segment Γ(e) must have length at least le.

(H4) Each edge e must have distance at least dmin > 0 from each non-incident edge in Γ.

Constraint (H1) models octilinearity (R1), (H2) models the topology requirement (R2), (H3)
models the minimum edge length in (R5), and (H4) forbids edge crossings and thus also
models a part of (R2). This is because two intersecting edges would have distance 0 < dmin.
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The soft constraints are intended to hold as tightly as possible. They determine the
aesthetic quality of Γ and are as follows:

(S1) The lines in L should have few (and obtuse) bends in Γ.

(S2) For each pair of adjacent vertices (u, v), their relative position should be preserved,
that is, the angle ∠(Γ(u),Γ(v)) should be similar to the angle ∠(Π(u),Π(v)), where
∠(a, b) is the angle between the x-axis in positive direction and the line through a
and b directed from a to b.

(S3) The total edge length of Γ should be small.

Clearly, constraint (S1) models minimizing the bends (R3) and (S2) models preserving the
relative position (R4). The uniform edge length rule (R5) is realized by the combination of
a strict lower bound of unit length (H3) and a soft upper bound (S3) for the edge lengths.
Rule (R4) for the relative position can be interpreted as both a soft and a hard constraint,
for example, one may restrict the angular deviation to at most 90° as a hard constraint
and charge costs for smaller deviations as a soft constraint. Our framework reflects this
ambivalence, but modeling relative position as a purely soft constraint is also possible. Of
course, other soft constraints can be added or removed depending on the application. The
soft constraints can be weighted according to their importance. We now formally state the
metro-map layout problem.

Problem 3.1 (Metro-Map Layout Problem) Given a plane graph G = (V,E) with maxi-
mum degree 8 and vertex coordinates in R2, a line cover L of G, minimum edge lengths
le > 0 for each e ∈ E, and a minimum distance dmin > 0, find a nice drawing Γ of (G,L),
that is, a drawing Γ that satisfies the hard constraints (H1)–(H4) and optimizes the soft
constraints (S1)–(S3).

Note that the restriction to graphs with maximum vertex degree 8 is an immediate
consequence of the restriction to octilinear edge directions. Recall the difference between
edges and lines in our model: while a vertex can have at most eight incident edges there
can still be multiple lines that share a single edge. We are not aware of any real metro
map that has vertices with a degree higher than 8 in the underlying graph.

From a theoretical point of view one can ask the existence question “Given the input, is
there a drawing that satisfies all hard constraints?” It has been proven that this question
is NP-hard [Nöl05]; the proof is by reduction from the Planar3-Sat problem. This
result is in sharp contrast to the orthogonal setting where the same existence question
can be answered by an efficient network-flow algorithm in the topology-shape-metrics
framework [Tam87, GT96].

If we combine graph drawing and labeling, the only difference to Problem 3.1 is that we
have an additional hard constraint that must be satisfied:

(H5) Each vertex v ∈ V is labeled by a horizontal or diagonal label that does not occlude
any other label, vertex, or edge in the drawing Γ.

For ease of presentation, we first consider Problem 3.1 to find an unlabeled drawing of G
in Section 3.4. Afterwards, in Section 3.6, we present the extensions to our model that are
necessary in order to satisfy constraint (H5) and to solve the combined metro map layout
and labeling problem.
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3.4 Mixed-Integer Programming
We decided to formulate the metro-map layout problem as a mixed-integer program.
Solving NP-hard optimization problems like ours with a MIP formulation is different from
using heuristic search methods like force models [HMdN06] or hill climbing [SR04]. Unlike
heuristic methods, MIP takes a global approach and guarantees to find an optimal solution,
albeit not in polynomial time. A clear advantage of MIP is that there are sophisticated and
versatile solvers available, which means that a MIP model can be quickly implemented and
tested. The main challenge is thus to formulate a MIP model that correctly and efficiently
reflects the optimization problem. In this section, we show how to transform the hard
and soft constraints (H1)–(H4) and (S1)–(S3) into the linear (in-) equalities and the linear
objective function of a MIP. If a layout that conforms to all hard constraints exists (this
was the case in all our examples), then our MIP finds such a layout. Otherwise the solver
reports infeasibility. Moreover, our MIP optimizes the weighted sum of cost functions each
of which corresponds to a soft constraint.

3.4.1 Coordinate System and Metric
We can state all our constraints using Cartesian coordinates. Still, for simplicity we use an
extended (x, y, z1, z2)-coordinate system that allows us to handle all four orientations in the
same way. Each coordinate axis corresponds to one of the four octilinear orientations, see
Figure 3.4. For a vertex v ∈ V we define z1(v) = (x(v)+y(v))/2 and z2(v) = (x(v)−y(v))/2.

Furthermore, we need to specify an underlying metric for measuring distances. We
use the L∞-metric, which defines the distance of two vertices u and v to be max(|x(u)−
x(v)|, |y(u) − y(v)|). This metric has the property that all points on the boundary of
the unit square centered at a point p have the same distance from p. In Figure 3.4, the
eight grid points on the octilinear coordinate axes at unit L∞-distance from the origin are
marked by small circles. A side-effect of using the L∞-metric is that all vertices are placed
on a rectilinear grid as long as all edge lengths in the L∞-metric are integers.

3.4.2 Octilinearity and Edge Length (H1) & (H3)
The constraints in this part deal with the orientation and the length of all edges uv ∈ E and
thus model the two hard constraints (H1) and (H3). In general, each edge can take any of the
eight octilinear directions. With the relative position rule (R4) in mind, we further restrict
the admissible directions for an edge uv to the three closest octilinear approximations of
the input line segment Π(u)Π(v). This means that the maximum deviation of the angles
∠(Γ(u),Γ(v)) and ∠(Π(u),Π(v)) is 67.5°. This restriction is optional and could just as well
be extended to more than three admissible directions or dropped completely. The more
directions we admit the larger the solution space of the MIP gets and hence the longer it
takes to solve it. It turned out that allowing three directions is a good balance of layout
flexibility and solution speed.

Before formulating the constraints we need some notation to address relative positions
between vertices and to denote directions of edges. For technical reasons we direct all
edges arbitrarily and assume that an edge e = uv is directed from u to v. For each vertex
u we define a partition of the plane into eight sectors. Each sector is a 45°-wedge with
apex u. The wedges are centered around rays that emanate from u and follow the eight
octilinear directions. The sectors are numbered from 0 to 7 counterclockwise starting with
the positive x-direction, see Figure 3.5.
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Figure 3.4: Octilinear coordinate system.
Marked grid points have unit
L∞-distance from the origin.

Figure 3.5: Numbering of the sectors and the oc-
tilinear directions relative to vertex
u, for example secu(v) = 5.

To denote the rough relative position between two vertices u and v in the original layout
we use the terms secu(v) and secv(u) representing the sector relative to u in which v lies
and the sector relative to v in which u lies, respectively. These values describe the known
input layout. Similarly, for each edge uv, we define integer variables dir(u, v) and dir(v, u)
to denote the octilinear direction of uv in the new layout, that is, these variables describe
the unknown output layout. We identify each octilinear direction with its corresponding
sector. For example, if the edge uv leaves u in negative z1-direction, we say dir(u, v) = 5.
Both values are symmetric to a reversal of the viewpoint. So considering an edge uv in
reversed direction vu corresponds to shifting the sector origin from u to v. Then the sector
of v with respect to the origin u is opposite of the sector of u with respect to origin v (see
Figure 3.5) or, equivalently, we can add 4 to the sector value and the direction variable,
that is, secu(v) = secv(u) + 4 (mod 8) and dir(u, v) = dir(v, u) + 4 (mod 8).

The following three blocks of constraints model the layout of the edge uv:

αprec(u, v) + αorig(u, v) + αsucc(u, v) = 1 (3.1)

dir(u, v) =
∑
i∈{prec,orig,succ} seciu(v) · αi(u, v)

dir(v, u) =
∑
i∈{prec,orig,succ} seciv(u) · αi(u, v)

(3.2)

y(u)− y(v) ≤ M(1− αprec(u, v))
−y(u) + y(v) ≤ M(1− αprec(u, v))
x(u)− x(v) ≥ −M(1− αprec(u, v)) + luv.

...

(3.3)

Constraint (3.1) models the selection of one of the three permitted directions by means of
three binary variables αprec, αorig, αsucc whose sum equals 1. The index i ∈ {prec, orig, succ}
for which αi(u, v) = 1 denotes the direction of the original sector secu(v) of edge uv
(i = orig), its preceding sector (i = prec), or its succeeding sector (i = succ), respectively.
By seciu(v) we denote the index of these sectors for i ∈ {prec, orig, succ}. In the example
of Figure 3.5 these are sectors 4, 5, and 6.

In the constraints (3.2) the integer variables dir(u, v) and dir(v, u) are assigned to the
correct edge direction numbers according to the assignment of the three binary variables
above. The direction variables will be used in some of the remaining hard and soft
constraints.
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Finally, the constraints (3.3) deal with the actual positions of vertices u and v. For each
possible direction we need such a set of three inequalities, which of course depend on the
direction. Only the set of constraints corresponding to the selected direction shall be active
and this disjunctive condition is modeled by means of a (large) constant M as introduced
in Section 2.4.3. Constraints (3.3) are an example where the preceding sector secprecu (v)
equals 4 as in Figure 3.5, that is, uv should be directed horizontally to the left. In this case
v should have the same y-coordinate as u and lie at least luv, the minimum length of uv,
to the left of u. Exactly this requirement is modeled by constraints (3.3) if αprec(u, v) = 1.
Otherwise, if αprec(u, v) = 0, all constraints are trivially satisfied since M is chosen as an
upper bound on all possible coordinate differences, for example, if 0 ≤ x(v), y(v) ≤ n for
all v ∈ V then M = n would suffice. The sets of constraints are similar for other directions
and for i = orig or i = succ, respectively: one coordinate of u and v must be equal and
their distance along the respective octilinear direction must be at least the minimum edge
length luv.

Overall, the above constraints model octilinearity (H1) and the lower bound on the
length of each edge (H3). Clearly, the number of possible directions can be increased in
the above formulation if the relative position rule (R4) for adjacent vertices is not modeled
as a partially hard constraint. The restriction to three directions is a good compromise
between conservation of the relative position and flexibility in the drawing.

Each edge of G gives rise to 5 variables and 12 constraints; this totals 5m variables and
12m constraints.

3.4.3 Circular Vertex Orders (H2)
The constraints in this part preserve the circular order of the neighbors around each vertex
and thus the input embedding as required by hard constraint (H2). For each vertex v with
deg(v) ≥ 2 we introduce the following constraints:

β1(v) + β2(v) + . . .+ βdeg(v)(v) = 1 (3.4)

dir(v, u1) ≤ dir(v, u2)− 1 + 8β1(v)
dir(v, u2) ≤ dir(v, u3)− 1 + 8β2(v)

...
dir(v, udeg(v)) ≤ dir(v, u1)− 1 + 8βdeg(v)(v),

(3.5)

where βi(v) are binary variables for i = 1, . . . ,deg(v) and u1 < . . . < udeg(v) are the
neighbors of v in counterclockwise order with respect to the input embedding.

The idea behind (3.4) and (3.5) is that the circular input order of the incident edges
of v must be reflected by the values of the direction variables dir(v, u1), . . . ,dir(v, udeg(v)).
Thus looking at the edges in the given order, their direction index must strictly increase
except for one position. Namely, it decreases when we cross the boundary between sector 7
and sector 0. Hence there is exactly one of the inequalities dir(v, ui) ≤ dir(v, ui+1)− 1 that
does not hold unless we add 8 to the right-hand side. The position i where this happens is
determined by the only binary variable in constraint (3.4) with βi(v) = 1. For this i, the
corresponding constraint in (3.5) evaluates to dir(v, ui) ≤ dir(v, ui+1)− 1 + 8 which holds
even if dir(v, ui) > dir(v, ui+1)− 1. All other constraints for j 6= i in (3.5) do not add 8 to
the right-hand side as βj(v) = 0 by constraint (3.4).

Note that we demand strictly increasing direction indices and thus no two edges incident
to the same vertex can have the same direction. For each vertex v this part of the MIP
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Figure 3.6: The dmin-neighborhood of e1; e2 sat-
isfies (H4) with respect to e1, but e3
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Figure 3.7: Bend cost bend(u, v, w) for each
value of dir(v, w).

requires deg(v) binary variables and deg(v) + 1 constraints. Since
∑
v∈V deg(v) = 2m this

totals 2m variables and 2m+ n constraints.

3.4.4 Edge Spacing (H4)
As stated before, constraint (H4), which requires that two non-incident edges stay dmin
apart, avoids that edge crossings are introduced and thus ensures the planarity of the
drawing. For each pair of non-incident edges (e1, e2) = (u1v1, u2v2) we have:∑

i∈{N,S,E,W,NE,NW,SE,SW}
γi(e1, e2) ≥ 1 (3.6)

x(u2)− x(u1) ≤ M(1− γE(e1, e2))− dmin
x(u2)− x(v1) ≤ M(1− γE(e1, e2))− dmin
x(v2)− x(u1) ≤ M(1− γE(e1, e2))− dmin
x(v2)− x(v1) ≤ M(1− γE(e1, e2))− dmin,

...

(3.7)

where γN(e1, e2), . . . , γSW(e1, e2) are binary variables. The idea behind these constraints is
that for a pair of octilinear edges to have L∞ distance of at least dmin it suffices to ensure
that the two edges stay apart by dmin in at least one of the eight octilinear directions,
which we denote by the compass directions N, S, E, W, NE, NW, SE, and SW. Figure 3.6
shows the dmin-neighborhood U∞dmin

(e1) of an edge e1. To make sure that no other edge
intersects U∞dmin

(e1) we enforce that both vertices of that edge have a distance of at least
dmin from e1 in the same octilinear direction—unlike the edges e3 and e4 in Figure 3.6.

From constraint (3.6) we get that at least one variable γi(e1, e2) equals 1. Let for
instance γE(e1, e2) = 1, that is, e1 is east of e2 as in the example in Figure 3.6. The
corresponding block of constraints for γE(e1, e2) is given in (3.7); for the other seven
variables there are similar sets of constraints. Since γE(e1, e2) = 1, the four constraints
in (3.7) simply mean that both u2 and v2 must be at least dmin to the left of both u1 and
u2. Otherwise, if γE(e1, e2) = 0, the inequalities are always satisfied. The same principles
apply for the constraints of the remaining orientations.

For each pair of edges we thus need 33 constraints and eight binary variables. Since there
are Θ(m2) such pairs, however, the constraints and variables that model (H4) dominate
the otherwise linear size of our model. This slows down the MIP solution time drastically.
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In Section 3.5.2 we propose two (heuristic) improvements to the model that significantly
cut down the number of constraints and variables for modeling (H4).

Also note that the above planarity constraints are based on the fact that, due to a
limited number of edge directions, there is only a limited number of relative positions of
two edges. This model therefore does not extend to planarity of arbitrary line segments.

3.4.5 Line Bends (S1)
Usability of a metro map depends strongly on the user’s ability to visually follow its metro
lines. This is usually facilitated by using distinguishable colors (see rule (R7)), but also by
avoiding bends along the lines as formulated in (S1).

We define the bend cost bend(u, v, w) subject to the actual angle between two adjacent
edges uv and vw on a path ` ∈ L. Due to the octilinearity constraints and to the fact that
two adjacent edges cannot have the same direction relative to their joint vertex, the angles
can only equal 180°, 135°, 90°, and 45°. In that order we define the corresponding bend
cost to be 0, 1, 2, and 3; the cost increases with the acuteness of the angle, see Figure 3.7.

Then the total bend cost of the drawing is

cost(S1) =
∑
`∈L

∑
uv,vw∈L

bend(u, v, w). (3.8)

Minimizing cost(S1) hence minimizes the number and acuteness of the bends along all lines
in L. We may assign higher, for example, double, costs to bends in interchange vertices to
stress that lines should go straight through these vertices.

It remains to state how the bend cost bend(u, v, w) is actually computed within the
model. We can determine the angle between two adjacent edges uv and vw by reusing
the values of dir(u, v) and dir(v, w) that have been defined in Section 3.4.2. For ease of
notation let ∆diru,v,w = dir(u, v)− dir(v, w). It is easy to verify that the bend cost defined
above can be expressed as

bend(u, v, w) = min{|∆diru,v,w|, 8− |∆diru,v,w|}, (3.9)

where the first term is minimum for −4 ≤ ∆diru,v,w ≤ 4 and the latter term for −7 ≤
∆diru,v,w ≤ −5 or 5 ≤ ∆diru,v,w ≤ 7. In order to compute this cost by means of linear
constraints we use

−bend(u, v, w) ≤ ∆diru,v,w − 8δ1(u, v, w) + 8δ2(u, v, w)
bend(u, v, w) ≥ ∆diru,v,w − 8δ1(u, v, w) + 8δ2(u, v, w),

(3.10)

where δ1(u, v, w) and δ2(u, v, w) are binary variables. These constraints express that
bend(u, v, w) is lower bounded by |∆diru,v,w−8δ1(u, v, w)+8δ2(u, v, w)|. Since bend(u, v, w)
is minimized in cost(S1), it will match its lower bound. Moreover, as a result of this
minimization, the lower bound will itself be minimized by assigning the best possible
values to the two binary variables δ1(u, v, w) and δ2(u, v, w). For 5 ≤ ∆diru,v,w ≤ 7 setting
δ1(u, v, w) = 1 and δ2(u, v, w) = 0 yields the smallest value; for −7 ≤ ∆diru,v,w ≤ −5
setting δ1(u, v, w) = 0 and δ2(u, v, w) = 1 yields the smallest value; in the remaining cases
either both variables are set to one or to zero. In all these cases we have |∆diru,v,w −
8δ1(u, v, w) + 8δ2(u, v, w)| = min{|∆diru,v,w|, 8− |∆diru,v,w|} as desired.

Minimizing the number of bends thus uses three variables and two constraints for each
pair of incident edges on a path ` ∈ L. Since there are in total at most N (the total edge
size of L) such pairs we are using at most 3N variables and at most 2N constraints.
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3.4.6 Relative Positions (S2)
To preserve as much of the overall appearance of the input geometry of the metro system
as possible we have already restricted the edge directions to the set of the three octilinear
directions closest to the input direction of each edge in Section 3.4.2. Ideally, we want to
draw each edge uv using its best octilinear approximation, that is, the direction where
dir(u, v) = secu(v). We introduce a cost of 1 if the layout does not use that direction. This
suffices to model (S2) in our case. In the general case, in which more than three directions
are admissible, a gradual cost scheme similar to the bend cost above could be applied.

For each edge uv we define as its cost a binary variable rpos(uv) which can be set to
zero if and only if dir(u, v) = secu(v). Then the cost for deviating from the original relative
positions is

cost(S2) =
∑
uv∈E

rpos(uv) (3.11)

which, for each edge, charges 1 if not using the nearest octilinear direction. Due to the
minimization of cost(S2) the correct assignment of rpos(uv) is modeled by

−8 · rpos(uv) ≤ dir(u, v)− secu(v) ≤ 8 · rpos(uv), (3.12)

where 8 is a trivial bound on the absolute value of the considered difference of directions.
This part of the model needs m variables and 2m constraints.

3.4.7 Total Edge Length (S3)
The edge lengths are considered in the L∞-metric as stated before. We define a new
real-valued, non-negative variable len(uv) for each edge uv that serves as an upper bound
on the length of uv. By minimizing the sum of all upper bounds

cost(S3) =
∑
uv∈E

len(uv), (3.13)

the bounds len(uv) become tight and thus indeed equal to the corresponding edge lengths.
The constraints that define len(uv) are simply

x(u)− x(v) ≤ len(uv)
−x(u) + x(v) ≤ len(uv)
y(u)− y(v) ≤ len(uv)
−y(u) + y(v) ≤ len(uv).

(3.14)

In total we use m variables and 4m constraints for modeling (S3).

3.4.8 Summary of the Model
In the previous seven subsections we have described in detail the constraints and variables
of our MIP model for the metro-map layout problem. The hard constraints (H1)–(H4) form
the constraint section of the MIP. The soft constraints (S1)–(S3) contribute another part to
the constraint section that defines the cost variables. The cost variables are subsequently
minimized in the (weighted) objective function

λ(S1)cost(S1) + λ(S2)cost(S2) + λ(S3)cost(S3), (3.15)
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constraint # MIP variables # MIP constraints
(H1) & (H3) 5m 12m
(H2) 2m 2m+ n

(H4) ≤ 8(m2 −m)/2 ≤ 33(m2 −m)/2
(S1) 3N 2N
(S2) m 2m
(S3) m 4m
total ≤ 4m2 + 5m+ 3N ≤ 16.5m2 + 3.5m+ 2N + n

Table 3.1: Number of variables and constraints for each hard and soft constraint in the model. Note
that (H4) applies only to non-incident edge pairs, whose number depends on the input.
Hence we give only upper bounds for (H4).

where λ(S1), λ(S2), and λ(S3) are a non-negative weights that allow for adjustment of the
relative importance of each of the optimization criteria.

Table 3.1 summarizes the number of variables and constraints required for each part
of our model. Note that with Θ(m2) variables and constraints (H4) is by far the most
expensive part of the model, which otherwise has only linear size.

3.5 Reduction of the Problem Size

The size of the MIP model as presented in the previous section is a major factor affecting
the required solution time. There are two ways to reduce the size without compromising
layout quality. The first approach reduces the size of the input graph before it is translated
into the MIP model. The second approach tries to identify the constraints that are relevant
for the solution and hides the irrelevant constraints from the optimizer.

3.5.1 Reduction of the Network Size

A common feature of metro graphs is that they tend to have a large number of degree-2
vertices, which represent the non-interchange stations between two interchanges. By soft
constraint (S1) it is desirable to avoid line bends in these degree-2 vertices, and optimizing
each edge on a path between two interchanges individually seems unnecessary. Therefore,
the idea to replace each path of degree-2 vertices temporarily by a single edge (which will
always be drawn straight) and to reinsert the vertices in the final drawing equidistantly on
this edge has been proposed in the literature [HMdN06, SR04]. We use a slightly different
approach that allows more flexibility in the layout of paths of degree-2 vertices: instead
of a single edge we replace each such path by a path of length 3 that can thus have up
to two bends between two neighboring interchanges. This allows for better balancing line
straightness (S1) and geographic accuracy (S2) in the layout. Again, the original vertices
are reinserted equidistantly on their corresponding paths. Our case studies in Section 3.7
show that this is indeed a good compromise between layout flexibility and the reducing
the size of the MIP model.
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3.5.2 Reduction of the MIP Size
The time that is required to solve a MIP depends on the geometric shape of the feasible
region, which in turn depends on the number of variables and constraints of the model.
Thus reducing the model size is another way of speeding up our layout method.

As can be seen from Table 3.1, edge spacing (H4), which is also responsible for avoiding
edge crossings, is the only layout constraint that causes a quadratic number of variables
and constraints in the model. This is due to the fact that naively we consider (H4) for all
Θ(m2) pairs of non-incident edges. The first observation is that for a planar drawing of an
embedded graph it suffices to require that all pairs of non-incident edges that are incident
to the same face satisfy (H4). The reason is that whenever two edges that are incident to
different faces cross, either the embedding has been changed (but this is forbidden by (H2))
or there must be some crossing between two edges that are incident to the same face. So
instead of modeling (H4) for all pairs of non-incident edges, we model it only for pairs of
non-incident edges that are incident to a common face. According to the above observation
an embedding-preserving layout without any crossing of two edges incident to the same
face cannot contain any crossing at all.

Even with this primary size reduction the models for most of our metro map examples
were still too large to yield fast solutions. We observed that, on the one hand, only a
small fraction of all possible spacing conflicts was relevant for the layout, that is, edge
pairs for which (H4) had to be modeled explicitly. On the other hand, it is not clear how
to determine these relevant edge pairs in advance. Fortunately, we could take advantage
of the callback functionality of the MIP optimizer CPLEX as follows. In the initial MIP
formulation we do not consider (H4) at all. Then, during the optimization process, we add
constraints on demand, that is, as soon as the optimizer returns a new candidate solution,
a callback routine is notified. This routine interrupts the optimizer and checks externally
for violations of (H4) in the current layout. If there are pairs of edges that intersect, we
add the respective edge spacing constraints for those pairs and reject the candidate solution
that has now become infeasible. Then we continue the optimization. Our case study in
Section 3.7 shows the impressive performance gain of this approach.

3.6 Labeling
In practice, a metro map is of no interest to a passenger unless all stations are labeled
by their respective names, see design rule (R6). The most fundamental requirement in
a labeled metro map is that labels do not overlap other labels, vertices, or edges of the
graph. Basically, there are two different ways of generating labeled metro maps: (a) using
a two-phase approach that first generates an unlabeled layout and then, as a second step,
places the labels within this layout as good as possible, or (b) using an integrated graph
labeling approach that directly generates a labeled layout. Only the latter integrated
approach assures that there is enough space to place all labels without overlap.

We follow the graph labeling approach and realize the hard constraint (H5) by enhancing
the metro graph with labeling regions that are large enough to accommodate all labels
that are assigned to them. For this enhanced graph, we set up the MIP model as described
before. Its solution will be a crossing-free layout, which means in turn that all labeling
regions will be empty and their labels can safely be placed inside.

Here, we assume that the degree-2 vertices have been collapsed as described in Sec-
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tion 3.5.1. For each path of length 3 between two interchange stations we model its labeling
region as a parallelogram attached to the middle segment of the path. Figure 3.8a shows
an example of labeling the middle edge vw of the path (p, v, w, q). The collapsed vertices
will later be inserted along this middle segment and all their labels lie to the same side of
the path. Usually, this is visually more pleasing than an arbitrary mix of labels on both
sides. The side length of the parallelogram matches the length of its longest vertex label.
Both to keep the number of reading directions small and to avoid unnecessary complexity
in the model, we restrict labels to be placed horizontally or, if the corresponding edge itself
is horizontal, diagonally in z1-direction. Note that our model extends the ideas of Binucci
et al. [BDLN05] who use a similar MIP model to label edges with fixed-size rectangles in
an orthogonal graph drawing. In our case the parallelograms that contain the labels can
be seen as additional metro lines. They differ from the other metro lines in that they can
flip sides and in that their shape is fixed. So consider the situation in Figure 3.8a. We first
subdivide the edge e = vw by inserting two dummy vertices r and s and make sure that e
cannot bend at r and s. This is achieved by the constraints

dir(v, r) = dir(r, s) = dir(s, w). (3.16)

We add two more vertices t and u and the edges rt, tu, and su. Edges rt and su are forced
to be horizontal and to be of length lrt, the length of the longest vertex label on e. For rt
this is accomplished with the constraints

y(r) = y(t)
x(r)− x(t) ≤ ρ(e)M + lrt
x(r)− x(t) ≥ −ρ(e)M + lrt
x(t)− x(r) ≤ (1− ρ(e))M + lrt
x(t)− x(r) ≥ −(1− ρ(e))M + lrt,

(3.17)

where ρ(e) is a binary variable that decides whether the labels are to the left (ρ(e) = 0) or
to the right (ρ(e) = 1) of e. For su the constraints are analogous to (3.17) using the same
binary variable ρ(e). The third edge tu is forced to be parallel to rs by the constraint

dir(t, u) = dir(r, s) (3.18)

so that the new edges indeed form a parallelogram attached to e. This parallelogram can
still be placed on either side of e, modeled by the binary variable ρ(e). For horizontal
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Vienna (5 lines) Sydney (10 lines) London (11 lines)
graph

n m N f n m N f n m N f

original 84 90 90 8 174 183 289 11 308 361 441 55
reduced 48 54 54 8 88 97 186 11 267 320 409 55
labeled 136 155 87 21 242 270 286 30 672 771 593 99

Table 3.2: Size of the real-world graphs in terms of vertices (n), edges (m), total edge size (N), and
faces (f) for the original graph, the reduced graph after removing degree-2 vertices, and
the labeled reduced graph.

edges with z1-diagonal labels the constraints are analogous. Clearly, we do not enforce the
circular order constraints (H2) for r and s. Moreover, the new edges rt, tu, and su are
not taken into account in the objective function. Finally, because an edge can be drawn
horizontally or diagonally, we need to do another case distinction in order to select either
the set of constraints for horizontal or for diagonal labels. This is, as usual, achieved by
means of a binary variable.

For labeling a single vertex v, for example, an interchange station, we create new vertices
w and w′ and introduce edges vw and ww′, see Figure 3.8b. The first edge vw is of unit
length and we allow vw to take any position in the circular order of the edges incident to v.
The second edge ww′ models the actual label; its length is equal to the label length. The
direction of ww′ depends on the direction of vw: ww′ is horizontal if vw is non-vertical
and ww′ is z1-diagonal if vw is vertical. Choosing one of the eight possible positions is
modeled by eight binary decision variables.

3.7 Results and Evaluation
In this section we report the results of three case studies performed for the metro networks
of Vienna, Sydney, and London. Sydney is a medium-size example that was used before by
Hong et al. [HMdN06] and Stott and Rodgers [SR04] to evaluate their methods. Hence
we are able to compare our results for the Sydney network to their layouts. The size of
the graphs is given in Table 3.2 and ranges from 84 vertices and 8 faces (Vienna) to 308
vertices and 55 faces (London). The table further shows how the removal of degree-2
vertices described in Section 3.5.1 effectively reduces the number of vertices and edges.
The last row gives the size of the reduced graphs with station labels added as described in
Section 3.6.

The input graphs are given by a list of vertices with x- and y-coordinates and station
names, and by a list of edges, each of which is associated to the metro lines to which it
belongs. The input embedding assumes straight-line edges. Recall that all edge crossings
that exist in the input layout are replaced by dummy vertices and are thus preserved in
our output drawings.

The environment for computing our layouts was a Linux system based on an AMD
Opteron 2218 CPU with 2.6 GHz and 8 GB RAM. Our implementation is a Java program
that generates the MIP, solves it using the commercial optimizer Ilog CPLEX 11.12, and

2see http://www.ilog.com/products/cplex

http://www.ilog.com/products/cplex
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then produces the layout from the coordinates in the MIP solution. We chose a time frame
of 12 hours for computing the layouts. If optimality could not be shown within this time
we report the best integer feasible solution and the remaining optimality gap. Note that
CPLEX typically generates intermediate solutions quickly while most of the computation
time is spent on finding minor improvements to the objective function. In practice it is
worthwhile to examine these suboptimal solutions,too, since our objective function is only
a humble mathematical attempt to capture the aesthetics of a schematic network layout.
Hence suboptimal layouts may in fact be visually more pleasing in some instances.

3.7.1 Vienna
Our first case study, and a rather small example, is the metro network of Vienna, which
is depicted geographically in Figure 3.9a. Despite its small size it is still a representative
example of the large class of metro systems with only a few metro lines, see Ovenden [Ove03].
The individual lines connect two “opposite” terminus stations in the periphery of the city
leading through the city center, where interchanges with the other lines are available. The
official schematic layout by the transport company Wiener Linien is shown in Figure 3.9b.
Note that this map includes additional surface train lines drawn as thin blue lines. These
are not present in our input network. We thus restrict our comparison to the drawing of
the five thick metro lines.

We show an unlabeled and a labeled layout produced by our method in Figure 3.10.
The weights in the objective function were chosen as (λ(S1), λ(S2), λ(S3)) = (3, 3, 1). The
unlabeled layout in Figure 3.10a was obtained by CPLEX within 3 seconds and the
optimality of the solution with respect to the given weights for the objective function was
proven within 22 seconds. It was not necessary to include any of the constraints (H4) in
order to find a planar layout. The actual size of the MIP model that was solved is given in
the bold column labeled none in Table 3.3. The first intermediate solutions for the labeled
layout were returned after 74 seconds; the final labeled layout in Figure 3.10b, however,
took CPLEX 10 hours and 8 minutes to compute. The optimality of this solution could not
be proven and some manual improvements are obviously possible, for example, removing
the bend of the orange line at Westbahnhof, the interchange with the brown line; the
remaining optimality gap was still 25.4%. Here, it was necessary to add the constraints (H4)
for 165 pairs of edges in order to find a planar layout, see the column labeled callback in
Table 3.3 for the actual size of the model. Note that the callback method is not able to
reduce the number of variables, but the number of constraints was reduced to less than ten
percent of the original constraints (see column faces). Without using the callback method,
no labeled layout of Vienna was found at all within our 12-hour time frame.

Now we compare the official layout (Figure 3.9b), the unlabeled layout (Figure 3.10a)
and the labeled layout (Figure 3.10b) according to the seven design rules (R1)–(R7) given
in Section 3.3.1.

(R1) Octilinearity All three maps use exclusively octilinear edges.

(R2) Topology All three maps preserve the input topology.

(R3) Line bends The number of bends is larger in the official layout (16 bends), than in
our layouts (both 13 bends). All bend angles in all three layouts are 135° as requested
by rule (R3). The official layout has four bends in interchanges, the unlabeled layout
has three such bends, and the labeled layout two. Note, however, that the affected
interchanges are degree-4 vertices in which only one of the two crossing lines has a
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unlabeled labelednumber of
all pairs faces none all pairs faces callback none

variables 11,584 6,584 880 94,948 29,908 29,908 1,572
constraints 45,582 24,957 1,428 388,564 120,274 12,311 3,388
edge pairs 1,338 713 0 11,672 3,542 165 0

Table 3.3: Size of MIP models for the Vienna metro map in terms of variables, constraints, and edge
pairs. The columns represent the different models in which (H4) is in effect for all pairs
of edges, for those incident to a common face, for those selected during the optimization
by a callback, or for none. Columns corresponding to the shown examples are marked in
bold.

bend while the other line goes straight. Still, in terms of bend minimization, our
layout achieve slightly better results than the official layout.

(R4) Relative position The relative position rule is judged according to the similarity
with the geographic map (Figure 3.9a). The downside of the official map that it
uses more bends than our layouts (rule (R3)) conversely means that it achieves
a relatively high similarity to the geography in certain parts of the network (for
example, the south-eastern end of the orange line U3 or the northern end of the
brown line U6). The S-shaped orange line, however, is more realistically depicted
in our unlabeled layout than in the official layout. A similar observation holds for
the green line U4, which is drawn horizontally from its terminus Hütteldorf to the
interchange Karlsplatz in the official layout. Both our layouts, on the other hand,
show its south-west to north-east nature between the interchanges Längenfeldgasse
and Landstraße more accurately. All in all, the official layout reflects some local
features more accurately than our layouts, but our unlabeled layout better shows
the general course of the lines. Our labeled layout has a similar appearance as the
unlabeled layout, with the exception of the western end of the orange line, which is
horizontally instead of diagonally to the north-west.

(R5) Edge lengths The edge lengths in the official and in our unlabeled layout are quite
uniform. The labeled layout expands some of the edges up to seven times the unit
length. This is due to the space requirements imposed to the MIP model by the label
lengths.

(R6) Station labels Clearly, the unlabeled layout does not satisfy this rule. Both the
official and our labeled layout use non-overlapping labels. By construction all labels
between two interchanges are on the same side of their line in our layout. The official
layout generally sticks to this rule as well, but occasionally swaps sides in order to
obtain a more compact map.

(R7) Line colors In the Vienna network there are no parallel lines; since we are using the
same colors as the official map there is no difference here.

For a general evaluation of the three layouts it must be noted that the official map looks
more cramped, but this is caused by the extra surface lines that are shown. As for the
layout of the metro graph our unlabeled layout is a well-balanced compromise of rules (R3)
and (R4). With only minor adjustments it could be used by a graphic designer as a basis
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(a) Geographic input layout.

(b) Official layout (only thick lines belong to the metro system). Courtesy of Wiener Linien [Wie08].

Figure 3.9: Layouts of the metro network of Vienna.
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(a) Unlabeled layout.
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Figure 3.10: Layouts of the metro network of Vienna produced by our method.
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(a) Weights (10, 1, 1). (b) Weights (1, 10, 1). (c) Weights (1, 1, 10).

Figure 3.11: Layouts of the original metro network of Vienna with emphasis on bend minimization
(a), preservation of relative positions (b), and length minimization (c) by assigning
different weight vectors (λ(S1), λ(S2), λ(S3)).

for a manually labeled map. Our automatically labeled layout shows the potential of our
approach for producing valid labeled maps that satisfy rule (R6), albeit at the expense of
losing to some extent the aesthetic quality of the unlabeled layout. Especially the uniform
edge length rule (R5) is violated by some rather long edges, for example, on the brown
line between Westbahnhof and Längenfeldgasse or the purple line between Karlsplatz and
Volkstheater. Another reason for the slightly lower quality of our labeled layout is that
in manually designed metro maps long names are often broken into two lines, which is
currently not supported by our model. Obviously, breaking long lines makes labels easier
to fit into a compact drawing that has more uniform edge lengths and a shape that is more
similar to the unlabeled layout.

Before moving to the next case study, we illustrate the influence of the three soft
constraints (S1)–(S3) on the network layout. Figure 3.11 shows three layouts, each of
which exaggerates one of the soft constraints. Note that in order to better demonstrate the
effects these layouts are created from the original metro graph, that is, none of the degree-2
vertices are removed. The first layout in Figure 3.11a optimizes line straightness. Indeed
the red and brown lines have no bends. From the geographic orientations of the edges (see
Figure 3.9a) it is clear that the bends in the remaining lines cannot be straightened given
that our model restricts each edge to only three admissible directions (recall Section 3.4.2).
In the next layout in Figure 3.11b the emphasis is on reflecting the original edge directions,
which is also clearly visible. Of course, this results in an increase of the number of bends.
The last layout emphasizes a small total edge length. It can be seen in Figure 3.11c that
indeed only four edges in the center of the map have a length of two units and all others
are of unit length. Some bends are introduced in order to compress the edges in the inner
part of the network. It is obvious that none of these three extreme examples is a good
layout. It requires a carefully balanced weight vector in order to obtain drawings that
meet the quality requirements. In the end it is a matter of taste whether there should be a
slight tendency towards bend minimization or towards preservation of the mental map.
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3.7.2 Sydney
Our next case study is the CityRail System of Sydney that has already been introduced
as an example in Section 3.3. In our discussion below we refer to the geographic and the
official schematic layout of the network shown in Figure 3.3 of Section 3.3. The CityRail
network is a medium-size public transport system (see Table 3.2) whose characteristics
differ in parts from the previous example of Vienna. One new property is that there are
quite a few parallel lines along central backbone paths of the network. Moreover, due to
the geographic setting of Sydney on the coast, many lines lead from a peripheral terminus
to a downtown terminus close to the sea.

Since Sydney has been used before as an example to demonstrate the layout techniques
of Hong et al. [HMdN06] and of Stott and Rodgers [SR04] we can use it as a benchmark
to compare their results with ours. Figure 3.12a shows the Sydney network laid out
by the force-directed method of Hong et al. [HMdN06]. Note that they used a slightly
larger network that includes additional intercity connections. The suburban part of the
network, which is the basis of our comparison, is highlighted in gray. Unfortunately, no
explicit results for the suburban network are available. Still, we may argue that the
layout of the central part would look very similar to Figure 3.12a since the four additional
branches in the periphery do not exert any significant repelling or attracting forces to
the edges of the suburban part. The algorithm of Hong et al. is very fast and it took
only 7.6 seconds to compute their layout on a 3GHz Pentium 4 machine with 1GB of
RAM. Figure 3.12b shows the most refined layout produced by the methods of Stott and
Rodgers [SR04, SR05, Sto08]. In this example they did not apply any preprocessing to
collapse degree-2 vertices. Stott [Sto08] does not report the actual computation time for
this layout; he mentions, however, that for a network with more than 100 vertices (Sydney:
174 vertices) each iteration takes between one and four hours on a 1.8GHz machine and
that there are several iterations necessary before the layout converges. The first version
of their algorithm, which produced unlabeled maps only, took about 28 minutes for an
unlabeled map of the Sydney network [SR04].

We show an unlabeled and a labeled layout of the Sydney CityRail network produced
by our method in Figure 3.13. For the unlabeled layout (Figure 3.13a), the weights were
chosen as (λ(S1), λ(S2), λ(S3)) = (3, 2, 1), which slightly emphasizes minimizing bends before
preserving relative positions. This layout was obtained in 23 minutes and 22 seconds.
Optimality of this solution could not be proven within our time limit. The remaining
optimality gap was still 16.4% after 12 hours. The callback method needed to add the
constraints (H4) for 3 pairs of edges, see the bold column in Table 3.4. Note that for the
unlabeled layout we did not consider all possible pairs of edges that share a common face
as candidates for (H4) but only those that involve at least one pendant edge, that is, an
edge on the path between a degree-1 vertex and the first interchange. This is based on the
observation that in unlabeled layouts the pendant edges tend to be the ones that cause
crossings (in this case the dark blue line in the center of the layout). This reduced the
number of variables from otherwise 20,554 to only 4,834, see Table 3.4. For the labeled
layout we changed the weight in the objective function to (λ(S1), λ(S2), λ(S3)) = (3, 3, 1).
The final labeled layout in Figure 3.13b was computed by CPLEX in 10 hours and 31
minutes, while the first suboptimal solutions were found after 3 minutes. As before,
optimality of this layout could not be proven and an optimality gap of 15.5% remained
after 12 hours. The constraints (H4) were added during the optimization for 123 pairs of
edges by the callback mechanism, see Table 3.4. This corresponds to a reduction of the
number of constraints to less than six percent with respect to the column faces.
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Figure 3.12: Layouts of the Sydney CityRail network produced by previous methods.
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(a) Unlabeled layout.

Doo
ns

ide

Roo
ty 

Hill

M
t D

ru
itt

St M
ar

ys

W
er

rin
gt

on

King
sw

oo
d

Pen
rit

h

Em
u 

Plai
ns

Canley Vale

Fairfield

Yennora

Guildford

Berala

Loftus

Engadine

Heathcote

Waterfall

Wynyard

Glenfield

Town Hall

North Sydney

Circ
ula

r Q
ua

y

Seven Hills

Toongabbie

Pendle Hill

Wentworthville

Westmead

Parramatta

Hornsby

Central

Kirr
aw

ee

Gym
ea

M
ira

nd
a

Car
ing

ba
h

W
oo

loo
war

e

Cro
nu

lla

Normanhurst

Thornleigh

Pennant Hills

Beecroft

Cheltenham

Epping

Eastwood

Denistone

West Ryde

Meadowbank

Rhodes

Concord West

North Strathfield

Tempe

Cabramatta

Sutherland

Wolli Creek

Milsons Point

Asquith

Mt Colah

Mt Kuring−gai

Berowra

Waverton

Wollstonecraft

St Leonards

Artarmon

Chatswood

Roseville

Lindfield

Killara

Gordon

Pymble

Turramurra

Warrawee

Wahroonga

Waitara

M
ac

do
na

ldt
ow

n

New
to

wn

Sta
nm

or
e

Pet
er

sh
am

Le
wish

am

Sum
m

er
 H

ill

Ash
fie

ld

Cro
yd

on

Bur
woo

d

Liverpool

Sef
to

n

Rosehill

Camellia

Rydalmere

Dundas

Telopea

Carlingford

St James

Merrylands

Museum

Erskineville

St Peters

Arncliffe

Banksia

Rockdale

Kogarah

Carlton

Allawah

Hurstville

Penshurst

Mortdale

Oatley

Como

Jannali

Hols
wor

th
y

Eas
t H

ills

Pan
an

ia

Rev
es

by

Pad
sto

w

Rive
rw

oo
d

Nar
wee

Bev
er

ly 
Hills

King
sg

ro
ve

Bex
ley

 N
or

th

Bar
dw

ell
 P

ar
k

Tur
re

lla

Clyde

Olympic Park

Granville

Casula

Leumeah

Minto

Ingleburn

Macquarie Fields

Harris Park

Martin Place

Strathfield

Campbelltown

Flemington

International

Domestic

Mascot

Green Square
Regents Park

Birrong

M
ar

ric
kv

ille

Dulw
ich

 H
ill

Hur
lst

on
e 

Par
k

Can
te

rb
ur

y

Cam
ps

ie

Belm
or

e

La
ke

m
ba

W
ile

y P
ar

k

Pun
ch

bo
wl

Ban
ks

to
wn

Yag
oo

na

King
s C

ro
ss

Edg
ec

liff

Bon
di 

Ju
nc

tio
n

Car
ra

m
ar

Villa
woo

d

Le
igh

to
nf

iel
d

Che
ste

r H
ill

Lidcombe

Blacktown

Hom
eb

us
h

Warwick Farm

Auburn

Marayong

Quakers Hill

Schofields

Riverstone

Vineyard

Mulgrave

Windsor

Clarendon

East Richmond

Richmond

Macarthur

Syd
en

ha
m

Redfern

(b) Labeled layout.

Figure 3.13: Layouts of the Sydney CityRail network produced by our method.
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unlabelednumber of
all pairs faces callback none

variables 37,802 20,554 4,834 1,642
constraints 152,194 81,046 3,529 3,034
edge pairs 4,520 2,364 3 0

labelednumber of
all pairs faces callback none

variables 290,137 92,681 92,681 2,969
constraints 1,191,406 376,900 21,988 6,838
edge pairs 35,896 11,214 123 0

Table 3.4: Size of MIP models for the Sydney metro map in terms of variables, constraints, and
edge pairs. The columns represent the different models in which (H4) is in effect for
all pairs of edges, for those incident to a common face, for those selected during the
optimization by a callback, or for none. Columns corresponding to the shown examples
are marked in bold.

Next we present a detailed evaluation of the official layout (Figure 3.3b), the layout
by Hong et al. [HMdN06] (Figure 3.12a), the layout by Stott and Rodgers [SR04, SR05]
(Figure 3.12b), and our unlabeled and labeled layouts (Figures 3.13a and 3.13b) according
to the seven design rules (R1)–(R7).

(R1) Octilinearity
• The official layout uses octilinear edges only.
• The layout of Hong et al. mostly uses edge directions that are close to but not

quite octilinear. Some edges clearly lie in between two octilinear directions.
This effect seems to be due to the fact that the forces that determine the layout
are the sum of many conflicting terms, only one of which drags edges into an
octilinear direction.

• The layout of Stott and Rodgers draws most edges octilinearly; few edges are
not octilinear.

• By construction all edges in our layouts are octilinear.

(R2) Topology
• All layouts preserve the input topology. 3

(R3) Line bends
• The official layout successfully avoids line bends whenever possible; only two

bends on the north-western end of the yellow line seem unnecessary. Most bends
have turning angles of 135°, only few bends make 90° turns (for example, in the

3Although, accidentally, Figure 3.12a seems to contain two incorrect edges.
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loop on the right), and one angle is only 45° (orange line in the center of the
layout).

• The layout by Hong et al. does not have any bends between two interchanges
due to the removal of all degree-2 vertices. Unfortunately, their layout does
not show the metro lines explicitly, which makes rule (R3) hard to evaluate.
Although Hong et al. [HMdN06] list avoiding line bends as an aesthetic criterion,
their method does not explicitly take the metro lines in account and so lines do
have several (often acute) bends in interchange stations.

• The method of Stott and Rodgers takes line bends into account and partially
succeeds in avoiding them; however, the algorithm is susceptible to local minima,
in which shifting a single vertex is not sufficient to remove some obviously
unnecessary line bends. Most bends form a 135° angle as desired.

• Our layouts, in particular the labeled layout, have low numbers of line bends
that are comparable to the official map. The loop of the red line and the yellow
line in the north-east has a larger number of bends in the unlabeled map than
in the labeled one. With only few exceptions the bends form 135° angles.

(R4) Relative position
• The official layout preserves the general sense of the geographic map fairly well.

Only the orange line in the center of the layout is straightened rather strongly.
• The layout of Hong et al. strongly distorts the mental map of Sydney. It must

be noted, though, that optimizing (R4) is not an objective of their method.
• Stott and Rodgers implemented a geographic relationship rule. Their layout

indeed preserves the geographic layout well, showing also minor changes of
direction.

• Our layouts are similar in shape to the official layout. The unlabeled layout
has some noticeable distortions the north-eastern part, for example, the yellow
line is drawn horizontally while it runs diagonally in the geographic map. The
labeled layout does not have these distortions and thus better satisfies rule (R4).
The course of the orange line in the center, which has been distorted in the
official map, is more accurately reflecting the geography in both our layouts.

(R5) Edge lengths
• The edge lengths in the official layout are quite uniform. Only the edges of

the vertical blue line in the south-east are very short. No overly long edges are
found.

• Edge lengths in the layout of Hong et al. do not have a very uniform appearance.
While stations on the peripheral ends are densely packed such that individual
edges are even hard to recognize, some edges in the central part are very long
compared to the rest of the layout. Especially edges incident to triangular faces
are too long and give the layout an unbalanced appearance. Note that uniform
edge lengths were not mentioned as an objective of their algorithm.

• Edge lengths in the layout of Stott and Rodgers are quite uniform. Only the
edges forming the prominent loop in the east of the network are too short to be
well recognizable.
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• Edge lengths in our layouts are quite uniform. Only the edges of the loop in
the east appear rather long in the unlabeled layout; the labeled layout seems
slightly more balanced in terms of edge lengths.

(R6) Station labels

• The official map contains non-overlapping horizontal and diagonal labels. For
the majority of paths between two interchanges, all labels lie on the same side
of the path.

• With a few exceptions the horizontal and diagonal labels in the layout of Hong et
al. are non-overlapping; some labels, however, do occlude edges of the graph or
even other labels. Labels are mostly placed on the same side of a line, with some
exceptions where they alternate between both sides. Note that in the algorithm
of Hong et al. the graph layout is determined in a first step independently of the
labeling; labels for the fixed graph layout are added in an independent second
step.

• Stott and Rodgers use non-overlapping horizontal labels. In the eastern loop,
however, labels do occlude edges. Labels tend to be placed on the same side of
a line with the exception of horizontal lines, where an alternating placement
above and below the line was necessary. Some ambiguous labels exist.

• Clearly, our unlabeled layout fails to satisfy (R6). The labeled layout uses
non-overlapping labels by construction. There is a horizontal and a diagonal
label in the upper part of the eastern loop (Milsons Point and Circular Quay)
that are very close to each other; increasing the label length by a safety offset
would avoid this. Again by construction, all labels between two interchanges
are placed on the same side of the line. A few interchange stations are slightly
ambiguously labeled.

(R7) Line colors

• The official map uses distinctively colored lines and strongly increases edge
widths where multiple parallel lines (up to six) are present.

• The layout of Hong et al. fails to use colors. Only the underlying network is
drawn and individual lines cannot be recognized. This is merely an rendering
problem.

• Stott and Rodgers use distinct colors and widen edges where multiple parallel
lines are present. For edges with six parallel lines, the individual lines are hardly
visible.

• Our layouts use distinct colors and edges are widened to accommodate parallel
lines. For edges with six parallel lines, individual lines become hard to recognize,
similarly to the layout of Stott and Rodgers.

As to be expected, the manually designed official layout turns out to balance all seven
design rules very well and there is only very little room for obvious improvements. An
interesting feature of the official map is the inclusion of the coastline to support the mental
map of the users.
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The method of Hong et al. [HMdN06] has the advantage that layouts can be computed
very fast (7.6 seconds in the case of Sydney); the visual quality, however, is far from
complying with our design rules. Note that the quality criteria considered by Hong et
al. were line straightness (similar to rule (R3)), no edge crossings (implicit in rule (R2)),
non-overlapping labels (rule (R6)), and octilinearity (rule (R1)). While there are no
edge crossings created and the labeling has (almost) no overlaps, there is still room for
improvements in terms of octilinearity and line straightness. It is an interesting problem to
model the remaining design rules in a fast force-directed method as the one of Hong et al.

The layout by Stott and Rodgers [SR04, SR05] achieves a higher quality than the one
of Hong et al. and it is more similar to the official layout. The map fulfills rule (R4)
quite well, but does so at the expense of a large number of bends (rule (R3)). Another
disadvantage is that not all edges are octilinear and that the prominent loop in the east of
Sydney is not enlarged enough to be clearly visible. Computation times for their algorithm
are not explicitly stated, but it seems to require several hours for a layout as the one in
Figure 3.12b.

Finally, the evaluation of the seven design rules shows that our method is indeed able
to produce labeled metro maps whose visual quality is comparable to manually designed
maps. The design rules that are modeled as hard constraints are satisfied by construction
and even the design rules (R3), (R4), and (R5) that are modeled as soft constraints are
well balanced by the solution produced in the global optimization of our MIP. The main
deficiency that remains is the handling of edges with more than four parallel lines. Such
edges require significantly more space than the line segment as which they are currently
modeled. The computation time for our labeled map was about 10.5 hours and thus several
orders of magnitude higher than the running time of Hong et al. [HMdN06]; our running
times seem comparable to those reported by Stott [Sto08] though. The computation time
for the unlabeled map was significantly shorter, although in the example of Sydney (unlike
Vienna in the previous section) some parts of the network even seem to satisfy the design
rules better in the labeled layout than in the unlabeled layout.

3.7.3 London
Our last example is the famous “tube map” of the London Underground network, for
which Henry Beck has designed the first schematic metro map in 1933 [Gar94]. Since the
times of Beck the network as well as the map have undergone many changes, see Roberts’
book on the history of the tube map [Rob05]. With its 308 vertices and 55 faces (see
Table 3.2) London is one of the world’s largest and most complex metro systems. The
network is depicted geographically in Figure 3.14a. The metro lines mostly connect two
peripheral stations leading through the densely connected city center, which is bounded by
the yellow Circle line. A striking feature of the official tube map shown in Figure 3.14b is
the flask-shaped layout of this Circle line in the center.

Figure 3.15 shows an unlabeled layout of the London Underground network. The weights
in the objective function were chosen as (λ(S1), λ(S2), λ(S3)) = (3, 2, 1), thus emphasizing
bend minimization stronger than preservation of the input geometry. It took 10 hours and
24 minutes to compute this layout and the remaining optimality gap after 12 hours was still
21.3%. It was necessary to add the constraints (H4) for 15 pairs of edges using the callback
method. The size of the corresponding MIP model is highlighted in bold in Table 3.5. As
in the previous example of the unlabeled Sydney layout, we considered only pairs with at
least one pendant edge for that callback constraints, which reduced the number of variables
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(a) Geographic input layout.
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Figure 3.14: Layouts of the London Underground network.
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Figure 3.15: Unlabeled layout of the London Underground network produced by our method.

unlabeled labelednumber of
all pairs faces callback none all pairs faces none

variables 408,789 90,445 15,821 5,173 2,372,247 369,775 8,455
constraints 1,673,608 360,439 10,503 8,692 9,769,241 1,509,044 18,599
edge pairs 50,452 10,659 15 0 295,474 45,165 0

Table 3.5: Size of MIP models for the London metro map in terms of variables, constraints, and
edge pairs. The columns represent the different models in which (H4) is in effect for
all pairs of edges, for those incident to a common face, for those selected during the
optimization by a callback, or for none. The column corresponding to the shown example
is marked in bold.

from 90,445 to 15,821. Unfortunately we were not able to produce a labeled layout for the
London Underground network. With still almost 370,000 variables and more than 45,000
possibly relevant edge pairs, the model is simply too large and too complex to solve for the
current version of CPLEX. Placing station labels for the high-degree interchange vertices
within the many small faces in the center of the map is a very challenging task, for which
our rather simple labeling model has not proven itself suitable so far.

We now compare our unlabeled layout (Figure 3.15) with the official layout (Figure 3.14b)
in terms of the seven design rules.

(R1) Octilinearity Both layouts use exclusively octilinear edges.

(R2) Topology By construction our layout maintains the input topology. Interestingly,
the official layout is altering the topology by flipping the brown Bakerloo line between
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the stations Paddington and Baker Street from outside the Circle line into the interior
of the Circle line.

(R3) Line bends In terms of line bends both layouts have strengths and weaknesses. On
the one hand, the official map routes, for example, the red Central line almost
horizontally through the center of the map4, while in our layout this line is drawn
as a sequences of horizontal and diagonal segments from the lower left to the upper
right—a bit like a staircase. On the other hand, the gray Jubilee line or the eastern
part of the dark blue Piccadilly line use less bends in our layout than in the official
one. All in all, the official layout still seems to use less bends, especially in the
dense downtown area. Bends in interchanges are clearly avoided in the official map;
such bends are rather realized immediately in front of the stations, see, for example,
Green Park in cell D4 of the official map. While this is also the case in many of the
interchanges in our layout, some lines do bend in interchanges.

(R4) Relative position The official map is quite successful in preserving relative positions,
although there is also some distortion present. Lines leading into the periphery are
bent inwards in order to keep the bounding box of the map small. For example, the
west end of the red Central line is bent northwards although it extends westwards in
reality. Similarly, the green District line in the east is placed diagonally instead of
horizontally as would be the obvious choice from its geographic course. For these
peripheral parts of the network, our layout is more accurate. In the central part,
however, some lines in our layout are oversimplified (for example, the dark blue
Piccadilly line) and others have bends that are not present in their geographic course
(for example, the red Central line).

(R5) Edge lengths In both maps edge lengths are uniform if possible, for example, along
peripheral parts of the lines; in some situations in both maps, edges are drawn
significantly longer than the unit length in order to avoid additional bends. In spite
of their uniformity, the edge lengths of pendant edges in our layout seem rather short
in comparison to edge lengths in the central part of the map.

(R6) Station labels Our unlabeled map fails to show station labels. The official map
is fully labeled without overlaps. A characteristic of the London map is that only
horizontal labels are used, that is, for horizontal lines the labels are alternately placed
above and below the line. On non-horizontal lines the labels between two interchanges
are mostly placed on the same side of the line.

(R7) Line colors The same distinct line colors are used in both maps. Parallel lines are
drawn as parallel copies of the respective lines.

To summarize the comparison, the official map is clearly ahead of our unlabeled layout
with respect to the seven design rules. Moreover, its general appearance as a whole is very
balanced and clear. This is no wonder, given that its design has evolved over more than
75 years since Beck’s first drafts. The tube map is a piece of art that has become an icon
of London itself and the attempt to replace this sophisticated layout by an automatically
generated one is very keen if not destined to fail. Nonetheless, our unlabeled layout not
only shows that automatically producing a schematic map of very large transport systems is

4Henry Beck devised the Central line as the horizontal basis of his diagram and placed the remaining lines
around it [Gar94]. Later designs stuck to this decision.
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possible, but it also shows that a high overall visual quality can be achieved. In many places
the rules modeled as soft constraints are satisfied well, and there is definitely potential in
our method to assist graphic designers in their layout choices by producing draft layouts
for different weight vectors. Computing labeled layouts for such complex metro networks
using our model remains an open problem.

3.8 Concluding Remarks
In this chapter we have studied the combined metro map layout and labeling problem.
Initially, we have identified seven basic design rules to which the majority of real-world
metro maps adhere. These rules were then split into hard and soft constraints that either
have to be satisfied or that need to be optimized. In the main part we described how the
hard and soft constraints can be translated into the linear constraints and the objective
function of a mixed-integer program that can subsequently be solved with general-purpose
optimizers like CPLEX. In three detailed case studies we evaluated the results of our
approach in comparison to the official, manually designed layouts that are provided by the
transport companies as well as to layouts generated by two previously published methods.
It turned out that our method is indeed able to generate labeled metro maps for small
and medium-size metro networks that are of high visual quality and that can compete
with the official maps—given some finishing by a graphic designer. This also indicates
that the design rules that we identified are actually also applied by professional graphic
designers. For large and complex networks (such as the London Underground network),
we were only able to demonstrate that good unlabeled layouts can be generated; in spite
of the size-reduction techniques that were applied, the MIP model is still too large to be
efficiently solvable for a labeled version of the network. Ideas to further reduce the size
of the model are necessary. For example, one could consider partially labeled maps that
model labels only for stations that are known to be difficult to label.

In terms of practical applicability we note that our method is unable to produce good
labeled maps instantaneously; the layouts presented in Section 3.7 were mostly generated
within 10 to 12 hours, but solution times are generally hard to predict. Still, designing
a new high-quality schematic map is usually a process in which running times of several
hours are acceptable. Moreover, the first intermediate (but suboptimal) results are often
quickly generated and the final layouts differ only marginally from some of the earlier
layouts. If our method is seen as a tool to assist graphic designers, such suboptimal layouts
often may just as well serve as drafts. Recall that the objective function is just an attempt
to model the aesthetic quality of a layout in mathematical terms. Hence slightly better
solutions in terms of the objective function are not necessarily more pleasing for a human
than some close-by solutions.

Open problems. There is a number of open problems that remain. First of all the
treatment of edges that are used by a large number of parallel lines is not satisfactory in
our model. Instead of treating an edge as a line segment, such “thick” edges should be
modeled as rectangles that actually consume space in the drawing. Analogously, stations
on such thick edges must also be modeled as disks or polygons rather than as points. We
refer to the MIP formulation of Binucci et al. [BDLN05], where rectangular vertices are
modeled for orthogonal graph drawing. As an example, Figure 3.16 shows a clipping of the
transport network of Frankfurt am Main which has a large number of parallel lines in the
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Änderungen vorbehalten. Gültig ab 15. Juni 2008
© Rhein-Main-Verkehrsverbund GmbH

**

**

** Eröffnung im Laufe des Fahrplanjahres 2008
** bis 13.12.2008: Linie 75 (Wiesbaden - Darmstadt);

Linie 63 (Darmstadt - Aschaffenburg)
ab 14.12.2008: Linie 75 (Wiesbaden - Darmstadt -
Aschaffenburg); Linie 63 entfällt

Gernsheim

Biebesheim

Stockstadt (Rhein)

Stadion

Riedwiese/
Mertonviertel

Hanau
Klein-Auheim

Hainburg Hainstadt

Mainhausen Zellhausen

Dar
msta

dt O
st

M
ühlta

l

Babenhausen Langstadt

Groß-Umstadt Klein-Umstadt

Groß-Umstadt

Groß-Umstadt Wiebelsbach
Ober

-R
am

sta
dt

Rein
heim

Otzb
er

g Le
ngfe

ld

M
ain

z R
öm

isc
hes

 Th
ea

te
r

Groß-Gerau-
Dornberg

Dar
msta

dt

TU
-Li

ch
tw

ies
e

Schwalbach Nord*

Deutsche
Nationalbibliothek

Glauburg-Stockheim

H e i d e l b e r g / M a n n h e i m

E r b a c h /
E b e r b a c h

Riedstadt-Goddelau

Wolfskehlen

Dornheim

Mörfelden

Walldorf

Zeppelinheim

Klei
n-G

er
au

W
eit

er
sta

dt

W
o r m

s /

M
a n n h e i m

Opelw
er

k

Gro
ß-G

er
au

Nau
heim

Rau
nheim

Rüss
els

heim

Kels
te

rb
ac

h

Flu
gh

af
en

Reg
ion

alb
ah

nhof

Niederrad

Darmstadt Hbf

Bisc
hof

sh
eim

Gusta
vs

burg

Mainz Hbf

Mainz Nord

K o b l e n z /

S a a r b r ü c k e n

A
l z

e y

W
o

r
m

s

R
h

e
i

n

M a i n

Stresemannallee

Frankfurt Süd Offenbach Hbf
Louisa

Egelsbach

Erzhausen

Wixhausen

Arheilgen

Langen

Dreieich-
Buchschlag

Neu-
Isenburg

Langen-
Flugsicherung

Dar
msta

dt

Nor
d

Kra
nich

ste
in

M
es

se
l

Dre
iei

ch
en

hain
W

eib
elf

eld

Spre
ndlin

gen

W
illy

-B
ra

ndt-

Plat
z

Sch
weiz

er

Plat
z Lokalbahnhof

Göt
ze

nhain

Offe
nth

al

Urb
er

ac
h

Rödermark-
Ober-Roden

Eppertshausen

Münster

Dietzenbach
Bahnhof

Dietzenbach
Mitte

Steinberg

Heusen-
stammM

ühlber
g

Kais
er

lei

Le
der

muse
um

M
ar

ktp
lat

z

Dieb
urg

Alth
eim

Her
ger

sh
au

se
n

Babenhausen
A s c h a f f e n b u r g

Seligenstadt

Rollwald

Nieder-Roden

Dudenhofen

Jügesheim

Hainhausen

Weiskirchen

Obertshausen

Waldhof

A
s c h a f f e n b u r g

Steinheim

Dietesheim

M
ühlheim

Offenbach Ost

S c h ö l l k r i p p e n

Hanau Hbf

F u l d
aHan

au
 N

or
d

Frankfurt Hauptbahnhof

Taunusanlage

H
auptw

ache

Konstablerw
ache

Ostendstraße

Griesheim

NiedHöchstFarbwerke

Sindlingen

Hattersheim

Eddersheim

Flörsheim

Hochheim

Galluswarte

Messe

West
Frankfurt

Rödelheim

Erbenheim

Igstadt

Unterliederbach

Liederbach Süd

Liederbach

Sossenheim

Fe
sth

all
e/

M
es

se

W
es

te
nd

Alte
 O

per

Kirc
hplat

z

Le
ipzig

er
 Str.

Boc
ke

nheim
er

W
ar

te

Industriehof/
Neue Börse

Sulzbach

Kelkheim-Münster

Fischstein
Ginnheim

Hausener
Weg

Stephan-Heise-
Straße

Friedhof
Westhausen

Hausen

Praunheim
Heerstraße

Große
Nelkenstraße

Heddernheimer
Landstraße

Nordwest-
zentrum

Römerstadt

Niddapark

Heddern-
heim

Eschenheimer
Tor

Grüneburgweg

Holzhausenstr.

Miquel-/
Adickesallee

Dornbusch

Fritz-Tarnow-Str.

Hügelstraße

Lindenbaum

Weißer Stein

Eschersheim

Preungesheim

Ronneburgstraße

Sigmund-Freud-Straße

Theobald-Ziegler-Straße

Gießener Straße

Marbachweg/Sozialzentrum

Versorgungsamt

Eckenheimer Landstraße/
Marbachweg

Hauptfriedhof

Muster-
schule

Glauburgstr.

Zoo Habsburgerallee

Bornheim
Seckbacher
Landstraße

Bad
 V

ilb
el

Bornheim
Mitte

Höhenstraße

Merianplatz

Parlamentsplatz

Eissporthalle/
Festplatz

Riederwald Schäfflestraße

Gwinnerstraße

Kruppstraße

Hessen-Center

Enkheim

Johanna-Tesch-
Platz

Frankfurt Ost Mainkur

Maintal West

Maintal Ost W
ilh

elm
sb

ad

Bru
ch

kö
bel

Han
au

W
es

t

Zeilsheim

Hofheim

Lorsbach

Eppstein

Bremthal

Niederjosbach

Kriftel

Niedernhausen

Kastel

Wiesbaden Ost

K o b l e n z

L i m
b u r g

Wiesbaden Hbf

Auringen-
Medenbach

Dom/Römer

Bieber

Kelkheim

Kelkheim-Hornau

Schneidhain

Bad Soden

Königstein
Schwalbach

Sulzbach Nord

Kronberg

Kronberg Süd

Niederhöchstadt

Eschborn

Eschborn
Süd

Brandoberndorf

Weißkirchen/
Steinbach

Stierstadt

Has
se

lbor
n

Gräv
en

wies
bac

h

Hundsta
dt

W
ilh

elm
sd

or
f

Usin
gen

Hau
se

n (T
s)

Neu
-

Ansp
ac

h

W
eh

rh
eim

Saa
lburg

/L
oc

hmühle

Köp
per

n

Friedrichsdorf

Bad Homburg

Seulberg

Oberursel-Hohemark

Oberursel
Oberursel Stadtmitte

Portstraße
Lahnstraße

Glöcknerwiese
Kupferhammer

Rosengärtchen

Waldlust

Bommersheim

Weißkirchen Ost

Niederursel

Wiesenau
Ze

ilw
eg

Sandelmühle

Kalbach

Bonames Mitte

Bad Homburg-Gonzenheim

Nieder-Eschbach

Burg
holz

hau
se

n

Rod
heim

Ros
bac

h
Fri

ed
ber

g

Süd

Ober-Eschbach

Fra
nkfu

rte
r B

er
g

Ber
ke

rsh
eim

Bad
 Vilb

el 
Süd

Nieder-Wöllstadt

Bruchenbrücken

Friedberg

Osth
eim

G
e l n h a u s e n

N
i d d a

G
ie

ß
e

n

W
ö l f

e r s h e i m
-

S ö d e l

N i d d a

Gro
nau

Nied
er

dor
fel

den

Ober
dor

fel
den

Kilia
nstä

dte
n

Dortelweil

Groß-Karben

Okarben

Büdesheim
W

indecken
Nidderau

Eichen
Höchst

Altenstadt
Lindheim

Glauberg

Assenheim

Schnellbahnplan

Abfahrt von den Fernbahnsteigen
Frankfurt Hbf

Figure 3.16: Clipping of the public transport map of Frankfurt am Main.

city center. The related problem of placing parallel lines with a minimum number of line
crossings along the edges of the underlying graph layout is covered in Chapter 4.

Furthermore, graphic designers certainly apply more than our seven basic design rules
when designing a schematic map. One obviously important criterion is the display of
symmetries in the network (for example, the flask-shaped Circle line in London), or the
inclusion of landmarks such as rivers, lakes, or coastlines. Such rules depend on domain
knowledge of the network at hand and the artistic skills of the designer and seem very
challenging to incorporate into a general-purpose mathematical model. Tufte [Tuf01] even
says: “The principles [. . .] are not logically or mathematically certain; and it is better to
violate any principle than to place graceless and inelegant marks on paper.”

After all, it is upon the map users to decide what is a good and easy-to-use metro map.
Some initial studies that compare geographic and schematic maps have confirmed the
superiority of schematic maps over geographic maps for network navigation tasks [Bar80,
Sto08]. Still, these findings are rather general; detailed and empirically confirmed guidelines
for design criteria that make schematic maps easy-to-read and useful are missing. Hence a
detailed user study that aims at ordering several design rules by their importance would
be very helpful both for graphic designers and for devising suitable layout algorithms.

Possible extensions of our model include user interaction in a semi-automatic layout
process. For instance, the user may specify a certain desired direction for some lines or
edges, or a certain label position for some of the vertices. Such additional constraints
can easily be included in our formulation. Area constraints that specify, for example, a
maximum height of the layout, can also be included. Instead of minimizing the total edge
length we can, alternatively, minimize one dimension of the map. This is useful if the map
has to fit a certain area, for example, if it is placed above doors inside trains.



Chapter 4

Metro Maps: Line Crossings

Producing a schematic metro map is a multi-step process that poses algorithmic challenges
at several levels. The previous chapter has focused on the combined layout and labeling
problem, in which the underlying railway or road network is schematized such that all
metro stations or bus stops can be labeled without overlap. Here, we consider a secondary
problem that arises once the layout of the underlying network is fixed. In many metro
networks, and especially in bus networks, it is common that edges, that is, physical tracks
or roads, are shared by multiple transportation lines. The most common solution to
visualize this situation in the map is to draw each transportation line in a distinct color.
All lines that use an edge in the network are then drawn as a bundle along that edge in
the underlying layout.

As an immediate consequence there are situations in which two lines in the—otherwise
plane—network cross. Some line crossings are mandatory, induced by the network topology,
others depend on the order of the lines and can be avoided by choosing a good line order.
In the first part of this chapter we introduce the line crossing problem in metro maps and
give a quadratic-time algorithm for determining an optimal line order along a single edge
of the network. No results are known if two or more edges are considered. In the second
part we study a variant in which all lines must be placed outermost in their respective
terminus stations. This problem has been proven NP-hard by Bekos et al. [BKPS08]. We
give an efficient algorithm to determine an optimal layout in general plane graphs if the
input specifies where to place each line in its terminus, that is, on which side of the edge it
is placed outermost. The chapter is based partly on joint work with Marc Benkert, Takeaki
Uno, and Alexander Wolff [BNUW07] and partly on yet unpublished results with Joachim
Gudmundsson, Damian Merrick, and Thomas Wolle.

4.1 Introduction
A public transportation network is, informally speaking, a network consisting of stations
(or stops) that are served by a set of transportation lines, for example, by metro, bus,
or tram lines. There is an edge between two stations in the network if they are adjacent
in the sequence of stops of some transportation line. More formally, we represent the
transportation network as a metro graph (G,L), where G = (V,E) is a planar embedded
(or plane) graph of bounded degree (usually ≤ 8) and L is a set of paths in G. The
vertices of G are the stations and bus stops in the network and the edges represent direct
connections between their endpoints. We denote G as the underlying network since it
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Figure 4.1: Kyoto bus map. Figure 4.2: Wiring diagram of the Kawasaki
KLR650 motorcycle.

corresponds to the underlying transportation infrastructure (railway tracks and roads) of
the public transport system. The set L represents the transportation lines that serve the
network. Since each edge in G is by definition served by at least one transportation line, L
covers G and we denote L as the line cover of G.

A feature of many transportation networks is that parts of its underlying infrastructure
are shared by multiple transportation lines, see Ovenden’s collection of metro maps [Ove03].
Bus networks, even more, have this property, in particular in the surroundings of central
hub stations, where many bus lines gather using only a small number of roads. Figure 4.1
shows a clipping of the bus network of Kyoto, Japan. In this figure the edges of the
underlying network are drawn as white boxes in the background. The individual bus lines
are drawn as distinctly colored parallel lines within the area occupied by the underlying
edges. Vertices are usually drawn as disks or rectangles that are at least as wide as the
incoming edge bundles. Note that drawing all transportation lines that use the same
physical route as individual, distinctly colored parallel lines has already been introduced by
Henry Beck, the designer of the first schematic map of the London Underground [Gar94].

The layout problem in this context is to determine an order of the incoming and outgoing
lines of each vertex such that the resulting map is as easy to read as possible. A natural
criterion by which to judge the quality of a layout is the number of line crossings, that is,
crossings of transportation lines along shared subpaths, induced by the line orders in each
vertex. Each line crossing is a visual obstacle that disturbs the viewer’s eye following the
course of a transportation line. Avoiding edge crossings in general has been empirically
shown as one of the most important criteria for graph readability [PCJ97, Pur97]. So our
goal is to find a set of line orders for all vertices that minimizes the number of line crossings.
For example, in Figure 4.1 the number of line crossings can be reduced by four if line 50
(brown) in the center of the figure stays right of line 10 (yellow) and the unnumbered blue
line just next to line 10.

Note that it is obviously possible to hide all line crossings below the areas occupied
by the vertices. This means, however, that incoming and outgoing line orders of a vertex
differ. Thus at each affected vertex the viewer first has to locate the correctly colored line
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before following it to the next vertex. In contrast, if the incoming and outgoing line orders
are identical, each line enters and leaves the vertex where expected. This simplifies reading
the map; therefore we insist that no line crossings are hidden below vertices. Clearly, this
does not hold for crossings between two lines that intersect in a single vertex, for example,
the vertical line 12 (blue) and the horizontal line 10 (yellow) in Figure 4.1 must intersect
below the area of the common vertex.

Related problems. Transportation networks are not the only applications in which
a set of paths follows the edges of an underlying graph. Another example are wiring
diagrams as the one depicted in Figure 4.2 or very-large-scale integration (VLSI) chip
layouts. A wiring diagram is a visual aid to assist a mechanic in troubleshooting and fixing
circuits that connect different electrical components, for example, in a motorcycle as in
Figure 4.2. While some vertices in such a layout might require a fixed wire order as given
by the connectors, other vertices can have variable wire orders. So similar to transportation
networks, a legible wiring diagram should have as few wire crossings as possible.

In VLSI design the via minimization problem is also related to line crossing minimization.
Printed circuit boards often consist of several stacked layers, each of which contains a
crossing-free layout of wires. Since the board layout comprising the union of all layers is
rarely planar, wire crossings are realized by using separate layers for the affected wires. In
order to move to a different layer, small holes called vias are drilled into the board through
which the wires can change their layer. Vias can cause electrical instabilities and hence via
minimization is a common optimization criterion in circuit board design [Len90]. There
are efficient algorithms for via minimization if only two layers are used but it becomes
NP-hard for more than two layers [Len90, Chapter 9]. Conductive traces on such boards
often consist of multiple wires connecting the different components on the board, which is
a similar setting as traffic routes used by multiple transportation lines connecting large
interchanges. By using only two vias, however, a wire can cross a whole bundle of other
wires, whereas in line crossing minimization we consider each line crossing individually.

Model. In this chapter we assume that the input is a layout of an underlying network,
that is, a plane metro graph (G,L) whose embedding is realized by a drawing Γ of G.
The drawing Γ might be produced automatically by the methods presented in Chapter 3,
manually by a graphic designer, or simply be given as the geographic layout. Each line `
in the line cover L is a simple path ` = (v0, v1, . . . , vk) in G. The vertices v0 and vk are
called the termini of `, the vertices v1, . . . , vk−1 are called intermediate stations. Recall
that |`| = k is the length of `. The total edge size of L is abbreviated as N =

∑
`∈L |`|.

Note that N ∈ O(|L| · |V |) since each line is a simple path of at most |V | vertices.
To simplify notation we assign arbitrary directions to the edges of G. We allow to access

each directed edge uv both as uv, the forward edge from u to v, and as vu, the backward
edge from v to u. Both notations refer to the same edge just from a different perspective.
An edge uv is included in a line `, in short uv ∈ `, if u and v are consecutive vertices in `.
The set of all lines that include an edge uv is denoted as Luv = Lvu = {` ∈ L | uv ∈ `}.
Now for each edge uv ∈ E we define two line orders <uuv and <vuv of Luv in the endpoints
of uv. For two lines `1 and `2 in Luv we write `1 <uuv `2 (or `1 <vuv `2) if `1 is right of `2 at
the endpoint u (or v) with respect to the direction of uv. Note that the orders are reversed
if uv is accessed as the backward edge vu, that is, `1 <uuv `2 if and only if `2 <uvu `1. The
sorted sequence of the lines in Luv with respect to <uuv is denoted as suuv; analogously svuv
is the sorted sequence of lines with respect to <vuv. Again, the sequences suvu and svvu are
the reversed sequences of suuv and svuv.
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(a) With periphery condition. (b) Without periphery condition.

Figure 4.3: Layout of a terminus (middle vertex) with and without periphery condition. The layout
without periphery condition introduces a gap between the ongoing lines (b).

A line crossing is a crossing between two lines `1 and `2 along a shared edge uv. The
two lines cross on uv if `1 <uuv `2 and `2 <vuv `1 or vice versa. Abstracting from geometry,
the number of line crossings along an edge uv is thus equal to the number of inversions
between suuv and svuv.

One of our constraints is that line crossings shall not be hidden “below” a metro
station. To that end we define a line order <vuv to be compatible with the vertex v if the
following holds. Apart from uv, let vw1, vw2, . . . , vwk be the other edges incident to v in
counterclockwise order starting from uv. We consider the sequence svuv and the concatenated
sequence s′ =

∏k
i=1 s

v
vwi . Then <

v
uv is compatible with v if svuv is a subsequence of s′. In

other words, the lines that enter v through the edge uv and leave v through the edges
vw1, vw2, . . . , vwk do not change their relative order. We say that a vertex v is admissible
if the line orders for all incident edges are compatible with v.

In the unconstrained metro-line crossing minimization problem (MLCM) the aim is
to find for each edge uv ∈ E two orders <uuv and <vuv of the lines in Luv such that the
number of line crossings is minimal and all vertices are admissible. A solution to MLCM is
denoted as a line layout.

We also consider MLCM with periphery condition (MLCM-P), a variant that places
a further constraint on the line orders in termini. So let v be a vertex and uv be one of
its incident edges. The periphery condition requires that all lines in Luv for which v is a
terminus must be placed outermost in the order <vuv, that is, terminating lines are either
placed first or last in the sequence svuv. Figure 4.3 illustrates the effect of the periphery
condition. This condition ensures that terminating lines do not introduce gaps in the course
of the ongoing lines. Gaps between parallel lines disrupt the uniform appearance of the
underlying edge and hence are to be avoided in order to improve readability. Moreover, line
termini are important stations in the network. For example, trains or buses usually display
the name of their final destination. Hence placing terminating lines outermost in their
final destinations accentuates them for a simpler identification on the map. Many of the
real-world maps in Ovenden’s collection [Ove03] adhere to the periphery condition. It has
recently been shown that choosing an optimal terminus assignment is NP-hard [BKPS08].

The MLCM-P problem gives rise to a closely related (but computationally feasible)
variant that additionally specifies for each line on which side of its first and last edge the
two termini must be placed. In that way we have a side assignment for each terminus of
each line given as the input. We denote this variant as MLCM with periphery condition and
terminus assignments (MLCM-PA). MLCM-PA occurs in situations, in which, for example,
the physical location of the tracks or the bus stop of the terminating line in a terminus
yields this information. Alternatively, the terminus assignment can be obtained from an
ILP formulation that computes the optimal side assignment of terminating lines [AGM08].

Note that another interesting MLCM variant can be reduced to MLCM-PA: if all lines
in L satisfy the property that they terminate at leaves of G, the unconstrained MLCM
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`1

`2

`3 u v w

(a)

`1

`2

`3 `4u v w

(b)

Figure 4.4: Lines `1 and `2 must cross along their common subpath (u, v, w). If line `3 is present,
the `1-`2 crossing is optimally placed on edge vw (a). If `3 and `4 are present, a new
crossing is added regardless of the position of the `1-`2 crossing (b).

problem for (G,L) corresponds to MLCM-PA where all lines in a terminus are assigned to
the same side. We call this version of the problem MLCM-T1. Since there are no ongoing
lines in degree-1 vertices the periphery condition does not restrict the possible line orders
if all lines are assigned to the same side. This variant has practical relevance, since in
many real-world networks the lines lead from one peripheral degree-1 terminus through
the city center, where interchanges are possible, to another peripheral degree-1 terminus in
the suburbs.

To get a flavor of the basic MLCM problem without periphery condition, observe that
the topology of G enforces some unavoidable line crossings. In Figure 4.4, lines `1 and `2
share the subpath (u, v, w), which `1 enters above `2 and leaves below `2. Hence the two
lines must cross along (u, v, w) either on edge uv or on edge vw. If there is another line `3
that enters u between `1 and `2 and terminates at v, the crossing of `1 and `2 should be
placed on edge vw to avoid additional line crossings (Figure 4.4a). But if another line `4
enters w between `1 and `2 and terminates at v, we can no longer avoid an additional line
crossing by shifting the crossing of `1 and `2. Either `3 or `4 must cross one of `1 or `2
(Figure 4.4b). Note that in this situation the periphery condition would make each of `3
and `4 cross one of `1 and `2 in order to terminate outermost in v.

Contributions. We first consider the unconstrained MLCM problem. In Section 4.3 we
give an O(|Iuv|2)-time algorithm to solve the MLCM problem on a single edge uv of the
metro graph, where Iuv ⊆ Luv is the set of lines in Luv that do not terminate in u or v. In
this situation we assume that the orders <uuv and <vuv are already partially given by the
compatibility constraint for vertices u and v. More precisely, all lines in Luv are already
ordered in their non-terminus stations. It only remains to determine the optimal positions
of the terminating lines in their respective terminus. Clearly, our solution for the one-edge
case is just a small step towards solving the general MLCM problem. Until today it is
an open question whether the analogously defined two-edge MLCM problem is efficiently
solvable or NP-hard. In Section 4.4 we sketch why an extension of the algorithm for one
edge will not work correctly for two edges.

In the second part we study MLCM with periphery condition (Section 4.5). This problem
is known to be NP-hard, even if G is a path [BKPS08]. For the MLCM-PA variant, however,
in which all terminus assignments are specified in the input, we present an algorithm that
computes in O(|L|2 · |V |) time an optimal line layout for general metro graphs (G,L). This
significantly improves a previous O(|L|3 · |E|2.5)-time algorithm of Asquith et al. [AGM08].
Moreover, Argyriou et al. [ABKS09] recently gave an O((|E|+ |L|2) · |E|)-time algorithm
for the MLCM-T1 problem. Since MLCM-T1 is a special case of MLCM-PA our algorithm
improves the result of Argyriou et al. as well. Table 4.1 summarizes our results in the
context of the results obtained in related work.
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problem graph class restrictions result reference
single edge uv – O(|Iuv|2) Theorem 4.2MLCM
m-edge path – open Section 4.4
path – NP-hard [BKPS08]MLCM-P
plane graph – ILP + MLCM-PA [AGM08]
path 2-side model O(|L| · |V |) [BKPS08]
left-to-right tree 2-side model O(|L| · |V | · log d) [BKPS08]

MLCM-PA plane graph – O(|L|3 · |E|2.5) [AGM08]
plane graph 2-side model O(|V | · (|E|+ |L|)) [ABKS09]
plane graph – O(|L|2 · |V |) Theorem 4.3
left-to-right tree 2-side model O(|L| · |V | · log d) [BKPS08]
plane graph 2-side model O(|V | · (|E|+ |L|)) [ABKS09]MLCM-T1
plane graph – O((|E|+ |L|2) · |E|) [ABKS09]
plane graph – O(|L|2 · |V |) Corollary 4.1

Table 4.1: Overview of results for the MLCM problem and its variants. Algorithmic results are
given by their running time. Terms are used as introduced in Section 4.1, and d is the
maximum indegree of the left-to-right tree.

4.2 Related Work
Our initial work, which presented the solution of MLCM for a single edge (see Section 4.3),
introduced the MLCM problem in the literature and mentioned MLCM-P as an interesting
open problem [BNUW07]. In the meantime, more results appeared in the literature as
summarized in Table 4.1.

Bekos et al. [BKPS08] studied MLCM-P on path and tree networks. They proved
that MLCM-P is NP-hard, even if the underlying graph G is a path. Motivated by the
hardness of MLCM-P they introduced the MLCM-PA variant, for which they gave efficient
algorithms for certain restricted classes of underlying graphs in the so-called 2-side model.
In the 2-side model all vertices are drawn as rectangles and the edges can be connected
only to the left and right sides of the vertex rectangles. Their first algorithm computes in
O(|L| · |V |) time an optimal line layout for the case that G is a path. In the second part of
their paper, Bekos et al. considered MLCM-T1 for a graph class called left-to-right tree
structured networks. In a left-to-right tree structured network the underlying graph G is
drawn in the 2-side model, edges are directed from left to right, and all lines are x-monotone
paths in G. For this class of metro graphs they gave an O(|L| · |V | · log d)-time algorithm,
where d is the maximum indegree in G. The algorithm performs a tree traversal and
computes the line orders based on an appropriate order of their termini. Using a simple
reduction rule their algorithm can also be applied to MLCM-PA instances on left-to-right
tree structured networks. The reduction adds dummy degree-1 vertices that extend all
terminating lines beyond their proper termini and then applies the MLCM-T1 algorithm.

Asquith et al. [AGM08] took a different approach to the MLCM-P problem. They
formulated an ILP that determines an optimal side assignment for the line termini. For
all pairs of lines they determined the (possibly many) common subpaths and formulated
a set of crossing rules that determine whether a pair of lines crosses along a common
subpath. These rules are created in O(|L|2 · |E|) time and converted into the constraints
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of an ILP. Note that in the worst case it takes exponential time to solve this ILP. Once
the side assignment is fixed by the ILP, the problem turns into an MLCM-PA instance
and it remains to determine the line orders along each edge. Reusing a circuit-board
layout algorithm by Marek-Sadowska and Sarrafzadeh [MSS95], Asquith et al. solved the
final MLCM-PA step in O(|L|3 · |E|2.5) time. As an alternative to the ILP, the authors
also suggested a heuristic that takes a local view on the line orders. They reported that
in initial experiments the heuristic solutions could differ significantly from the optimum
depending on how nested the metro lines were.

Recently, Argyriou et al. [ABKS09] continued the earlier work of Bekos et al. [BKPS08].
They extended the 2-side model to the more general k-side model and also considered
general planar underlying graphs instead of only paths and trees. For MLCM-T1 in the
general k-side model they presented an O((|E|+ |L|2) · |E|)-time algorithm. Additionally,
for k = 2, they improved the above running time to O(|V | ·(|E|+ |L|)). The latter algorithm
is also able to solve MLCM-PA and thus it improves the running time of the algorithm of
Asquith et al. [AGM08] for graphs in the 2-side model.

4.3 Line Layout for a Single Edge
In this section we make a first step towards the general MLCM problem by restricting our
attention to a single edge of the underlying network. We first introduce some notation.

Let e = uv be an edge of the underlying graph G. We split the set Luv of lines that
include uv into three subsets:

• Tu is the set of lines that terminate in u along uv,

• Tv is the set of lines that terminate in v along uv,

• Iuv is the set of lines for which both u and v are intermediate stations.

We may assume that Tu ∩ Tv = ∅ since lines that consist of the single edge uv can always
be placed topmost without causing any line crossings. Hence Tu, Tv, and Iuv is a partition
of Luv.

We further assume that the suborder of Iuv ∪ Tv in <uuv is given, that is, the lines that
pass through u are already ordered. Similarly, the suborder of Iuv ∪ Tu in <vuv is given.
These suborders are induced by the line orders of the other edges incident to u and v
(excluding uv) since the line orders <uuv and <vuv must be compatible with u and v. For
ease of notation we will abbreviate the orders <uuv and <vuv by <u and <v in this section if
the context of the edge uv is clear. The remaining layout problem is as follows.

Problem 4.1 (One-Edge Layout) Given a metro graph (G,L) and a distinguished edge uv,
complete the partially specified line orders <u and <v by inserting the lines ` ∈ Tu into <u
and the lines ` ∈ Tv into <v such that the number of line crossings along uv is minimized.

In contrast to the well-known NP-hard problem of minimizing crossings in a two-layer
bipartite graph [GJ83], in which the vertices of the bipartition are to be ordered on two
parallel lines such that the edges drawn as straight-line segments have a minimum number
of crossings, the one-edge layout problem is polynomially solvable. The main reason is
that there is an optimal layout of Luv such that no two lines in Tu intersect and no two
lines in Tv intersect. This observation allows us to split the problem and to apply dynamic
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`v `u

u v

Figure 4.5: The lines in Iuv are drawn in gray, the lines in Tv in yellow, and the lines in Tu in blue.
In an optimal solution the terminating lines `v ∈ Tv and `u ∈ Tu intersect.

programming. It is then rather easy to come up with an O(n5)-time algorithm and with
some effort we reduce the running time to O(n2), where n = |Iuv|.

Observe that the orders <u and <v already determine the number cruv of crossings
between pairs of lines in Iuv and that the lines in Tv inserted into <v and the lines in Tu
inserted into <u do not change cruv. Thus, there is no need to take crossings between lines
in Iuv into account any more. On the other hand, inserting the remaining lines into the
line orders affects the number of crossings between lines in Tv ∪ Tu and lines in Iuv and the
number of crossings between lines in Tv and lines in Tu in a non-trivial way. Figure 4.5
shows that a line `v ∈ Tv can indeed cross a line `u ∈ Tu in the unique optimal solution.
Throughout this section lines in Iuv are drawn in gray, lines in Tv in yellow and lines in Tu
in blue. We will now show that no two lines in Tv (and analogously in Tu) cross in an
optimal solution. This nice property is the key for solving the one-edge layout problem in
polynomial time.

Lemma 4.1 In any optimal solution for the one-edge layout problem no pair of lines in Tv
and no pair of lines in Tu intersects.

Proof. Assume to the contrary that there is an optimal solution σ with a pair of lines in Tv
that intersects. Among all pairs of lines that intersect in σ let {`, `′} be the one whose
intersection point p is rightmost. Without loss of generality, `′ <u `. Let `p and `′p be
the parts of ` and `′ to the right of p, see Figure 4.6a. Since σ is crossing minimal, `p
and `′p intersect the minimum number of lines in Iuv ∪ Tu in order to get from p to v. In
particular, the number of crossings between `p and lines of Iuv ∪ Tu and between `′p and
lines of Iuv ∪Tu must be the equal; otherwise we could place `p parallel to `′p (or vice versa)
and thus reduce the number of crossings. Since, however, the number of crossings to the
right is the same we can easily get rid of the crossing between ` and `′ by replacing `p by a
copy of `′p infinitesimally close above `′p, see Figure 4.6b. This contradicts the optimality
of σ. The proof for a pair of lines in Tu is analogous. ¤

We now assume that no two lines of Tv are consecutive in <u and analogously no
two lines of Tu are consecutive in <v. This does not restrict the general problem since
bundles of consecutive lines can always be drawn parallelly in an optimal layout. Thus
a single representative line suffices to determine the optimal layout for the whole bundle.
Technically, for a bundle of k consecutive lines we assign the weight k to the representative
line. Our algorithm will then run in a weighted fashion that counts k · k′ crossings for a
crossing of two lines with weights k and k′. For ease of presentation we explain only the
unweighted problem here.

Let n, nv, and nu be the number of lines in Iuv, Tv, and Tu, respectively. Note that by
the above assumption we obtain nu ≤ n+ 1 and nv ≤ n+ 1.
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(b) The crossing of ` and `′ is
removed.

Figure 4.6: Two lines of Tv do not intersect in an optimal solution.

Recall that by assumption the lines in Iuv ∪ Tv are already ordered by <u and the lines
in Iuv ∪ Tu are already ordered by <v. We denote the ordered sequence of the n + nv
lines in Iuv ∪ Tv by Su = (su1 , su2 , . . . , sun+nv), where s

u
i <

u sui+1 for i = 1, . . . , n + nv − 1.
In our figures we stick to the convention that the edge uv is directed from left to right
and thus Su is the bottom-to-top sequence of Iuv ∪ Tv. Analogously, we obtain the
sequence Sv = (sv1, sv2, . . . , svn+nu) of the n + nu lines in Iuv ∪ Tu ordered from bottom
to top by <v. A line ` in Tu can terminate below su1 , between two neighboring lines sui
and sui+1, or above sun+nv . We define the position index of ` as the index of the lower of
the two lines and as 0 if ` is placed below su1 . The position index of a line ` ∈ Tv is defined
analogously. Let Su|Tv = (suµ(1), s

u
µ(2), . . . , s

u
µ(nv)) denote the ordered subsequence of Su of

the lines in Tv, and let Sv|Tu = (svπ(1), s
v
π(2), . . . , s

v
π(nu)) denote the ordered subsequence

of Sv of the lines in Tu. Here, µ and π are injective functions that filter the lines Tv out of
all ordered lines Iuv ∪ Tv in Su and the lines Tu out of all ordered lines Iuv ∪ Tu in Sv, see
Figure 4.7.

4.3.1 Preprocessing

When fixing the course of a line in Tu (or Tv), that is, inserting it at some position i
into the order <u (or <v), we need to compute the number of crossings induced by this
position. So let ` = svπ(j) ∈ Tu be a line that has position index π(j) in Sv. We assign
the position index i in Su to `. Then the number of crossings between ` and all lines
in Iuv is denoted by cru(i, j). This number is determined as follows. The line ` crosses a
line `′ ∈ Iuv with left index i′ and right index j′ if and only if either it holds that i′ ≤ i
and j′ > π(j) or it holds that i′ > i and j′ < π(j). The table cru for all lines in Tu has
(n+ nv + 1)× nu = O(n2) entries. For a fixed position i in Su we can compute the table
row cru(i, ·) as follows. We start with j = 1 and compute the number of lines in Iuv that
intersect the line ` with indices i and π(j). Then, we increment j and obtain cru(i, j + 1)
as cru(i, j) minus the number of lines in Iuv that are no longer intersected plus the lines
that become newly intersected. As any of the n lines in Iuv receives the status “no longer
intersected” or “newly intersected” at most once and this status can easily be checked by
scanning Sv, this takes linear time per row. Thus, in total we can compute the table cru
in O(n2) time.

We define crv(i, j) analogously to be the number of crossings of the lines in Iuv with
the line in Tv that has index µ(i) in Su and position j in Sv. Computing crv is analogous
to to computing cru and also take O(n2) time.
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Figure 4.7: The orders Su and Sv and the induced suborder Su|Tv and Sv|Tu. This configuration
corresponds to F (7, 3): the topmost blue line svπ(3) terminates at position 7 in vertex u.

4.3.2 Dynamic Programming Algorithm
Assume that we fix the destination of svπ(j) to some position i ∈ {0, . . . , n+ nu}. Then we
define F (i, j) as the minimum number of crossings of

(a) the lines in Tv ∩ {su1 , . . . , sui } with the lines in Iuv ∪ Tu and

(b) the lines in Tu ∩ {sv1, . . . , svπ(j)} with the lines in Iuv ∪ Tv.

An example is depicted in Figure 4.7, where the nine crossings indicated by gray disks are
counted in F (i, j) for i = 7 and j = 3. The values F (i, j) define an (n+nv+1)×nu-table F .

Once the last column F (·, nu) of the table F is computed, that is, the positions for all
lines in Tu are fixed, we can determine the optimal solution for Luv as

F ∗ := min{F (i, nu) + C(i, n+ nv, nu + 1) | i = 0, . . . , n+ nv},

where C(i, n + nv, nu + 1) is the remaining number of crossings of the lines in Tv ∩
{sui+1, . . . , s

u
n+nv}, that is, the lines in Tv with a position index larger than i in Su, with

lines in Iuv ∪ Tu; these crossings are not yet counted in F (i, nu).
Before describing the recursive computation of F (i, j) we introduce another notation.

Let’s assume that svπ(j−1) terminates at position k and svπ(j) terminates at position i, where
0 ≤ k ≤ i ≤ n+nv and j ∈ {1, . . . , nu}. Then let C(k, i, j) denote the minimum number of
crossings that the lines T k,iv := Tv ∩{suk+1, . . . , s

u
i } cause with the lines in Iuv ∪Tu. In other

words, C(k, i, j) counts the minimal number of crossings of all lines of Tv in the interval
between the positions k and i, which are the positions of the two lines svπ(j−1) and svπ(j)
in Su. This situation is illustrated in Figure 4.8, where the four crossings of the yellow
lines between positions k and i that are marked with gray disks are counted in the term
C(k, i, j). We store all values C(k, i, j) in a three dimensional table C. Analogously to the
definition of T k,iv , we define T k,iu := Tu ∩ {svk+1, . . . , s

v
i }. The following theorem gives the

recursion for F and shows its correctness.

Theorem 4.1 The values F (i, j), i = 0, . . . , n + nv, j = 1, . . . , nu, can be computed
recursively by

F (i, j) =


mink≤i{F (k, j − 1) + C(k, i, j) + cru(i, j)} if i ≥ 1, j ≥ 2∑j
l=1 cru(0, l) if i = 0, j ≥ 1

C(0, i, 1) + cru(i, 1) if i ≥ 1, j = 1.
(4.1)
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Figure 4.8: Situation for computing F (i, j): The blue lines svπ(j−1) and s
v
π(j) terminate at positions k

and i, respectively. The term C(k, i, j) denotes the minimum number of crossings of
the yellow lines T k,iv with the lines in Iuv ∪ Tu, here C(k, i, j) = 4. The term cru(i, j)
counts the number of crossings of svπ(j), terminating at position i, with the lines in Iuv,
here cru(i, j) = 2.

Proof. The base cases of (4.1) consist of two parts. In the first row F (0, ·), an entry F (0, j)
means that all lines svπ(1), . . . , s

v
π(j) terminate at position 0 in u and hence the required

number of crossings is just the number of crossings of these lines with Iuv, which equals the
sum

∑j
l=1 cru(0, l) as given in (4.1). In the first column F (·, 1), an entry F (i, 1) reflects

the situation that line svπ(1) terminates at position i. The required number of crossings in
this case is simply cru(i, 1), the number of crossings of svπ(1) with Iuv, plus C(0, i, 1), the
number of crossings of T 0,i

v with Iuv ∪ Tu as given in (4.1).
The general case of the recursion in (4.1) means that the value F (i, j) can be composed

of the optimal placement F (k, j − 1) of the lines in Tu below and including svπ(j−1) (which
itself terminates at some position k ≤ i), the number C(k, i, j) of crossings of lines in T k,iv

with Iuv ∪ Tu, and the number of crossings cru(i, j) of svπ(j) placed at position i.
We prove the correctness of the general case by induction. Due to Lemma 4.1 we

know that svπ(j) cannot terminate below svπ(j−1) in an optimal solution. Hence, for svπ(j)
terminating at position i, we know that svπ(j−1) terminates at some position k ≤ i. For
each k we know by induction hypothesis that F (k, j− 1) is the correct minimum number of
crossings as defined above. In order to extend the configuration corresponding to F (k, j−1)
with the next line svπ(j) in Tu we need to add two terms: (a) the number of crossings
of T k,iv with Iuv ∪ Tu, which is exactly C(k, i, j), and (b) the number cru(i, j) of crossings
that the line svπ(j) (terminating at position i) has with Iuv. Note that potential crossings
of svπ(j) with lines in T k,iv are already considered in the term C(k, i, j). Figure 4.8 illustrates
this situation: svπ(j) is placed at position i in Su, and svπ(j−1) terminates at position k.
The crossings of the configuration corresponding to F (i, j) that are not yet counted
in F (k, j − 1), are the C(k, i, j) crossings of the yellow lines in T k,iv (highlighted by gray
disks) and the cru(i, j) encircled crossings of svπ(j) with Iuv.

Finally, we have to show that taking the minimum value of the sum in the first case of (4.1)
for all possible terminus positions k of line svπ(j−1) yields an optimal solution for F (i, j).
Assume to the contrary that there is a better solution that yields F ′(i, j) < F (i, j) crossings.
This solution induces a solution F ′(k′, j−1), in which k′ is the position of svπ(j−1) in Su. From
Lemma 4.1 it follows that k′ ≤ i and hence svπ(j−1) runs completely below svπ(j). Therefore
we have F ′(k′, j − 1) ≤ F ′(i, j) − C(k′, i, j) − cru(i, j) < F (i, j) − C(k′, i, j) − cru(i, j) ≤
F (k′, j−1). But F ′(k′, j−1) < F (k′, j−1) is a contradiction to the optimality of F (k′, j−1)
that we get from the induction hypothesis. ¤
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If we store in each cell F (i, j) a pointer to the respective predecessor cell F (k, j−1) that
minimizes (4.1) we can reconstruct the optimal line layout: starting at the cell F (i, nu) that
minimizes F ∗, we can reconstruct the genesis of the optimal solution using backtracking.
Obviously, using the combinatorial solution to place all endpoints of Luv in the correct
order and then connecting them with straight-line segments results in a layout that has
exactly F ∗ crossings in addition to cruv, the fixed number of crossings of Iuv.

Now, we can give a first, naive implementation: as mentioned earlier the tables crv
and cru can be computed in O(n2) time. For the computation of one cell entry C(k, i, j)
we have to consider the at most n lines T k,iv and their possible n+ 1 terminus positions
in Sv. Once we have fixed the terminus position l of a line ` ∈ T k,iv , we have to compute
the number of crossings that ` has with Iuv ∪ Tu. The crossings with Iuv are available from
the table crv. For the crossings with Tu it is sufficient to distinguish the following three
cases depending on the position index l of ` in Sv because we know that k is the terminus
position of svπ(j−1) and i is the terminus position of svπ(j). If l ≥ π(j) then ` intersects
all lines in T π(j)−1,l

u , if π(j − 1) ≤ l < π(j) then ` does not intersect any line in Tu, and
if l < π(j − 1) then ` intersects all lines in T l,π(j−1)

u . Thus, computing one of the O(n3)
cells of the table C requires O(n2) time, so in total we need O(n5) time for filling C. This
dominates the naive O(n3)-time computation of the table F . Next we show how to speed
up the computation of F and C.

4.3.3 Improving the Running Time
For the moment let’s assume that the values C(k, i, j) and cru(i, j) are available in constant
time. Then the computation of the (n+nv+1)×nu-table F still needs O(n3) time because
the minimum in (4.1) is over a set of O(n) elements. The following series of lemmas shows
how to reduce the running time for computing F to O(n2). First we show a property of
the entries of the table C.

Lemma 4.2 The table C is additive in the sense that C(k, i, j) = C(k, l, j) + C(l, i, j)
for k ≤ l ≤ i.

Proof. Since C(k, i, j) denotes the number of crossings of the lines in T k,iv and no two of
these lines intersect each other in an optimal layout by Lemma 4.1, we can split the layout
corresponding to C(k, i, j) at any position l, k ≤ l ≤ i and get two (possibly non-optimal)
configurations for the induced subproblems. This implies C(k, i, j) ≥ C(k, l, j) + C(l, i, j).

Conversely, we can get a configuration for C(k, i, j) by putting together the optimal
solutions of the subproblems. Without loss of generality, this introduces no additional
crossings; otherwise they could be removed as in the proof of Lemma 4.1. Hence we have
C(k, i, j) ≤ C(k, l, j) + C(l, i, j). ¤

The next lemma shows that it is not necessary to compute all entries of C in order to
compute the table F .

Lemma 4.3 Given the table C, the table F can be computed in O(n2) time.

Proof. Having computed entry F (i − 1, j) we can compute F (i, j) in constant time as
follows:

F (i, j) = min
{
F (i− 1, j) + C(i− 1, i, j)− cru(i− 1, j) + cru(i, j),
F (i, j − 1) + cru(i, j).

(4.2)
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The correctness follows from (4.1), Lemma 4.2, and the fact that C(i, i, j) vanishes:

F (i, j) (4.1)= min

 min
k<i
{F (k, j − 1) + C(k, i, j) + cru(i, j)},

F (i, j − 1) + C(i, i, j) + cru(i, j)

Lemma 4.2= min

 min
k≤i−1

{F (k, j − 1) + C(k, i− 1, j) + C(i− 1, i, j) + cru(i, j)},

F (i, j − 1) + cru(i, j)

(4.1)= min
{
F (i− 1, j)− cru(i− 1, j) + C(i− 1, i, j) + cru(i, j),
F (i, j − 1) + cru(i, j).

In the first column F (·, 1), we can reformulate the recursion for i ≥ 1 as follows:

F (i, 1) (4.1)= C(0, i, 1) + cru(i, 1)
Lemma 4.2= C(0, i− 1, 1) + C(i− 1, i, 1) + cru(i, 1)

(4.1)= F (i− 1, 1)− cru(i− 1, 1) + C(i− 1, i, 1) + cru(i, 1)

Hence the whole table F can be computed in O(n2) time. ¤

Observe that due to the reformulation in Lemma 4.3 we need only the values C(i−1, i, j)
explicitly in order to compute F . Next, we show that we can compute these relevant values
in O(n2) time. To simplify notation we abbreviate C(i− 1, i, j) as C ′(i, j).

Lemma 4.4 The values C ′(i, j), i = 1, . . . , n+ nv, j = 1, . . . , nu can be computed in O(n2)
time.

Proof. We compute C ′(i, j) row-wise, that is, we fix a row index i and increase the column
index j. Recall that C(k, i, j) was defined as the minimum number of crossings of the lines
in T k,iv with the lines in Iuv ∪ Tu under the condition that svπ(j−1) terminates at position k
and svπ(j) terminates at position i. For C ′(i, j) = C(i−1, i, j) this means we have to consider
crossings of the set T i−1,i

v = {sui } ∩ Tv. Hence, we distinguish two cases: either sui ∈ Iuv
and then T i−1,i

v is empty or sui ∈ Tv and we have to place the line sui optimally. Obviously,
in the first case we have C ′(i, j) = 0 for all j as there is no line to place in T i−1,i

v .
So consider the case that sui ∈ Tv. For each j we split the set of candidate terminus

positions for sui into the three intervals [0, π(j − 1)), [π(j − 1), π(j)), and [π(j), n + nu].
Let LM(i, j), MM(i, j), and UM(i, j) denote the minimum number of crossings of sui
with Iuv ∪ Tu for terminus positions in [0, π(j − 1)), [π(j − 1), π(j)), and [π(j), n + nu],
respectively. Then we have

C ′(i, j) = min{LM(i, j),MM(i, j),UM(i, j)}, (4.3)

the minimum of the three disjoint position intervals. The situation is illustrated in
Figure 4.9.

Next, we show how to compute MM, LM, and UM. First, we consider MM. Recall
that crv(i, j) was defined as the number of crossings of the lines in Iuv with the line suµ(i)
that terminates at position j in v. It follows that

MM(i, j) = min{crv(µ−1(i), k) | π(j − 1) ≤ k < π(j)}, (4.4)
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Figure 4.9: Splitting the candidate terminus positions for sui ∈ Tv into three intervals with respect
to π(j − 1) and π(j).

where π(0) is defined as 0. Because of Lemma 4.1 there are no lines of Tu intersecting
the funnel-shaped region between svπ(j−1) and svπ(j). Hence, if the line sui terminates at
position k ∈ [π(j − 1), π(j)) it does not cross any line of Tu and the definition of MM
in (4.4) is correct. We can calculate MM(i, j) by a straight-forward minimum computation
through j = 1, . . . , nu which takes O(n) time for each value of i and O(n2) time in total.

Secondly, we consider LM. Initially, in the case that j = 1 there is no line svπ(j−1) and
the corresponding interval is empty. Hence we set LM(i, 1) = ∞. Then we recursively
compute

LM(i, j + 1) = min{LM(i, j) + 1,MM(i, j) + 1}. (4.5)

Observe that for LM(i, j+1) we merge the previous intervals corresponding to LM(i, j) and
MM(i, j). Moreover the line svπ(j), which previously ended at position i, now terminates
at position i− 1. Hence, in order to reach its terminus position in the interval [0, π(j)),
the line sui has to cross svπ(j) in addition to the crossings counted before by MM(i, j) and
LM(i, j). This explains the recursion in (4.5). The computation again requires O(n) time
for each value of i and O(n2) time in total.

Finally, we initialize UM(i, nu) = 1 + min{crv(µ−1(i), k) | π(nu) ≤ k ≤ n + nu} as
for j = nu the line sui crosses the line svπ(nu) but no other line of Tu. In decreasing order
we compute

UM(i, j − 1) = min{UM(i, j) + 1,MM(i, j) + 1} (4.6)

analogously to LM, which again requires O(n) time for each i and O(n2) time in total.
Since the values LM(i, j), MM(i, j), and UM(i, j) are computed in O(n2) time the

table C ′ is also computed in O(n2) time according to (4.3). ¤

Putting the intermediate results of Lemmas 4.3 and 4.4 together, we conclude:

Theorem 4.2 The one-edge layout problem (Problem 4.1) can be solved in O(n2) time.

In the implementation described so far, the algorithm requires O(n2) space to store the
tables F,C ′, cru, and crv. Since n, the number of lines using an edge, is typically small this
is well within the capacity of current machines. Nonetheless, the space requirements can be
improved. If we are interested only in the minimum number of crossings (and not the actual
layout) the required space can easily be reduced to O(n) space as all tables can be computed
row-wise: in F we need only two consecutive rows at a time and we can discard previous
rows; in the other tables the rows are independent and can be computed on demand. This
does not affect the time complexity. To restore the optimal layout, however, we need the
pointers in F to do backtracking and hence we cannot easily discard rows of the table. Still,
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we can reduce the required space to O(n) with a method similar to a divide-and-conquer
version of the Needleman-Wunsch algorithm for sequence alignment [DEKM98, Chapter 2]
at the cost of a factor of 2 in the time complexity. Basically, the idea is to compute
the pointerless table F in linear space as before. For j > bnu/2c, however, that is, for
the columns in the right half of F , we maintain pointers from the entries in the current
column F (·, j) to the cell in column F (·, bnu/2c) that is on the optimal backtracking path.
Clearly, the number of pointers is only linear. Once we have found the minimal number
of crossings F ? = F (i, nu) for some i, we follow the pointer to find the entry F (j, bnu/2c)
which lies on the backtracking path. Now we can recursively solve the two subproblems in
the upper left part of the table F from F (0, 0) to F (j, bnu/2c) and in the lower right part
from F (j, bnu/2c) to F (i, nu), which together have half the size of F . Hence the optimal
layout can be reconstructed in twice the time of the original algorithm.

4.4 Line Layout for a Path
Metro-line crossing minimization for a single edge of the underlying network G, as studied
in the previous section, is clearly just a first step towards solving the MLCM problem
in more general graphs. The next step is to consider MLCM on a path of length m ≥ 2.
Recall that MLCM-P is NP-hard for a path [BKPS08]. It would come as no surprise if
the same was true for MLCM; as of today this question is still open, even for m = 2. In
this section we give a hint as to why a dynamic programming based approach as for the
one-edge layout will not work.

We first define the path-layout problem. Let P = (u = w0, w1, . . . , wm−1, wm = v) be a
simple (left-to-right) m-edge path in G. We define LP =

⋃m−1
i=0 Lwiwi+1 as the set of all

lines in L that use an edge of P . The set LP is split into three subsets analogously to the
one-edge case:

• LP =
⋃m−1
i=0 {` ∈ Lwiwi+1 | ` terminates in wi+1} is the set of lines that terminate

along P coming from the left,

• RP =
⋃m−1
i=0 {` ∈ Lwiwi+1 | ` terminates in wi} is the set of lines that terminate

along P coming from the right,

• IP = LP \ (LP ∪RP ) is the set of lines that do not terminate along P .

Finally, we assume that the position of all lines that enter P through an edge v′wi,
where v′ 6∈ P and wi ∈ P , is known in the incoming line order <wiv′wi of wi—and thus by
the compatibility requirement also in the other line orders of wi.

Problem 4.2 (Path Layout) Given a metro graph (G,L) and a simple path P = (w0, . . . , wm)
in G, determine all line orders <wiwiwi+1 and <wi+1

wiwi+1 for i = 0, . . . ,m − 1 such that the
number of line crossings along P is minimized.

We tried to apply the same dynamic-programming approach as for the one-edge case.
The dilemma is, however, that the generalized version of Lemma 4.1 does not hold, namely
that no two lines in LP and no two lines in RP intersect. Thus, a problem instance can
no longer be separated into two independent subproblems along the lines in LP and RP ,
which seems to forbid dynamic programming. Figure 4.10 shows a 2-edge path for which
the two lines in RP (drawn in blue) must cross each other in the optimal solution, which
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(a) Optimal solution (7 crossings).
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(b) Non-optimal solution (8 crossings).

Figure 4.10: Two-edge path P in which two lines in RP (blue) cross in the optimal solution (a).
Any line layout without the blue-blue crossing has at least 8 crossings (b).

has seven relevant crossings (ignoring unavoidable crossings). Note that in any optimal
solution the two yellow lines in LP push the eight unavoidable crossings of the two topmost
and the four bottommost lines in IP (drawn in gray) to the edge w1v. It is easy to verify
that any line layout in which the two lines in RP do not cross has at least eight crossings;
one such example is shown in Figure 4.10b.

4.5 Line Layout under the Periphery Condition
In this last part of the chapter we consider the MLCM problem under the periphery
condition. In this variant all lines must be placed outermost in the line orders of their
termini. The problem to determine for each line ` in L whether it terminates on the left
side or on the right side of its first and last edge is NP-hard [BKPS08]. But once this
terminus assignment is fixed, it is known that the remaining MLCM-PA problem of finding
the line orders along all edges of the underlying network G can be solved in O(L3 · |E|2.5)
time for any planar graph G [AGM08]. Faster algorithms are known for restricted graph
classes [BKPS08, ABKS09], see also Section 4.2. In this section we present a new and
significantly faster algorithm that finds, given the terminus assignments, an optimal line
layout for any metro graph G in O(|L|2 · |V |) time. Moreover, the same algorithm also solves
the MLCM-T1 problem, for which the previously best algorithm runs in O((|E|+ |L|2) · |E|)
time [ABKS09].
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We first show a simple lemma about the line crossings in an optimal layout for an
MLCM-PA instance. A similar result has been obtained by Asquith et al. [AGM08].

Lemma 4.5 Given a metro graph (G,L) and terminus assignments for all lines in L, all
line crossings in an optimal line layout are unavoidable crossings, that is, crossings that
are present in any line layout of (G,L).

Proof. Let `1 and `2 be two lines that cross in an optimal line layout along an edge uv.
By P = (w0, . . . , wk) we denote the maximal common subpath of `1 and `2 that contains uv.
First of all note that the crossing along uv is the only crossing of `1 and `2 along P ; any
two subsequent crossings of two lines along a common subpath can be removed by routing
the upper line just below the lower line on the edges between the two crossings—this
contradicts the optimality of the line layout.

Since there is a single crossing between `1 and `2 we can assume that `1 <w0
w0w1 `2

and `2 <
wk
wk−1wk `1. These inverted relative orders of `1 and `2 in the vertices w0 and

wk are either enforced by the topology of G because the line orders <w0
w0w1 and <wkwk−1wk

must be compatible with w0 and wk (if the line continues beyond w0 or wk) or by the
given terminus assignment (if the line terminates at w0 or wk). The only case where the
relative order of `1 and `2 is not fixed by the compatibility requirements or the terminus
assignments is if both lines terminate at the same vertex, say w0, and are assigned to the
same terminus side. In that case, however, they can always be reordered in <w0

w0w1 such
that they reflect their relative order in <wkwk−1wk on the opposite end of P and the crossing
would disappear. This contradicts the optimality of the layout.

We conclude that the crossing of `1 and `2 is unavoidable since the relative order of
the two lines at one end of P is inverted at the other end of P due to the given terminus
assignments or the compatibility requirements. ¤

Lemma 4.5 implies that there is a line layout that realizes exactly the unavoidable
crossings and, consequently, that any such layout is optimal. The following Algorithm 4.1
first computes all maximal common subpaths of all pairs of lines to determine their relative
order. In a second phase all lines are iteratively inserted into the line orders of their edges.

Theorem 4.3 Given a metro graph (G,L) and terminus assignments for all lines in L,
Algorithm 4.1 computes an optimal line layout in O(|L| ·N) = O(|L|2 · |V |) time.

Proof. In Phase 1 of Algorithm 4.1 we compute the table side(·, ·, ·), where an entry
side(`1, `2, uv) stores the side to which line `2 tends with respect to `1 on edge uv. So if
side(`1, `2, uv) = left (right), we know that at the end of the maximal common subpath
of `1 and `2 that contains uv the line `2 must be placed left (right) of `1.

In order to compute the set Λ(`1, `2) of maximal common subpaths of `1 = (v0, . . . , vk)
and `2 we walk along `1 and check for each edge vivi+1 whether `2 shares that edge with `1.
If this is the case, we either open a new subpath or extend the current subpath. Otherwise
we close the current subpath if there is one. We assume that the input (G,L) contains a
Boolean edge-line array of size |E| × |L| so that we can check whether a line uses an edge
in constant time.

For each subpath λ = (vi, vi+1, . . . , vj) ∈ Λ(`1, `2) we need to determine whether `2
tends left- or rightward along λ with respect to `1, that is, whether at the end of λ the line
`2 must be left or right of `1. There are three cases to consider.

(1) If vj = vk, that is, `1 terminates in vj , and `2 does not terminate in vj then `2 tends
leftward (rightward) if `1 is assigned to a right (left) terminus, respectively.
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Algorithm 4.1: MLCM-PA line layout
Input: metro graph (G,L), terminus assignments for all ` ∈ L
Output: line orders <uuv, <vuv for all edges uv ∈ E
/* Phase 1 */
foreach (`1, `2) ∈ L × L, `1 6= `2, `1 = (v0, v1, . . . , vk) do

compute set Λ(`1, `2) of all maximal common subpaths of `1 and `2
foreach (vi, vi+1, . . . , vj) ∈ Λ(`1, `2) do

if `2 leaves `1 towards the left or terminates left of `1 in vj then
for l = i to j − 1 do

side(`1, `2, vlvl+1)← left
else

for l = i to j − 1 do
side(`1, `2, vlvl+1)← right

/* Phase 2 */
foreach ` = (v0, v1, . . . , vk) ∈ L do

for i = 0 to k − 1 do
insert ` into <vivivi+1

insert ` into <vi+1
vivi+1

(2) If vj = vk and `2 also terminates in vj , then either `1 and `2 are assigned to different
terminus sides and `2 tends to its assigned side, or both are assigned to the same side.
In the latter case, `2 shall stay on the same side of `1 as in the first vertex vi of λ.
So if `2 is left of `1 in <vivivi+1 then it also tends leftward along λ; otherwise it tends
rightward.

(3) If vj 6= vk then `2 tends leftward if either `2 is assigned to terminate on the left in vj
or `2 continues along an edge vjw that is left of `1 in the embedding of the underlying
graph G; otherwise `2 tends rightward.

Since the vertex degree of the underlying metro graph is usually bounded by a small
constant (eight in the case of an octilinear layout), side(`1, `2, uv) can be computed in
constant time in all three cases.

Summarizing the above, Phase 1 takes O(|L| · N) time and space since we check for
each edge of each line if any of the other lines in L shares the edge; if this is the case we
store the corresponding leftward/rightward entry in the table side.

In Phase 2 the actual line layout is computed by iteratively fixing the course of each
line. We show the correctness of the algorithm by keeping two invariants during Phase 2.

Invariant 1 There are no invalid intra-vertex crossings, that is, for each vertex u and each
edge uv the line order <uuv is compatible with u.

Invariant 2 All line crossings are unavoidable crossings with respect to the given terminus
assignment.

Inserting the first line as the only line into the empty line orders clearly satisfies both
invariants. So assume we already have a partial layout that satisfies the invariants and
want to insert the next line ` = (v0, v1, . . . , vk) into this layout.
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`1 `2

`′

(a) Lines `1 and `2 are inserted
maintaining Invariant 1.

vi+1vi
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`r

`l`′

`
<vi

vivi+1 <
vi+1
vivi+1

(b) Line ` is inserted into <vi+1
vivi+1 maintaining Invariant 2.

The values side(`, ·, vivi+1) are indicated for all lines.

Figure 4.11: Insertion of lines into an existing partial line layout.

We start by inserting ` into the order <v0
v0v1 . Let’s assume ` is assigned to a left terminus

in v0 with respect to the first edge v0v1 (for a right terminus the insertion is analogous).
If ` is currently the only line with a left terminus on this edge, we insert ` as the last
edge into <v0

v0v1 . Otherwise we scan the lines with a left terminus in <v0
v0v1 , starting with

the largest element, for the first line `′ for which side(`, `′, v0v1) = right. We insert `
immediately left of `′. This first insertion does not create any intra-vertex crossings,
so Invariant 1 is clearly satisfied. Furthermore, if there are multiple lines terminating
along v0v1 on the same side as ` then ` is inserted exactly between those lines that tend
leftward and those lines that tend rightward with respect to `. Hence all those lines are
already on the correct side of ` and no crossings are created; Invariant 2 is satisfied.

Next, we consider inserting ` into the order <vivivi+1 for i > 0 such that Invariant 1 is
satisfied. If one of the neighboring lines in the previous line order <vivi−1vi also continues
along vivi+1, then ` simply keeps its position next to that line. Since the previous layout
did not contain any invalid intra-vertex crossings and ` follows a previous line, Invariant 1
is still satisfied. This case is illustrated in Figure 4.11a, where the red line `1 follows
the neighboring black line through the vertex. Otherwise, if ` is the only line continuing
along vivi+1, we scan <vivivi+1 , starting with the smallest element, for the first line `′ whose
previous edge wvi is left of ` in the embedding of G or that terminates in vi with a left
terminus along vivi+1. We insert ` immediately before `′ in <vivivi+1 . This is illustrated in
Figure 4.11a by the blue line `2 which is inserted immediately before the yellow line `′. If
no line `′ is found then ` becomes the largest element in <vivivi+1 . The chosen position for `
ensures that <vivivi+1 remains compatible with vi and that Invariant 1 is satisfied.

It remains to determine the position of ` in the order <vi+1
vivi+1 . Figure 4.11b illustrates

the situation. We scan the already determined line order <vivivi+1 for the rightmost line `l
left of ` for which side(`, `l, vivi+1) = left and for the leftmost line `r right of ` for which
side(`, `r, vivi+1) = right. Note that it is possible that one or both lines `l and `r do not
exist. If they exist, these two lines `l and `r are the closest lines to ` that are already on the
correct side. Since Invariant 2 holds for the previous partial layout, `l and `r do not cross
each other along vivi+1, that is, `r <vivivi+1 `l and `r <

vi+1
vivi+1 `l. Obviously, ` may not cross

either of them and we must insert ` between `r and `l in <
vi+1
vivi+1 (otherwise Invariant 2

will be violated). More precisely, we insert ` immediately left of the leftmost line `′ in the
interval [`r, `l] of <

vi+1
vivi+1 for which side(`, `′, vivi+1) = right, see Figure 4.11b. If `r (`l)

does not exist we may symbolically assign `r = −∞ (`l =∞) so that the interval [`r, `l]
may become unbounded. The position of ` is determined as before. If there is no line `′
then ` becomes the rightmost line in <vi+1

vivi+1 .
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We claim that in the assigned position ` crosses only lines that were to its left and
tend to the right or lines that were to its right and tend to the left—crossings that are
unavoidable. Assume to the contrary that ` crosses a line ˆ̀ that was to its left and also
tends to the left. Since we insert ` immediately to the left of `′, the two lines ˆ̀ and `′ also
cross each other. This is a contradiction to Invariant 2 for the previous partial layout,
though, since ˆ̀ crosses `′ from left to right but eventually needs to cross `′ again from
right to left in order to reach its leftward destination. If there is no line `′ then ` is the
rightmost line in <vi+1

vivi+1 by definition and cannot cross ˆ̀. Similarly, assume that ` crosses
a line ˜̀ that was to its right and also tends to the right. Then `l <

vi+1
vivi+1

˜̀ since otherwise
we would have placed ` left of ˜̀ in the interval [`r, `l]. But this means that ˜̀ crosses `l from
right to left, which again violates Invariant 2 for the previous partial layout: there must
be a second crossing, where ˜̀ crosses `l from left to right in order to reach its rightward
destination. If `l =∞ we would have placed ` left of ˜̀ which is also a contradiction. So
Invariant 2 holds for the selected position of `.

Finally, we show that Invariant 1 holds for the position of ` in <vi+1
vivi+1 . The first case

for a potential violation is a line ˆ̀ with side(`, ˆ̀, vivi+1) = left that is still to the right
of ` but does not continue further along vi+1vi+2. By definition ˆ̀ can only be right of `
if ˆ̀<vi+1

vivi+1 `
′. But then Invariant 1 would have been violated before by ˆ̀ and `′. The other

case for a potential violation of Invariant 1 is a line ˜̀ with side(`, ˜̀, vivi+1) = right that is
still to the left of ` but does not continue further along vi+1vi+2. By definition this can
only be the case if `l <

vi+1
vivi+1

˜̀. But this means that Invariant 1 would have been violated
before by ˜̀ and `′.

Since the invariants hold at the end of Algorithm 4.1, we have proven its correctness.
The running time of Phase 1 was O(|L| ·N). The running time of Phase 2 is again O(|L| ·N)
since there are 2N insertion operations, each of which determines a position for the current
line by scanning the line orders of size O(|L|) of the current edge. ¤

Note that an algorithm for MLCM-PA can also be applied to an instance of MLCM-T1
as the following corollary shows.

Corollary 4.1 Given an instance of MLCM-T1, that is, a metro graph (G,L) in which all
lines terminate in vertices of degree 1, we can use Algorithm 4.1 to compute an optimal
line layout in O(|L| ·N) = O(|L|2 · |V |) time.

Proof. In the MLCM-T1 problem we have an implicit periphery condition. Since all
termini are located at degree-1 vertices there are no ongoing lines and hence all termini
are outermost by definition. We only have to make sure that all terminating lines in a
vertex are assigned to the same side of their terminating edge in order to permit all line
permutations. Hence Algorithm 4.1 solves MLCM-T1 within the same time bounds. ¤

4.6 Concluding Remarks
In this chapter we have presented algorithms for two variants of MLCM. In the first part,
the unconstrained MLCM problem has been addressed for the fairly restricted case of
finding an optimal line layout for a single edge of the underlying network. Our algorithm
solves the one-edge problem in quadratic time with respect to the number of lines along
that edge.
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In the second part, we have given an O(|L|2 · |V |)-time algorithm that determines an
optimal line layout for MLCM-PA, the MLCM problem under the periphery condition
with given terminus assignments for all metro lines. The same algorithm also solves the
MLCM-T1 problem, where termini are restricted to be located at degree-1 vertices of the
underlying graph. This result is highly relevant for real-world metro graph instances. The
majority of termini in metro and bus networks is indeed located at degree-1 vertices that
often represent remote stations in the suburbs, see Ovenden’s book [Ove03]. Frequently,
only few terminus stations, for example, downtown bus termini, may have degree more
than 1 so that the terminus side assignment in the MLCM-P setting becomes relevant. But
even here, this assignment might be specified in the input by the physical location of the
corresponding platforms. Otherwise, the ILP formulation of Asquith et al. [AGM08] can
be used to determine a crossing-minimal terminus assignment, from which our algorithm
for MLCM-PA efficiently computes an optimal line layout.

Open problems. There is a number of interesting open questions that remain in MLCM.
On the theoretical side, the complexity status of unconstrained MLCM is still unknown.
We have given an efficient algorithm for the very restricted one-edge problem, but it is
unknown if the analogous m-edge problem is NP-hard or efficiently solvable, even for m = 2.
More general MLCM instances consist of trees or, finally, general plane graphs as the
underlying graphs. Since the variant MLCM-P is NP-hard it is a natural question to ask for
approximations or fixed-parameter algorithms, where, for example, the maximal number of
parallel lines per edge is an interesting parameter that is reasonably small in practice.

Another line of generalizing the problem is to relax the restriction that all metro lines
are simple paths. In practice, some lines may form cycles or the trains of a single line
share a common backbone path only in the central part of the network and branch towards
different destinations in the network periphery.
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Chapter 5

Dynamic Maps: Morphing Polylines

Interactive dynamic maps are becoming increasingly important in geographic information
systems and popular web mapping services such as online atlases or route planning services.
Early electronic maps were mainly static images that were scanned from traditional paper
maps and that were not designed specifically as screen maps. Due to rapid technological
advances most electronic maps today are dynamically created from steadily growing
databases. One of the main advantages of dynamic maps and a major reason for their
success is that they allow new modes of interaction and personalization that were impossible
in static paper maps. Another driving force for interactive maps are mobile devices, such
as smartphones, GPS1 devices, or car navigation systems. These devices become more
and more affordable and technically advanced, especially in terms of display resolution
and quality, which are critical factors for mobile maps. In the coming years we will see
many new map-based applications, but they all rely on efficient methods to display basic
geographic features, for example, roads, places, or areas, in a clean and legible way.

In this chapter, we study a problem that arises when displaying linear features like road
or river networks in an interactive map that provides a continuous zooming functionality.
The complexity of these map features needs to be adapted to the user’s target scale in
order to avoid overly simple or overly detailed representations. Moreover the shape of
the features should change smoothly during the zooming animation. We present a new
approach to interpolate between representations of a polyline at two different scales. Our
method detects characteristic segments of the polyline and subsequently finds an optimal
correspondence between the segments of the two polylines with respect to a suitable
morphing distance. In a case study we demonstrate the applicability of our morphing
algorithm for real-world road, river, and region boundary data. The chapter is based on
joint work with Marc Benkert, Damian Merrick, and Alexander Wolff [NMWB08].

5.1 Introduction
Visualization of geographic information in the form of maps has been established for
centuries, see a recent survey on geographic visualization [Nöl07]. Depending on the
scale of the map, the level of detail of displayed objects must be adapted in a so-called
generalization process. Be it done manually or (semi-) automatically, generalization
methods usually produce a map at a single target scale. Cartographic generalization is

1global positioning system
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a well-studied field, and computational approaches have been surveyed, for example, by
Weibel and Dutton [WD99] and by Mackaness et al. [MRS07].

In current, often web-based [JW05], geographic information systems users can interac-
tively zoom in and out of the map, ideally at arbitrary scales and with smooth, continuous
changes. Current approaches, however, are often characterized by a fixed set of scales or by
simply zooming graphically without modifying map objects. In the first case the available
scales do not necessarily match the user’s desired scale. Moreover, stepping instead of
zooming is susceptible to causing loss of context so that the user has to re-orientate. If
zooming is done purely graphically, however, the quality of the map at the desired scale
often does not match the expected quality since the level of detail is not adapted to the
specific scale. To overcome these deficiencies continuous generalization methods are needed
that aim to generate maps that continuously adapt the degree of generalization to the
scale.

This chapter deals with the problem of continuously generalizing linear features such as
rivers, roads, or region boundaries between their representations at two scales. Instead of
line-simplification methods with a single target scale, we consider interpolating between a
source and a target scale in a way that keeps the maps at intermediate scales meaningful.
In computer graphics and computational geometry this interpolation process is known as
morphing [GDCV99]. Of specific interest in our context are morphing algorithms that
can deal with the effects of generalization operators such as exaggeration and typification,
which, for example, reduce the number (typification) but increase the size (exaggeration)
of road serpentines at the smaller scale.

Contributions. The approach that we present in this chapter can handle the effects
of typification and exaggeration. It consists of two steps. In the optional first step our
method partitions the input polylines into characteristic segments with roughly uniform
curvature (Section 5.3.1). This yields a segmentation of the polylines into straight parts
and various bends. Then, based on an appropriate distance function for polylines, we
compute an optimal correspondence of the polyline segments at the two input scales in
O(nm) time using dynamic programming, where n and m are the respective numbers of
characteristic segments per polyline (Sections 5.3.2 and 5.3.3). Unlike general morphing
algorithms, this correspondence aims to match semantically equivalent segments of the
two polylines. Simple straight-line trajectories are used to define the movement between
corresponding points. We have implemented a prototype of the algorithm and demonstrate
its applicability in a case study for road network data, the course of a river, and a region
boundary (Section 5.4).

5.2 Related Work
Cecconi and Galanda [CG02] studied adaptive zooming for web applications with a focus on
the technical implementation. They used the standard Douglas-Peucker line-simplification
method [DP73] to generalize linear features. While maps can be produced at arbitrary scales
there is no smooth animation of the zooming. A set of continuous generalization operators
was presented by van Kreveld [vK01], including two simple algorithms for morphing a
polyline to a straight-line segment. Continuous generalization for building ground plans
and typification of buildings was described by Sester and Brenner [SB04].

Existing algorithms for the geometric problem of finding an optimal intersection-free
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geodesic morphing between two simple, non-intersecting polylines [EHPGM01, Bes02]
cannot be applied here because in our setting the pairs of polylines that we want to
transform into each other generally do intersect. Surazhsky and Gotsman [SG01a, SG01b]
computed trajectories for intersection-free morphings of plane polygonal networks using
compatible triangulations. Similarly, Erten et al. [EKP04] gave an algorithm for intersection-
free morphing of plane networks using a combination of rigid motion and compatible
triangulations. These approaches, however, require a given correspondence between network
nodes. In the field of computer graphics, Cohen et al. [CEBY97] matched point pairs of
two (or more) parametric freeform curves. They computed an optimal correspondence of
the points with respect to a similarity measure based on the tangents of the curves. The
algorithm is similar to ours in that it also uses dynamic programming to optimize the
matching, but it deals with uniformly sampled points rather than with context-dependent
characteristic segments of polylines. Samoilov and Elber [SE98] extended the method of
Cohen et al. [CEBY97] by eliminating possible self-intersections during the morphing.

5.3 Model and Algorithm
In our description we focus on the problem of morphing between two polylines, each
generalized at a different scale. An algorithmic solution for a pair of polylines can be
used to compute a morph between two networks of polylines with identical topology by
applying the polyline algorithm for each pair of polylines in the network independently.
Note, however, that our algorithm does not take intersections between different polylines
into account. Polygonal region boundaries can be handled, too, by cutting the closed
curves at an identical point, which then serves as first and last point of the corresponding
polylines. The algorithm can be further extended in a straightforward manner to finding a
series of morphs across many scales by solving each pair of networks at neighboring scales
independently.

The problem of morphing between two polylines is two-fold. Firstly, a correspondence
must be found between points on the two lines. Secondly, trajectories that connect pairs of
corresponding points must be specified. Here our focus is on the correspondence problem.
Once we have solved this, we will simply use straight-line trajectories.

In addressing the correspondence problem, our goal is to match parts of each polyline
that have the same semantics, for instance, represent the same series of hairpin bends in
a road at two levels of detail. We wish to do this in a way that allows the mental map
to be retained as much as possible. The mental map is the mental image a person builds
of a diagram. Retention of the mental map is believed to be important in continuous
understanding of animated diagrams; see for example Misue et al. [MELS95]. To retain
the mental map, it can be useful to ensure that visual elements change as little as possible
during an animation. We therefore wish to minimize the movement of points from one
polyline to another. To create a morph with these desired properties, we compute a
correspondence between parts of the polylines that is optimal with respect to a distance
function defined between polyline segments. This distance function aims to measure the
required point movement. Naively, the segments may simply be the individual line segments
of the polylines. We can, however, improve the running time of our algorithm by detecting
appropriate larger characteristic segments consisting of multiple line segments as described
in Section 5.3.1. Whatever segments we use, the algorithm described in Section 5.3.2
computes an optimal correspondence for them.
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Formally, we are given two (directed) polylines f and g in the plane R2. In the
correspondence problem we need to find two continuous, monotone parameterizations
α : [0, 1]→ f and β : [0, 1]→ g, such that α(0) and β(0) map to the first points of f and
g and α(1) and β(1) map to the last points, respectively. These two parameterizations
induce the correspondence between f and g: for each u ∈ [0, 1] the point α(u) corresponds
to β(u). The trajectory problem asks for a family of trajectories σ(t, u) : [0, 1]2 → R2 along
which α(u) moves to β(u), where t is a time point in the interval [0, 1]. Here we simply use
straight-line trajectories, thus connecting α(u) and β(u) by shortest possible connections,
that is, σ(t, u) = (1− t)α(u) + tβ(u).

One issue with this formulation is that intersections between different parts of a polyline
may occur during the morph. We give a heuristic method in Section 5.3.3 that may
be implemented to avoid some typical cases of self-intersections, namely if a pair of
corresponding segments would intersect; intersections may still occur in some cases between
two different parts of the same polyline or between different polylines in a network. The
method of Surazhsky and Gotsman [SG01b], who give a solution to the trajectory problem,
provides a workaround to this issue by computing more complex but therefore intersection-
free trajectories given a solution to the correspondence problem. Since self-intersections
did not occur in the examples of our case study we refrained from including their method
in our prototype implementation.

5.3.1 Characteristic Points
Before solving the correspondence problem, we need to divide each polyline into subpolylines
to be matched up. We do this by locating points on each line that are considered to be
characteristic of the line; each of these characteristic points then defines the end of one
subpolyline and the start of another.

The simplest approach to locating such points is to assume that every point defining
a polyline is characteristic of the line. In this case, we solve the correspondence problem
on the set of line segments of the polyline and proceed directly with the algorithm in
Section 5.3.2. This method can produce good results as we show in the case study in
Section 5.4. Often, however, a large number of points is needed to accurately depict a
cartographic feature such as a river or a road, and using all of these points as characteristic
points can lead to unnecessarily high running times. To avoid this, we present a method
that selects a small subset of characteristic points that still suffice to produce good results
in significantly less time.

Previous work on generalization notes the importance of inflection points, bend points,
and start- and endpoints in defining the character of a line [PAF95]. We have performed
initial experiments with detecting such points automatically [MNWB07], but found that
the user had to manually calibrate many parameters in order to obtain reasonable results
for a particular polyline. Furthermore, a set of parameters that produced a good solution
for one line did not necessarily lead to a good solution for another.

Instead, we detail here an approach that needs only a small set of parameters, and is
more robust to changes in the input data. Sezgin [Sez01, Chapter 5] introduces a method
for locating feature points of curves in the recognition of hand-drawn sketches. Sezgin
tries to model a given polyline with a Bézier curve, and calculates the distance between
the Bézier curve and the actual polyline. If this distance is above a certain threshold,
the polyline is divided into two parts, for which two new Bézier curves are created. This
continues until a set of Bézier curves has been generated each of which fits the polyline
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pi
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c1
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Figure 5.1: A Bézier curve with control points 〈pi, c1, c2, pj〉 approximating a polyline between
points pi and pj .

within the given distance threshold. This process is similar to the classic Douglas-Peucker
line simplification method [DP73], but fitting Bézier curves instead of straight lines. The
points at which the Bézier curves start and end are considered as the characteristic points
of the polyline. This approach tends to produce a set of points that is quite evenly spaced,
since the point at which each polyline is divided is arbitrarily chosen as its midpoint.

Our approach also fits Bézier curves to sections of the polyline, but proceeds from
the start of the polyline, greedily fitting as many points as possible and starting a new
Bézier curve when no more points can be fitted. Given two points pi and pj in a polyline
f = 〈p1, p2, . . . pn〉, we use the same Bézier curve construction as Sezgin [Sez01]: the
points pi and pj become the first and last control points of the curve, and two intermediate
control points are defined as c1 = pi + kt̂1 and c2 = pj + kt̂2, where k is one third of the
length of the polyline 〈pi, pi+1, . . . , pj〉, t̂1 is the unit vector in the direction from pi to pi+1,
and t̂2 is the unit vector in the direction from pj to pj−1 (see Figure 5.1). Note that the
scaling factor k is an empirically determined value that has been reported as working
surprisingly well for approximating digitized curves by cubic Bézier curves [Sch88, Sez01].

The algorithm starts by fitting a Bézier curve to points 〈p1, p2, p3〉, then adds one point
from f at a time until the distance between the curve and the polyline is greater than a
given error threshold ε > 0. We use the following simple method to calculate the distance
between the curve and the polyline. First, we resample both the polyline and the Bézier
curve using the same number x of points. That is, we place x points spaced evenly along
the polyline, from one end to the other, and do the same with the Bézier curve. Now
we find the maximum distance between any of these x points on the polyline and its
corresponding point on the resampled curve. The number x can be set arbitrarily, but
it should be greater than the original number of points in the given subpolyline. In our
implementation (see Section 5.4), we set x to 300 if an entire polyline is considered, or in
the case of a subpolyline, decrease the number proportionally according to the subpolyline’s
length. It is possible to use more sophisticated error measures here, such as the Fréchet
metric (see Section 5.3.3), but we found that this simple measure worked well in practice.

Once the distance error becomes larger than ε, we mark the last considered point
pj as characteristic point, and create a new Bézier curve for 〈pj , pj+1, pj+2〉. After we
have considered all points in f , the algorithm finishes by marking the last point pn as
characteristic.

The output of our algorithm is the set of characteristic points, which separate the
different Bézier curves. Since we use cubic Bézier curves, which are defined by four control
points, any interval between two characteristic points should represent at most a single
left or right turn or a straight segment of the polyline. More complex shapes cannot be
approximated well by cubic Bézier curves.
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Since the Bézier curve construction depends on the directions of edges in the original
polyline, an unnecessarily high number of characteristic points may be generated in noisy
or poorly sampled sections of a polyline. To minimize this, a Gaussian smoothing filter
can be applied as a pre-processing step; see Lowe [Low89] for further details on Gaussian
filtering and an efficient algorithm. We first resample the polyline using a given number
n′ of evenly spaced points. We then apply a Gaussian filter with kernel width σ to the
resampled line; this essentially moves each point in the line to a weighted average of its
neighbors’ positions (σ determines the size of the neighborhood that is used).

Applying the Gaussian filter can decrease small variations in direction along the polyline
so that each Bézier curve constructed is likely to fit more closely along simple curved
sections of the line. This can result in fewer extraneous characteristic points, but can also
increase the running time significantly. In Section 5.4, we present results from the Bézier
characteristic point detection both with and without the Gaussian filter.

5.3.2 Optimal Correspondence
The previous section described a method for determining a set of characteristic points of a
polyline. By subdividing the polyline at the characteristic points we obtain a set of sub-
polylines (or simply segments) that are intended to represent contiguous and homogeneous
stretches of the polyline like straight sections or bends with constant curvature.

In this section we assume that the subdivisions of two input polylines f and g into
segments are given, for example, as the result of applying the previous characteristic point
detection. So let f be divided into n segments (f1, . . . , fn), where each fi is a subpolyline or
a single line segment, and let g be divided into m segments (g1, . . . , gm). We will abbreviate
a sequence of segments fi, fi+1, . . . , fk (i ≤ k) by fi...k.

Now we approach the correspondence problem. Basically there are three possibilities
(C1)–(C3) for a correspondence involving a segment fi:

(C1) fi is mapped to a single characteristic point (that is, fi disappears),

(C2) fi is mapped to a single segment gk,

(C3) fi is mapped to a merged sequence of segments gk...(k+r).

Analogously, we denote the three possible types of correspondence involving a segment gj
by (C1′)–(C3′). Clearly, the linear order of the segments along f and g has to be respected
by the assignment and each segment can take part in only one of the six possibilities.
Mathematically, we model a valid set of such corresponding pairs as what we call a
correspondence relation ρ ⊆ {1, . . . , 2n+1}×{1, . . . , 2m+1}, where a segment fi corresponds
to the element 2i ∈ {1, . . . , 2n+ 1} and the endpoints of fi correspond to 2i− 1 and 2i+ 1.
Analogously, segment gj and its endpoints correspond to {2j−1, 2j, 2j+1} ⊆ {1, . . . , 2m+1}
such that both ordered sets represent the alternating sequence of characteristic points
and segments of f and g, respectively. In order to be valid, ρ has to satisfy the following
properties (P1)–(P4) from the perspective of polyline f :

(P1) ρ is monotone:
if (i, k) ∈ ρ, (j, `) ∈ ρ, and i < j then k ≤ `;

(P2) only contiguous sequences of points and segments can be mapped to an element on
the other polyline:
if (i, k) ∈ ρ, (i, `) ∈ ρ, and k < ` then (i, k′) ∈ ρ for all k < k′ < `;
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Figure 5.2: Drawing of a correspondence relation ρ between two polylines f and g.

(P3) a merged sequence of elements of one polyline has a unique corresponding element
on the other polyline:
if (i, k) ∈ ρ, (i, `) ∈ ρ, and k 6= ` then (j, k) /∈ ρ and (j, `) /∈ ρ for all j 6= i;

(P4) all elements are covered by ρ:
for each i ∈ {1, . . . , 2n+ 1} there is a j ∈ {1, . . . , 2m+ 1} so that (i, j) ∈ ρ.

Additionally, the symmetric properties from the perspective of g, denoted (P1′)–(P4′), need
to be satisfied.

Such a correspondence relation ρ can be seen as a bipartite graph that is a spanning
forest in which all trees are (non-trivial) stars. A drawing of such a graph is shown in
Figure 5.2, where even-numbered vertices indicate segments and odd-numbered vertices
indicate characteristic points. Trees containing a single even-numbered element, that is, a
single segment, or trees with an odd-numbered internal vertex represent correspondences
of type (C1) or (C1′). Trees containing exactly one even-numbered element on each side
mean a one-to-one correspondence of type (C2) or (C2′). Finally, stars with an even-
numbered internal vertex and at least two additional even-numbered elements represent
correspondences of type (C3) or (C3′).

Now assume that there is a distance function or morphing distance δ associated with the
morph between two (sub-) polylines. We suggest a morphing distance in the next section,
but Algorithm 5.1, which is formulated below, is independent of the choice of the distance.
It is based on dynamic programming and computes a minimum-distance correspondence.
Algorithm 5.1 recursively fills a table T of size n×m, where entry T [i, j] stores the total
distance or cost of optimally morphing f1...i to g1...j . This total distance is computed as
the sum of a previous table entry and the additional distance involving pair (i, j) according
to one of the above six types of correspondence. Consequently, we can obtain the cost of
an optimal correspondence from T [n,m]. By keeping track of optimal subsolutions we can
reconstruct the optimal correspondence using backtracking from T [n,m].

The required storage space and running time of filling the n×m table T in Algorithm 5.1
is O(nmK), which equals O(nm) provided that the integer look-back parameter K is
constant. This parameter determines the maximum number of polyline segments that can
be merged in order to be matched with another segment according to correspondences of
types (C3) and (C3′). The final step of reconstructing the actual correspondence is done by
backtracking in T and takes linear time. For this analysis we assumed that each distance
δ(fi, gj) can be computed in constant time. Depending on which distance function is used,
however, the time complexity of computing the required distances needs to be taken into
account.



90 Chapter 5: Dynamic Maps: Morphing Polylines

Algorithm 5.1: OptCor
Input: Polylines f = (f1, . . . , fn) and g = (g1, . . . , gm), distance function δ.
Output: Optimal correspondence for f and g.
T [0, 0] = 0
T [0, j] = T [0, j − 1] + δ(ffirst1 , gj), j = 1 . . .m
T [i, 0] = T [i− 1, 0] + δ(fi, gfirst1 ), i = 1 . . . n
for i = 1 to n do

for j = 1 to m do
T [i, j] =

min



T [i− 1, j] + δ(fi, glastj ) type (C1)
T [i, j − 1] + δ(f lasti , gj) type (C1′)
T [i− 1, j − 1] + δ(fi, gj) type (C2)/(C2′)
T [i− 1, j − k] + δ(fi, g(j−k+1)...j), k = 2, . . . ,K type (C3)
T [i− k, j − 1] + δ(f(i−k+1)...i, gj), k = 2, . . . ,K type (C3′)

Store pointer to predecessor, i.e., to the table entry that yielded the minimum.

Generate optimal correspondence from T [n,m] using backtracking along pointers.

5.3.3 Distance Functions
Algorithm 5.1 relies on a distance function δ that represents the cost of morphing between
two (sub-) polylines. Distance functions for polylines can be defined in many ways. We
consider three possible distance functions. Assume that two polylines f ′ and g′ with
uniform parameterizations α and β are given. Each point α(u) on f ′ will move to β(u) on
g′ along the straight-line trajectory σ(t, u) = (1− t)α(u) + tβ(u) of length |α(u)− β(u)|.

Width
The first distance function considers the longest such segment and is defined as

δmax(f ′, g′) = max
u∈[0,1]

|α(u)− β(u)|. (5.1)

This value is also known as the width of the morph [EHPGM01]. It can be computed in
linear time with respect to the complexity of the polylines.

Fréchet
Another well-known metric for polylines is the Fréchet metric. It is minimizing the
morphing width over all parameterizations of f ′ and g′ and is defined as

δF (f ′, g′) = min
α:[0,1]→f ′
β:[0,1]→g′

δmax(f ′, g′), (5.2)

where α and β are continuous, increasing functions. The Fréchet distance is often described
using the example of a man walking a dog. Then the Fréchet distance is the minimum
required length of the dog’s leash if the man moves along one polyline and the dog
along the other. We used the implementation of the Fréchet metric of van Oostrum and
Veltkamp [vOV04]. The running time of this implementation is O(mn log2(mn)), where m
and n denote the complexity of f ′ and the complexity of g′, respectively.
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Figure 5.3: The curve γ defined by the parameterizations α of f and β of g.

Integral
Finally, we define a new distance measure that takes into account how far all points move
during the morph by integrating over the trajectory lengths. This morphing distance is
defined as

δI(f ′, g′) =
∫ 1

0
|α(u)− β(u)|du (5.3)

and can be computed in linear time with respect to the complexity of f ′ and g′.

Extensions
Relying on a distance function that takes into account only trajectory lengths does not
comprehend all aspects that a human expert would consider when trying to match polyline
segments optimally. Thus we define further terms that can optionally be added to one of
the above base distances.

The first idea is to take into account the length difference of the two subpolylines f ′
and g′. Subpolylines that have about the same length seem to be more similar than
subpolylines of very different lengths. We simply define the cost as the length difference

clen(f ′, g′) =
∣∣ |f ′| − |g′| ∣∣. (5.4)

The second idea considers the orientation of the two subpolylines. We want to give
preference to matching pairs of subpolylines that are more or less translates. The translation
vector of a corresponding pair α(u) and β(u) is simply the vector β(u) − α(u). These
translation vectors themselves define a curve γ(u) = β(u) − α(u) for u ∈ [0, 1] which is
again a polyline in our case, see Figure 5.3. Thus we can define the length of this polyline γ
as a translation cost of the morph between f ′ and g′:

ctnl(f ′, g′) = |γ|. (5.5)

Note that f ′ and g′ are translates if and only if γ has length zero, that is, all translation
vectors are equal; the more the translation vectors vary the larger the translation cost.

The actual distance function δ to be used in Algorithm 5.1 can thus be expressed as
a linear combination of a base distance and the above cost terms clen and ctnl. In our
implementation the morphing cost δ(fi, gj) of two subpolylines fi and gj is further weighted
by the ratio (|fi| + |gj |)/(|f | + |g|) of the total length of fi and gj and the total length
of the containing polylines f and g. This accounts for the relative visual weight of the
pair (fi, gj).
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Finally, we wish to avoid self-intersections in the morph. We can do this locally by
setting the effective morphing distance to infinity if matching two segments causes a
self-intersection in the morph between them. In rare cases, however, intersections between
two non-corresponding subpolylines may still occur.

5.4 Case Study
We evaluate our algorithms on three different types of polyline data: (1) a mountain road
network in the French Alps, (2) river data, and (3) provincial borders in Germany. We
present a detailed case study for the road data and briefly present one example for the
course of a river and for a region boundary, respectively.

All experiments were performed on an AMD Athlon XP 2600+ PC with 1.5GB main
memory running under SuSE Linux 10.1. The characteristic point detection was imple-
mented in C++ and compiled with gcc 4.2.1; the OptCor algorithm was implemented
and tested in Java 1.5.

5.4.1 Road Network Data
We first tested our implementations with a data set of roads in the French Alps from the BD
Cartor and the TOP100 series maps produced by the IGN Carto2001 project [LJLH05].
For each road, we used a polyline from BD Cartor at scale 1:50,000, and a generalized
version of the same road at scale 1:100,000 from the Carto2001 TOP100 maps. The
complete data comprises 382 roads and is shown in Figure 5.4. Details about the network
size and the number of characteristic points can be found in Table 5.1. Running times of
the Bézier analysis and the OptCor algorithm are given in Table 5.2. Note that in practice
the computation of the optimal correspondence is part of the preprocessing of the data
and done only once, while the actual morph using straight-line trajectories is computed at
interactive speed. Thus even the running times of OptCor in the column all points seem
acceptable. Due to the size of the network, we will evaluate our method exemplarily for a
subnetwork and two single roads that are marked with circles in Figure 5.4. The morph of
the complete network as well as animations of further examples can be found on our web
site2.

We start by showing the characteristic points detected for Road 1 in Figure 5.5 and
for Road 2 in Figure 5.6. Since the comparison of the results holds at both scales we
restrict our description to the scale 1:100,000. Figures 5.5a and 5.6a show all vertices of
the polylines as characteristic points. Clearly, these points are very dense where the roads
have sharp bends and are more spaced out in parts of less curvature. Thus using all points
as characteristic points allows the algorithm to finely adjust the correspondence in parts of
high curvature. Applying the Bézier analysis described in Section 5.3.1 reduces the number
of characteristic points in particular within dense parts of the roads, as can be seen in the
subsequent Figures 5.5b–e and Figures 5.6b–e. For a low threshold value of ε = 1 each
bend is still covered by several characteristic points while a higher threshold of ε = 25 leads
to finding roughly one characteristic point per bend, just as a human expert would do.

Also note that using Gaussian smoothing prior to the Bézier analysis tends to identify
more characteristic points than in the same setting without smoothing. This is perhaps

2http://i11www.iti.uni-karlsruhe.de/morphingmovies

http://i11www.iti.uni-karlsruhe.de/morphingmovies
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Road 2

Road 1

Figure 5.4: Road network in the French Alps from the BD Cartor map series at scale 1:50,000.
The highlighted regions are shown in more detail in Figures 5.5, 5.6, and 5.15.

unexpected, since the smoothing was intended to reduce extraneous characteristic points in
noisy sections of a polyline. In fact, the resampling that is performed prior to smoothing
creates a much larger number of points that can be chosen as characteristic points. Due
to this, it is possible that the Bézier analysis produces a larger number of characteristic
points after smoothing, particularly if ε is very low (note how more points are produced
when ε = 1 but not when ε = 25).

Note that almost all of the characteristic points marked by the smoothed Bézier analysis
lie on line segments between original polyline vertices. This means that the complexity of
the polylines is increased artificially by inserting a large number of characteristic points. The
unsmoothed cases are more restricted in that only input points can become characteristic
points. Finally, for comparison, Figures 5.5f and 5.6f show the results of manually selecting
characteristic points located in the peaks of the bends. The number of characteristic
points for each example is given in Table 5.1. Due to the relatively small size of these two
examples the running times of the Bézier analyses were below 0.01 seconds, see Table 5.2.
For the selected subnetwork (see Figure 5.15) and the complete network Table 5.2 shows
that the Bézier analysis without Gaussian smoothing remains very fast with up to 0.69
seconds. Smoothing, however, increases the running times to values between 2.4 and 12.22
seconds.

Next, we show the results of the OptCor algorithm for Road 1 and Road 2 using the
previously described settings for partitioning the roads. In all our examples the OptCor
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characteristic points
roads points ε = 1 ε = 25

network s ns s ns
1:50,000 382 13345 9889 6916 2915 2742complete
1:100,000 382 10869 7904 5601 2535 2387
1:50,000 94 1656 1410 930 481 442subnet
1:100,000 94 1291 1061 739 417 390
1:50,000 1 190 112 95 32 32Road 1
1:100,000 1 155 90 72 26 28
1:50,000 1 85 68 42 18 16Road 2
1:100,000 1 120 73 53 17 15

Table 5.1: Sizes of the example networks (s: smoothed, ns: non-smoothed).

characteristic points
all ε = 1 ε = 25 man-

network points s ns s ns ual
Bézier – 7.72 0.51 12.22 0.69 –complete
OptCor 99.84 84.10 43.06 14.83 13.17 –
Bézier – 2.40 0.07 3.70 0.13 –subnet
OptCor 5.88 6.57 2.78 1.29 1.10 –
Bézier – < 0.01 < 0.01 < 0.01 < 0.01 –Road 1
OptCor 3.15 2.49 1.39 0.62 0.59 0.62
Bézier – < 0.01 < 0.01 < 0.01 < 0.01 –Road 2
OptCor 1.15 1.18 0.60 0.32 0.27 0.31

Table 5.2: Running times (in seconds) for Bézier analysis and OptCor (s: smoothed, ns: non-
smoothed).

algorithm uses as distance function an equally weighted sum of the integral distance δI and
extensions clen and ctnl as described in Section 5.3.3. The reason for the first choice was
that δI turned out to yield better results than both morphing width and Fréchet distance.
The look-back parameter was set to K = 5. Sequences of snapshots of the final morphs
are shown in Figures 5.7 and 5.8 for Road 1, and in Figures 5.9 and 5.10 for Road 2.
In each snapshot, previous frames are shown in increasingly light shades of gray to assist
perception of the animation. For the purpose of comparison, we show in the same way
the result of applying naive linear interpolation, in Figures 5.8c and 5.10c, to produce
morphs for Road 1 and Road 2, respectively. Linear interpolation matches each point on
one polyline to the point at the same relative distance from the start on the other polyline.
We omit the case [smoothed, ε = 1] from the figures here; the quality is comparable to the
case [all points].

Four selected pairs of regions have been highlighted and labeled “Region A” through to
“Region D” in the snapshots. Close-ups of these regions are given in Figures 5.11–5.14 for a
detailed analysis of the morphs. Road 1 is an example where the generalization process
applied typification in Region A, that is, the initial set of three bends is transformed into
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(a) All points. (b) Smoothed, ε = 1. (c) Non-smoothed, ε = 1.

(d) Smoothed, ε = 25. (e) Non-smoothed, ε = 25. (f) Manual selection.

Figure 5.5: Characteristic points for Road 1 (generalized) with Bézier threshold ε.

two bends while maintaining the general pattern of the original set. The generalized version
of Road 2 on the other hand exaggerates the bends in Regions C and D, which is also the
case in Region B of Road 1.

The morph of Region A shown in Figure 5.11 must deal with the fact that one bend in
a series of three bends disappears in the generalized version. While linear interpolation
(Figure 5.11b) collapses two bends completely in order to recreate one bend, all points
(Figure 5.11a) merges two bends into a single bend, which we believe is preferable. It is
perhaps arguable whether this is the best solution, however. There is obviously a trade-off
between obtaining a smooth morph that retains the mental map, and producing the optimal
diagram at a fixed scale. If a user stops zooming at an intermediate scale where the merging
process is not quite completed it could make sense to continue merging (but keeping the
scale) until the representation of the bends is acceptable.

The morph of Region B in Figure 5.12 shows a case where the unsmoothed Bézier
analysis with ε = 25 produces far too much excess movement, compared to all points (and
others). This is due to a rather poor placement of the characteristic points in this case. The
number of characteristic points is almost the same in the smoothed and unsmoothed case
for ε = 25, see Table 5.1. Still, the smoothed version (Figure 5.8a) leads to a much better
morph, which is comparable to the close-up of all points in Figure 5.12a. Figure 5.12b
also shows another undesirable effect: occasionally, especially for higher values of ε, two
neighboring characteristic segments form a sharp “kink” during the morph, which our
algorithm currently cannot detect and avoid.

Region C in Figure 5.13 shows a series of bends that are exaggerated slightly in the
generalized road. While the all points morph (and the other OptCor morphs in Figures 5.9
and 5.10) correctly widen the bends and keep the shape intact, linear interpolation collapses
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(a) All points. (b) Smoothed, ε = 1. (c) Non-smoothed, ε = 1.

(d) Smoothed, ε = 25. (e) Non-smoothed, ε = 25. (f) Manual selection.

Figure 5.6: Characteristic points for Road 2 (generalized) with Bézier threshold ε.

the bends completely in order to open them up in the inverse direction with a lot of point
movement. This shows again the importance of finding a correspondence that minimizes
the defined morphing distance.

Finally, Region D in Figure 5.14 is another example where two bends are exaggerated.
This time the all points morph does not increase the bends nicely but rather creates an
intermediate “appendix” to the bend at the right-hand side. In contrast, the manually
placed points (as well as the setting [smoothed, ε = 25]) lead to a morph without undesired
intermediate effects.

We also applied OptCor to the subnetwork highlighted in Figure 5.4, and we show
the result using all points as the set of characteristic points in Figure 5.15a. Figure 5.15b
shows the linear interpolation of this subnetwork for comparison. Although the networks
are drawn in the same size for all three scales it is still difficult to make out the details of
such a complex example in this format, but on close inspection one can notice a lot more
movement in the linear interpolation compared to the OptCor morph, particularly in
the highlighted areas. Like in the examples Road 1 and Road 2, the linear interpolation
flattens some bends completely before they reappear (highlighted area in the middle). In
the OptCor morph of that area one bend collapses while another one expands. Again the
amount of point movement is much less than in the linear interpolation.
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Region A

Region B

(a) All points. (b) Non-smoothed, ε = 1.

Region B

(c) Non-smoothed, ε = 25.

Figure 5.7: Road 1 morphs generated by OptCor.
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(a) Smoothed, ε = 25. (b) Manual placement.

Region A

(c) Linear interpolation (without
OptCor).

Figure 5.8: Road 1 morphs generated by OptCor.
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Region C

Region D

(a) All points. (b) Non-smoothed, ε = 1. (c) Non-smoothed, ε = 25.

Figure 5.9: Road 2 morphs generated by OptCor.
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(a) Smoothed, ε = 25.

Region D

(b) Manual placement.

Region C

(c) Linear interpolation
(without OptCor).

Figure 5.10: Road 2 morphs generated by OptCor.
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(a) All points.

(b) Linear interpolation.

Figure 5.11: Close-up of Region A (Road 1).

(a) All points.

(b) Unsmoothed, ε = 25.

Figure 5.12: Close-up of Region B (Road 1).
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(a) All points.

(b) Linear interpolation.

Figure 5.13: Close-up of Region C (Road 2).

(a) All points.

(b) Manual placement.

Figure 5.14: Close-up of Region D (Road 2).
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(a) All points OptCor morph. (b) Linear interpolation.

Figure 5.15: Morph of a subnetwork.



104 Chapter 5: Dynamic Maps: Morphing Polylines

5.4.2 River Data
As another class of polylines we consider a portion of the course of the river Elbe in Bran-
denburg, Germany. This example stems from the DTK1000 and the Verwaltungsgrenzen
1:2,500,000 data sets (© Bundesamt für Kartographie und Geodäsie, Frankfurt am Main,
2008). The data from the first set has a target scale of 1:1,000,000 and consists of a polyline
with 308 points, the data from the second set has a target scale of 1:2,500,000 and uses
210 points.

Figure 5.16 shows a sequence of snapshots from the OptCor morph using all input
points as characteristic points in comparison to the linear interpolation of the same data.
The representation of the river at the small scale has far less detail than its representation
at the large scale, for example, almost all smaller crenulations disappear in the generalized
small-scale version. The running time of the OptCor algorithm was 4.8 seconds for
this instance. We can draw the same conclusions as previously for the road data: the
OptCor morph succeeds in matching semantically equivalent parts of the river at both
scales resulting in a smooth morph with almost no excess movement. On the other hand,
the naive linear interpolation in Figure 5.16b again erroneously collapses some major bends
at intermediate scales before making them reappear at the target scale. This creates
unnecessary movement and alters the general shape of the river at intermediate steps,
especially in the upper part highlighted in Figure 5.16. The quality of the morphs using
characteristic points detected by the Bézier analysis was—similarly to the road network—
comparable to the morph using all points; these morphs, too, did not exhibit the rather
poor behavior of the linear interpolation.

5.4.3 Provincial Border Data
Our final example shows that our method can also deal with polygon data. The source
of this example is the boundary of the province Hamburg, Germany from the same data
sets as the river data in the previous example. The polygon uses 361 points at the scale
1:1,000,000 and 147 points at the scale 1:2,500,000. Both polygons were transformed into
polylines by cutting them at a similar point that served as start- and endpoint of the
polylines.

Figure 5.17 shows a sequence of snapshots from the OptCor morph using all input
points as characteristic points in comparison to the linear interpolation of the same data.
The shape is generalized quite strongly for the smaller scale and the crenulations disappear
almost completely. The running time of the OptCor algorithm was 1.8 seconds. While
not much movement is visible in the left part of the contour for both morphs, the linear
interpolation performs poorly in the upper right part and also the transformation of the
lower indentation is noticeably better in the OptCor morph (see the highlighting in
Figure 5.17). This shows again that our algorithm is indeed able to retain the viewer’s
mental map of the contour by finding the optimal correspondence between the characteristic
parts of the two input polylines.

5.5 Concluding Remarks
We have presented and evaluated an algorithm to compute an optimal correspondence
for two polylines that are partitioned into characteristic segments. We have introduced a
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(a) All points OptCor morph. (b) Linear interpolation.

Figure 5.16: Morph of a portion of the course of the river Elbe.
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(a) All points OptCor morph. (b) Linear interpolation.

Figure 5.17: Morph of the provincial border of Hamburg.
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heuristic method to compute these characteristic segments by fitting Bézier curves to the
polylines. Our case study indicates that the morphs computed by our method successfully
transform the shape of one polyline into another while preserving the mental map of the
viewer. These results extend to networks of multiple polylines as well as to polygonal
region boundaries. Using the individual line segments of the polylines as the characteristic
segments yields good results but at the cost of higher running times. We found that our
method for detecting characteristic points reduces the number of characteristic segments
while at the same time the quality of the morphs remains generally high. Thus we propose
our algorithm as a step towards a more global approach for continuous generalization that
also takes the context of further non-linear data layers like point data into account.

Open problems. Apart from the grand challenge of continuously generalizing all features
of a dynamic map, our algorithms could be improved in a number of ways. First, ensuring
that self-intersections do not occur during a morph can be accomplished by utilizing the
algorithm of Surazhsky and Gotsman [SG01b] to compute non-linear trajectories to morph
points. Further investigation would be necessary to avoid intersections between different
polylines in a network, similar in spirit to static subdivision simplification algorithms
that guarantee consistency of the simplification [dBvKS98]. Secondly, it follows from the
results in our case study that improved morphs can be obtained in some cases by manually
selecting the positions of characteristic points. This asks for a deeper exploration of what
constitutes a “good” set of characteristic points. Given a reasonable definition of this,
an optimization problem could be formulated for improved characteristic point detection.
Finally, even with manually chosen characteristic points, the OptCor algorithm can still
produce an occasional “kink” during morphs. It may be possible to design an extension to
the distance function that minimizes the occurrence of such kinks.
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Chapter 6

Dynamic Maps: Labeling

In this chapter we examine label placement in dynamic maps. Label placement is a classical
cartographic problem, but it encounters new and unique issues in the context of interactive
dynamic maps. Each map, if static or dynamic, wants to communicate certain spatial
information to its readers by displaying point features (cities, mountain summits, etc.),
line features (roads, rivers, etc.), and area features (lakes, administrative units, etc.) in
the map. Each of these features usually carries a name that uniquely identifies it, at least
in some local context (for example, unique street names in a city). Obviously, it is of
critical importance to show these names as textual labels in the map such that the reader
can quickly identify which label describes which feature. For a traditional static map the
labeling problem basically reduces to placing a set of two-dimensional geometric objects
(the labels) in the map such that certain constraints are satisfied (for example, no label
overlap) and an appropriate objective function is optimized (for example, maximizing the
number of labels).

An interactive map that allows the user to zoom and pan continuously still has to satisfy
the same constraints as a static map, but it also has additional labeling requirements that
arise from the fact that the map is animated during user interaction. For example, labels
should not jump, that is, suddenly change their position, nor should they disappear and
reappear several times during zooming. In this chapter we define criteria for consistent
dynamic map labeling and model the labeling problem as an optimization problem in three
dimensions, where scale is the third dimension. Different label shapes are considered and
we show that the problem is NP-complete even for quite simple shapes. We present a
toolbox of algorithms that yield constant-factor approximations for a number of variants.
The chapter is based on joint work with Ken Been, Sheung-Hung Poon, and Alexander
Wolff [BNPW08, BNPW09].

6.1 Introduction
Recent years have seen tremendous improvements in web-based, geographic visualization
systems that provide continuous zooming and panning functionalities [Nöl07], but relatively
little attention has been paid to special issues faced by map labeling in such contexts.
In addition to the need for interactive speed, several desiderata for a consistent dynamic
labeling were identified by Been et al. [BDY06]: labels do not flicker (appear and disappear
more than once) or jump (suddenly change position or size) during panning and zooming,
and the labeling does not depend on the user’s navigation history. Currently available
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screen coordinatesworld coordinates

L̂

L

label coordinates

Figure 6.1: Label, world, and screen coordinates.

systems (for example, Google Earth, NASAWorld Wind, Microsoft Virtual Earth, and KDE
Marble) do not satisfy these desiderata and their label placement algorithms may produce
more or less unattractive dynamic labelings, at least during animated user interactions.

In this chapter, we determine for each label a single interval of scales for which it is
visible. This avoids flickering effects. We restrict our attention to so-called invariant point
placements, in which a point of reference for each label has a fixed position in the map.
This prevents that labels change position during zooming and panning, that is, there is
no jumping of labels. Clearly, the scale intervals must be chosen such that no two labels
overlap at any scale. We optimize a typical criterion in map labeling, namely we maximize
the number of visible labels at each scale. In the following we introduce the model for
consistent dynamic map labeling.

Model. We adapt the labeling model of [BDY06] as follows. In static labeling the key
operations are selection and placement—select a subset of the labels and place them without
overlap. Let each label L be defined in its own label coordinates. A static placement of L
is the image L̂ of L in world coordinates under a transformation composed of translation,
rotation, and dilation (see Figure 6.1). A further transformation clips a rectangular region
in world coordinates and takes it to the screen, dilated by a factor 1/s, where we define s
as the scale. Note that s is the inverse of cartographic scale.

In dynamic labeling we select at each scale a subset of labels and place them without
overlap. To meet the desiderata for consistent dynamic labeling we

(1) define a dynamic placement of L to be a function that assigns a static placement L̂(s)
to each scale s ≥ 0;

(2) require that each dynamic placement be continuous with scale;

(3) define dynamic selection to be a Boolean function of scale;

(4) require that each label Li, 1 ≤ i ≤ n, be selected precisely on a single interval of scales,
[ai, Ai], which is called the active range of Li.

Note that the active range may also be empty, that is, the label is never shown, which
is different from the case ai = Ai, where the label is shown at precisely one scale.

We define extended world coordinates by adding a scale dimension to world coordinates.
Then we can think of dynamic placement as mapping a label L into extended world coordi-
nates such that the cross section of the image of L at scale s is the static placement L̂(s).
Let Smax be a universal maximum scale for all labels. We define the available range of Li
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(b)

Figure 6.2: (a) A dynamic placement of a 2d-label is a solid in extended world coordinates. Here:
with invariant point placement and proportional dilation. (b) A 1d-label with constant
dilation, available range [si, Si], and active range [ai, Ai].

to be an interval of scales, [si, Si] ⊆ [0, Smax], in which label Li “wants” to be selected. For
example, street labels are available at smaller scales and country labels at larger scales.
Note that scales s < 1 actually mean that world coordinates are magnified on screen; for
maps in cartography we will usually have s � 1. For the active range of a label Li we
require [ai, Ai] ⊆ [si, Si]. Let Ei =

⋃
s∈[si,Si] L̂i(s), that is, Ei is the union of all static

placements of Li within its available range, and let Ti =
⋃
s∈[ai,Ai] L̂i(s) be the restriction

of Ei to the active range [ai, Ai]. Since dynamic placement is continuous with scale, Ei is
a solid defined by sweeping the label shape along a continuous curve that is monotonic in
scale, with the rotation and dilation factors at each scale given by continuous functions.
An example is given in Figure 6.2a. We call Ei the extrusion of Li and Ti its truncated
extrusion.

The extrusion shapes are determined by the label shape and the translation, rotation
and dilation functions that compose the dynamic placement. We restrict our attention to
certain classes of extrusions, which are simple yet relevant in applications. Our 2d-labels
are rectangular (for example, bounding boxes of textual labels); for theoretical interest, we
also consider 1d-labels, which are horizontal segments [xi, Xi] in 1d world coordinates—see
Figure 6.2b. In this chapter we consider dynamic placements that are so-called axis-aligned
invariant point placements: the rotation component is constant and maps L to an axis-
aligned rectangle at each scale; the translation component is constant and maps a particular
reference point of the label always to the same location in world coordinates, that is, the
label never “slides”; the dilation component is a linear function DL(s) = bs+ c, for which
we consider three classes.

• If b = 0 and c > 0, that is, DL(s) = c, then label size is fixed in world coordinates
and inversely proportional to scale on screen. Thus labels shrink at the same rate as
the geographic features when zooming out and grow when zooming in. The solid is
then a “straight” extrusion, as in Figure 6.2b.

• If b > 0 and c = 0, that is, DL(s) = bs, then L has constant size on screen and size
proportional to scale in world coordinates. The solid is then a label-shaped cone with
apex at s = 0 as in Figure 6.2a. With invariant point placements, the cone contains
the vertical line through its apex. The cone might be symmetric to that line (for
example, for labeling a region) or it might be slanted and have this line as a vertical
corner edge (for example, for labeling a point).
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• If DL(s) = bs+ c for constants b > 0 and c 6= 0, then label size is disproportionate
to scale in world coordinates and on screen. For c < 0, the label size increases on
screen when zooming out and decreases when zooming in. For c > 0, the label size
on screen decreases when zooming out and increases when zooming in, albeit not as
fast as the geographic features—unlike the dilation function DL(s) = c. The solid in
this case is a portion of a label-shaped cone with apex at −c/b.

Objective. Let E denote the set of all extrusions, and assume we are given an available
range for each. For a set T of truncated extrusions, define H(T ) =

∑n
i=1(Ai− ai) to be its

total active range height. This is the same as integrating over all scales a function that
counts the number of labels selected at scale s. The (general) active range optimization
(ARO) problem is to choose the active ranges so as to maximize H, subject to the constraint
that no two truncated extrusions overlap. This is the dynamic analogue of placing the
maximum number of labels without overlap in the static case. We concentrate solely
on maximizing H since alternative optimization criteria like maximizing the minimum
active range height do not make much sense in practice—for example, if there is a label
with a very small available range. We call any set of active ranges that correspond to
non-overlapping truncated extrusions a solution. It is of theoretical and practical interest
to also consider a version of the problem in which all labels are available at all scales and a
label is never deselected when zooming in—that is, [si, Si] = [0, Smax] and ai = 0 for all i.
We call this variant of ARO simple.

Related problems. The following packing problem is a special case of 1d-ARO: given a
set {E1, . . . , En} of axis-aligned unit squares as extrusions, find pairwise disjoint truncated
extrusions T1 ⊆ E1, . . . , Tn ⊆ En of maximum total active range height. We do not know
the complexity of this packing problem, but we give an efficient (2/3)-approximation
algorithm (Theorem 6.7) and we do show that the problem is hard, if the squares have two
different sizes (Theorem 6.1). Clearly, the problem is closely related to geometric maximum
independent set problems, that is, maximum independent set problems in intersection
graphs of geometric objects. Such problems are usually NP-hard and admit—if the
geometric representation is given—polynomial-time approximation schemes, for example in
the case of axis-aligned unit squares [HM85], even if the size restriction is dropped [EJS05].
In those problems, however, one can choose only to either put or not to put a complete
object into a solution, whereas in ARO, one can put an arbitrarily small fraction of an
object into the solution. We insist only that each object contributes at most one connected
component to the solution and that such a component must fill the whole width of the
object.

The above-mentioned special case of 1d-ARO can also be viewed as a scheduling problem
with geometric constraints. To see this, use line stabbing [AvKS98]: stab the unit squares
with vertical lines of distance greater 1 such that each square is stabbed and each line
stabs a square. Now each stabbing line corresponds to a machine, each square corresponds
to a job that is run on the corresponding machine, and the y-axis is the time axis. Each
machine executes at most one job at a time, and a job can be started at most once. While
a job is being processed, it blocks other jobs if the corresponding squares intersect.

Finally, there is some similarity to dynamic storage allocation, where one gets requests
for blocks of contiguous bytes of memory. Each request has a start and an end time. In
this problem, the x-axis is the time axis and the positive integers on the y-axis correspond
to memory cells. A request corresponds to a rectangle of fixed size that can slide vertically.
Each request must be placed, and the aim is to minimize the amount of memory that has
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to be allocated, that is, the smallest y-coordinate occupied by a rectangle. Buchsbaum et
al. [BKK+04] give a (2+ ε)-approximation algorithm for this problem and polynomial-time
approximation schemes for a number of special cases.

Previous work. Map labeling has been identified as an important application area by
the Computational Geometry Impact Task Force [Cc99], and has been the focus of extensive
algorithmic investigation [WS96]. The vast majority of research on this topic covers static
labeling. A typical goal is to select and place labels without overlap while optimizing an
objective function, which might be simply the number of labels [AvKS98, vKSW99], or
it might incorporate multiple cartographic criteria [CMS95]. There are many variations
possible, and most have been shown to be NP-hard [FW91, KR92, vKSW99].

For dynamic labeling, Petzold et al. [PGP03, PPH99] described an algorithm that uses
a preprocessing phase to generate a reactive conflict graph, in which each label is a vertex
and each edge corresponds to a potential conflict between two labels. The edges are
augmented by an interval of scales in which the conflict occurs. In the interaction phase,
the conflict graph is queried with a clipping region and a target scale and a static conflict
graph is derived containing all labels in the selected region and all edges for which the
conflict interval contains the query scale. From this graph a valid labeling is computed
using static labeling heuristics. The method of Poon and Shin [PS05] builds a hierarchy
of precomputed solutions; interpolation between these solutions produces a solution for
any scale. Neither of these approaches satisfies the consistency desiderata. In addition
to introducing consistency for dynamic map labeling, Been et al. [BDY06] showed that
simple 2d-ARO is NP-complete for arbitrary star-shaped labels, and implemented a simple
heuristic solution.

Contributions. We investigate the complexity of ARO in Section 6.2. We prove that
general 1d-ARO with constant dilation is NP-complete, even if all extrusions are squares,
and that simple 2d-ARO with proportional dilation is NP-complete, even if all extrusions
are congruent square cones. Both proofs are by reduction from Planar3-Sat, the latter
using 3d gadgets. We present an algorithmic study of ARO in Section 6.3 by developing
an algorithmic toolbox containing both new techniques and new applications of known
techniques to solve several variants of ARO problems. One of our algorithms is exact, the
others yield approximations. Table 6.1 summarizes our results. Note that all our results
for 2d-ARO with congruent square cones can be generalized to congruent and non-rotated
rectangular cones by dilating the input space in x- or y-direction. Analogously, the result
for arbitrary square cones can be generalized to similar, non-rotated rectangular cones.

6.2 Complexity

In this section, we prove that two variants of ARO are NP-complete, namely general
1d-ARO with constant dilation (see Section 6.2.1) and simple 2d-ARO with proportional
dilation (see Section 6.2.3). We also show that we can reduce a variant of 1d-ARO with
constant dilation to 1d-ARO with proportional dilation, see Section 6.2.2.

Both hardness proofs reduce from the NP-complete problem Planar3-Sat [Lic82] that
has been introduced in Section 2.3.
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Figure 6.3: The gadgets of our reduction for the clause C = (¬x ∨ y ∨ ¬z).

6.2.1 General 1d-ARO with Constant Dilation
Theorem 6.1 General 1d-ARO with constant dilation is NP-complete; that is, given a set
E = {E1, . . . , En} of axis-aligned rectangular extrusions in the plane and a real number
K > 0, it is NP-complete to decide whether there is a set of pairwise disjoint truncated
extrusions T = {T1, . . . , Tn} and H(T ) ≥ K, where Ti ⊆ Ei for i = 1, . . . , n. The problem
remains NP-complete when restricted to instances where all extrusions are squares and
each has one of two sizes.

Proof. For membership in NP , decompose each Ei into O(n) horizontal strips determined
by the lines {s = si, s = Si | 1 ≤ i ≤ n}. It is not hard to see that there is an optimal
solution that corresponds to a union of such strips. So we can guess a subset of the
strips and then check in polynomial time whether (a) all strips from the same square are
consecutive, (b) no two strips overlap, and (c) their total height is at least K.

To show hardness, let ϕ be an instance of Planar3-Sat, that is, a planar 3-Sat formula
with n variables and m clauses. We construct a set Eϕ of squares as illustrated in Figure 6.3
and fix a threshold K > 0 such that H(S(Eϕ)) ≥ K for an optimal solution S(Eϕ) if and
only if ϕ is satisfiable.

The squares in Eϕ have side length 1 or 5. We refer to a square of side length j as
a j-square. A regular 5-square is a 5-square that contains a vertically and horizontally
centered chain of four interior-disjoint 1-squares. Thus the 5-square can contribute at most
two units to H if the 1-squares contribute one unit each. This is a total of six units for the
group of five squares, which is more than if the 5-square contributed five units and the
1-squares zero. Geometrically, the contribution of a 5-square is a (5× 2)-rectangle that can
either appear above or below the chain of 1-squares. We say that the 5-square is in upper
or lower state, which gives us a means to encode Boolean values. The contributing part of
each square is shaded in Figure 6.3.

Each square in Eϕ belongs to a variable gadget, a literal gadget, or a clause gadget.
These gadgets correspond one-to-one to the n variables, 3m literals, and m clauses of ϕ.

Variable gadgets. The gadget of a variable x consists of a horizontal chain of nx regular
5-squares, where nx is proportional to the number of times that x appears in ϕ. Two
adjacent 5-squares are joined by two connectors, that is, pairs of 1-squares as depicted in
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Figure 6.3. Each 1-square of a connector overlaps both the adjacent 5-square and the other
1-square in the connector. Since the two 1-squares of a connector overlap, a connector can
contribute at most one unit in total. Moreover, if two adjacent 5-squares were in the same
state, one of the connectors would contribute zero. Therefore, in any optimal solution for a
variable gadget the states of adjacent 5-squares alternate. We let x being true correspond
to the leftmost 5-square of the gadget being in upper state. Summing up yields that the
total contribution of the gadget of x to H is 6nx + 2(nx − 1) = 8nx − 2 units.

Literal gadgets. A clause of ϕ consists of three literals. A literal gadget connects a
variable gadget to a clause gadget, implementing one of the three legs of the aforementioned
comb. The gadget of a literal λ consists of a vertical part and, if λ corresponds to the
left or right leg of a comb, a horizontal part. A vertical part consists of a chain of regular
5-squares where consecutive squares overlap by one unit. A horizontal part is identical to
a variable gadget, see Figure 6.3. The last square of the vertical part is the first square of
the horizontal part.

Number the 5-squares in each variable gadget from left to right. If λ is negated, the
first 5-square of the gadget of λ overlaps the top of an odd-numbered (or the bottom of
an even-numbered) 5-square of the corresponding variable gadget by one unit. Otherwise
parity flips; see the positions of the gadgets of literals ¬x and y in Figure 6.3.

Note that the vertical part of a literal gadget contributes maximally to H (that is, with
six units per regular 5-square) if all 5-squares are in the same state as the intersected
5-square of the variable gadget.

If the gadget of a literal λ has a horizontal part, then the states of the 5-squares in
that horizontal part alternate as in a variable gadget. We insist that any horizontal part
consists of an even number of 5-squares. Thus the state of the final 5-square of the gadget
of λ is opposite to that of the first 5-square. The literal gadget can be seen as a mechanical
construction that transmits pressure from the variable gadget into the clause gadget: if
the 5-square where a literal gadget is attached to its variable gadget from the top is in
upper state (corresponding to false) then the active ranges of all 5-squares of the literal
gadget are “pushed” towards the clause gadget; otherwise, if the literal is true, there is no
pressure towards the clause.

For a literal λ, let mλ be the number of regular 5-squares, and let m′λ be the number of
connectors in the gadget of λ. Then λ contributes at most 6mλ +m′λ units to H.

Clause gadgets. The final square of each literal gadget connects to a clause gadget. A
clause gadget consists of two overlapping 5-squares QC and Q′C , containing six 1-squares
as depicted in Figure 6.3. If the six 1-squares contribute one unit each, the two 5-squares
can also contribute at most one unit each. This is by construction also the maximum
contribution of a clause gadget. Let Q ∈ {QC , Q′C}. Note that there are three scale
intervals in which Q might contribute one unit to H, and that Q overlaps with the final
5-square of two of the three legs corresponding to literals in C. Further note that the literal
gadgets have enough slack to make the final 5-squares overlap Q as shown in Figure 6.3.

Assume that the literal legs contribute maximally to H. Then, if the two literal legs
overlapping Q evaluate to false, only the middle unit-height strip of Q can contribute (one
unit) to H. But since QC and Q′C overlap, their two middle strips together can contribute
at most one unit. Thus, if all three literals evaluate to false, the clause gadget (QC , Q′C
and the six 1-squares in their union) contributes 7 units in total. On the other hand, if at
least one literal in C evaluates to true, both QC and Q′C can contribute one unit, and the
clause gadget contributes 8 units. This is the case in Figure 6.3, where QC contributes its
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middle strip and Q′C contributes its top strip.

Reduction. The variable, literal, and clause gadgets form the set Eϕ of extrusions
representing ϕ. It remains to fix the threshold K such that H(S(Eϕ)) ≥ K if and only
if ϕ is satisfiable. Note that a variable gadget contributes maximally to H if and only
if the states of its 5-squares alternate, that is, it correctly encodes either the value true
or the value false. Similarly, a literal leg contributes maximally to H if and only if it
correctly transfers the value of the literal (or false) to its final 5-square. Finally, a clause
gadget contributes maximally to H if and only if at least one of its literal legs encode the
value true. Thus ϕ is satisfiable if and only if all gadgets in our construction contribute
maximally to H.

Let K = (8
∑
v∈Var(ϕ) nv − 2) + (

∑
λ∈Lit(ϕ) 6mλ +m′λ) + 8m, where Var(ϕ) and Lit(ϕ)

denote the sets of variables and literals in ϕ, respectively. The summands of K correspond
to the maximum contributions of all variable gadgets, literal gadgets, and clause gadgets.
By the above observation a total active range height of at least K can be achieved if and
only if ϕ is satisfiable.

The set Eϕ consists of O(m2) squares since the variable-clause graph of ϕ can be drawn
on a grid of size O(m2) [KR92]. The positions of all squares can be encoded in space
quadratic in the length of an encoding of ϕ. The reduction can be performed in polynomial
time. ¤

6.2.2 General 1d-ARO with Proportional Dilation
We have not succeeded in showing that general 1d-ARO is hard in any of the following
cases:

(i) All extrusions are unit squares,

(ii) all extrusions are unit-width rectangles,

(iii) all extrusions are trapezoidal segments of congruent triangles whose apexes lie on the
x-axis.

By specialization, problem (ii) is at least as hard as problem (i). We now show that
problem (iii) is at least as hard as problem (ii).

Theorem 6.2 There is a polynomial-time reduction from general 1d-ARO with constant
dilation for unit-width rectangles (problem (ii)) to general 1d-ARO with proportional dilation
(problem (iii)).

Proof. We take an instance I of general 1d-ARO with constant dilation, that is, a set of n
unit-width rectangles, and transform it in a three-step process into an instance I ′ of general
1d-ARO with proportional dilation, that is, a set of n trapezoidal segments of congruent
triangles whose apexes lie on the x-axis, such that H(I) = H(I ′).

Let B be the height of the tallest rectangle in I, let ∆x be the minimum non-zero
horizontal distance between any two vertical rectangle edges in I, and let ε = ∆x/n.

1. First we go through I from right to left. For each vertical line ` that contains vertical
edges of t > 1 rectangles E1, . . . , Et (numbered lexicographically with respect to,
say, upper left corners), we add a horizontal “gap” of width (t− 1)ε that moves all
rectangles that lie completely to the right of ` by this amount horizontally to the
right. Then for i = 1, . . . , t we move Ei to the right by (i − 1)ε. Note that at the
end of this step,
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Figure 6.4: Transforming a rectangle (shaded) into a trapezoidal segment (bold boundary) of a
skinny triangle.

a) every pair of vertical rectangle edges has distance at least ε, and

b) every rectangle has moved to the right by a total amount of at most (n−1)ε < ∆x.
Thus no two vertical rectangle edges have changed their x-order.

2. Next we vertically “compress” the resulting instance to an instance of height at most
(B + ε)n by replacing each maximal empty horizontal strip by one that has height ε.
We move the instance into the horizontal strip of height (B + ε)n bounded by the
lines s = smin := (B + ε)n · h and s = smax := (B + ε)n · (h+ 1), where h = 1/ε.

3. Finally we transform the rectangles into trapezoidal segments of skinny congruent
triangles—without changing the conflict graph for any scale s. Each trapezoidal
segment inherits the available range from the corresponding rectangle. We set the
slope of the triangle side edges to ±2(B + ε)n/ε and place the triangle apexes on the
x-axis, vertically below the rectangle centers, see Figure 6.4. By the choice of the
horizontal strip in the previous step the trapezoidal segment of the skinny triangle
induced by the intersection with that strip has a bottom edge of unit width. Note
that at the end of this step

c) every trapezoidal segment contains the corresponding rectangle and is symmetric
to the vertical line through the rectangle center,

d) every trapezoidal segment has width at most 1 + ε (this is the width of the
intersection of the line s = smax with any of the skinny triangles),

e) two trapezoidal segments intersect if and only if the corresponding rectangles
intersect, even more: the height of the intersection of two trapezoidal segments
is the same as the height of the intersection of the corresponding rectangles.

Observations (a) to (e) yield the correctness of our reduction. It is clearly polynomial. ¤
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6.2.3 Simple 2d-ARO with Proportional Dilation
Going from the one-dimensional problem to the two-dimensional problem, even simple
ARO, where each available range is [0, Smax], becomes hard.

Theorem 6.3 Simple 2d-ARO with proportional dilation is NP-complete; that is, given
a set E = {E1, . . . , En} of axis-aligned rectangular cones and a real number K > 0, it
is NP-complete to decide whether there is a set of pairwise disjoint truncated extrusions
T = {T1, . . . , Tn} and H(T ) ≥ K, where Ti ⊆ Ei for i = 1, . . . , n. The problem remains
NP-complete when restricted to instances where all extrusions are congruent square cones.

Proof. To see membership in NP, note that in any optimal solution S each cone either
reaches Smax or touches another cone. Thus S can be constructed by guessing an order in
which the cones are greedily “filled” as far as possible from bottom to top.

To show hardness, let ϕ be a planar 3-Sat formula with n variables and m clauses. We
construct a set Eϕ of congruent unit square cones and show that there is a threshold K > 0
such that H(S(Eϕ)) ≥ K for an optimal solution S(Eϕ) if and only if ϕ is satisfiable.

x ¬x

x¬x

cone 1

(a) Variable gadget for x = true.

x ¬x

x¬x

cone 1

(b) Variable gadget for x = false.

Figure 6.5: 3d-models and 2d-projections of a variable gadget and partial literal gadgets. Cones of
gadgets that carry the value true (false) are green (red).
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false true

false
(a) Clause gadget, where one literal is true.

false false

false
(b) Clause gadget, where all literals are false.

Figure 6.6: 3d-models and 2d-projections of a clause gadget (three yellow/gray cones in the center)
with partial literal gadgets. Cones of literal gadgets carrying the value true are green,
cones of literal gadgets carrying the value false are red.

Similar to the 1d-case, we construct variable gadgets and three-legged combs connecting
them to clause gadgets. Figure 6.5 shows a variable gadget and Figure 6.6 shows a clause
gadget. Variable gadgets and comb legs consist of chains of cones whose apexes lie on
a half-integer grid, that is, a grid whose grid point coordinates are integer multiples of
1/2. Cones whose apexes have L∞-distance 1/2 intersect at scale Smax/2 while those with
L∞-distance 1 intersect at scale Smax. Therefore, in an optimal solution all cones are active
and do not interfere in the range [0, Smax/2], but only every other cone in a chain can
extend to Smax. We say that two cones are adjacent if their L∞-distance is 1/2.

Variable gadgets. A variable gadget consists of a cyclic chain of an even number of
adjacent cones. By the above observation this chain contributes maximally to H if every
second cone is active in the range [0, Smax] and the remaining cones in the range [0, Smax/2].
Numbering the cones clockwise starting with the leftmost cone in the top row of the gadget,
we denote the state where the odd cones extend to the full scale Smax as true and the state
where the even cones extend to Smax as false; see Figure 6.5.

Literal gadgets. Each variable gadget has indentations. Their number depends on how
often the variable occurs in the clauses of ϕ. At each indentation we can connect a leg of a
three-legged comb that serves as a literal gadget. Each leg consists of an even chain of
adjacent cones leading towards the clause gadget. The middle leg of a comb is a simple
vertical chain, whereas the left and right leg start vertically and then bend 90 degrees
in order to reach the clause gadget horizontally. For a positive literal the leg is adjacent
to the beginning (in clockwise order) of the indentation, for a negative literal the leg is
adjacent to the end of the indentation, see Figure 6.5. Thus, if a literal evaluates to false,
the corresponding literal leg must start with a cone of height Smax/2; otherwise it can
start with a cone of height Smax. A literal leg contributes maximally to H if every other
cone reaches Smax. Hence it has two maximal states—either the odd or the even cones
reach Smax.

Clause gadgets. The clause gadget in Figure 6.6 consists of three pairwise adjacent
cones, that is, at most one of them can extend to Smax, and their maximal total contribution
to H is 2Smax. Each of the clause cones is adjacent to the last cone of one of the three
incoming literal legs. Since the literal legs consist of an even number of cones, the leg for a
true literal ends in a cone of height Smax/2, while a false literal leg ends in a cone of height
Smax—at least if the literal legs contribute maximally to H. Thus, none of the three clause
cones can be of height Smax if and only if all literals in the clause are false.

We claimed above that literal gadgets always consist of an even number of cones. This
ensures that in both states, they contribute the same amount to H. Now assume that
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a specific literal gadget actually consists of an odd number of cones. Then we replace a
straight part consisting of twelve cones by the parity inverter gadget depicted in the top
part of Figure 6.7. For comparison, the bottom part of Figure 6.7 shows a straight chain
of cones. Note that the inverter gadget and the straight chain span the same distance on
the grid; the inverter with an odd number of cones, the chain with an even number.

Figure 6.7: Parity inverter gadget (top).

Reduction. As before we determine the threshold K such that ϕ is satisfiable if and
only if H(S(Eϕ)) ≥ K and all variable, literal, and clause gadgets contribute maximally
to H. Variable and literal gadgets contribute maximally if they correctly encode their truth
values and clause gadgets contribute maximally if at least one of their literals evaluates to
true and thus the clause is satisfied.

We denote the number of cones for the variable gadget of variable x by nx and the
number of cones for the literal leg of literal λ by mλ. These numbers depend on ϕ and are
fixed in the construction. Let

K = 3
4
· Smax

∑
v∈Var(ϕ)

nv + 3
4
· Smax

∑
λ∈Lit(ϕ)

mλ + 2m · Smax,

where Var(ϕ) and Lit(ϕ) denote the variables and literals in ϕ, respectively. The summands
of K correspond to the maximum contributions of all variable gadgets, literal gadgets, and
clause gadgets. By the above observation on maximal contributions a total active range
height H(S(Eϕ)) of at least K can be achieved by an optimal solution S(Eϕ) only if all
clause gadgets contribute maximally and thus if ϕ is satisfiable.

Since the variable-clause graph of ϕ can be drawn on a grid of size O(m2) [KR92], the
set Eϕ also consists of O(m2) extrusions placed on a grid of size O(m2) and the reduction
takes polynomial time. ¤

6.3 Algorithmic Toolbox

We give a toolbox of six different algorithms to tackle several variants of 1d- and 2d-ARO
problems. Some are only briefly covered since they are based on well-known techniques:
dynamic programming, a left-to-right greedy algorithm, line stabbing, and divide and
conquer. We concentrate on two algorithms that apply new techniques: a top-to-bottom
fill-down sweep, and a level-based small-to-large greedy algorithm.
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6.3.1 Dynamic Programming
Triangles
We start by considering simple 1d-ARO with proportional dilation: each extrusion Ei is
a triangle with apex on the x-axis and top edge on the horizontal line s = Smax. The
truncated extrusions Ti differ only by having (possibly) lower top edges. Observe that in
an optimal solution at least one Ti has height Smax, and thus divides the problem into two
independent subproblems. This is the essence of the dynamic programming solution.

Theorem 6.4 Simple 1d-ARO with proportional dilation can be solved in O(n3) time using
O(n2) space.

Proof. Let pi be the apex of the triangular extrusion Ei on the x-axis. For ease of notation
define dummy triangles E0 and En+1 with apexes p0 and pn+1, and assume that p0, . . . , pn+1
are sorted from left to right. For i < j, define the free space ∆(i, j) between pi and pj to
be the triangular or trapezoidal space enclosed by s = 0, the right side edge of Ei, the
left side edge of Ej , and possibly s = Smax. Let A[i, j] (i < j) be the optimal solution for
pi+1, . . . , pj−1 in ∆(i, j). In A[i, j], at least one of Ti+1, . . . , Tj−1 must touch a non-bottom
edge of ∆(i, j), thus dividing the problem into two independent subproblems. For each
k = i+ 1, . . . , j − 1, we denote by si,jk the scale at which Tk first reaches a non-bottom
edge of ∆(i, j). We initialize A[i, i+ 1] = 0 for i = 0, . . . , n and recursively compute

A[i, j] = max{A[i, k] + si,jk +A[k, j] | i+ 1 ≤ k ≤ j − 1}.

Obviously, the optimal solution for our problem is A[0, n+ 1]. Each of the O(n2) entries
in the dynamic programming table is computed in O(n) time, resulting in a total running
time of O(n3). ¤

6.3.2 Left-to-Right Greedy algorithm
Unit-Height Rectangles
Van Kreveld et al. [vKSW99] presented the following greedy algorithm for maximum
independent set (MIS) among axis-aligned rectangles of unit height. We are given a set E
of unit-height rectangles. Until E is empty, repeatedly select the rectangle E ∈ E with
leftmost right edge, and remove from E all remaining rectangles intersecting E. This takes
O(n logn) time, and is a (1/2)-approximation for MIS [vKSW99].

For ARO the same algorithm yields a (1/3)-approximation, for the following reason. If
an active range of some extrusion Eopt in an optimal solution is not active in the solution A
of the algorithm, there must be an extrusion Ealg 6= Eopt that is selected in A such that the
right edge of Ealg intersects Eopt; therefore Eopt has been removed from E in the algorithm
and is inactive in A. But since all extrusions are unit-height rectangles and Ealg has the
leftmost right edge when it is selected, Ealg can only be responsible for removing rectangles
with a total active range height of less than three times the height of Ealg.

Theorem 6.5 The maximum total active range height for a set of n rectangular extrusions
of unit height can be approximated within a factor of 1/3 in O(n logn) time.

6.3.3 Line Stabbing
We use line stabbing for unit squares and unit-width rectangles, that is, general 1d-ARO
with constant dilation and equal-size labels. Line stabbing is a special case of the shifting
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technique by Hochbaum and Maass [HM85]. The idea is to stab all extrusions with vertical
lines of distance at least 1 such that each extrusion is stabbed by exactly one line and
each line stabs at least one extrusion. The stabbing lines are numbered l1 to lk from left
to right. Since all extrusions have unit width, those intersecting li do not overlap those
intersecting li+2. Our approximate solutions make use of the optimal solutions for either
the extrusions stabbed by a single line or those stabbed by two adjacent lines.

First, we show how to compute the optimal solution on a single stabbing line. The
exact algorithm for a single stabbing line applies more generally to a set of arbitrarily sized
rectangles. This will be used again in Section 6.3.4.

Lemma 6.1 The maximum total active range height of a set E of n rectangles stabbed by a
single vertical line l can be computed in O(n logn) time.

Proof. The algorithm basically solves a one-dimensional problem on l. Sweep a horizontal
line from bottom to top over E , stopping at the event points si and Si for each Ei ∈ E .
Maintain a stack, initially empty, and a current rectangle, initially null. At the event
point si, push Ei onto the stack, and if the current rectangle is null then make Ei the
current rectangle and set its active range [ai, Ai] = [si, Si]. At the event point Si, if Ei is
the current rectangle then pop rectangles from the stack until a rectangle Ej is popped
with Sj > Si. If such an Ej is found then make Ej the current rectangle and set its active
range [aj , Aj ] = [Si, Sj ]; otherwise reset the current rectangle to null.

The way the algorithm works, the current rectangle is never null whenever the sweep line
intersects some rectangle in E . So obviously the total active range height of the algorithm’s
solution is optimal since it equals the height of the union of E . Since every rectangle is
pushed onto and popped from the stack once, the sweep takes linear time, but we need
O(n logn) time to sort the event points initially. ¤

Unit-Width Rectangles
For unit-width rectangles we partition the vertical stabbing lines into sets Λ1 and Λ2,
containing all the stabbing lines with odd and even indices, respectively. By Lemma 6.1 the
solution for each individual stabbing line, and thus also the solution Ai for all rectangles
intersecting lines in Λi, can be computed optimally. From the candidate solutions A1 and
A2 we choose the one maximizing H as our approximate solution A. Each solution Ai is at
least as good as the optimal solution restricted to the rectangles stabbed by Λi. Hence A,
the better of the two solutions A1 and A2, is at least half as good as the optimal solution.
The approximate solution A can be computed in O(n logn) time using Lemma 6.1. Thus
we obtain the following.

Theorem 6.6 The maximum total active range height for a set of n rectangular extrusions
of unit width can be approximated within a factor of 1/2 in O(n logn) time.

Unit Squares
To obtain a better approximation for the case that all extrusions are unit squares, we
partition the vertical stabbing lines into three sets, Λi = {lj | j = i (mod 3)} for i = 1, 2, 3.
Deleting all squares stabbed by one of the sets Λi divides the problem into independent
subproblems defined by two consecutive stabbing lines each. A greedy sweep-line algorithm
finds the optimal solution for each of these subproblems as follows.

Lemma 6.2 The maximum total active range height of a set E of n unit squares stabbed
by two vertical lines of distance at least 1 can be computed in O(n logn) time.
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Proof. The algorithm sweeps a line from bottom to top over E , stopping at event points si
and Si for each Ei ∈ E . We maintain two priority queues Bleft and Bright of available
squares on each stabbing line, where Bleft allows to extract the leftmost and Bright the
rightmost square. Furthermore, we maintain an active set L of at most two independent
squares, one on the left and one on the right stabbing line.

In the beginning all sets are empty. At the event point si, insert Ei into list Bleft

or Bright, depending on which line stabs Ei. If Ei is the leftmost square in Bleft and it
does not intersect the currently active square on the right stabbing line then replace the
currently active square Ej on the left stabbing line by Ei. This means we set Aj = si and
ai = si. If there is no currently active square on the right stabbing line and the rightmost
square Ek in Bright and Ei are independent then add Ek to L and set ak = si. The case
that Ei is the rightmost square in Bright is handled analogously.

At the event point Si we remove Ei from its list Bleft or Bright. If Ei is one of the active
squares in L then it is also removed from L and we set Ai = Si. Furthermore, depending
on the stabbing line of Ei, we insert the leftmost (or rightmost) square Ej from Bleft

(or Bright) as the successor of Ei into L if it does not intersect the other currently active
square in L. In that case we set aj = Si.

At each point in time L contains the leftmost square on the left stabbing line and the
rightmost square on the right stabbing line—if they are independent. Thus the algorithm
activates the maximum number of independent squares (at most two) at each scale. It
remains to show that the active range is contiguous for each square. Suppose a square Ei
leaves L before the sweep line reaches Si. Then it must have been replaced by a more
extremal (left or right) square Ej . Since all square have unit height we know that Sj > Si
and thus Ei will never again be extremal and active. This shows that the solution of the
algorithm is valid.

Sorting the event points and maintaining the priority queues using a heap data structure
takes O(n logn) time. ¤

Using the algorithm described above, we optimally solve the three subproblems created
by removing the squares stabbed by, respectively, one of the sets Λi. The solution to
each of the three subproblems is at least as good as the restriction of the globally optimal
solution to the squares stabbed in the respective subproblem. Thus by the pigeon-hole
principle, the best of the three subsolutions is a (2/3)-approximation. This yields the
following theorem.

Theorem 6.7 The maximum total active range height for a set of n unit-square extrusions
can be approximated within a factor of 2/3 in O(n logn) time.

Note that the above technique can not be easily extended to a polynomial-time approxi-
mation scheme by defining sets Λ1, . . . ,Λk for some k > 3 since it is not clear how to solve
the remaining (k − 1)-line subproblems (near-) optimally in polynomial time. Unlike the
situation in Lemma 6.2, greedily activating the maximum number of independent squares
at each scale for k > 3 can result in a square being activated more than once, that is,
its active range is not a contiguous interval. This is illustrated in Figure 6.8a, where the
square in the middle has an invalid non-contiguous active range. Partitioning the plane
into square blocks (as Hochbaum and Maass [HM85] do) instead of vertical strips does
not help either since any optimal solution inside a (t× t)-block may contain active ranges
from an arbitrary number of unit squares; see Figure 6.8b, where in the depicted optimal
solution each of the n squares has a non-empty active range. Any k-element subset E ′ of
the depicted n-square instance E has H(E ′) ≈ 3 + k/n, whereas H(E) = 4−Θ(ε).
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(a) Subinstance defined by three consecutive stab-
bing lines.

ε

(b) Optimal solution of an instance with n squares
in a (3× 3)-block.

Figure 6.8: Two examples that prevent us from giving a PTAS for unit squares. Active ranges are
shaded.

6.3.4 Divide and Conquer
Arbitrary Rectangles
Agarwal et al. [AvKS98] gave an O(n logn)-time divide-and-conquer algorithm to compute
a (1/ logn)-approximation for MIS among axis-aligned rectangles. Their algorithm readily
adapts to ARO. First, the given set E of rectangles is split at the vertical line ` : x = xmed,
where xmed is the median of the at most 2n abscissae of the left and right edges of the
given rectangles. This yields the three disjoint subsets Eleft, Eright, and E` of the rectangles
in E lying left of `, lying right of `, and intersecting `, respectively. The solutions Aleft
and Aright for Eleft and Eright are computed recursively. The solution A` for E` can be
computed optimally by the simple greedy algorithm given in Lemma 6.1. Since Aleft and
Aright are independent, the algorithm returns among the two solutions Aleft ∪ Aright and
A`, the one with the larger value of the objective function. The inductive proof of the
following theorem is identical to that in [AvKS98] with the only difference that we compute
an optimal set of active ranges for the one-dimensional instance E` (using Lemma 6.1)
instead of a maximum independent set.

Theorem 6.8 The divide-and-conquer algorithm computes in O(n logn) time a (1/ logn)-
approximation to the maximum total active range height for a set of n rectangles.

6.3.5 Top-to-Bottom Fill-Down Sweep
A number of variants of 1d- and 2d-ARO are approximated within a constant factor by
Algorithm 6.1, which follows below. The idea is to sweep a line or plane downwards over
the extrusions in E , and if Ei ∈ E is selected at scale s, we “fill” Ei from s down to its
bottom—that is, we set [ai, Ai] = [si, s]. Thus we have ai = si for every Ei that contributes
to the objective function H. This effect may even be desired in the application since labels
never disappear when zooming in—unless their available range ends.

We say that Ei is available if its available range contains the current sweep scale s, and
active if its active range has already been set and contains s. Let the trace of an extrusion
be its intersection with the sweep line (or plane). We consider the intersection graph of the
traces, to which we refer as conflict graph. We are interested in scales where the conflict
graph changes. We refer to such scales as event points. The set of event points contains
all values of types Si and si; some extrusion shapes have further event points. Due to the
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types of dilation we consider, two extrusions Ei and Ej may define at most one further
event point sij 6∈ {si, sj , Si, Sj}; this is the scale where the side edges or faces of Ei and Ej
intersect. Let k be the number of type-sij events induced by E .

We make use of a subroutine, TryToPick(Ei,s), which means “if Ei does not intersect
the interior of any extrusion already chosen to be active at the current sweep scale s, then
make Ei active and set [ai, Ai] = [si, s]”.

Algorithm 6.1: Top-to-bottom fill-down sweep
Input: set E = {E1, . . . , En} of extrusions with available range [si, Si] for each Ei
Output: set T = {T1, . . . , Tn} of non-overlapping truncated extrusions Ti ⊆ Ei with

active range [ai, Ai] for each Ti
sweep a line or plane that is perpendicular to the s-axis from top to bottom
foreach event point s of type si, Si, or sij do

foreach available but inactive extrusion Ej in non-increasing order of Sj do
TryToPick(Ej,s)

Next, we describe a generic implementation of Algorithm 6.1 that uses three data
structures: an event queue, an active set, and an available set. The event queue maintains
the events in the right order and supports queries for the next event. The events are
sorted by non-increasing scale and such that—whenever multiple events occur at the same
scale—the events of type si come first, then the events of type sij , and finally the events of
type Si. The active set is a data structure that maintains all extrusions that are active at
the current scale of the sweep line (or plane). Given an inactive extrusion to be activated,
the active set either adds it as a new element or reports a conflict with another extrusion
that is already active. The available set stores all extrusions that are available at the
current scale. It supports returning the available extrusions Ei sorted non-increasingly by
their Si-values.

Lemma 6.3 A generic implementation of Algorithm 6.1 runs in O(n2(k + n)) time and
takes O(k + n) space.

Proof. We use a heap for the event queue that is initialized with the 2n events of type si
and Si. The k events of type sij are added during the sweep. It thus takes O((k+ n) logn)
time and O(k + n) space to add all O(k + n) events during the algorithm. The active set
is an unordered list of extrusions; each query with a new candidate extrusion E simply
traverses the O(n) active extrusions and tests each of them for intersection with E in
constant time. If E does not intersect any active extrusion, it is appended to the list.
Deleting an element from the active set takes O(n) time. The available set is implemented
as a binary search tree storing the extrusions Ej ordered non-increasingly by their upper
available scale Sj . Each insertion and deletion takes O(logn) time.

We iterate through the events as provided by the event queue. At an event of type si
we remove Ei from either active set or available set in O(n) time. At an event of type
Si we first insert Ei into the available set in O(logn) time. Then we traverse the O(n)
extrusions in the active set and in the available set and check each of them for a side-edge
(or side-face) intersection with Ei. For each intersection found, we add the corresponding
event of type sij into the event queue. Next, at each event, regardless of its type, we
traverse the O(n) extrusions in the available set and try to pick each of them in order.
Each call to the try-to-pick routine has to check O(n) extrusions in the active set for a
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possible intersection. Hence this implementation runs in O(n2(k + n)) time and O(k + n)
space independent of the extrusion type. ¤

Let A = {(ai, Ai) | Ei ∈ E} be the solution computed by Algorithm 6.1. We say that
an extrusion Ej blocks another extrusion Ei at scale s under a given solution if Ei and Ej
overlap (that is, their interiors intersect) at s and s ∈ [aj , Aj ]. Note that this implies that
s /∈ [ai, Ai]. We say that two extrusions are independent at s if their traces at scale s are
non-overlapping. The following lemma will help prove all approximation factors in this
section.

Lemma 6.4 If, for any set E of extrusions, for any E ∈ E, and for any scale s ≥ 0, E
blocks no more than c pairwise independent extrusions at s, then Algorithm 6.1 computes a
(1/c)-approximation for the maximum total active range height.

Proof. Suppose that E ∈ E is inactive at scale s under A. Then E must be blocked at the
nearest event point above (or at) s since otherwise it would be picked by Algorithm 6.1.
Since the conflict graph changes only at event points, E is blocked at s. Thus, in A, if E
is inactive at any scale s then E is blocked at s.

If at any scale no extrusion can block more than c mutually independent extrusions, and
in A every inactive extrusion is blocked, then at any scale the number of active extrusions
in an optimal solution can be no more than c times the number in A. Integrating over all
scales proves the lemma. ¤

For each of the extrusion shapes covered in this section we determine a value for c,
usually 2 or 4. For example, it is easy to see that c = 2 holds for unit-width rectangles
(or, more generally, for any set of rectangles where the x-order of the left edges is the
same as the x-order of the right edges), so Algorithm 6.1 yields a (1/2)-approximation.
(Theorem 6.6 states the same result via a different algorithm based on line stabbing.)

We can improve the running time of Algorithm 6.1 over the generic implementation of
Lemma 6.3 by using enhanced, extrusion-specific data structures for active set and available
set that support the query operations described in the following implementation. The
crucial idea for speeding up the implementation is to quickly find an available extrusion
that can be activated rather than testing at every event all available extrusions.

We iterate through the events provided by the event queue. Depending on the type of
the current event we apply one of the following three procedures.

• For an event of type si we remove extrusion Ei either from the active set or from the
available set. If Ei was an active extrusion we determine the region of the current
sweep line or plane that had been blocked by Ei and query the available set for an
available extrusion Ej within that region that has largest Sj value. Extrusion Ej—if
it exists—is removed from the available set and added to the active set. Its active
range [aj , Aj ] is set to [sj , si]. Depending on the parameter c, which determines how
many independent extrusions can be blocked by a single extrusion (see Lemma 6.4),
we need to repeat the query for another available extrusion up to c times with
appropriately modified query regions.

• For an event of type Si we query the active set for conflicts with the new extrusion
Ei. If it does not intersect any active extrusion, we add Ei to the active set and
assign the active range [ai, Ai] = [si, Si]. Otherwise we add Ei to the available set.
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• For an event of type sij such that one of the two extrusions Ei and Ej , say Ei, is
active, we try to add the other by querying the active set for conflicts. If there are
no conflicts, we remove Ej from the available set and add it to the active set. In this
case its active range is set to [aj , Aj ] = [sj , sij ].

We need to be careful if multiple events of type si share the same scale s. It is important
that we remove all extrusions that become inactive at s from the active set before we query
the available set for new extrusions to activate. We build a list of the regions freed on the
sweep line (or plane) by each removed extrusion at scale s such that overlapping regions are
merged. Subsequently, we query the available set with each of those regions. Similarly, for
multiple events of type sij at the same scale s (such that Ei is active and Ej is inactive),
we first build a list of the inactive extrusions Ej sorted non-increasingly by the Sj-values.
Afterwards, we try to pick these extrusions in the given order.

The implementation described above yields the following lemma.

Lemma 6.5 Algorithm 6.1 can be implemented performing O(n) insertions into available
set and active set, O(n) deletions from available set and active set, O(cn) range queries to
the available set, and O(k + n) conflict queries to the active set.

The actual running time still depends on the insertion, deletion, and query times of the
extrusion-specific data structures used for active set and available set. In the remainder
of this subsection we discuss different extrusion types. For each type we analyze the
performance of Algorithm 6.1 in terms of approximation factor as well as time and space
complexity.

Congruent Trapezoids
In this part we consider the 1d-ARO problem for congruent trapezoids as the extrusion
shapes.

Lemma 6.6 Algorithm 6.1 approximates the maximum total active range height of a set of
n congruent trapezoids within a factor of 1/2.

Proof. We show that if a trapezoid Ej blocks another trapezoid Ei at scale s under solution
A, then Ei must intersect at least one side edge of Ej at scale s. This implies c = 2 in
Lemma 6.4, and thus yields the approximation factor of 1/2.

Suppose Ej blocks Ei at s. If Si ≤ Sj then Ei is at least as wide as Ej at s and it must
intersect a side edge of Ej . Otherwise, if Si > Sj then Ei is available at scale Aj , too, when
Algorithm 6.1 selects Ej , and since the trapezoids are wider at higher scales, Ei and Ej
also intersect at scale Aj . Recall that the algorithm selects the extrusions in non-increasing
order of the scale of their top edges. Since it picks Ej and not Ei, Ei must be blocked by
another trapezoid at scale Aj that does not block Ej . Thus, Ei must intersect a side edge
of Ej at scale Aj , and since they are congruent, it still intersects a side edge at scale s.¤

In order to improve the time and space complexity of Algorithm 6.1 for congruent
trapezoids over Lemma 6.3 we first describe an implementation of the event queue that is
more space efficient.

Lemma 6.7 For 1d-ARO problems the event queue can be implemented to iterate through
all events in O((k + n) logn) time and O(n) space.



6.3 Algorithmic Toolbox 129

E

ρ(E) λ(E)

s

x

`
p q

λ(p) ρ(q)

E′

(a) The (λ, ρ)-coordinates of a trapezoid E. Trapezoid E′ can
be activated in the free interval [p, q] on `.

λ

ρ

λ(p)

ρ(q)
δ(E′)

(b) Query region for finding
δ(E′) in (λ, ρ)-space.

Figure 6.9: Transformation to (λ, ρ)-coordinates.

Proof. As before the event queue is implemented as a heap. It is initialized with the
2n events of types si and Si for all Ei in E . This takes O(n logn) time. During the
sweep we simultaneously detect events of type sij that lie ahead and insert them into the
event heap using a standard algorithm for finding line segment intersections [dBCvKO08,
Theorem 2.4]. This algorithm stores the horizontal order of the line segments (in our case
the side edges of the trapezoids) intersecting the sweep line and considers only intersections
between neighboring segments in this order. Therefore, it is possible that type-sij events
are inserted into and removed from the event heap several times whenever the horizontal
order of the segments changes. Still, all insertions and deletions in the event heap take
O((k + n) logn) time. By detecting the events of type sij on the fly at most O(n) such
events are stored in the heap in each step of the algorithm. ¤

We give the running time and space complexity of the algorithm in the following lemma
by using the event queue of Lemma 6.7 and describing the data structures used for active
set and available set.

Lemma 6.8 Given a set of n congruent trapezoids, Algorithm 6.1 can be implemented to
run in O(k logn+ n log2 n) time and O(n logn) space, where k is the number of side-edge
intersections between pairs of trapezoids.

Proof. Our implementation uses the event queue of Lemma 6.7 to iterate through the
events. The active set is implemented as a balanced binary search tree in which the active
trapezoids are ordered from left to right by their (disjoint) intersections with the sweep
line. Thus insertions, deletions, and conflict queries all take O(logn) time.

For an efficient implementation of the available set we take advantage of the fact that
all trapezoids are congruent. This allows us to transform them into a dual space. We
assume that all trapezoids lie above the x-axis. For a trapezoid E we denote the abscissae
of the intersections of the x-axis and the downward extensions of the left and right edges
of E by λ(E) and ρ(E), respectively. This defines a point δ(E) = (λ(E), ρ(E)) in the dual
space. Similarly, we map an arbitrary point p above the x-axis to a point δ(p) in the dual
space using the abscissae of the intersections of the x-axis and lines with the same slopes
as the left and right edges of the trapezoids. Figure 6.9 shows the transformation into the
dual space. Most importantly, note that in Figure 6.9a we can activate the trapezoid E′ in
the free space defined by the line segment [p, q] if λ(E′) ≥ λ(p) and ρ(E′) ≤ ρ(q).

Now we can implement the available set as a two-dimensional dynamic priority range tree.
A dynamic priority range tree is a dynamic range tree [dBCvKO08, Chapter 5.3], which
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stores the points δ(E) for all available but inactive trapezoids E. It consists of a first-level
tree based on the λ-coordinates and for each of the nodes of that tree a second-level tree
based on the ρ-coordinates. The difference from a standard range tree is that each node in
a second-level tree is augmented with a pointer to the leaf in its subtree that has highest
priority, in our case has largest Si-value. A range query on this data structure asks for
the point δ(Ei) with maximum Si among all points within a rectangular region in (λ, ρ)
space. Such a query for the single point with highest priority in the query region takes
O(log2 n) time—in contrast to O(κ+ log2 n) time to report all κ points in that region. In
particular, a query with the region [λ(p),∞)× (−∞, ρ(q)] returns the trapezoid Ei with
largest Si-value that can be activated in the free space defined by the line segment [p, q],
see Figure 6.9b. Inserting Ei into the active set splits [p, q] into two parts [p, p′] and [q′, q]
to the left and right of Ei. We also query the available set with the regions corresponding
to these two intervals in order to find a second independent extrusion to activate. Since
an extrusion can block at most two other independent extrusions we add at most two
extrusions to the active set and do not need more queries. Insertions and deletions in the
available set take O(log2 n) time each.

Since each operation on the active set takes O(logn) time and each operation on the
available set takes O(log2 n) time, the total running times add up to O((k + n) logn) time
for the active set and O(n log2 n) time for the available set according to Lemma 6.5. The
active set uses O(n) space, and the available set uses O(n logn) space. Together with the
event queue of Lemma 6.7 this yields the desired time and space bounds. ¤

Combining Lemmas 6.6 and 6.8 yields the following.

Theorem 6.9 A (1/2)-approximation for the maximum total active range height of a set of
n congruent trapezoids can be computed in O(k logn+ n log2 n) time and O(n logn) space,
where k is the number of side-edge intersections between pairs of trapezoids.

Congruent Frusta
Axis-aligned congruent square frusta are the 2d-ARO analogues of the congruent trapezoids
in the previous paragraph. Here, a blocked frustum must intersect a side face of its blocker.
The number of independent frusta that can intersect a single face depends on W , the ratio
of the length of the top edges of each frustum to the length of the bottom edges.

Theorem 6.10 Algorithm 6.1 computes a 1/(4W )-approximation for the maximum total
active range height of a set of n axis-aligned congruent square frusta in O(n2(k + n)) time
and O(k+n) space, where k is the number of side-face intersections between pairs of frusta.

Proof. We first show that if a frustum Ej blocks another frustum Ei at scale s under
solution A, then Ei must intersect at least one side face of Ej at scale s. So suppose
Ej blocks Ei at s. If Si ≤ Sj then Ei is at least as large as Ej when considering their
intersections with the sweep plane at scale s, so Ei must intersect a side face of Ej .
Otherwise, if Si > Sj then Ei is available at scale Aj , too, when Algorithm 6.1 selects Ej ,
and since the frusta are larger at higher scales, Ei and Ej also intersect at Aj . Since the
algorithm picks Ej and not Ei (which it considers first), Ei must be blocked by another
frustum at Aj that does not block Ej . Thus, Ei must intersect a side face of Ej at Aj , and
since the extrusions are congruent, it still intersects a side face of Ej at scale s.

This implies that an extrusion E can block at most 4W independent extrusions at any
scale s.Thus the approximation factor of 1/(4W ) follows from Lemma 6.4. Running time
and space requirements follow directly from Lemma 6.3. ¤
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Trapezoidal Segments of Congruent Underlying Triangles

Here we consider the 1d-ARO problem with proportional dilation, where the extrusions
are trapezoidal segments of congruent underlying triangles that have their apexes on the
x-axis.

Theorem 6.11 Algorithm 6.1 computes a (1/2)-approximation for the maximum total active
range height of a set of n trapezoidal segments of congruent triangles in O((k + n) logn)
time and O(n) space, where k is the number of side-edge intersections between pairs of
trapezoids.

Proof. Since the underlying triangles are congruent and horizontally aligned, the width
of every trapezoid is the same at each scale. This implies that any trapezoid blocked by
another trapezoid E intersects a side edge of E. Thus, at most two extrusions blocked
by E at scale s can be independent at s, and the approximation factor 1/2 follows from
Lemma 6.4.

In the implementation of the algorithm we use the event queue of Lemma 6.7. For the
active set and available set data structures note that we have a natural representation
of the extrusions as the x-values of the apexes of the underlying triangles. With this
representation we can easily determine the query interval on the x-axis that contains
all cones within a given interval [p, q] at the current sweep scale. For a point p on the
current sweep line let pleft and pright be the apex locations on the x-axis of two hypothetical
triangles having p on their left and right side edge, respectively. Figure 6.10 shows how
the interval [p, q] on the current sweep line corresponds to the interval [pleft, qright] on the
x-axis.

We implement the active set as a balanced binary search tree storing the x-position of
the active apexes. We implement the available set as a priority search tree storing the
x-position of the apexes with the Si-values as priority.

Insertions and deletions in the active set take O(logn) time each. A conflict query with
a candidate extrusion E finds the two active extrusions to the left and to the right of E in
O(logn) time and tests them for intersection with E at the current sweep scale in constant
time.

Insertions and deletions in the available set also take O(logn) time each. A query region
for the available set is an interval on the x-axis and the extrusion with highest priority
in this interval is found in O(logn) time. Note that if an extrusion Ei is removed from
the active set at event si, this yields a free interval [p, q] on the sweep line at scale si
defined by the two active neighbors of Ei, see Figure 6.10. Thus the query interval for the
available set is [pleft, qright]. If an extrusion Ej is found, let q′ and p′ be the left and right
intersection points of Ej with the sweep line, respectively. In a second step we also need to
query the available set with the intervals [pleft, q′right] and [p′left, qright] on either side of Ej
searching for a second independent extrusion to activate. In the example of Figure 6.10,
extrusion Ek will be found in the query [p′left, qright]. Since an extrusion can block at most
two other independent extrusions, we add at most two extrusions to the active set in this
step, and we do not need more queries.

Since each operation on both the active set and the available set takes O(logn) time,
Lemma 6.5 yields a total running time of O((k + n) logn). By Lemma 6.7 this is also the
time needed to iterate through all events. All three data structures use O(n) space. ¤
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Figure 6.10: At the event si the available set is queried for the extrusion Ej with largest Sj-value in
the interval [pleft, qright]. Active extrusions are filled with dark gray, available extrusions
with light gray.

Frustal Segments of Congruent Underlying Square Cones
In this part we are concerned with extrusions that are frustal segments of underlying axis-
aligned congruent square cones with their apexes at s = 0. This is the 2d-ARO equivalent
of trapezoidal segments of congruent triangles, which we have treated in Theorem 6.11. As
in the previous section we can represent each extrusion by the position of the apex of its
underlying cone.

Theorem 6.12 Given a set of n frustal segments of axis-aligned congruent square cones,
Algorithm 6.1 computes a (1/4)-approximation for the maximum total active range height
in O((k + n) log2 n) time and O(k + n logn) space, where k is the number of side-face
intersections between pairs of frusta.

Proof. Since the intersection of any extrusion with the sweep plane at scale s has the same
constant size, we know that any extrusion blocked by an extrusion E at s must intersect
one of the four corner edges of E at s. (Two side faces meet at a corner edge.) This means
that at most four blocked extrusions can be independent and the approximation factor of
1/4 follows from Lemma 6.4.

The implementation of Algorithm 6.1 uses an event queue realized as a heap that is
initialized with the events of type si and Si. The active set is implemented as a two-
dimensional range tree, and the available set is implemented as a two-dimensional priority
range tree (see Lemma 6.8). In both range trees the extrusions are represented by the apex
positions of their underlying cones in the (x, y)-plane, where the priority for the available
extrusions is their Si-value.

Insertions and deletions in the range trees take O(log2 n) time. Since the extrusions are
square cones, the query region for a conflict query of the active set with an extrusion E
at scale s is a square in the (x, y)-plane. This square contains the apex locations of all
extrusions that intersect E at scale s and can be easily computed in constant time. Thus a
conflict query takes O(log2 n) time. Similarly, the query region for a range query to the
available set at an event of type si is the square region in the (x, y)-plane that contains
the apexes of all available extrusions that intersect Ei at scale s. If an extrusion Ej with
highest priority is found, we perform a second query to the available set for the next
extrusion that intersects Ei but not Ej at scale s. This query region is L-shaped and can
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be composed of two rectangular range queries. Since each extrusion can block up to four
independent extrusions, we need to perform up to four range queries to the available set at
each event of type si, where each query is composed of a constant number of rectangular
range queries. Thus each query to the available set also takes O(log2 n) time.

Finally, at each event of type Si, we query the active set and the available set for all
extrusions that intersect a side face of Ei in the interval [si, Si]. These extrusions are found
using a query region that is a square annulus (the area between two concentric axis-aligned
squares) and thus can be composed of four rectangular queries. Each intersection results
in an event of type sij that is added to the event queue. In total, k such events are found
in n queries that take O(k+ n log2 n) time. Since the event queue handles O(k+ n) events
it has a running time of O((k + n) logn) and uses O(k + n) space.

Thus Lemma 6.5 yields a running time of O((k + n) log2 n). The three data structures
use O(k + n logn) space. ¤

Simple ARO with axis-aligned congruent square cones is a special case of the above,
where [s1, S1] = . . . = [sn, Sn] = [0, Smax], so we immediately get the following corollary.

Corollary 6.1 Given a set of n axis-aligned congruent square cones, Algorithm 6.1 computes
a (1/4)-approximation for the maximum total active range height in O((k + n) log2 n) time
and O(k + n logn) space, where k is the number of pairs of intersecting cones.

6.3.6 Level-Based Small-to-Large Greedy Algorithm
In this section we give an algorithm for simple 2d-ARO with cones whose bases are axis-
aligned squares. Rather than sweeping the events defined by the extrusions themselves,
the algorithm in this section is based on intersecting the cones with O(logn) horizontal
planes or levels. On each of these levels we activate some extrusions before we proceed
to the next (lower) level. This yields a (1/24)-approximation for arbitrary cones and
a (1/4 − ε)-approximation for congruent cones. The latter result is slightly worse than
the 1/4-approximation stated in Corollary 6.1, but the running time of the level-based
algorithm is independent of k, the number of pairs of intersecting cones, which may be
quadratic in n. We start with the general result.

Arbitrary Axis-Aligned Square Cones

Algorithm 6.2 below works in O(logn) phases, where phase i deals with the situation on a
horizontal plane πi at scale σi = Smax/2i. The phases are numbered 0 to Nk = dlogα kne,
where α = (k + 1)/k and k ≥ 1 is an integer-valued parameter that will become important
only when we treat congruent square cones below. Here we set k = 1, which yields
N1 = dlog2 ne. For ease of presentation we add a dummy plane πNk+1 at scale s = 0.

The trace of Ej at the scale σi of plane πi is a square that we denote as Eij .We
call Eij active if Ej is active at scale σi. Since we consider simple ARO, it holds that
a1 = · · · = an = 0, and it remains to set A1, . . . , An. The algorithm works as follows.

When the algorithm terminates, all squares at level i that are inactive must intersect an
active square—they are blocked. We associate each blocked square Eij to one of the active
squares in the following way:

(i) if Eij was not blocked at the beginning of phase i but became blocked by a newly
activated square Eik, then associate Eij to Eik;
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Algorithm 6.2: Level-based algorithm for 2d-ARO
Input: set E = {E1, . . . , En} of axis-aligned square cones with available range [si, Si]

for each Ei
Output: set T = {T1, . . . , Tn} of non-overlapping truncated extrusions Ti ⊆ Ei with

active range [ai, Ai] for each Ti
initialize all extrusions as inactive and set [ai, Ai] = [0, 0]
for phase i = 0 to Nk do

σi ← Smax/2i
Ci ← set of inactive squares in plane πi that do not intersect any active square
while Ci 6= ∅ do

Eij ← smallest square in Ci
mark Eij as active and set Aj = σi
remove Eij and all squares intersecting it from Ci
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Figure 6.11: Intersection behavior of Ej , Ek, and El at different levels.

(ii) if Eij was blocked in the beginning of phase i then associate Eij to any of its blocking
squares that were active at the beginning of phase i.

Next, we show that the squares associated to an active square cannot be arbitrarily
small.

Lemma 6.9 Let Eik be an active square at level i with side length `ik. Then any square
associated to Eik has side length at least `ik/3 and intersects the boundary of Eik.

Proof. Let Eij be a blocked square associated to Eik. If Eij is associated to Eik by case (i)
above we know that the side length of Eij is larger than `ik by the order in which Algorithm 6.2
selects the squares. There is nothing to show in this case.

So assume Eij is associated to Eik by case (ii) and let h < i be the largest level in
which Ehj is not associated to Ehk . (If there is no such level h then case (i) applies to E0

j

and E0
k and the statement of the lemma holds.) Thus at level h we have Ehj associated

to some other active square Ehl . Since E
h+1
k blocks Eh+1

j in the beginning of phase h+ 1
we know that Ehk is already active and hence does not intersect Ehl . On the other hand,
both Ehk and Ehl must intersect Ehj . This situation is depicted in Figure 6.11a.

Let `ij be the side length of Eij and suppose `ij < `ik/3. Going to level i − 1 the side
lengths of the squares Ei−1

j and Ei−1
k are doubled, which means that Ei−1

j is fully contained
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j

Figure 6.12: At most 12 pairwise independent squares of side length at least `ij/3 intersect Eij .

in Ei−1
k , see Figure 6.11b. This also holds for level h ≤ i− 1 and thus Ehj cannot intersect

the active square Ehl , since Ehl is disjoint from Ehk—a contradiction. For the same reason Eij
must intersect the boundary of Eik. ¤

We denote the active segments of the extrusions between planes πi−1 and πi in the
optimal solution S by Si and in the solution A of our algorithm by Ai, respectively. We
charge the active range height H(Si) to that of H(Ai+1).

Lemma 6.10 For each i ∈ {1, 2, . . . , Nk − 1} it holds that H(Ai+1) ≥ H(Si)/24.

Proof. Let square Eij be active in A and consider the set D(Eij) of squares in πi associated
to it. Clearly, the squares in D(Eij) that correspond to active extrusions in Si cannot
intersect each other.

By Lemma 6.9, all squares in D(Eij) have side length at least `ij/3 and intersect the
boundary of Eij . Thus, at most 12 of those squares can be independent in πi and hence
active in Si as in Figure 6.12. Now the height between levels i and i − 1 is twice the
height between levels i+ 1 and i. Hence the contribution of Ej to H(Ai+1) is at least 1/24
times the contribution to H(Si) of the active extrusions in Si whose squares at level i are
associated to Eij . It follows that H(Ai+1) ≥ 1/24 H(Si).

Theorem 6.13 Algorithm 6.2 computes a (1/24)-approximation for the maximum total
active range height of a set of n axis-aligned arbitrary square cones in O(n log3 n) time
and O(n logn) space.

Proof. In order to show the approximation factor it remains to compare H(SNk)+H(SNk+1)
to H(ANk+1) +H(A1). The scale of πNk−1 is at most 2Smax/n and obviously there are at
most n active cone segments in S below πNk−1, so their total active range height is at most
2Smax. On the other hand, there is at least one active cone segment in A1 of height Smax/2
so that we can charge H(SNk) + H(SNk+1) to H(A1). Together with Lemma 6.10 this
implies the approximation factor of 1/24.

For an efficient implementation of Algorithm 6.2 we store the squares in each level i in
a two-dimensional segment tree τi, which supports deletion in O(log2 n) time [dBCvKO08,
Chapter 10.3]. For each square Eij that has been activated at a previous level we delete all
intersecting squares as follows. Place vertices at each corner of Eij and two vertices on each
edge equidistantly. Query τi with each of these 12 vertices and delete the returned squares
from τi. As the side length of intersecting squares is at least `ij/3 (see Lemma 6.9) these
points suffice to find all intersecting squares. From the remaining squares the algorithm
iteratively chooses the smallest one. By querying τi with the four corner points of the
chosen square we identify and remove all intersecting squares, which are larger and thus
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must contain one of the corner points. Since a deletion takes O(log2 n) time, Algorithm 6.2
needs O(n log2 n) time per level. The storage of τi is O(n logn).

Since there are O(logn) levels the total running time is O(n log3 n). ¤

Congruent Axis-Aligned Square Cones
For axis-aligned congruent square cones, all squares Eij in plane πi have the same size.
This has two consequences. First, it simplifies implementing Algorithm 6.2: any square is
“smallest”. Second, at most four independent squares can intersect a given square. Thus the
analysis in the previous section immediately yields a (1/8)-approximation. We can however,
do better in this case by using a denser set of planes, that is by setting the parameter k to
a larger value.

Recall that α = (k+1)/k. We define πi to be the horizontal plane at scale σi = Smax/α
i

for i = 0, . . . , Nk. Note that for k = 1 this yields the same set of planes as in the case of
arbitrary square cones that we considered above. As before, Si and Ai denote the active
segments of the extrusions between πi−1 and πi in the optimal solution and the solution of
our algorithm, respectively.

Lemma 6.11 For each i ∈ {1, 2, . . . , Nk − 1} it holds that H(Ai+1) ≥ H(Si)/(4α).

Proof. Let Eij be a square in πi that is active in A. Since all squares in πi have the same
size there are at most four squares intersecting Eij that are active in S; let Di

j denote the
set of those squares. Since the height difference between πi−1 and πi is α times the height
difference between πi and πi+1, we know that the contribution of Ej to H(Ai+1) is at
least 1/(4α) times the contribution of Di

j to H(Si). ¤

Theorem 6.14 Algorithm 6.2 computes a (1/4− ε)-approximation for the maximum total
active range height of a set of n axis-aligned congruent square cones in O(n/ε·log(n/ε) logn)
time and O(n logn) space.

Proof. Given Lemma 6.11 it remains to compareH(SNk)+H(SNk+1) toH(ANk+1)+H(A1).
The scale of πNk−1 is at most α · Smax/(kn) and obviously there are at most n active cone
segments in S below πNk−1, so their total active range height is at most α/k · Smax. On
the other hand, there is at least one active cone segment in A1 of height Smax/(k + 1).
We can charge H(SNk) + H(SNk+1) to H(A1), which is smaller by at most a factor of
1/α2 ≥ 1/4. Together with Lemma 6.11 this implies an approximation factor of 1/(4α).
Let k = 1/(4ε)− 1 to obtain a (1/4− ε)-approximation.

The implementation of Algorithm 6.2 uses an augmented dynamic range tree [MN90]
for each level. It stores the squares Eij , j = 1, . . . , n, in the plane πi represented as
the apexes of their underlying cones in the (x, y)-plane. This is possible since all cones
are congruent and thus the mapping between apexes and squares is bĳective. A query
for all squares that intersect a given square Eij easily translates into a range query for
the corresponding apexes in the range tree. The augmented dynamic range tree can be
constructed in O(n logn) time and space since only deletions and no insertions need to
be supported. Each deletion takes O(logn) time such that the running time per level
is O(n logn) (see the proof of Theorem 6.13). The number of levels in Algorithm 6.2 is
O(logα kn) = O((log kn)/ logα). For k ≥ 1 we have αk ≥ 2 and thus 1/ logα ≤ k. Now we
can bound the number of levels by O(k log(kn)) = O(1/ε · log(n/ε)). This yields the desired
running time of O(n/ε · log(n/ε) logn). The space consumption remains O(n logn). ¤
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6.4 Concluding Remarks
Dynamic map labeling is an exciting new subdiscipline of map labeling inspired by interac-
tive web-mapping applications. In this chapter we have presented an extensive, rigorous
algorithmic study of the active range optimization (ARO) problem for dynamic map label-
ing. For labeling features in the 2d-plane we have shown that even the simplest variants of
ARO are NP-complete. For 1d-ARO we have shown NP-completeness for a variant where
the extrusions are squares of at least two different sizes. In the algorithmic part we have
presented a toolbox of an exact algorithm and several approximation algorithms for 1d-
and 2d-variants of ARO with various extrusion shapes, see Table 6.1 in Section 6.1.

Open problems. In spite of the multitude of results obtained in this chapter, many
unsolved open questions remain in dynamic map labeling. An obvious question is whether
any approximation factor can be improved, or whether any of the problems admits a
polynomial-time approximation scheme. (Some obvious attempts for such a scheme do not
work, see Section 6.3.3.) Furthermore, the complexity of general 1d-ARO is still unknown
for regular shapes such as unit squares, congruent trapezoids, and segments of congruent
triangles.

Mapping applications in practice often need to work with more complex labeling models,
such as labels of different lengths and fonts; non-axis-aligned labels; non-rectangular labels,
such as a road label that follows a curvy road; and sliding labels—that is, non-invariant point
placements. Any of these raises a number of interesting theoretical questions. Moreover,
given the growing popularity of interactive dynamic maps, it is important to devise efficient
heuristics or approximation algorithms that can deal with these more realistic labeling
models and that at the same time adhere to the consistency criteria in order to resolve the
labeling inconsistencies found in today’s systems.
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Chapter 7

Optimal Tanglegram Layout

A tanglegram is a comparative visualization of a pair of trees on the same set of leaves.
It consists of two facing planar tree drawings such that the leaves are arranged on two
parallel lines, one for each tree. Since both trees use the same set of leaves we can connect
each pair of corresponding leaves in the two trees by a straight-line inter-tree edge. Edge
crossings are a major factor reducing the readability of graph drawings [Pur97] and thus
a natural objective for a tanglegram is to find plane drawings of the two trees such that
the number of inter-tree edge crossings is minimized. Applications of tanglegrams arise in
areas that deal with comparing visualizations of hierarchical data in the form of trees, for
example, phylogenetics or clustering.

In this chapter we study the tanglegram layout problem theoretically and experimentally
with a focus on binary trees. On the theoretical side, we show that minimizing the number
of crossings is NP-complete, even for complete binary trees. On the one hand, we show
that under the Unique-Games Conjecture the problem is hard to approximate within a
constant factor for general binary trees, but, on the other hand, we give a recursive factor-2
approximation algorithm for complete binary trees. For the latter case we also give a simple
fixed-parameter algorithm. On the experimental side, we are interested in algorithms that
can solve instances as they typically arise in the application areas optimally or at least
near-optimally. To that end we give an integer-linear program and a new branch-and-
bound algorithm to compute exact solutions on which we base our experimental analysis.
The experiments evaluate the performance of several algorithms, including our recursive
algorithm, previously suggested heuristics, and a new greedy heuristic that is based on our
exact branch-and-bound algorithm. It turns out that the greedy heuristic is at least as
good as the best of the other algorithms and often finds optimal solutions; at the same
time it is fast enough to be applied in practice. The chapter is based on joint work with
Kevin Buchin, Maike Buchin, Jaroslaw Byrka, Danny Holten, Yoshio Okamoto, Rodrigo I.
Silveira, Markus Völker, and Alexander Wolff [BBB+09, NVWH09].

7.1 Introduction
Tanglegrams are visualizations of pairs of trees whose leaf sets are in one-to-one correspon-
dence [Pag02]. The need to visually compare pairs of trees arises in applications such as
evolutionary biology or clustering.

In biology, a phylogenetic tree (or phylogeny) is a (rooted) binary tree that describes
a hypothesis of the evolutionary history of a set of species (or taxa) that are placed at
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(a) Arbitrary layout. (b) Optimal layout.

Figure 7.1: A binary tanglegram of two phylogenies for lice of pocket gophers [HSV+94].

the leaves of the tree. Each inner node represents a potential ancestor of the taxa at
its child nodes and the general aim is to group together related species into subtrees.
Tree reconstruction is usually done based on the DNA or protein sequences of a set of
taxa according to various criteria and by various algorithms such as maximum parsimony,
maximum likelihood, or neighbor joining [NK00], to name but a few. Since none of these
methods can guarantee to reconstruct the correct tree, biologists often generate a set of
candidate trees. For them it is important to have good support for comparing trees in
order to draw the right conclusions from potentially contradicting tree topologies. Different
phylogenies can be compared using various tree-distance measures [DHJ+97, Bil05], but
it is also important to graphically depict the trees. A good drawing of the trees helps
biologists to recognize and compare different substructures of the phylogenies. It provides
more information than a single numeric value such as a tree distance can do. Moreover,
tree drawings are often used to communicate the findings of a study to its readers. For this
purpose, tanglegrams are now a frequently used visualization method for pairs of related
phylogenies [Pag02]. Figure 7.1 shows an example.

In clustering, our second application, clusters are often computed incrementally: in the
beginning each object forms its own cluster, and then, step by step, the pair of clusters
that is closest according to some distance measure is joined. This is called agglomerative
clustering. Alternatively, in divisive clustering, there is one initial cluster containing all
objects, which is iteratively split into two child clusters until we end up with the set of
singleton clusters. Such a hierarchical clustering is naturally represented by a binary tree
called dendrogram, where elements are represented by the leaves and each inner node of
the tree represents a cluster containing the leaves in its subtree. Similarly to phylogenetic
tree reconstruction, a dendrogram often reflects only a hypothesis of how the clustered
objects could be related. Again, there are various clustering algorithms and parameter
settings to generate multiple different dendrograms for the same data. From similarities and
differences found in a set of dendrograms a data analyst can gain valuable insights into the
nature of the studied data. Thus tanglegrams can be used as a means to visually compare
pairs of dendrograms in clustering applications just as they are used in phylogenetics.

From the application point of view it makes sense to insist that (a) the two trees
themselves are drawn plane, that is, without edge crossings, (b) each leaf of one tree is
connected by an inter-tree edge to the corresponding leaf in the other tree, and (c) the
number of crossings among the inter-tree edges is minimized. This results in legible



7.1 Introduction 141

tanglegram drawings: each tree is drawn in the usual style (for example rectilinear) and
distracting crossings of inter-tree edges are kept to a minimum. Edge crossings have been
empirically found as a major source of reduced legibility of graph layouts [PCJ97, Pur97].
Note that we are interested in the minimum number of crossings for visualization purposes.
The number of crossings is not intended to be a tree-distance measure. Examples for
such measures are nearest-neighbor interchange, subtree transfer [DHJ+97], and tree edit
distance [Bil05]. Following the bioinformatics literature [Pag02, LPR+08], we refer to this
crossing minimization problem as the tanglegram layout problem; Fernau et al. [FKP05]
used the term two-tree crossing minimization.

Model. We denote the set of leaves of a tree T by L(T ). We are given two rooted
trees S and T with n leaves each. The trees S and T must be uniquely leaf-labeled, that
is, there are bĳections λS : L(S) → Λ and λT : L(T ) → Λ into the set of labels Λ,
for example, Λ = {1, 2, . . . , n}. These two labelings induce the set of inter-tree edges
EST = {uv | u ∈ L(S), v ∈ L(T ), λS(u) = λT (v)}. Now the tanglegram layout problem
can be stated formally as follows.

Problem 7.1 (Tanglegram Layout (TL)) Given a pair 〈S, T 〉 of two uniquely leaf-labeled
rooted trees S and T on n leaves, find a tanglegram layout, that is, two plane drawings of
S and T , such that

1) the drawing of S is to the left of the line x = 0 with all leaves on x = 0,
2) the drawing of T is to the right of the line x = 1 with all leaves on x = 1,
3) the inter-tree edges EST are drawn as straight-line segments, and
4) the number of inter-tree edge crossings is minimum.

Let the crossing number of a TL instance 〈S, T 〉 be the minimum number of inter-tree
edge crossings of any tanglegram layout of 〈S, T 〉. Given a tree T , we say that a linear
order of L(T ) is compatible with T if for each node v of T the leaves in the subtree of v
form an interval in the order. Note that the TL problem is purely combinatorial. Given a
permutation π of {1, . . . , n}, we call (i, j) an inversion in π if i < j and π(i) > π(j). For
fixed orders σ of L(S) and τ of L(T ) we define the permutation πτ,σ, which for a given
position in τ returns the position in σ of the leaf having the same label. Now in this
terminology, the TL problem consists of finding an order σ of L(S) compatible with S
and an order τ of L(T ) compatible with T such that the number of inversions in πτ,σ is
minimum.

Contributions. Our focus is on binary tanglegrams if not stated otherwise. We mention
the extensibility of our results to more general trees where appropriate; still, binary trees
are most relevant in phylogenetics and clustering.

There are multiple contributions of this chapter. First, in Section 7.3, we show that
binary TL is essentially as hard as the MinUncut problem. If the (widely accepted)
Unique Games Conjecture holds, it is NP-hard to approximate MinUncut—and thus
binary TL—within any constant factor [KV05]. This motivates us to consider tanglegrams
for complete binary trees. It turns out that this special case has a rich structure. We start
our investigation by giving a reduction from Max2-Sat that establishes the NP-hardness
of complete binary TL.

In Section 7.4, the main part of this chapter, we present several algorithmic approaches
to the TL problem, both for complete and for general binary trees. We start with a
recursive factor-2 approximation algorithm for complete binary TL that runs in cubic time.
Our algorithm can also process general binary tanglegrams—without guaranteeing any
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approximation ratio. For the dual problem that maximizes the number of non-crossing
edges we give a reduction to MaxCut for which the algorithm of Goemans and Williamson
yields a 0.878-approximation [GW95]. This result applies to general binary trees. Another
way to look at complete binary TL is by studying its parameterized complexity. We give a
fixed-parameter algorithm that runs in O(4kn2) time, where k is the crossing number of the
given instance. The algorithm is much faster and simpler than the previous fixed-parameter
algorithm by Fernau et al. for general binary trees [FKP05]. An interesting feature of our
algorithm is that the parameter does not drop in each level of the recursion. Finally, we
state two methods to compute optimal solutions for binary TL: a simple integer linear
program (ILP) and a new branch-and-bound algorithm. The branch-and-bound algorithm
has a variable for the order of the children in each node of the tanglegram. The algorithm
exploits the fact that the variables can be chosen independently; it chooses a variable
ordering that often yields a very good first solution, whose value can then be used as
upper bound to prune many branches of the search tree. The algorithm takes exponential
time in general, but yields a fast and simple, yet effective greedy heuristic. The heuristic
outputs—in quadratic time—the first solution that the branch-and-bound algorithm finds.

Finally, we perform an extensive experimental comparison of our recursive algorithm,
our new heuristic, and two previously known heuristics for binary TL. We present the
results of the comparison in Section 7.5. We measure the performance of the heuristics with
respect to the optimum, which we compute with the above exact methods. The test data
comprise small and medium-sized tanglegrams of up to a few hundred leaves, which are
predominantly found in practical applications. They contain randomly generated complete
and general binary trees as well as a large collection of real-world phylogenies. It turns out
in the experiments that our greedy heuristic is both very effective in finding near-optimal
solutions and fast enough to be useful in practice.

7.2 Related Work
In graph drawing the so-called two-sided crossing minimization problem (2SCM) is an
important problem that occurs when computing layered graph layouts. Such layouts have
been introduced by Sugiyama et al. [STT81] and are widely used for drawing hierarchical
graphs. In 2SCM, vertices of a bipartite graph are to be placed on two parallel lines (called
layers) such that for each vertex on one line all its adjacent vertices lie on the other line.
As in TL the objective is to minimize the number of edge crossings provided that edges
are drawn as straight-line segments. In one-sided crossing minimization (1SCM) the order
of the vertices on one of the layers is fixed. Already 1SCM is NP-hard [EW94], even if the
given graph is a forest of 4-stars [MUV02]. In contrast to TL, a vertex in an instance of
1SCM or 2SCM can have multiple incident edges and the linear order of the vertices is not
restricted to be compatible with the two input trees.

The following is known about 1SCM in terms of approximation and exact algorithms.
The median heuristic of Eades and Wormald [EW94] yields a 3-approximation and a
randomized algorithm of Nagamochi [Nag05] yields an expected 1.4664-approximation.
Dujmovič et al. [DFK04] gave a fixed-parameter algorithm that runs in O?(1.4664k) time,
where k is the minimum number of crossings in any 2-layer drawing of the given graph that
respects the vertex order of the fixed layer. The O?(·)-notation ignores polynomial factors.

Jünger and Mutzel [JM97] performed an experimental comparison of exact and heuristic
algorithms for both 1SCM and 2SCM. Their main findings were that for 1SCM the exact
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solution can be computed quickly for up to 60 vertices in the free layer, and for 2SCM
an iterated barycenter heuristic is the method of choice for instances with more than 15
vertices in each layer.

Dwyer and Schreiber [DS04] studied drawing a series of tanglegrams in 2.5 dimensions,
that is, the trees are drawn on a set of stacked two-dimensional planes. They considered
a one-sided version of binary TL by fixing the layout of the first tree in the stack, and
then, layer-by-layer, computing the optimal leaf order of the next tree with respect to the
previous one in O(n2 logn) time each. Such a one-sided TL problem is denoted as one-tree
crossing minimization (1TCM). We include an iterated version of the 1TCM algorithm that
alternately fixes one of the trees and optimizes the other as a heuristic in our experimental
comparison. Note that the efficient algorithm of Dwyer and Schreiber for 1TCM contrasts
the NP-hardness of 1SCM.

Fernau et al. [FKP05] showed how to solve 1TCM in O(n log2 n) time, proved that binary
TL is NP-hard, and gave a fixed-parameter algorithm that runs in O?(ck) time, where c is
a constant that Fernau et al. estimate to be 1024, and k is the crossing number of the given
tanglegram. They also made the simple observation that the edges of the tanglegram can
be directed from one root to the other. Thus the existence of a planar tanglegram drawing
can be verified using a linear-time upward-planarity test for single-source directed acyclic
graphs [BdBMT98]. Later, apparently unaware of these results, Lozano et al. [LPR+08]
gave a quadratic-time algorithm for the same special case, to which they refer as planar
tanglegram layout.

Zainon and Calder [ZC06] described an interactive tree comparison tool that allows
manual and automatic rearrangement of a tanglegram. Their general aim was to highlight
differences and similarities in the two trees; minimizing the number of inter-tree edge
crossings is not a direct goal of their methods. Two heuristics were implemented. The
first heuristic starts at the roots of both trees and flips the subtrees of one tree if this
increases the number of edges between the aligned subtrees; then it recurses on both pairs
of aligned subtrees. The second heuristic minimizes the triplet difference between two
n-leaf trees over all 22n−2 possible arrangements. The triplet difference counts the number
of all three-leaf subsets for which the respective induced subtrees differ in the two trees.
They recommended the following semi-automatic approach: use the first algorithm to find
a layout of the full trees and then untangle small groups of edges individually using the
second (exponential-time) algorithm, followed by some manual fine tuning.

Holten and van Wĳk [HvW08] presented a tanglegram visualization tool for the com-
parison of pairs of large (not necessarily binary) trees. Their tool repeatedly applies the
barycenter method [STT81] to reduce inter-tree crossings and a subsequent edge-bundling
technique to reduce visual clutter. The crossing reduction heuristic of Holten and van Wĳk
is included in our experimental evaluation.

7.3 Complexity
In this section we consider the complexity of binary TL, which Fernau et al. [FKP05] have
shown to be NP-complete for general binary tanglegrams. We strengthen their findings in
two ways. First, we show that it is unlikely that an efficient constant-factor approximation
for general binary TL exists. Second, we show that TL remains hard even when restricted
to complete binary tanglegrams.

We start by showing that binary TL is essentially as hard as the MinUncut problem.
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This relates the existence of a constant-factor approximation for TL to the Unique Games
Conjecture (UGC). The UGC was introduced by Khot [Kho02] in the context of interactive
proofs. It concerns a scenario with two provers and a single round of answers to a question
of the verifier. The word “unique” refers to the strategy of the verifier, who for any fixed
answer of one of the provers will accept the proof only if the other prover gives the unique
second part of the proof. The provers cannot communicate with each other. Still they want
to maximize the probability of the proof being accepted given that questions of the verifier
are drawn randomly from a given distribution. The UGC conjectures that it is NP-hard to
decide whether the optimal strategy of the provers gives them a high probability of success.

The UGC became famous when it was discovered that it implies optimal hardness-of-
approximation results for problems such as MaxCut and VertexCover, and forbids
constant factor-approximation algorithms for problems such as MinUncut and Spars-
estCut [KV05]. We reduce the MinUncut problem to the TL problem, which, by the
result of Khot and Vishnoi [KV05], makes it unlikely that an efficient constant-factor
approximation for TL exists.

The MinUncut problem is defined as follows. Given an undirected graph G = (V,E),
find a partition (V1, V2) of the vertex set V that minimizes the number of edges that are
not cut by the partition, that is, min(V1,V2) |{uv ∈ E : u, v ∈ V1 or u, v ∈ V2}|. Note that
computing an optimal solution to MinUncut is equivalent to computing an optimal solution
to MaxCut. Nevertheless, the MinUncut problem is more difficult to approximate.

Theorem 7.1 Under the Unique Games Conjecture it is NP-hard to approximate the TL
problem (Problem 7.1) for general binary trees within any constant factor.

Proof. As mentioned above we reduce from the MinUncut problem. Our reduction is
similar to the reduction in the NP-hardness proof by Fernau et al. [FKP05].

Consider an instance G = (V,E) of the MinUncut problem. We construct a TL
instance 〈S, T 〉 as follows. The two trees S and T are identical and there are three groups
of edges connecting leaves of S to leaves of T . For simplicity we define multiple edges
between a pair of leaves. In the actual trees we can replace each such leaf by a binary tree
with the appropriate number of leaves.

Suppose V = {v1, v2, . . . , vn}, then both S and T are constructed as follows. There is a
backbone path (v1

1, v
2
1, v

1
2, v

2
2, . . . , v

1
n, v

2
n, a) from the root node v1

1 to a leaf a. Additionally,
there are leaves lS(vji ) and lT (vji ) attached to each node vji for i ∈ {1, . . . , n} and j ∈ {1, 2}
in S and T , respectively. The construction of S and T is illustrated in Figure 7.2 for
the complete graph K3 = ({v1, v2, v3}, {v1v2, v2v3, v3v1}). The edges of S and T form the
following three groups:

• Group A contains n11 edges connecting lS(a) with lT (a).

• Group B contains for every vi ∈ V n7 edges connecting lS(v1
i ) with lT (v2

i ), and n7

edges connecting lS(v2
i ) with lT (v1

i ).

• Group C contains for every vivj ∈ E a single edge from lS(v1
i ) to lT (v1

j ).

Next we show how to transform an optimal solution of the MinUncut instance into a
solution of the corresponding TL instance. Suppose that in the optimal partition (V ∗1 , V ∗2 )
of G there are k edges that are not cut. Then we claim that there exists a drawing of 〈S, T 〉
such that k ·n11 +O(n10) pairs of edges cross. In the example of Figure 7.2 we consider the
cut ({v1}, {v2, v3}) with the uncut edge v2v3. It suffices to draw, for each vertex vi ∈ V ∗1
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Figure 7.2: TL instance corresponding to the graph K3 and the cut ({v1}, {v2, v3}).

(vi ∈ V ∗2 ), the leaves lS(v1
i ) and lT (v2

i ) above (below) the backbones, and the nodes lS(v2
i )

and lT (v1
i ) below (above) the backbones. It remains to count the crossings: there are k ·n11

A–C crossings, no A–B crossings, O(n10) B–C crossings, and O(n4) C–C crossings. In
Figure 7.2, we have k = 1 and accordingly n11 + 2n7 + 1 crossings in total.

Now suppose there exists an α-approximation algorithm for the TL problem with some
constant α. Applying this algorithm to the instance 〈S, T 〉 defined above yields a drawing
D(S, T ) with at most α · k · n11 +O(n10) crossings. Let us assume that n is much larger
than α. We show that from such a drawing D(S, T ) we would be able to reconstruct a
cut (V1, V2) in G with at most α · k edges uncut. First, observe that if a node lS(v1

i ) is
drawn above (below) the backbone in D(S, T ), then lT (v2

i ) must be drawn on the same
side of the backbone, otherwise it would result in n18 A–B crossings. Similarly lS(v2

i )
must be on the same side as lT (v1

i ). Then observe that if a node lS(v1
i ) is drawn above

(below) the backbone in D(S, T ), then lS(v2
i ) must be drawn below (above) the backbone,

otherwise there would be O(n14) B–B crossings. Finally, observe that if we interpret the
set of vertices vi for which lS(v1

i ) is drawn above the backbone as a set V1 of a partition of
G, then this partition leaves at most α · k edges from E uncut.

Hence, an α-approximation for the TL problem provides an α-approximation for the
MinUncut problem, which contradicts the UGC. ¤

The above negative result for (general) binary TL is our motivation to investigate the
complexity of complete binary TL. It turns out that even this special case is hard. Unlike
Fernau et al. [FKP05] who show hardness of binary TL by a reduction from MaxCut
using extremely unbalanced trees, we use a quite different reduction from a variant of
Max2-Sat.

Theorem 7.2 The TL problem (Problem 7.1) is NP-complete even for complete binary
tanglegrams.

Proof. The Max2-Sat problem is defined as follows. Given a set U = {x1, . . . , xn} of
Boolean variables, a set C = {c1, . . . , cm} of disjunctive clauses containing two literals each,
and an integer K, the question is whether there is a truth assignment of the variables such
that at least K clauses are satisfied. We consider a restricted version of Max2-Sat, where
each variable appears in at most three clauses. This version remains NP-complete [RRR98].
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Figure 7.3: High-level structure of the two trees S and T . Red edges connect clause and variable
gadgets, green edges connect corresponding gadget halves, and gray edges are dummy
edges to complete the trees.

Our reduction constructs two complete binary trees S and T , in which certain aligned
subtrees serve as variable gadgets and others as clause gadgets. We further determine
an integer K ′ such that the instance 〈S, T 〉 has less than K ′ crossings if and only if the
corresponding Max2-Sat instance has a truth assignment that satisfies at least K clauses.

The high-level structure of the two trees is depicted in Figure 7.3. From top to bottom,
the four subtrees at level 2 on both sides are a clause subtree, a variable subtree, another
clause subtree, and finally a dummy subtree. The subtrees are connected to each other by
inter-tree edges such that in any optimal solution they must be aligned in the depicted
(or mirrored) order. Each clause gadget appears twice, once in each clause subtree, and
is connected to the variable gadgets belonging to its two literals. Pairs of corresponding
gadgets in S and T are connected to each other. Finally, non-crossing dummy edges
connect unused leaves in order to make S and T complete. In the following we describe
the gadgets in more detail.

Variable gadgets. The basic structure of a variable gadget consists of two complete
binary trees with 32 leaves each as shown in Figure 7.4. Each tree has three highlighted
subtrees of size 2 labeled a, b, c and a′, b′, c′, respectively. From each of these subtrees there
is one red connector edge leaving the gadget at the top and one leaving it at the bottom.
As long as two connector edges from the same tree do not cross each other, they transfer the
vertical order of the labeled subtrees towards a clause gadget. We define the configuration
in Figure 7.4a as true and the configuration in Figure 7.4b as false. If the configuration is
in its true state, the induced vertical order of the connector edges is a < b < c, otherwise
the order is inverse: c < b < a. It can easily be verified that both states have the same
number of crossings. To see that it is optimal observe that each pair of connector edges
from the same subtree (for example, subtree a) always crosses all 26 gray edges in the
gadget. Furthermore all 24 crossings of two connector edges in the figure are mandatory.
Finally, the four crossings among the gray edges between subtrees 1 and 2′ and subtrees 2
and 1′ are also optimal. (Otherwise, if subtree 1 is aligned with subtree 2′, there are at



7.3 Complexity 147

1

2

1′

2′

a

b

c

a′

b′

c′

a
b
c

a
b
c

a′
b′
c′

a′
b′
c′

(a) x = true

2

1

2′

1′

b

a

c

b′

a′

c′

c
b
a

c
b
a

c′
b′
a′

c′
b′
a′

(b) x = false

Figure 7.4: The variable gadget in its two optimal configurations with 184 crossings. Red edges are
drawn solid, whereas dash-dot style is used for gray edges.

least 120 gray–gray crossings in addition to the 24 red–red crossings and the 156 red–gray
crossings as opposed to a total of 184 crossings in either configuration of Figure 7.4.)

Note that so far the gadget in the figure is designed for a single appearance of the
variable since the four connector-edge triplets are required for a single clause. For the
Max2-Sat reduction, however, each variable can appear up to three times in different
clauses. By appending a complete binary tree with four leaves as in Figure 7.5 to each
leaf of the gadget in Figure 7.4 and copying each edge accordingly the above arguments
still hold for the enlarged trees with 128 leaves each. Unused connector edges in opposite
subtrees are linked to each other (a to a′ etc.) as in Figure 7.5b such that the number of
crossings in the gadget remains balanced for both states.

Clause gadgets. For each clause ci = li1 ∨ li2, where li1 and li2 denote the two literals,
we create two clause gadgets: one in the upper clause subtrees and one in the lower clause
subtrees (recall Figure 7.3). Each gadget itself consists of two parts: one part that uses
the connectors from the first variable in the left tree and those from the second variable in
the right tree and vice versa. Figure 7.6 shows one such part of the gadget in the lower
clause subtrees, where the connector edges lead upwards. The gadget in the upper clause
subtree is simply a mirrored version.

The basic structure consists of two aligned subtrees with eight leaves as depicted in
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(a) A single gray edge. (b) Two pairs of connector edges for a variable used
in three clauses.

Figure 7.5: Replacing each edge by four edges.
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(a) true ∨ true: 21 crossings.
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(b) false ∨ true: 21 crossings.
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b
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false{ }false

(c) false ∨ false: 22 crossings.

Figure 7.6: The clause gadget for a clause ci = li1 ∨ li2.

Figure 7.6. Three of the leaves on each side serve as the missing endpoints for the triplets
of connector edges from the corresponding variables. Recall that for a positive literal with
value true the order of the connector edges is a < b < c, and for a positive literal with
value false it is c < b < a. (For negative literals the meaning of the orders is inverted.)
The two connector leaves for the edges labeled a and b are in the same four-leaf subtree,
the connector leaf for c is in the other subtree. Three cases need to be distinguished. If (1)
both literals are true, then the configuration in Figure 7.6a is optimal with 21 crossings. If
(2) only one literal is true, then Figure 7.6b shows again an optimal configuration with 21
crossings. Here the tree on the right side is rotated in its root node. Finally, if (3) both
literals are false, there are at least 22 crossings in the gadget as shown in Figure 7.6c. Since
this substructure is repeated four times for each clause we have 84 induced crossings for
satisfied clauses and 88 induced crossings for unsatisfied clauses.

Reduction. We construct the gadgets for all variables and clauses and link them
together as two trees S and T , which are filled up with dummy leaves and edges such that
they become complete binary trees. The general layout is as depicted in Figure 7.3, where
each dummy leaf in S is connected to the opposite dummy leaf in T such that there are no
crossings among dummy edges. In each of the four main subtrees all dummy edges are
consecutive. Thus of all dummy edges only those in the variable subtree have crossings
with exactly half the connector edges.

It remains to compute the minimum number M of crossings that are always necessary,
even if all clauses are satisfied. Then the Max2-Sat instance has a solution with at least
K satisfied clauses if and only if the constructed TL instance has a solution with at most
K ′ = M + 4(|C| −K) crossings. We get the corresponding variable assignment directly
from the layout of the variable gadgets.
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Figure 7.7: Linking adjacent variable gadgets for xi and xi+1.

The first step for computing M is to fix an order for the variable gadgets in the variable
subtree. Let this order be x1 < x2 < . . . < xn. To enforce this as the vertical order of the
variable gadgets we need to establish links between adjacent gadgets such that any other
order would increase the number of crossings. For these neighbor links we need eight of the
128 leaves in each half of each variable gadget as shown in Figure 7.7. Since both subtrees
below the root of xi in S and both subtrees below the root of xi+1 in T are connected to
each other, the minimum number of crossings of those edges is independent of the truth
state of each gadget. However, separating two adjacent variables by tree rotations at higher
levels in S and T leads to a large number of extra crossings since the eight neighbor links
would cross all variable gadgets between xi and xi+1.

Once the order of the variables is fixed, we sort all clauses lexicographically and place
smaller clauses towards the top of the clause subtrees. Consider two clause gadgets in
the same clause subtree. Then in the given clause order there are crossings between
their connector-edge triplets if and only if the intervals between their respective variables
intersect in the variable order. Since these crossings are unavoidable, the number of
connector-triplet crossings in the lexicographic order of the clauses is optimal. Now we
can finally compute all necessary crossings between connector edges, dummy edges and
intra-gadget edges which yields the number M .

Since each gadget is of constant size the two trees and the number M can be computed
in polynomial time. The fact that the complete binary TL problem belongs to the class
NP follows immediately from the NP-completeness of the general TL problem [FKP05].¤
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7.4 Algorithms
This section presents our new algorithms for the TL problem. We begin with a 2-approxi-
mation algorithm for complete binary TL followed by a reduction of the dual problem TL?
that maximizes the number of non-crossing inter-tree edges to MaxCut, which is known
to have a 0.878-approximation. After the approximation results we give a fixed-parameter
algorithm for complete binary TL. We close the section with two exact algorithms for
general binary TL: a simple ILP and a branch-and-bound algorithm that has an exponential
worst-case running time but at the same time gives rise to a fast yet effective heuristic.

7.4.1 Approximation Algorithm
We start with a basic observation about binary tanglegrams. As we have noted in the
introduction, TL is a purely combinatorial problem, that is, it suffices to determine two
leaf orders σ and τ that are compatible with the input trees S and T , respectively. These
orders are completely determined by fixing an order of the two subtrees of each inner
node v ∈ S◦∪T ◦, where S◦ and T ◦ denote the set of inner nodes of S and T . Our algorithm
will recursively split the two trees S and T at their roots into two equally sized subinstances
and determine leaf orders of S and T by choosing a locally optimal order of the subtrees
below the left and right root of the current subinstance.

Let 〈S0, T0〉 denote the input instance. We assume that an initial layout of S0 and T0
is given, that is, the subtrees of each v ∈ S◦0 ∪ T ◦0 are ordered (otherwise choose an
arbitrary initial layout). The root of a tree T is denoted as vT . For a binary tree T
with the two ordered subtrees T1 and T2 of vT we use the notation T = (T1, T2). For
each subinstance 〈S, T 〉 with S = (S1, S2) and T = (T1, T2) we need to consider the
four configurations (S1, S2) × (T1, T2) (initial layout), (S2, S1) × (T1, T2) (swap at vS),
(S1, S2) × (T2, T1) (swap at vT ), and (S2, S1) × (T2, T1) (swap at vS and vT ). For each
configuration we recursively solve two subinstances and then choose the configuration with
the minimum number of crossings.

We always split the instance 〈S, T 〉 into an upper and a lower half, that is, the subin-
stances depend on the swap decision. If we swap both vS and vT or none, the two subin-
stances are 〈S1, T1〉 and 〈S2, T2〉; if only one side is swapped, the subinstances are 〈S1, T2〉
and 〈S2, T1〉. We solve both subinstances independently. In order to achieve the desired
approximation ratio, however, we cannot ignore the swap history of the predecessor nodes
of vT and vS . This history can be regarded as two bit strings hS and hT that represent
the swap and no-swap decisions made at the previous steps of the recursion. Figure 7.8
shows an instance 〈S, T 〉 and its swap history.

The history is used to compute the number of current-level crossings of 〈S, T 〉, that
is, the number of crossings that are caused by the swap decisions made for the current
subinstance. The number of current-level crossings and the recursively computed numbers
of crossings of the subinstances determine which of the four configurations of the current
instance is the best one. An important observation that is necessary to compute the
number of current-level crossings is the following.

Observation 7.1 For each pair of inter-tree edges ab and cd, a, c ∈ L(S) and b, d ∈
L(T ), the swap decisions of the lowest common ancestors lca(a, c) and lca(b, d) completely
determine whether ab and cd cross or not. Given the order of the subtrees of lca(a, c)
swapping or not swapping the subtrees of lca(b, d) (and vice versa) causes or removes the
crossing of ab and cd.
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Figure 7.8: The context of an instance 〈S, T 〉 that is split into the subinstances 〈S1, T2〉 and 〈S2, T1〉
since T1 and T2 are swapped at vT . The swap history is indicated by binary swap
variables along the paths to the roots vS0 and vT0 .

When considering the current-level crossings of a subinstance 〈S, T 〉 we know from
the swap history which of the nodes on the paths PS and PT from vS and vT to the
roots vS0 and vT0 of the full trees, respectively, have swapped their subtrees. Hence for vS
we can compute the current-level crossings of all pairs of edges ab and cd with a ∈ L(S1),
c ∈ L(S2), and lca(b, d) ∈ PT ; analogously, we can compute the crossings of all pairs of
edges ab and cd with b ∈ L(T1), d ∈ L(T2), and lca(a, c) ∈ PS . Note that if lca(b, d) or
lca(a, c) is not one of the predecessor nodes of vT or vS , but it is a node in the subtree T
or S, then the crossing of the edges ab and cd will be considered in a subsequent step.
Otherwise, our algorithm cannot account for the crossing and we may underestimate the
number of crossings. Yet, we are able to bound this error later in Theorem 7.3.

Algorithm 7.1 defines the recursive routine RecSplit that computes our tanglegram
layout. It is initially called with the parameters RecSplit(S0, T0, ε, ε), where ε is the empty
string.

In order to quickly calculate the number of current-level crossings we use a preprocessing
step. To that end we compute two tables C= and C× of size O(n2). For each pair (v, w) of
inner nodes in S◦ × T ◦ the entry C=[v, w] stores the number of crossings of edge pairs ab
and cd with lca(a, c) = v and lca(b, d) = w if either both or none of v and w swap their
subtrees. An entry C×[v, w] stores the analogous number of crossings if only one of v
and w swap their subtrees.

Lemma 7.1 The tables C= and C× can be computed in O(n2) time.

Proof. We initialize all entries as 0 and preprocess S0 and T0 in linear time to support
lca-queries in O(1) time [GT83]. Then we determine for each pair of inter-tree edges
their lowest common ancestors in S0 and T0 and increment the corresponding table entry
depending on which two configurations yield the crossing. This takes O(n2) time for all
edge pairs. ¤

Once we have computed C= and C× we can determine the number of current-level
crossings for any subinstance 〈S, T 〉 in O(logn) time by summing up the appropriate table
entries depending on the swap history along the paths PT and PS of length O(logn).

The running time of the algorithm satisfies the recurrence T (n) ≤ 8T (n/2) +O(logn),
which solves to T (n) = O(n3) by the master method [CLRS01]. We now prove that the
algorithm yields a 2-approximation.
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Algorithm 7.1: RecSplit (S, T, hS , hT )
Input: n-leaf trees S = (S1, S2) and T = (T1, T2), swap history hS and hT
Output: lower bound crST on number of crossings;

orders σ and τ for the leaves of S and T , respectively
if n = 1 then

return (crST , σ, τ) = (0, vS , vT )
else

crST =∞
foreach (swpS , swpT ) ∈ {0, 1}2 do

loop through all four cases to swap subtrees of S and T
cl← current level crossings induced by (swpS , swpT )
(cr1, σ1+swpS , τ1+swpT )← RecSplit(S1+swpS , T1+swpT , (hS , swpS), (hT , swpT ))
(cr2, σ2−swpS , τ2−swpT )← RecSplit(S2−swpS , T2−swpT , (hS , swpS), (hT , swpT ))
if cl + cr1 + cr2 < crST then

crST ← cl + cr1 + cr2
if swpS = 0 then

σ ← (σ1, σ2)
else σ ← (σ2, σ1)
if swpT = 0 then

τ ← (τ1, τ2)
else τ ← (τ2, τ1)

return (crST , σ, τ)

Theorem 7.3 Given a complete binary tanglegram instance 〈S0, T0〉 with n leaves in each
tree, Algorithm 7.1 computes in O(n3) time a drawing of 〈S0, T0〉 that has at most twice as
many crossings as an optimal drawing.

Proof. Fix any drawing δ of 〈S0, T0〉. The algorithm tries, for each subinstance 〈S, T 〉 of
〈S0, T0〉, all four possible configurations of S = (S1, S2) and T = (T1, T2)—among them
the configuration in δ. Assume that the configuration in δ is 〈(S1, S2), (T1, T2)〉. We
determine an upper bound on the number of crossings that our algorithm fails to count
for the drawing δ. In each of the trees S0 and T0 we distinguish four different areas for
the endpoints of the edges: above S1, in S1, in S2, below S2 and similarly above T1, in
T1, in T2, below T2. We number these regions from 0 to 3, see Figure 7.9. This allows
us to classify the edges into 16 groups (two of which, 0–0 and 3–3, are not relevant). We
denote the number of i–j edges, that is, edges from area i to area j, by nij(S, T ) (for
i, j ∈ {0, 1, 2, 3}). Figure 7.9a shows the four groups of i–j edges for i = 1.

The only crossings that our algorithm does not take into account are crossings between
edges whose lowest common ancestors lie in parts of S0 and T0 that are split apart into
different branches of the recursion. For the subinstance 〈S, T 〉, which is split into 〈S1, T1〉
and 〈S2, T2〉, this means that for all n12(S, T ) edges that run between S1 and T2, we fail to
consider all crossings between pairs of two such edges. Similarly, we do not consider any
pair of the n21(S, T ) edges between S2 and T1.

Let’s return to the drawing δ and consider the set I of subinstances that correspond
to δ, that is, all pairs of opposing subtrees in δ. For each subinstance 〈S, T 〉 ∈ I we do not
account for crossings of pairs of 1–2 edges and pairs of 2–1 edges since these edges run
between two subinstances that are solved independently. In the worst case all these edge
pairs cross and our algorithm misses

(n12(S,T )
2

)
+
(n21(S,T )

2
)
crossings. Let cδ be the number
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Figure 7.9: Areas of the endpoints and types of edges incident to L(S) and L(T ). Cardinalities
nij(S, T ) are abbreviated as nij .

of crossings of δ counted by the algorithm, and let |δ| be the actual number of crossings
of δ. Clearly, we have cδ ≤ |δ|. We can bound |δ| from above by

|δ| ≤ cδ+
∑
〈S,T 〉∈I

[(
n12(S, T )

2

)
+
(
n21(S, T )

2

)]
≤ cδ+

∑
〈S,T 〉∈I

n2
12(S, T ) + n2

21(S, T )
2

. (7.1)

We now show that
∑
〈S,T 〉∈I(n2

12(S, T ) + n2
21(S, T )) ≤ 2cδ. For the sake of convenience

we abbreviate nij(S, T ) as nij in the following. We will bound n2
12 by the number of

crossings of the 1–2 edges in δ that are counted by the algorithm. This number is at least

c12 = n12 · (n03 + n20 + n21 + n30 + n31) (7.2)

as can be seen in Figure 7.9b. All these crossings are current-level crossings at this or some
earlier point in the algorithm. Since our (sub)trees are complete and thus S1 and T1 have
the same number of leaves, we obtain

n10 + n12 + n13 = n01 + n21 + n31. (7.3)

Furthermore, we have the following equality for the edges from areas 0 on both sides

n01 + n02 + n03 = n10 + n20 + n30. (7.4)

From (7.3) we obtain n12 ≤ n01 − n10 + n21 + n31 and from (7.4) we obtain n01 − n10 ≤
n20 + n30. Hence we have n12 ≤ n20 + n30 + n21 + n31. With (7.2) this yields

n2
12 ≤ n12 · (n20 + n30 + n21 + n31) ≤ c12, (7.5)

that is, n2
12 is bounded by the number of crossings that involve a 1–2 edge in δ and that

are counted by the algorithm. Analogously, there are at least

c21 = n21 · (n02 + n03 + n12 + n13 + n30) (7.6)
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Figure 7.10: Example of a tanglegram for which our algorithm may output a drawing (left) that
has roughly twice as many crossings as the optimal drawing (right).

counted crossings in δ that involve a 2–1 edge. From (7.3) we obtain n21 ≤ n10 − n01 +
n12 + n13 and from (7.4) we obtain n10 − n01 ≤ n02 + n03. It follows that

n2
21 ≤ n21 · (n02 + n03 + n12 + n13) ≤ c21, (7.7)

that is, n2
21 is bounded by the number of crossings counted by the algorithm that involve

a 2–1 edge in δ.
So from (7.5) and (7.7) we have n2

12 ≤ c12 and n2
21 ≤ c21. Applying this argument to all

subinstances 〈S, T 〉 ∈ I we get∑
〈S,T 〉∈I

(n2
12(S, T ) + n2

21(S, T )) ≤
∑
〈S,T 〉∈I

c12(S, T ) +
∑
〈S,T 〉∈I

c21(S, T ) ≤ 2 · cδ. (7.8)

The fact that
∑
〈S,T 〉∈I c12(S, T ) ≤ cδ holds because each edge crossing in δ appears in

at most one term c12(S, T ). Let ab be a 1–2 edge in the subinstance 〈S, T 〉. Then in all
parent instances of the recursion, ab was still a 1–1 edge or a 2–2 edge; such edges do
not appear in any previous c12-term. In a subsequent instance 〈S′, T ′〉 below 〈S, T 〉 in the
recursion the edge ab might in fact reappear, for example as a 0–3 edge. At that point,
however, it is considered as an edge that crosses one of the 1–2 edges of 〈S′, T ′〉, say cd.
But then cd was considered as a 1–1 or 2–2 edge in all previous instances. Hence the
crossing between ab and cd does not appear in any other c12-term. Analogous reasoning
yields

∑
〈S,T 〉∈I c21(S, T ) ≤ cδ

Plugging (7.8) into (7.1) yields |δ| ≤ 2cδ. Now let A? be the solution computed by
our algorithm and let S? be an optimal solution. Their actual numbers of crossings are
denoted as |A?| and |S?|, respectively. By cA? and cS? we denote the number of crossings
counted by our algorithm for the drawings A? and S?, respectively. Since |δ| ≤ 2cδ for any
drawing δ we get

|A?| ≤ 2cA? ≤ 2cS? ≤ 2|S?|,

that is, the algorithm is indeed a factor-2 approximation. ¤

We note that the approximation factor of 2 is tight for our algorithm: let n = 4m, let
S have leaves ordered 1, . . . , 4m, and let T have leaves ordered 1, . . . ,m, 3m, . . . , 2m+ 1,
m + 1, . . . , 2m, 3m + 1, . . . , 4m (see Figure 7.10). Then our algorithm may construct a
drawing with m2 + 2

(m
2
)

= 2m2 −m crossings, while the optimal drawing has only m2

crossings.

Generalization to d-ary trees. The algorithm can be generalized to complete d-ary
trees. The recurrence relation of the running time changes to T (n) ≤ d ·(d!)2 ·T (n/d)+O(n)
since we need to consider all d! subtree orderings of both trees, each triggering d subinstances
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(b) Heuristic layout: 14 crossings.

Figure 7.11: Example for which Algorithm 7.1 performs badly as a heuristic.

of size n/d. This resolves to T (n) = O(n1+2 logd(d!)). For d ≥ 3 the running time is upper-
bounded by O(n2d−1.7). At the same time the approximation factor increases to 1 +

(d
2
)
.

This is because for any pair (i, j) with 1 ≤ i < j ≤ d the algorithm fails to account for
potential crossings between the trees Si and Tj as well as between Sj and Ti. This number
can be bounded for each of the

(d
2
)
pairs by the number of crossings in the optimal solution

using our arguments for binary trees.

Heuristic improvements for general binary trees. In applications most binary TL
instances do not consist of complete binary trees. The above recursive algorithm can be
applied to any pair of binary trees S and T as a heuristic but an approximation guarantee
cannot be given any more. Moreover, the running time grows exponentially with the
height of the trees. We denote the smaller of the two heights of S and T by h. For
example, two caterpillar trees with n leaves yield a running time of O(n · 2n). Still, there is
room for practical improvements of running time and solution quality for arbitrary binary
tanglegrams.

The original algorithm always divides an instance into an upper and a lower subinstance,
see Figure 7.8. For unbalanced trees this may lead to an unnecessarily high number of
ignored crossings as the example in Figure 7.11 shows. Algorithm 7.1 selects the subtree
order at both roots that aligns leaves 7 and 8, respectively, as shown in Figure 7.11b. This
choice does not cause any current-level crossings and since both subinstances contain a leaf
the algorithm stops. Even in the best case this decision causes 14 crossings. In contrast,
the optimal layout contains only one crossing, see Figure 7.11a.

A small modification of the algorithm weakens this effect (and yields the optimal solution
in the given example). Instead of defining a subinstance by a pair of subtrees on the same
horizontal level we match the four subtrees S1, S2, T1, and T2 of vS and vT such that the
number of inter-tree edge pairs within each of the two subinstances is larger than the number
of edge pairs going from one subinstance to the other. In this way less edge pairs that
potentially cross are disregarded in the course of the algorithm. This not only improves the
performance but it also means that each subtree of S has a fixed partner in T for all branches
of the recursion. We precompute in O(n2) time all required current-level crossings for O(h)-
time lookup according to Lemma 7.1. The general recurrence for two trees with n and m
leaves is T (n,m) ≤ 4T (n−k1,m−k2)+4T (k1, k2)+O(h), where k1, k2 ≥ 1 denote the sizes
of the two subtrees in one of the subinstances. The base case is T (n, 1) = T (1, n) = O(nh).
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On the one hand, for complete binary trees we have n = m and k1 = k2 = n/2, which
resolves to T (n, n) ∈ O(n3) as for the unmodified algorithm. Note that the approximation
factor of 2 is no longer guaranteed for the modified algorithm; however, our experiments
with complete binary trees showed that on average the modified algorithm is even slightly
better than the unmodified one. On the other hand, for the worst-case instance of two
caterpillar trees the recurrence becomes T (n, n) ≤ 4T (n− 1, n− 1) +O(n), which resolves
to T (n) ∈ O(4n). The running time for arbitrary binary trees depends on their balancedness
and ranges between O(n3) and O(4n).

In order to speed up the algorithm in practice we additionally make use of a branch-
and-bound technique in order to prune large parts of the search tree as early as possible.
For a subinstance 〈S, T 〉 with roots vS and vT we first consider the arrangement of the
subtrees of vS and vT that yields the lowest number of accumulated current-level crossings
and recurse on its two subinstances. Once the leaf level is reached this gives us an initial
upper bound on the number of crossings. Now at each node of the search tree we can
immediately prune all subtrees corresponding to arrangements of the current subinstance
whose accumulated current-level crossings exceed this upper bound. The rest of the search
tree is examined further, and each time a better solution is found, the upper bound is
updated accordingly.

Maximization version.

Instead of the original TL problem, which minimizes the number of pairs of edges that
cross each other, we may consider the dual problem TL? of maximizing the number of pairs
of edges that do not cross. The tasks of finding optimal solutions for these problems are
equivalent, but from the perspective of approximation it makes quite a difference which of
the two problems we consider. Here we do not assume that we draw binary trees. Instead,
if an inner node has more than two children, we assume that we may choose only between
a given permutation of the children and the reverse permutation obtained by flipping the
whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown in
Theorem 7.1, the TL? problem has a constant-factor approximation algorithm. We show
this by reducing TL? to a constrained version of the MaxCut problem, which can be
approximately solved with the semidefinite programming rounding algorithm of Goemans
and Williamson [GW95].

Theorem 7.4 There exists a 0.878-approximation for the TL? problem.

Proof. Fix any input drawing of the two trees S and T in an instance of the TL? problem.
As before we can associate a decision variable to any inner node of each of the trees. The
variable decides whether we flip the block of children at the corresponding node or not.
We model this situation by a weighted graph G = (V,E); a flip decision corresponds to
deciding to which side of a cut the corresponding vertex is assigned.

For each inner node v of a tree in the instance 〈S, T 〉 of TL? the constructed graph G
contains two vertices v and v′. For each pair ab and cd of inter-tree edges with a, c ∈ L(S)
and c, d ∈ L(T ), we have a weighted edge in E, as follows. Let v = lca(a, c) and w = lca(b, d)
be the lowest common ancestors of the edge pair. If ab and cd cross in the initial drawing,
then we add the edge vw with weight 1 in G (or increase its weight by one if it is already
present). If they do not cross in the initial drawing, then we analogously add the edge vw′
in G or increase its weight by one.
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It remains to observe that cuts in G that separate each pair (v, v′) correspond to
drawings of S and T in the instance of the TL? problem. To see this choose one half C of
such a cut (C, V \ C). For a vertex v ∈ C we do not flip the children of the corresponding
node in 〈S, T 〉 and for a vertex v′ ∈ C we do flip the children. (The other half of the cut
yields the mirrored drawing with the same number of crossings.) Moreover, edges that are
cut in (C, V \ C) correspond to pairs of edges that do not cross in the drawing of the two
trees.

The resulting optimization problem is the MaxResCut problem (that is, MaxCut with
additional constraints forcing certain pairs of vertices to be separated by the cut) studied by
Goemans and Williamson [GW95]. Therefore, we may use their semidefinite programming
rounding algorithm to compute a 0.878-approximation of the largest constrained cut in the
graph G. This cut determines which of the subtrees in the initial drawing must be flipped
to obtain a drawing that is a 0.878-approximation to TL?. ¤

7.4.2 Fixed-Parameter Algorithm
We consider the following parameterized variant of the TL problem. Given a complete
binary TL instance 〈S, T 〉 and a non-negative integer k, decide whether there exists a layout
of S and T with at most k induced inter-tree edge crossings. Our algorithm makes use of the
same technique to count current-level crossings as the 2-approximation algorithm. Hence
we precompute the crossing tables C= and C× in O(n2) time as before, see Lemma 7.1.
The algorithm traverses the inner nodes of S in breadth-first order. It starts at the root
of S and its corresponding node in T (in this case the root of T ), branches into all four
possible subtree configurations (at the root it actually suffices to consider two of them),
and subtracts from k the number of incurred crossings in each branch. Then we proceed
recursively with the next node v in S, its corresponding opposite node w in T , and the
reduced parameter k′ of allowed crossings. In each node of the search tree we count the
current-level crossings for each of the subtree orders of v and w by summing up in linear
time the appropriate entries in C= and C× for v (or w) and all of the O(n) subtree orders
that are already fixed in T (or S). Once we reach a leaf of the search tree we know the
exact number of crossings since each pair of edges ab and cd is counted as soon as the
subtree orders of both lca(a, c) and lca(b, d) are fixed. Obviously, we stop following a
branch of the search tree when the parameter value drops below 0.

For the search tree to have bounded height, we need to ensure that whenever we move
to the next subinstance, the parameter value decreases at least by one. At first sight
this seems problematic: if a subinstance does not incur any current-level crossings, the
parameter will not drop. The following key lemma—which does not hold for general binary
trees—shows that there is a way out. It says that if there is an order of the subtrees in a
subinstance that does not incur any current-level crossings, then we can ignore the other
three subtree orders and do not have to branch.

Lemma 7.2 Let 〈S, T 〉 be a complete binary TL instance, and let vS be a node of S and vT
a node of T such that vS and vT have the same distance to their respective root. Further,
let (S1, S2) be the subtrees incident to vS and let (T1, T2) be the subtrees incident to vT . If
the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level crossings, then each of
the subinstances 〈(S1, S2), (T2, T1)〉, 〈(S2, S1), (T1, T2)〉, and 〈(S2, S1), (T2, T1)〉 has at least
as many crossings as 〈(S1, S2), (T1, T2)〉, for any fixed ordering of the leaves of S1, S2, T1
and T2.
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Figure 7.12: Edge types and crossings of the instance 〈S, T 〉. Only non-empty classes of edge types
are shown.

Proof. If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level crossings, this
excludes certain types of edges. We categorize the inter-tree edges originating from the
four subtrees according to their destinations as before and use the notation nij for the
number of edges between area i on the left and area j on the right—see Figure 7.12a.
First of all, there are no edges between S1 and T2 or between S2 and T1. We consider
only the first case, where n12 = 0; the second case n21 = 0 is symmetric. In both cases,
we have n13 = n31 = n20 = n02 = 0. Since we consider complete binary trees, we obtain
n10 = n01 + n21, n32 = n23 + n21, and n01 + n11 = n23 + n22.

We fix an ordering σ of the leaves of the four subtrees S1, S2, T1, and T2. We first
compare the number of crossings in the subinstance 〈(S1, S2), (T1, T2)〉 with the number
of crossings in the subinstance 〈(S2, S1), (T2, T1)〉, see Figures 7.12a and 7.12b. The
subinstance 〈(S1, S2), (T1, T2)〉 can have at most n21(n11 +n22) crossings that do not occur
in 〈(S2, S1), (T2, T1)〉. However, 〈(S2, S1), (T2, T1)〉 has at least n10(n23 + n21 + n22) +
n23n11 + n32(n01 + n21 + n11) + n01n22 crossings that do not appear in 〈(S1, S2), (T1, T2)〉.
Plugging in the above equalities for n10 and n32, we get (n01 + n21)(n23 + n21 + n22) +
n23n11 + (n23 + n21)(n01 + n21 + n11) + n01n22 ≥ n21(n11 + n22). Thus, the subinstance
〈(S2, S1), (T2, T1)〉 has at least as many crossings with respect to the fixed leaf order σ as
〈(S1, S2), (T1, T2)〉 has.

Next, we compare the number of crossings in the subinstance 〈(S1, S2), (T1, T2)〉 with
the number of crossings in the subinstance 〈(S1, S2), (T2, T1)〉, see Figures 7.12a and 7.12c.
Now the number of additional crossings of 〈(S1, S2), (T1, T2)〉 is at most n21n22, and the
subinstance 〈(S1, S2), (T2, T1)〉 introduces at least (n01 +n11)(n32 +n22)+n32n21 additional
crossings. With the equality n01 + n11 = n23 + n22 and the inequality n32 + n22 ≥ n21 we
get (n01 +n11)(n32 +n22)+n32n21 ≥ (n23 +n22 +n32)n21 ≥ n22n21. Thus, the subinstance
〈(S1, S2), (T2, T1)〉 has at least as many crossings with respect to σ as 〈(S1, S2), (T1, T2)〉
has.

By symmetry, the same holds for the last case 〈(S2, S1), (T1, T2)〉, which incurs at least as
many crossings as n11n21, the number of crossings that can be present in 〈(S1, S2), (T1, T2)〉
but not in 〈(S2, S1), (T1, T2)〉. ¤

Counting the current-level crossings takes O(n) time for each node that fixes its subtree
order. If an order does not incur any current-level crossings we might need to fix in total up
to O(n) subtree orders and count the incurred crossings until we reach a new node of the
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Figure 7.13: Example of a TL instance with an optimal layout that has one crossing (a). The same
order of the leaves in the subtrees S2 and T2 yields four crossings for a configuration
without current-level crossings (b). The best layout that avoids the current-level
crossing still has two crossings (c).

search tree. Thus we spend O(n2) time for each of the O(4k) search-tree nodes. Including
the preprocessing this yields a total running time of O(n2 + 4kn2). If the algorithm reaches
a leaf of the search tree it has fixed all subtree orders in S and T and thus found a layout of
the input instance that has at most k inter-tree edge crossings. If the search stops without
reaching a leaf there is no layout of 〈S, T 〉 with at most k inter-tree edge crossings.

Theorem 7.5 Given a complete binary TL instance 〈S, T 〉 with n leaves in each tree and
an integer k we can in O(4kn2) time determine either a layout of 〈S, T 〉 with at most k
inter-tree edge crossings or report that no such layout exists.

Finally, the fact that Lemma 7.2 relies on the completeness of the two trees is illustrated
in Figure 7.13. Here we have an example of an instance whose optimal layout requires a
current-level crossing (Figure 7.13a). At the same time, the configuration 〈(S1, S2), (T2, T1)〉
has no current-level crossing. According to Lemma 7.2 the leaf order of the optimal layout
copied into the layout without current-level crossings would produce at most as many
crossings as in the other layout. Figure 7.13b shows that this is not true in our example.
The best solution of the configuration 〈(S1, S2), (T2, T1)〉 still has two crossings and is not
optimal (Figure 7.13c). Hence, we do have to consider all subtree orders even if one of
them incurs no current-level crossings. This means that we cannot bound the size of the
search tree in terms of the parameter k as we have done for complete binary trees.

7.4.3 Exact Algorithms
In this section we give two methods to compute optimal solutions for general binary TL
exactly. The first is a simple formulation of the problem as an integer linear program (ILP).
The second method is a branch-and-bound algorithm.

Integer Linear Program
Let 〈S, T 〉 be an instance of general binary TL with an arbitrary input drawing. For each
inner node u ∈ S◦ ∪ T ◦ we introduce a binary variable xu. If xu = 1, the two subtrees
of u change their order with respect to the input drawing, otherwise the order of the input
drawing is kept. Any assignment of these variables corresponds to a tanglegram layout.
Let ab and cd be two inter-tree edges with a, c ∈ S and b, d ∈ T and let v = lca(a, c)
and w = lca(b, d) be their lowest common ancestors. Following Observation 7.1 we
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distinguish two cases: If ab and cd cross in the input layout, they cross in any layout that
either swaps the subtrees of both v and w or that does not swap either of them. In other
words, there is a crossing if and only if xv = xw. Similarly, if ab and cd do not cross in the
input layout, they cross in any layout that swaps the subtrees of exactly one of v or w, or,
equivalently, ab and cd cross if and only if xv 6= xw.

Now for a pair (v, w) ∈ S◦ × T ◦, let k×vw (k=
vw) be the number of edge pairs that have v

and w as their lowest common ancestors and that do (do not) cross in the initial layout.
Note that k×vw and k=

vw are constant and can be computed for all pairs (v, w) in O(n2)
time (see the computation of the tables C= and C× in Lemma 7.1). Finally, we would
like to define a variable yvw for each pair (v, w) ∈ S◦ × T ◦ that equals 1 if xv 6= xw and 0
otherwise. This can be achieved with four linear constraints and yields the following ILP
formulation for binary TL:

Minimize
∑

v∈S◦, w∈T ◦
[yvw · k=

vw + (1− yvw) · k×vw]

subject to yvw ≤ 2− xv − xw
yvw ≤ xv + xw
yvw ≥ xv − xw

for all v ∈ S◦, w ∈ T ◦.

yvw ≥ xw − xv

Branch-and-Bound Algorithm

The branch-and-bound idea used in the implementation of the recursive splitting heuristic
in Section 7.4.1 can also be applied to compute optimal solutions. The main ingredients for
speeding up the exhaustive search are: (i) ordering the nodes in the search tree according
to the impact of the swapping decisions to quickly find good solutions and (ii) using lower
bounds that are as tight as possible to cut off large parts of the search tree as early as
possible.

We preprocess the given binary TL instance 〈S, T 〉 by computing for any pair (v, w) ∈
S◦ × T ◦, the crossing table entries C×[v, w] and C=[v, w] in O(n2) time (see Lemma 7.1).
We further store an interaction counter ic(v) for each node v ∈ S◦ ∪ T ◦ that contains
the number of inner nodes w in the opposite tree for which |C×[v, w] − C=[v, w]| > 0
(otherwise the swapping decisions for v and w are independent). Then we construct and
traverse the search tree starting at the node whose interaction counter has the largest
value. At each subsequent step we consider the next unvisited node v ∈ S◦ ∪ T ◦ that has
the largest difference between the number of crossings induced by swapping and by not
swapping its subtrees given all the previous decisions in the search tree. If ic(v) = 0, we
simply assign the better choice for v since no further decisions depend on v. Otherwise we
compute for both swap options at v a lower bound on the number of crossings arising from
all subsequent nodes of S ∪ T . This is done by summing up in linear time the respective
minima of the two possible crossing numbers at each node given the decisions taken so
far in the traversal of the search tree, including v. If the sum of this lower bound on
future crossings and the number of current crossings is greater or equal to the current
best solution, we can safely prune the current branch of the search tree. Otherwise we
update the number of induced crossings for the remaining nodes accordingly (using the
precomputed crossing numbers), decrease the interaction counters for the remaining nodes
that interact with v by one, and go further down the search tree. Once all nodes of the
search tree have been visited or cut off, we return the best solution found.
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The running time of the algorithm is O(n2+n·22n) in the worst case since we spend O(n)
time per node of the search tree.

7.4.4 Greedy Heuristic
The order, in which the nodes are visited in the exact branch-and-bound algorithm also
gives rise to a simple greedy heuristic. We start to fix the subtree order of the node v
in S◦∪T ◦ that has the largest interaction counter and update the induced crossing numbers
for both subtree orders of the remaining nodes in S◦ ∪ T ◦. The next node to fix its subtree
order is the node v′ that maximizes the difference between the number of crossings induced
by swapping and not swapping its subtrees. We choose the order that yields the smaller
number of crossings. After updating the crossing numbers of the remaining nodes given the
subtree order at v′ we proceed with the next unvisited node that maximizes the crossing
difference until we have fixed all subtree orders. Note that this layout is exactly the same
as the first solution obtained by the exact branch-and-bound algorithm.

The greedy algorithm requires O(n2) time for the preprocessing phase. For each of
the O(n) steps of the algorithm itself we need O(n) time to find the next node in the order
and to update all induced crossing numbers. Hence the greedy algorithm runs in O(n2)
time.

7.5 Experimental Evaluation
We have implemented those algorithms of Section 7.4 that can be applied to general binary
tanglegrams in Java 1.6. We have executed them on an AMD Opteron 2218 2.6 GHz
system with 8 GB RAM under SuSE Linux 10.3. For solving the ILP we used the Java API
of the commercial mathematical programming software Ilog CPLEX 11.11. The primary
goal of our study is to evaluate which of the proposed algorithms best solves binary TL
for real-world instances. The most important criterion is thus the performance ratio with
respect to the optimal solution in terms of the number of crossings. A secondary goal
is to identify algorithms that are fast enough to be used interactively in a tanglegram
visualization tool.

In the following we list the six algorithms taking part in our evaluation and describe the
test data. Then we evaluate performance and running times of the different algorithms.

7.5.1 Algorithms in the Evaluation
The following six algorithms are included in our evaluation:

1. the recursive splitting algorithm in its heuristic variant rec-split++ (Section 7.4.1)

2. the hierarchy-sort heuristic of Holten and van Wĳk [HvW08] and its weighted variant
hierarchy-sort++ (described below)

3. the iterated one-tree crossing minimization algorithm 1tcm-iterated of Dwyer and
Schreiber [DS04] (described below)

4. the greedy heuristic greedy (Section 7.4.4)
1see http://www.ilog.com/products/cplex

http://www.ilog.com/products/cplex
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5. the integer linear program ilp (Section 7.4.3)

6. the exact branch-and-bound algorithm bb-exact (Section 7.4.3)

We now sketch the two algorithms hierarchy-sort and 1tcm-iterated that have been
proposed previously in the literature before turning to the actual evaluation.

Hierarchy Sort

The hierarchy sort algorithm of Holten and van Wĳk [HvW08] performs a number of
collapse-and-expand cycles on both trees of the binary tanglegram 〈S, T 〉. During each
step of these cycles, the well-known barycentric method of Sugiyama et al. [STT81] for
one-sided crossing minimization is used by successively fixing one tree, optimizing the leaf
order of the other, and then changing the trees’ roles until no further crossing reduction is
possible.

In a first step the two trees are augmented with dummy nodes of degree 2 below the
original leaves such that both trees have the same height and all leaves are on the lowest
level. Starting at the lowest level, the barycenter method is applied to both trees in turn
until the leaf order gets stable. Since the leaf order is restricted by the tree topology we
need to consider only sibling nodes whose parent lies one level above. For such pairs of
nodes we compute the barycenter of their neighbors in the other tree and swap them if the
order of the two barycenters is reversed. In the next step we collapse the lowest level of
both trees replacing each inter-tree edge between two leaves by the corresponding edge
between their parents. Thus for higher levels multiple inter-tree edges can be incident
to a single node. Barycentric crossing reduction and collapsing are alternated until the
root of both trees is reached. Now the collapsing phase is replaced by an expansion phase
that adds the next level to both trees. The initial leaf order of newly expanded subtrees
remains as in the corresponding previous collapsing phase and then barycentric crossing
reduction is performed on that level before expanding the next level. Once the lowest level
is reached a collapse-and-expand cycle is completed. The collapse-and-expand cycles are
repeated until no further improvement is made. Figure 7.14 is a step-by-step illustration of
the algorithm.

We denote the algorithm of Holten and van Wĳk [HvW08] as hierarchy-sort. A simple
variant of the above procedure is to introduce integer weights on the edges during collapsing
such that the edge weight corresponds to the number of original edges that are represented;
we denote this variant as hierarchy-sort++. A further obvious variant is to reduce crossings
at each level based on which configuration actually minimizes the resulting number of
crossings rather than using the barycenter method. It turned out, however, that this
variant performs worse than the weighted and unweighted barycenter heuristics.

The asymptotic running time of this algorithm depends of course on the number N of
collapse-and-expand cycles and the maximum number N ′ of executions of the linear-time
barycentric heuristic on each level. In our experiments it turned out that in all instances
we had N ≤ 2 and N ′ ≤ 4 for the original heuristic. The weighted variant, on the other
hand, occasionally got caught in an infinite loop of crossing reductions in one level of the
algorithm, which needed to be aborted. Under the condition that both N and N ′ are
constants, hierarchy sort runs in O(n ·H) time, where H is the maximum height of the
two trees. In the case of complete trees H = logn, and the running time is O(n logn).
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Figure 7.14: Step-by-step crossing reduction using hierarchy-sort. Nodes that are swapped during
crossing reduction are encircled. The numbers of inter-tree edge crossings after each
step are given in parentheses.

Iterated One-Tree Crossing Minimization
One-tree crossing minimization (1TCM) is the one-sided version of TL; one tree of a general
binary tanglegram is fixed and the other is laid out optimally. An algorithm for this problem
that runs in O(n2 logn) time has first been described by Dwyer and Schreiber [DS04] and
subsequently improved to O(n log2 n) running time by Fernau et al. [FKP05]. We denote
the tree to be optimized by T . The main observation is that the crossing behavior of any
two inter-tree edges depends only on the swapping decision taken at their lowest common
ancestor node v in T . Hence we can apply a divide-and-conquer strategy to recursively
determine the optimal layout of the two subtrees of v and then arrange them at v such
that the number of crossings caused by v is minimum. In our current implementation
the divide-and-conquer algorithm still has a running time of O(n3). In order to use this
method for the general two-sided problem Dwyer and Schreiber [DS04] suggested to apply
the 1TCM-algorithm in turn to the two given trees until a local optimum for TL is found.
This iterated heuristic is denoted as 1tcm-iterated.

7.5.2 Data
We generated four sets (A–D) of random tanglegrams. Set A contains 100 pairs of complete
binary n-leaf trees with random leaf orders for each n ∈ {16, 32, 64, 128, 256, 512}. In set B
we simulate tree mutations by starting with two identical complete binary trees and then
randomly swapping the positions of up to 20% of the leaves of one tree. This is done as
follows: we first pick a leaf uniformly at random and then iteratively climb up the tree
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with probability 0.75 in each step. From the node thus reached we climb back down and
choose its left or right child with equal probability until we reach another leaf. This leaf
and the leaf picked in the beginning are swapped. Thus the probability of two leaves being
swapped decreases with their distance in the tree. Set C contains 100 pairs of general
binary n-leaf trees for each n ∈ {20, 30, . . . , 300}. The trees are constructed from a set of
nodes, initially containing the n leaves, by iteratively joining two random nodes in a new
parent node that replaces its children in the set. This process generates trees that resemble
phylogenetic trees or clustering dendrograms. It mimics the hierarchical construction of
these trees, which iteratively joins the two closest clusters or set of species in terms of an
appropriate distance measure. In set D the first tree is constructed as in set C while the
second tree in each tanglegram is a mutation of the first one, where up to 10% of the leaves
can swap positions as done in set B and up to 25% of the subtrees can reattach to another
edge. The edge for attaching the subtree is selected in a random walk starting at the
subtree’s old position. The walk continues with probability 0.75 and picks the left or right
edge with equal probability. Trees in this set are of interest since real-world tanglegrams
often consist of two related and rather similar trees.

Our real-world examples comprise three sets (E–G) of 1303 pairs of phylogenetic trees of
animal gene families obtained from the TreeFam database2 [LCR+06, Li06]. The trees in
set E were generated from the multiple sequence alignments provided by TreeFam using the
phylogenetic tree construction software treebest3 [Li06]. For each database entry the first
tree was built using the maximum-likelihood algorithm PHYML [GG03] and the second
tree using the distance-based method neighbor joining (nj) [SN87]. Both methods are
widely used in bioinformatics and have turned out to generate trees that are closest to the
manually curated trees in TreeFam [Li06]. Neighbor-joining depends on a distance measure
that reflects the probabilities of mutations at the positions in the underlying DNA or
protein sequences. Two commonly used distances are the synonymous distance (ds) and the
non-synonymous distance (dn). Distance dn is more appropriate for modeling long-term
evolution while ds covers more recent mutation events better. The nj-trees in set E are
actually constructed by a tree-merge algorithm described by Li [Li06] and implemented in
treebest that builds a consensus tree of the nj-trees for the distances ds and dn. It is an
obvious question to compare the merged tree with its two source trees. Therefore, sets F
and G contain the tanglegrams consisting of the merged nj-tree and its underlying ds- or
dn-tree, respectively. All three data sets E–G share the fact that about 75% of the trees
have less than 50 leaves and only 5% have more than 100 leaves.

The crossing numbers of our examples are depicted in Figure 7.15. They vary strongly: as
to be expected, mutated trees (B and D) have far lower crossing numbers than random pairs
of trees (A and C). The TreeFam tanglegrams in sets E and G are generally characterized
by low crossing numbers—at least for n < 200. Only set F and the largest trees in set E
have relatively high crossing numbers ranging between those in sets C and D.

7.5.3 Performance
To each tanglegram we applied the five heuristics, the ILP, and the exact branch-and-bound
algorithm bb-exact. We recorded the number ki of crossings in the output, i being one
of the heuristics in {rec-split++, hierarchy-sort, hierarchy-sort++, 1tcm-iterated, greedy}.
We recorded only results that were obtained within at most one minute wall clock time.

2http://www.treefam.org
3http://treesoft.sourceforge.net

http://www.treefam.org
http://treesoft.sourceforge.net
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Figure 7.15: Percentage of solved instances for the exact algorithms ilp and bb-exact (left axes) and
average crossing numbers (right axes) of random (A–D) and real-world (E–G) binary
tanglegrams. Note the different scales on the right axes.
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For each tanglegram we computed the performance ratio (ki + 1)/(k + 1). The crossing
number k was obtained from one of the two exact algorithms. Note that we add one to both
numerator and denominator such that the ratio is also defined for crossing-free instances.

Note that we have also implemented the original recursive splitting algorithm rec-split
in addition to its variant rec-split++. Yet, we do not include it in our detailed evaluation
for several reasons. First of all, rec-split is designed only for complete binary trees while
rec-split++ is adapted to deal with unbalanced trees as well. Hence rec-split performs
badly on general binary tanglegrams, the focus of our evaluation. Moreover, for complete
binary tanglegrams, both variants perform almost identically. Lastly, the running time of
rec-split is far slower than the running time of the branch-and-bound variant rec-split++ so
that for n ≥ 512 in the case of complete trees the instances could not be solved within the
given time frame by rec-split. For general binary trees, this timeout was reached already
for n ≥ 80 in several instances.

In the subsequent discussion we refer to the performance ratios shown in Figure 7.16. A
first inspection of the plots immediately reveals that there is a clear method of choice for
all our examples that not only outperforms the other heuristics but even achieves average
performance ratios hardly deviating from the optimum: greedy. This comes as a surprise
since greedy is merely a byproduct of our exact branch-and-bound algorithm while the
other heuristics were explicitly designed to obtain good solutions efficiently.

Next, we examine the results for the different sets of tanglegrams in more detail. We
start with the complete binary trees in sets A and B. Set A with random pairs of trees shows
that hierarchy-sort performs worst and spreads over a relatively large range of values. On
the other hand the variant hierarchy-sort++ is among the best heuristics apart from greedy.
For n ≥ 64 rec-split++ and 1tcm-iterated catch up with greedy and hierarchy-sort++ and
also achieve performance ratios between 1 and 1.1.

For set B containing mutated trees that are more similar to each other, the picture
changes. Algorithms greedy and rec-split++ outclass the the other three methods with
average performance ratios below 1.01 and many optimal solutions while the other methods
range between 1.6 and 4. In terms of outliers rec-split++ is slightly preferable to greedy.
Comparing sets A and B it is noteworthy that rec-split++ and greedy perform equally
well on random and mutated trees, while the remaining methods are susceptible to the
similarity and consequently the crossing number of the two trees, see Figure 7.15. Recall
that rec-split++ is based on our 2-approximation algorithm rec-split for complete binary
trees, but it is no 2-approximation itself; still, even the worst measured performance ratio
of rec-split++ in the experiments is far better than 2.

For the general binary trees in sets C and D the five heuristics have a similar ranking as
for the sets A and B. Algorithm greedy remains the best method with average performance
ratios below 1.01 and is even more clearly ahead of the remaining algorithms. For random
pairs of trees (set C) the three methods rec-split++, hierarchy-sort++, and 1tcm-iterated
show a similar performance, which is on average below 1.1. The worst performance is again
obtained by hierarchy-sort.

For mutated trees (set D) greedy is again almost optimal but this time rec-split++
performs a lot better than the remaining competitors, which is similar to the situation
for set B. While rec-split++ shows performance ratios between 1 and 2 even for the third
quartile, hierarchy-sort++ and 1tcm-iterated lie on average between 2 and 4. The original
method hierarchy-sort even reaches average ratios close to 7. It should be noted that
outliers for all algorithms except greedy reach values between 10 and 100. Furthermore, for
random pairs of trees the completeness does not seem to affect the quality of the solutions
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Figure 7.16: Performance ratios of the five algorithms rec-split++, hierarchy-sort, hierarchy-sort++,
1tcm-iterated, and greedy for random (A–D) and real-world (E–G) binary tanglegrams.
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since the results for sets A and C are very similar. For mutated trees in set D, rec-split++
becomes inferior to greedy unlike the results for set B. Also the performance ratios of the
algorithms on the whole (except greedy) spread a lot more in set D than in set B.

The relative performance of the heuristics on the real-world data partially mirrors our
observations from sets C and D but also exhibits different effects. In analyzing the results
for sets E–G recall that about 95% of the trees have n ≤ 100 leaves and that crossing
numbers vary a lot, see Figure 7.15. Sets E and G contain pairs of rather similar trees.
There, the crossing numbers for n ≤ 100 are roughly the same, ranging between 0 and 35
on average. For trees of size n > 100, the crossing numbers in set E increase drastically;
those in set G remain small. On the other hand, the crossing numbers in set F are higher
by a factor of at least 10 in comparison to sets E and G.

The results for all three sets have in common that, as before, greedy attains by far the best
performance ratios and even finds optimal solutions for over 75% of the instances. Moreover,
the remaining heuristics have severe problems with outliers that reach inacceptable ratios
between 100 and 1000, in some cases even worse. Note, however, that the ratio (ki+1)/(k+1)
equals (almost) the absolute number of crossings ki for instances with k = 0. In set E
the second best method is 1tcm-iterated, followed by the two hierarchy-sort variants.
Interestingly, hierarchy-sort++ is no longer preferable to hierarchy-sort. The algorithm
rec-split++ performs worst on set E. The order of the algorithms is thus quite different
from that on the random set D although size and crossing number of the trees is similar.

Set F with less similar trees gives results that are comparable to set C in terms of the
relative order of the algorithms. The hierarchy-sort++ heuristic is worst, at least for n ≥ 25.
For instances with n ≤ 100 rec-split++ ranks second after greedy. Finally, hierarchy-sort++
performs better than 1tcm-iterated for small instances, while 1tcm-iterated beats hierarchy-
sort++ on the large instances. In absolute numbers, however, outliers in set F are a lot
worse than in set C.

Finally, set G shows results that are similar to set D, although the distinction between the
heuristics (except greedy) is not as clear in set G. The main difference is that hierarchy-sort
now keeps up with hierarchy-sort++, while it had been clearly worse in set D.

7.5.4 Running Time
Although the number of crossings is the main aspect for assessing the quality of TL
algorithms, their running time is also an important criterion—especially if the layouts
are to be produced interactively. Figure 7.17 shows plots of the median running times of
our five heuristics as well as of the integer program ilp and the exact branch-and-bound
algorithm bb-exact. In our experiments there was a timeout after one minute wall clock
time for all algorithms. Note that the running times summarize regularly terminated runs
and those aborted after one minute. Also note the different scales on the x-axes. The
main question is whether greedy, whose performance ratio is far better than the other four
heuristics and which even finds optimal solutions in most of the cases, is fast enough to
be used in practice. Moreover, it is of interest whether we can afford to compute optimal
solutions exactly for typical input sizes.

Let’s first consider the running time of greedy. For small instances greedy is among the
fastest methods with running times between 0.001 and 0.01 seconds. For larger instances
the running times grow to values between 0.1 and 0.25 seconds, placing greedy in the
mid-range of the other heuristics. Nonetheless, even the largest instances are solved
in at most half a second. Further note that greedy has a worst-case running time of
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O(n2) although bb-exact, from which it is derived, has an exponential worst-case running
time. From the remaining heuristics, 1tcm-iterated is fastest for small instances, while
rec-split++ and the two hierarchy-sort variants are faster for larger instances. Recall that
our implementation of 1tcm-iterated runs in O(n3) time while a faster O(n log2 n)-time
implementation is possible [FKP05]. For complete binary trees, rec-split++ is the fastest
algorithm for n ≥ 128 with one exception. For n = 512 hierarchy-sort++ is the fastest
algorithm and takes less time than for n = 256 on sets A and B. The reasons for this
behavior are unclear. Summarizing the running times of the heuristics it turned out in our
experiments that all of them are fast enough to be applied interactively in a tanglegram
visualization tool. In particular, this is the case for greedy, the best-performing heuristic.

Considering the exact algorithms, note that ilp is slower than the five heuristics by a
factor between 10 and 100. Still, it is remarkable that it succeeds to find optimal solutions
in less than 10 seconds for mutated random trees (sets B and D) and the TreeFam instances.
Only random pairs of trees (sets A and C) with many crossings in the optimal solution are
challenging and running times reached the timeout with increasing frequency as Figure 7.15
shows. The running times of bb-exact behave oppositely. While bb-exact is as fast as
the heuristics for small values of n, its running time increases quickly for trees that are
relatively similar to each other (sets B, D, and G), where bb-exact gets slower than ilp.
Hence the upper bounds used to prune subtrees of the search tree in bb-exact seem to be
most efficient for instances of unrelated trees with large crossing numbers. For the largest
of our instances bb-exact does no longer find all optimal solutions within one minute, most
notably for sets B and D (see Figure 7.15).

7.5.5 Discussion
The experimental evaluation clearly indicates that our greedy heuristic, which yields the
first feasible tanglegram layout obtained in the exhaustive search of the exact branch-
and-bound algorithm, is superior to all other heuristics and thus the method of choice for
arbitrary binary tanglegrams. It found optimal solutions in the majority of our examples.
Its worst-case performance ratio observed in the more than 10,000 examples was 2.24.
With a running time of O(n2) greedy also turned out to be fast enough even for the largest
tanglegrams of size up to 600 leaves, which took less than half a second to compute. In
practice it might be a good idea to continue running bb-exact for a pre-specified time after
the first solution has been found in order to find an even better (or the optimal) solution.
The ILP is faster for large instances than bb-exact (if crossing numbers are not too high)
and its running time is less susceptible to outliers. Its disadvantage is, however, that
our implementation requires a license for the commercial ILP solver CPLEX. Note that
real-world tanglegrams often have a crossing-free layout. By construction, the underlying
algorithm bb-exact guarantees to find a crossing-free layout as the first solution if it exists.
Thus greedy is optimal in that case. For the special case of complete binary trees, the the
heuristic variant rec-split++ of our 2-approximation algorithm is faster than greedy and
achieves a similar performance, which makes it a good alternative for that case.

7.6 Concluding Remarks
In this chapter we have comprehensively studied the binary TL problem, a tree visualization
problem, which arises frequently in evolutionary biology. From the theoretical perspective
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it has been shown that the problem, which is known to be NP-complete [FKP05], remains
NP-complete for complete binary trees and that it is hard to approximate for general binary
trees under the Unique Games Conjecture. This led us to develop a 2-approximation and
a fixed-parameter algorithm for the special case of complete binary trees.

From the practical perspective, it is important to find (nearly) optimal tanglegram
layouts for general binary trees quickly. Hence we gave an ILP formulation and an exact
branch-and-bound algorithm as well as a fast and effective greedy heuristic that runs in
quadratic time. In an extensive experimental study we evaluated our new algorithms and
compared them to two previously suggested heuristics. The study showed that our greedy
algorithm is clearly ahead of the other heuristics in terms of solution quality; in many
cases (and in most of the real-world instances) it even finds an optimal solution. With
computation times of less than half a second even for the largest of our test instances this
makes it the method of choice for generating tanglegram layouts in real-world settings.
Optimal solutions can be computed within one minute for most test instances, either by
the ILP or by the branch-and-bound algorithm.

Open problems. At least three ways of generalizing binary TL are interesting for
applications. In software analysis, trees are used to represent package-class-method
hierarchies or the decomposition of a project into layers, units, and modules. Such trees
are usually not binary and it is an interesting question to study the TL problem for trees
of arbitrary node degrees.

A different way of generalizing TL is of interest for phylogenetic trees, our main
application. If the co-evolution of two sets of related species, for example, a set of hosts
and a set of parasites, is to be studied it often occurs that one species may act as the host
for multiple parasites or vice versa. This means that the set of inter-tree edges no longer
forms a matching but a general bipartite graph. This is in similar to layered graph drawing
but with the restriction that the leaf orders must be compatible with the two trees. The
heuristics evaluated in this paper all generalize to this setting with minor adjustments.
Would this still allow for constant-factor approximations in the case of complete binary
trees?

Since tanglegrams with a small crossing number, k, seem to occur often in practice, it
would be desirable to have a fixed-parameter algorithm for general (non-binary) trees that
is simpler and faster than the O?(1024k)-time algorithm of Fernau et al. [FKP05].

A recent eye-tracking study by Huang [Hua08] suggests that edge crossings might not
be as bad as it is often assumed. It is rather the crossing angles of edges that strongly
influence readability. It turned out that crossings at angles of roughly 90 degrees hardly
influenced the subjects’ performance while small crossing angles significantly slowed it down.
This observation leads to the interesting TL variant where the problem is to minimize the
number of “bad” crossings.
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Chapter 8

Cover Contact Graphs

In the majority of graph drawing applications and theoretical studies, graphs are typically
represented as node-link diagrams, that is, vertices are represented as points, disks or
rectangles and edges are represented as arcs connecting their vertex objects. The previous
chapters in this dissertation also adhered to the node-link visualization style. There are,
however, also less common geometric representation styles of graphs that nonetheless give
rise to interesting questions and applications. For example, in an intersection graph vertices
are represented by geometric objects such as lines, line segments, disks, etc., and each edge
is represented by a non-empty intersection of the two objects corresponding to its incident
vertices. Contact graphs are defined similarly but we require that the interiors of all sets
are disjoint and hence edges correspond to “touching” sets. A classical result in graph
theory is Koebe’s theorem from 1936 that says that every planar graph can be represented
as a coin graph, that is, a contact graph of disks [Koe36].

On the other hand, geometric covering problems have been extensively studied in
computational geometry and geometric optimization. In a covering problem there is a set of
geometric objects, mostly points, that need to be covered under certain constraints by other
geometric objects, for example by disks. Typical questions are finding a minimum-size
object or finding a minimum number of fixed-size objects that cover all points. In this
chapter we combine the graph representation problem and the covering problem, that is, we
are interested in finding contact graph representations using certain geometric objects (for
example, disks) that at the same time cover a set of geometric seed objects (for example,
points). More precisely, each seed must be covered by exactly one covering object. The
contact graph is in this case called a cover contact graph. We ask two questions: “Is there
a connected cover contact graph for the given set of seeds?” and “Can a given graph be
realized as a cover contact graph on a given set of seeds?”. The results in this chapter are
based on joint work with Nieves Atienza, Natalia de Castro, Carmen Cortés, Mari Ángeles
Garrido, Clara I. Grima, Gregorio Hernández, Alberto Márquez, Auxiliadora Moreno, José
Ramon Portillo, Pedro Reyes, Jesús Valenzuela, Maria Trinidas Villar, and Alexander
Wolff [AdCC+08].

8.1 Introduction
Alternative geometric representations of graphs have been studied since the time of Koebe’s
theorem [Koe36, PA95], a beautiful and classical results in graph theory. The theorem, that
has long been forgotten and that was rediscovered several times (see the historical survey of
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Sachs [Sac94]), says that every planar graph has a representation as a coin graph, that is, a
contact graph of disks in the plane. In other words, given any planar graph with n vertices,
there is a set of n disjoint open disks in the plane that are in one-to-one correspondence to
the vertices such that a pair of disks is tangent if and only if the corresponding vertices are
adjacent. Conversely, every coin graph is obviously planar since if we connect the centers of
touching disks by straight-line edges, no two edges intersect. Collins and Stephenson [CS03]
give an efficient algorithm for numerically approximating the radii and locations of the
disks of such a representation of a planar graph. Their algorithm relies on an iterative
process suggested by Thurston [Thu80].

Since Koebe there has been a lot of work in the graph-drawing community dedicated to
the question which planar graphs can be represented as contact or intersections graphs
of which geometric object, see Section 8.2 for a summary of results. Intersection graphs,
especially of disks, are used as graph models in multiple application areas, for example,
wireless communication networks [Hal80, CCJ90].

The geometric-optimization community has dedicated a lot of work to the question of
how to (optimally) cover geometric objects (usually points) by other geometric objects
(like convex shapes, disks, annuli). Several variations of this general problem appear in
the literature. Typical objectives are minimizing the (maximum/total) radius of a set of k
disks to cover n input points. Alternatively, the disk size might be fixed and the number
of disks used to cover the input points is to be minimized. Applications of such covering
problems are, for example, geometric facility location problems.

In this chapter we combine the two previous problems: we are given a set of pairwise
disjoint geometric objects called seeds (such as points or disks) that must be covered by
other geometric objects called covering objects (such as disks or triangles) whose interiors
are disjoint. The covering objects must either represent a given graph or satisfy a given
graph property by the way they touch each other. Other than in geometric optimization
each of our covering objects must contain exactly one of the seeds. We are not interested
in minimizing the sizes of the covering objects or their number; instead we want them to
jointly fulfill some graph-theoretic property (like connectivity). Compared to previous work
on geometric representation of graphs, the requirement to cover each seed by a covering
object significantly restricts the freedom to place the geometric objects.

Model. Given a set S = {p1, p2, . . . , pn} of pairwise disjoint seeds in R2 of some type, a
cover of S is a set C = {C1, C2, . . . , Cn} of closed objects of some type with the property that
each object Ci in C contains exactly one seed si in S and that the interiors of no two covering
objects in C intersect. Figure 8.1b depicts a disk cover of the disk seeds in Figure 8.1a.
Now the cover contact graph (CCG) induced by C is the contact graph of the elements of C,
that is, the graph G = (V,E) with V = C and E = {{Ci, Cj} ⊆ C | Ci 6= Cj , Ci ∩ Cj 6= ∅}.
In other words, two vertices of a CCG are adjacent if the corresponding covering objects
touch, that is, their boundaries intersect. Figure 8.1c depicts the CCG induced by the
cover in Figure 8.1b. Note that the vertices of the CCG are in one-to-one correspondence
to both seeds and covering objects. We consider seeds to be topologically open (except
if they are single points). Then seeds can touch each other. Note that we require cover
objects to be closed. This makes sure that a cover actually contains a point seed that lies
on its boundary. We denote a CCG whose cover consists of disks (triangles) as a disk-CCG
(triangle-CCG).

In our work we investigate the following two questions.
Connectivity: Given a set of seeds, does it admit a (1- or 2-) connected CCG?
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(a) Disk seeds. (b) Disk cover of (a). (c) CCG induced by (b).

Figure 8.1: Seeds, cover, and CCG.

Realizability: Given a planar graph G and a set of seeds, can G be realized as a CCG
on the given seeds?

We also consider an interesting restriction of the above problems where seeds and covering
objects must lie in the half plane R2

+ above and including the x-axis. Seeds are additionally
restricted in that each must contain at least one point of the x-axis. In this restricted
setting we call the contact graph of a cover a CCG+. See Figures 8.11b and 8.13 in
Section 8.4 for examples.

Contributions. In this chapter we consider three classes of seeds: points, disks, and
homothetic triangles. (Recall that a homothetic transformation is a dilation followed by
a translation.) Our covering objects are either disks or homothetic triangles. First, we
consider arbitrary sets of point seeds (Section 8.3). Concerning connectivity we show
that we can always cover a set of point seeds using disks or using homothetic triangles
such that the resulting CCG is 1- or even 2-connected. Our algorithms run in O(n logn)
worst-case and O(n2 logn) expected time, respectively. Concerning realizability we give
some necessary conditions and then show that it is NP-hard to decide whether a given
graph can be realized as a disk-CCG if the correspondence between graph vertices and
point seeds is given. Second, we consider the restriction where we are given a set S of
points on the x-axis as seeds (Section 8.4). We show that in this case 1-connectivity is
easy: we can realize the cycle Cn as CCG on S and there are trees that can be realized as
CCG+ on S. For the case that the correspondence between seeds and vertices is given, we
give an algorithm that decides in O(n logn) time which trees can be realized as CCG+.
Third, we consider disk and triangle seeds (Section 8.5). We show that for homothetic
triangle seeds on the x-axis, there is always a connected triangle-CCG+ and that for disk
seeds it is already NP-hard to decide whether they admit a connected disk-CCG.

8.2 Related Work
Intersection and contact graphs. The first class of problems related to cover contact
graphs are found in general intersection and contact graphs of geometric objects. The
difference to our problem is, however, that the geometric objects are not constrained to
cover a set of seeds. Intersection graphs, not necessarily defined geometrically, play an
important role in graph theory and are covered in a book by McKee and McMorris [MM99].
In terms of geometric intersection graphs, an analogous result to Koebe’s theorem for coin
graphs [Koe36] was given by de Fraysseix et al. [dFOdMR94]. They showed that any planar
graph has a representation as a contact graph of triangles. The same authors recently
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extended this result to planar linear hypergraphs [dFOdMR08], where a hypergraph is
linear if any two hyperedges have at most one vertex in common. Badent et al. [BBdG+07]
were interested in the question which graphs can be represented as contact graphs of
homothetic triangles. There are planar graphs that have no such representation but they
proved that two-terminal series-parallel digraphs and partial planar 3-trees1 can be realized
as homothetic-triangle contact graphs.

Disk graphs have been studied extensively. Most recognition problems are NP-hard,
that is, it is NP-hard to decide whether a given graph can be represented as contact or
intersection graph of some type of disks. As already mentioned before, contact graphs of
arbitrary disks are exactly the planar graphs [Koe36] (and hence can be recognized in linear
time [HT74]) but deciding whether a graph has a representation as the intersection graph
of arbitrary disks in the plane is NP-hard as showed by Hliněný and Kratochvíl [HK01].
Breu and Kirkpatrick showed that for unit disks the recognition problem is NP-hard
both for intersection and for contact graphs [BK96, BK98]. The NP-hardness results
can be extended to bounded-ratio intersection and contact graphs of disks [BK96], where
a bounded-ratio disk graph is a disk graph with disk radii in the range [1, r] for some
fixed r ≥ 1. In higher dimensions, Hliněný and Kratochvíl showed that the recognition
problem is NP-hard for unit-ball contact graphs in dimensions 3, 4, 8, and 24 [HK01].
They conjecture that this holds for all dimensions d ≥ 2. Unit-ball intersection graphs are
NP-hard to recognize in two and three dimensions and it was conjectured that this holds
for any dimension d ≥ 2 as well [BK98].

Another class of graphs that has attracted a lot of attention is the class of curve
intersection graphs (also called string graphs) [EET76]. An interesting subclass are segment
intersection graphs [KM94]. It is a famous open question asked by Scheinerman in
1984 [Sch84] whether every planar graph is the intersection graph of segments in the plane.
As a recent example, de Fraysseix and Ossona de Mendez [dFOdM07] showed that any
four-colored planar graph without an induced four-colored cycle C4 is the intersection
graph of a family of line segments. In terms of curve contact graphs, de Fraysseix et
al. [dFOdMP91] showed that every planar bipartite graph is the contact graph of a family
of horizontal and vertical segments. De Castro et al. [dCCDM02] extended this result by
showing that every planar triangle-free graph can be represented as a segment contact
graph with only three segment directions. On the other hand Hliněný [Hli01] showed that
the recognition problem of segment contact graphs is NP-complete. The PhD thesis of
Hliněný [Hli00] is a good starting point for further literature research on curve contact
graphs.

Covering problems. The second class of problems related to cover contact graphs are
geometric covering problems. The difference is now that in these problems we do not have
the restriction that each seed must be covered by exactly one covering object and that the
contact graph of the covering objects must satisfy some graph-theoretic property. As an
example take Welzl’s famous randomized algorithm for finding the smallest enclosing ball
of a set of points [Wel91]. Another example is the widely-applicable shifting technique by
Hochbaum and Maass that yields polynomial-time approximation schemes, for example,
for covering points with a minimum number of unit disks or rectangles [HM85]. An
approximation scheme for the geometric k-median problem, where n points need to be

1A planar 3-tree is a recursively defined graph. The complete graph on three vertices is a planar 3-tree.
Any graph that is obtained from a planar 3-tree by adding to it a new vertex inside a triangular face
and connecting it to the three vertices of this face is again a planar 3-tree. A partial planar 3-tree is a
subgraph of a planar 3-tree.



8.3 Point Seeds in the Plane 177

covered by k variable-size disks, is given by Arora [Aro03], for further approximation results
see also [Vaz01, Chapter 25]. As a last example, Clarkson and Varadarajan [CV05] give
polynomial-time approximation algorithms for several variations of geometric set cover
problems, for example, covering fat triangles by pseudodisks or by other fat objects.

Combining contact graphs and covering problems. Abellanas et al. [ABH+06] proved
that the following packing problem, which they call the coin placement problem, is NP-
complete. Given n disks of varying radii and n points in the plane, is there a way to
place the disks such that each disk is centered at one of the given points and no two disks
overlap?

Abellanas et al. [AdCH+06] considered a problem that is closely related to cover contact
graphs. They showed that given a set of points in the plane, it is NP-complete to decide
whether there are disjoint disks centered at the points such that the contact graph of the
disks is connected. The difference to our problem definition is that we require only that
each disk covers a point, but the disk does not need to be centered at that point.

Given a pair of touching (convex) covering objects, we can draw the corresponding
edge in the CCG by a two-segment polygonal line that connects the incident seeds and
uses the contact point of the covering objects as bend. This is a link to the problem of
point-set embeddability. We say that a planar graph G is k-bend (point-set) embeddable
if for any point set P ⊂ R2 there is a one-to-one correspondence between V and P such
that the edges of G can be drawn as non-crossing polygonal lines with at most k bends per
edge. Kaufmann and Wiese [KW02] showed that (a) every 4-connected planar graph is
1-bend embeddable, (b) every planar graph is 2-bend embeddable, and (c) given a planar
graph G = (V,E) and a set P of n points on a line, it is NP-complete to decide whether G
has a 1-bend embedding that maps V one-to-one on P .

For the case of a given correspondence between vertices and points (which is relevant
to this paper) Pach and Wenger [PW01] showed how to compute in O(n2) time a plane
embedding of the given graph where each vertex is represented by the corresponding point
and each edge is represented by a polygonal line with O(n) bends. They also showed
that Ω(n) bends are needed in the worst case.

8.3 Point Seeds in the Plane
In this section we study point seeds which may take arbitrary positions in the plane. If
not stated otherwise our results hold for both disk covers and (homothetic) triangle covers.
We start with the connectivity problem.

8.3.1 Connectivity
It is known to be NP-hard to decide whether a given set of points can be covered by a set
of pairwise disjoint open disks, each centered on a point, such that the contact graph of
the disks is connected [AdCH+06]. In contrast to that result we give a simple sweep-line
algorithm that covers point seeds by (non-centered) disks such that their contact graph is
connected.

Theorem 8.1 Every set S of n point seeds has a connected CCG. Such a CCG can be
constructed in O(n logn) time and linear space.
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C1
C2

C3

C4

Figure 8.2: Constructing a connected CCG by inflating triangles as covering objects. Three contact
types are possible: the top edge of the new triangle touches the bottom vertex of a
previous triangle (C4), the top right vertex touches a left edge (C3), or the top left
vertex touches a right edge (C2).

Proof. We first sort the given seed set S by non-increasing ordinate. Let p1, . . . , pn be the
resulting sequence of points. Then we proceed incrementally from top to bottom. We
cover p1 by a covering object C1 (disk or triangle, depending on the case) of some fixed
size such that p1 is the bottommost point of C1. Now assume that k > 1 and that the k− 1
topmost points have been covered such that the contact graph of their cover is connected.
Then we cover pk = (xk, yk) initially by an infinitesimally small covering object Ck and
inflate Ck with p as the bottommost point until Ck eventually touches one of the previously
placed covering objects. Figure 8.2 shows an example with homothetic triangles as covering
objects.

It is possible to do this construction by incrementally building an abstract Voronoi
diagram with respect to accordingly defined bisectors. It is not clear, however, how to
implement this in O(n logn) time. Instead we use the following simpler algorithms for
triangles and disks, respectively.

For triangles it is easy to determine the size of the k-th triangle Ck given that triangles
C1, . . . , Ck−1 have been placed. The idea is that we maintain three data structures, one
for each type of collision during the afore-mentioned inflation step, see Figure 8.2. We first
precompute, in O(n logn) time and linear space, a data structure for so-called segment-
dragging queries [Mit92]. Given a fixed direction d and a wedge W with apex (0, 0), a data
structure for segment dragging yields, in O(logn) time, for a given query point p ∈ R2 the
first point hit by a line segment of direction d whose endpoints run from p along the edges
of the wedge W + p with apex p. This data structure gives us seeds that are hit by (the
relative interior of) the top edge of Ck (see C4 in Figure 8.2). It remains to determine
the first triangles that are hit by rays on which the top left and top right vertex of Ck
travel when we inflate Ck. This can be done by two simple ray-shooting data structures.
Both data structures can be implemented by dynamic balanced binary search trees, since
in each of them all query rays have the same direction, and so do the segments that are
potentially hit. Thus we again have a query time of O(logn). Once a new triangle is added
to the cover, we insert the new left and right triangle edges dynamically to the search
trees in O(logn) time per piece. Thus our algorithm for connected triangle-CCGs runs in
O(n logn) time and needs linear space.

For disks we do a top-to-bottom sweep with a horizontal sweep line ` : y = c. As before,
let C1, . . . , Ck−1 be the disks that have already been placed, that is, whose south poles lie
above `. We maintain the lower envelope of functions f c1 , . . . , f ck−1, where f cj is the locus of
the centers of all disks that touch both disk Cj and the sweep line. It is easy to see that
f cj is the parabola whose focus is the center of Cj and whose directrix is the horizontal
line with y-coordinate c− rj , see Figure 8.3. Note that given a query point (x, c) on the
sweep line, the largest disk with south pole (x, c) that does not intersect the interior of any
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y = c
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Figure 8.3: Finding the covering disk C4 for seed p4 that touches a previous disk. The center of
disk Ck lies on the lower envelope of the functions f cj for j ≤ k − 1. The focus and
directrix for parabola f c3 are shown.

D1 D2

D3

p1

p3

R

p2

(a)

D1 D2

D3

p1

p3

p4

D4

R7

p5

p6

p2

(b)

D1 D2

D3

p1

p2

p3

p4

p7

p8

D8

D4
D7

R9

p5

p6

(c)

Figure 8.4: Three steps in the construction of a biconnected disk-CCG.

previously placed disk has center (x,minj f cj (x)) and radius minj f cj (x)− c. This disk can
easily be computed given the lower envelope.

Our sweep is very similar to Fortune’s sweep [For86] for computing the Voronoi diagram
of weighted points (or disks). The only difference is that we do not know the weight of
a point p beforehand; we compute the weight of p (by querying the lower envelope) as
soon as we reach p. The handling of changes in the lower envelope and the insertion of
new parabolas are essentially the same as in Fortune’s sweep. Thus the running time of
O(n logn) and the linear space consumption carry over. ¤

In fact, even a biconnected CCG for any set of n point seeds exists as the following
theorem assures.

Theorem 8.2 Any set S of n point seeds has a biconnected CCG. Such a CCG can be
constructed in O(n2 logn) expected time using linear space.

Proof. We first consider disks as covering objects. Let D1, D2, and D3 be three congruent
disks that touch each other. They delimit a pseudo-triangular shape R. Choose the three
disks such that each diskDi contains a unique point pi ∈ S and such that S\{p1, p2, p3} ⊂ R,
see Figure 8.4a.

In order to cover the remaining points we assume that disks D4, . . . , Di−1 have been
placed such that each covers a unique point of S and touches two previously placed disks,
see Figure 8.4b. Thus the contact graph of D1, . . . , Di−1 is biconnected. Let Rj be a
connected component of R \

⋃i−1
j=4Di that contains at least one uncovered point. Use

Fortune’s sweep [For86] to compute the combined Voronoi diagram of the disks incident to
Rj and the points in S ∩Rj . This takes O(n logn) time and the resulting Voronoi diagram



180 Chapter 8: Cover Contact Graphs

p

p6

p7

p1

p2

p3p4

p5

(a) Influence area of seed p.

p
p6

p7

p1

p2

p3p4

p5

(b) Hyperinfluence graph HI (S).

Figure 8.5: Influence area and hyperinfluence graph for seeds S.

has complexity O(n). The part of the Voronoi diagram in Rj is the locus of the centers of
all disks that lie in Rj and touch ∂Rj ∪ (S ∩Rj) in at least two points, where ∂Rj is the
boundary of Rj .

Now we make a simple but crucial observation: if D is a disk that (a) lies in Rj ,
(b) contains a seed s ∈ S ∩Rj on its boundary, and (c) touches two of the previous disks,
then D is centered at a vertex of the Voronoi diagram. Thus a disk D? fulfilling (a)–(c)
can be found in linear time and, by construction, does not contain any point of S in its
interior. (If by any chance all such disks touch more than one point of S, we re-start the
whole computation with three slightly wiggled initial disks D1, D2, and D3. Then the
probability of this degeneracy becomes 0.) Now set Di = D?, and repeat the process until
all seeds are covered. This takes O(n2 logn) time in total.

The case of triangles can be handled analogously. Choosing any reference point in the
triangular shape, a structure similar to the medial axis can be computed in O(n logn) time
and updated in O(n) time in each of the n− 3 phases. ¤

8.3.2 Realizability
In this section we first give two necessary conditions that a planar graph must satisfy
in order to be realizable as a disk-CCG on a given seed set. We show that there is a
plane geometric graph on six vertices that cannot be represented as disk-CCG. Finally we
investigate the complexity of deciding realizability.

To formulate our necessary conditions for realizability we define the hyperinfluence graph
on the given seed set S. This graph is inspired by the sphere-of-influence graph defined
by Toussaint [Tou88] (see also [HJLM93, JLM95] for more results on sphere-of-influence
graphs). So given a seed set S and a point p ∈ S let the influence area of p be the closure of
the union of all empty open disks D (that is, D∩S = ∅) that are centered at vertices of the
Voronoi region of p, see Figure 8.5a. We call the intersection graph of the influence areas
of all seeds in S the hyperinfluence graph of S and denote it by HI (S), see Figure 8.5b.

Proposition 8.1 Let S be a set of point seeds and let G be a graph realizable as a disk-CCG
on S. Then

(i) G is a subgraph of HI (S), and

(ii) G has a plane drawing where each vertex is mapped to a unique point in S and each
edge is drawn as a polygonal line with at most two segments (that is, with at most
one bend per edge).
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p1 p2

Figure 8.6: A non-realizable graph. The influence areas of p1 and p2 do not intersect and thus no
two covering disks of p1 and p2 can touch.
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Figure 8.7: Non-realizable Delaunay triangulation of six points in convex position.

Proof. Both properties are straightforward to obtain. Property (i) is based on the observa-
tion that any possible covering disk of p is contained in the influence area of p. Thus, if
the covering disks of two seeds are in contact, their influence areas intersect. Property (ii)
is obtained by representing each edge of the CCG by two line segments that connect the
adjacent seeds with the point of tangency of their covering disks. ¤

While it is NP-complete to verify property (ii) of Proposition 8.1 even if all seeds lie on
a line [KW02], property (i) of Proposition 8.1 gives us a way to show non-realizability of
certain geometric graphs, for example, the graph depicted in Figure 8.6. The edge p1p2 of
the graph cannot be realized in a CCG with the given seeds, because the shaded influence
areas of p1 and p2 do not intersect. This graph is thus an example of a non-realizable
graph with eight vertices. On the other hand it is easy to see that any three-vertex graph
can be realized on any three-point seed set. Now it is interesting to ask for the least n for
which there is a plane n-vertex geometric graph G that cannot be realized as CCG.

Proposition 8.2 There is a set S of six point seeds in convex position such that their
Delaunay triangulation is not representable as a CCG.

Proof. Let S = {a, b, c, d, e, f} be six points in convex position that are connected by the
edges of their Delaunay triangulation as shown in Figure 8.7. Since the points a and d
are connected, the covering disks Da and Dd of the points a and d must touch each other
in one of two ways. Either the tangent point of the disks lies inside the convex hull of S
(left part of Figure 8.7), or Da and Dd are very large and lie to the left of a and to the
right of d, in which case they touch far above or below S as indicated in the right part
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Figure 8.8: Two chain links (solid and dashed) and the graph structure around p.

of Figure 8.7. In the first case we cannot find a disk that covers c and touches Da. In
the second case we can assume that the boundaries of Da and Dd are two almost parallel
lines in the vicinity of the six points. The disks Dc and Df covering c and f must both
touch Da and Dd. But if c and f are close enough to a and d then Dc and Df cannot be
disjoint. ¤

So we have seen that there are pairs of (quite small) graphs and seed sets such that
the graph cannot be realized on the seed set as disk-CCG. A natural question to ask is
whether a given graph is realizable as CCG on a given seed set or not. Of course Koebe’s
theorem [Koe36] guarantees that for any planar graph G we can find a seed set S such that
it is possible to realize G on S. However, if the seeds and the vertex–seed correspondence
are given, the problem becomes NP-hard as the next theorem shows.

Theorem 8.3 Given a set S of points in the plane and a planar graph G = (V,E) with a
bĳection between V and S, it is NP-hard to decide whether G is realizable as disk-CCG
on S.

Proof. We show the NP-hardness by reduction from the NP-complete Planar3-Sat
problem [Lic82] that has been defined in Section 2.3. Note that instead of the orthogonal
layout of the variable-clause graph Hϕ (recall Figure 2.3), we use a slanted layout of Hϕ,
where all angles are multiples of 60 degrees; this is similar to a reduction by Cabello et
al. [CDR04].

Next, we construct gadgets for variables and clauses as seeds and edges on a triangular
grid such that the resulting graph can be realized as CCG if and only if the Boolean
formula ϕ is satisfiable. One basic ingredient are chains of linearly connected points such
that each point can be covered only by two combinatorially different disks depending on
the truth value encoded by the respective chain structure. These chains will be used for
the variables and for the literal connections to the clauses. The structure of the chains is
exemplified in Figure 8.8 which shows two chain links and the underlying graph. The two
desired covering disks Dtrue

p and Dfalse
p of the central point seed p are drawn in solid black.

They both touch the covering disks of the two stopper elements s and s′ above and below
p as required by the edges ps and ps′. We explain the function of a stopper element by
looking at s. The positions of the singleton seed q and the seed r, which is connected to s
by an edge, induce that the centers of all valid covering disks to the left of p must lie on
the line segment Itrue

p , which can be made arbitrarily short by slightly shifting the seeds of
the stopper element. The same holds for I false

p and disks to the right of p.



8.3 Point Seeds in the Plane 183

Variable gadgets. Putting chain links together such that they must touch their neigh-
bors we construct variable gadgets as shown in Figure 8.9. Each variable is represented
by a chain of pairs of successive left and right turns of 60 degrees. Note that the turns of
60 degrees adhere to the grid. Once the covering disk of the first seed is fixed to one of
the two possibilities all successive disks in that chain become fixed because they have to
touch their predecessor as well as their two stopper elements. We define the black variable
configuration in Figure 8.9a as true and the gray one as false. At the bends of the variable
gadget literal chains can connect from above or below as depicted. If a literal has the
value false the covering disks of the literal chain are pulled towards the variable (see the
black configuration of the lower literal chain). Otherwise both configurations of the literal
chain are possible and we may choose the one where the covering disks are pushed away
from the variable chain (see the black configuration of the upper literal chain). Figure 8.9b
shows two close-up views of the truth value transfer for a negated literal connecting to the
variable gadget in its true state. (Note that for positive literals the three special seeds at
the end of the literal chain are mirrored at the axis of the literal chain.) The left-hand side
of Figure 8.9b is an invalid configuration because one of the final disks of the literal chain
intersects a covering disk of the variable gadget. Only the configuration on the right-hand
side, where the covering disks are pulled towards the variable gadget and hence encode the
correct value false, is valid.

Clause gadgets. Figure 8.10 depicts the clause gadget. The three literal chains are
meeting symmetrically at angles of 120 degrees each. At the end of each chain there is
a triangle of three seeds whose covering disks need to touch each other pairwisely. If the
literal evaluates to true, that is, the covering disks of the literal chain are pushed towards
the clause gadget, the last disk of the chain is able to touch the disks of the other two
seeds in the vicinity of their position. In that case the overall area used by the three disks
of the triangle is relatively small (see the literal coming from the right in Figure 8.9a). If,
on the other hand, the literal evaluates to false, the disks of the literal chains are pulled
towards the variable gadget. Hence the last disk of the chain is pulled away from the other
two seeds of the triangle; these two disks, consequently, need to grow strongly. Figure 8.10
shows that two false literals can still be accommodated (Figure 8.9a) while three false
literals clearly cannot (Figure 8.9b).

Reduction. From the construction of the gadgets we have the following:

(i) Each variable gadget realizes its respective subgraph by one of two combinatorially
different configurations, which represent the truth values true and false.

(ii) Each literal gadget similarly realizes its subgraph in one of two configurations; if the
literal evaluates to false, only one configuration is possible (otherwise two disks would
intersect in their interior), if the literal evaluates to true, both options are possible.

(iii) Each clause gadget is a space-restricted area that can accommodate the covering
disks of at most two false literal gadgets, otherwise there will be some disk overlap.

This concludes the proof of the reduction since the constructed graph can be realized on
the constructed seeds if and only if the corresponding planar Boolean 3-Sat formula is
satisfiable. We embed all seeds on a hexagonal grid. This grid has polynomial size since
the variable-clause graph of ϕ is embeddable on a grid whose size is quadratic in the length
of ϕ. Hence the reduction takes polynomial time. ¤



184 Chapter 8: Cover Contact Graphs

¬x

x

false

true

· · ·

..
.

variable
gadget
for x
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(b) Close-up view of the value transfer from variable chain to literal chain (see selection box in subfigure (a)).
The left configuration has an invalid disk overlap; the right configuration is valid.

Figure 8.9: Variable gadget.

8.4 Point Seeds on a Line
In this section, we restrict the seeds to be points on the x-axis and consider covers in the
CCG as well as in the CCG+ setting. Since the connectivity question is answered by some
of our realizability results, we focus on the latter problem.

8.4.1 Realizability
We consider the following four questions. Note that seeds now correspond to real numbers,
so we can use the natural order < in R to compare them. All covers consist of disks unless
stated otherwise (for example, in Q4).

Q1. Given a graph class C (for example, the class of trees), does it hold that for any seed
set S there is a graph in C that is realizable as CCG or CCG+ on S?

We show: This is true for the combinations (cycles, CCG) and (trees, CCG+).
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Figure 8.10: Clause gadget.

Q2. Given a graph class C, does it hold that for any graph G in C there is a seed set S
such that G can be realized as CCG or CCG+ on S?
We show: This is true for the combination (trees, CCG+).

Q3. Let C be a fixed graph class. Given a graph G ∈ C with a labeling λ : V → {1, . . . , n}
of its vertices, is there a sequence s1 < · · · < sn of seeds on the x-axis and a realization
of G as CCG or CCG+that maps each vertex v to the corresponding seed sλ(v)?
We show: There is an O(n logn) decision algorithm for the combination (trees,
CCG+).

Q4. Let C be a fixed graph class. Given a seed set S and a graph G = (V,E) ∈ C with a
one-to-one correspondence between S and V , can G be realized on S as triangle-CCG
or triangle-CCG+?
We show: There is an O(n logn)-time decision algorithm for (trees, triangle-CCG+).

Note that the above questions require more and more concrete information about the seed
set, ranging from no information (Q2) via a fixed order (Q3) to complete information (Q4).

We start with question Q1.

Proposition 8.3 Let S be a set of n point seeds on a line, then

(i) the n-vertex cycle Cn can be realized as CCG on S, and

(ii) there is a tree T (S) that can be realized as CCG+ on S.

Proof. (i) Let S be ordered from left to right and let a, b, c, and d be the first, second,
second last and last point in S, see Figure 8.11a. Consider the one-dimensional Voronoi
diagram of S. We shift the first Voronoi point between a and b to b and the last point
between c and d to c. The resulting points are marked by vertical dotted segments in
Figure 8.11a. Each cell of the resulting diagram is a segment of the x-axis and contains
a seed. Cover the seed by a disk whose diameter is the segment. The resulting disks are
shaded in dark gray in Figure 8.11a. Clearly each seed in S \ {a, d} is now covered by a
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(a) Cn is realizable as CCG.
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(b) Tree T (S) is realizable as CCG+.

Figure 8.11: Graphs that can be realized on a given one-dimensional n-point seed set S.

disk that touches the disk of its predecessor and the disk of its successor (where those
exist). Choose a point x on the perpendicular bisector ` of a and d such that all (closed)
disks lie in the interior of quadrangle (a, x, d,−x). Cover a and d by disks Da and Dd, that
touch the quadrangle in a and d, respectively, and touch each other on `. Clearly these two
disks (light gray in Figure 8.11a) do not touch any of the other n− 2 disks yet. So finally
we enlarge the disk Db of b by moving the left endpoint of its diameter towards a until Db

touches Da. The disk Dc of c is enlarged analogously towards d. This closes the cycle.
A similar construction that first connects the points from b to c by a path and then

closes the cycle from a to d can be used for homothetic triangles as covering objects.
(ii) We pick any seed r as root and cover it by a disk Dr whose projection on the x-axis

spans all seeds. Then we grow a disk from each seed until it touches one of the previously
placed disks, see Figure 8.11b. A cycle can appear only if a new disk accidentally touches
more than one previously placed disk. In this case we increase the radius of Dr by a
randomly chosen ε > 0 and repeat the process. Then the probability of constructing a tree
is 1.

For triangular covering objects we start with a large triangle placed with its bottommost
vertex at the leftmost seed such that its projection on the x-axis contains all seeds (apply
the same idea from right to left if the triangle is tilted to the left). Now we iteratively grow
a triangle from the next seed until it touches one of the earlier triangles with its top left
vertex. Note that the top right vertex can never touch a previous triangle and hence the
CCG+ obtained is a tree. ¤

In terms of this chapter, a coin graph is obtained when seeds are points and covering
objects are disks centered at seeds. Thus Koebe’s theorem establishes that it is always
possible to choose seeds in the plane such that any given planar graph is realizable as
a coin graph on them. We have seen in Proposition 8.3 that Cn is realizable as a CCG
on any seed set on a line. One can ask whether a Koebe-type theorem also holds in this
restricted setting. Kaufmann and Wiese [KW02] have shown, however, that there is a
plane triangulated 12-vertex graph (see Figure 8.12) that cannot be drawn with only one
bend per edge if vertices are restricted to a line. Now Proposition 8.1 (ii) implies that this
12-vertex graph is not realizable as CCG if the seeds lie on a line. On the positive side, we
can show that a Koebe-type theorem holds for the combination (trees, CCG+). This is an
answer to Q2 and in a way dual to Proposition 8.3 (ii).

Proposition 8.4 For any tree T there is a seed set S(T ) ⊂ R1 such that T is realizable as
CCG+ on S(T ).
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Figure 8.12: Graph by Kaufmann and
Wiese [KW02].

Figure 8.13: Constructing a seed set S(T ).

Proof. Our construction is recursive. We traverse the vertices of T in breadth-first order.
We map the root v of T to 0 and cover it by a disk D0 of radius 1, see Figure 8.13. If v
has no children, we are done. Otherwise let r1, . . . , rk be the children of v. Define `0 to be
the line x = 1. Note that `0 touches D0. Now for each child ri of v do the following. Place
the largest disk Di that fits into the region delimited by D0, the x-axis, and the line `i−1.
Map ri to the south pole of Di, that is, the point where Di touches the x-axis. Note that
Di also touches `i−1 on its right-hand side. Define `i to be the left vertical that touches
Di. Figure 8.13 shows the placement of the seeds for the three children r1, r2, r3 of v and
their covering disks D1, D2, D3.

It is not hard to see that we can place an arbitrary number of children of v in this way.
Clearly the disks of any two children of v are disjoint. Note that all these disks lie in the
region R0 delimited by D0, `0, and the x-axis. For i = 1, . . . , k we define the region Ri
delimited by Di, `i−1 and the x-axis. These regions are shaded in light gray in Figure 8.13.
Each of them is congruent to R0. Thus we can repeat the process for placing the children
of v in R0 for the children of r1, . . . , rk in the respective regions R1, . . . , Rk. These regions
are pairwise disjoint, so the disks of two different grandchildren of v do not intersect.

The same idea can also be used to show the proposition for homothetic triangles as
covering objects. ¤

In Proposition 8.4 above, we had complete freedom to choose the seeds. Now we turn to
question Q3, where we are not just given a tree, but also an order of its vertices that must
be respected by the corresponding seeds. Kaufmann and Wiese [KW02] have investigated
a related problem. They showed that it is NP-complete to decide whether the vertices of a
given (planar) graph can be put into one-to-one correspondence with a given set of points
on a line such that there is a plane drawing of the graph with at most one bend per edge.
We call such a drawing a 1d-1BD. If additionally all bends lie on one side of the line, we
call the drawing a 1d-1BD+. Note that a 1d-1BD of a graph G can be seen as a two-page
book embedding [CLR87], where the edges drawn below the line that contains the vertices
(called the spine in book embeddings) correspond to edges on one page while the edges
above the spine correspond to edges on a second page. Similarly, a 1d-1BD+ of G can be
considered as a one-page book embedding.

Note that the hardness result of Kaufmann and Wiese does not yield the hardness of the
one-dimensional CCG realizability problem, since not every graph that can be one-bend
embedded on a set of points on a line is realizable as CCG, let alone as CCG+. Our next
result explores the gap between Kaufmann and Wiese’s one-dimensional embeddability
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problem and the situation in Proposition 8.4.
More formally, given an n-vertex tree T and a (bĳective) labeling λ : V → {1, . . . , n} of

its vertices, we say that T is λ-realizable (as CCG, CCG+, 1d-1BD, 1d-1BD+) if there is
a sequence s1 < · · · < sn of seeds in R1 and a realization of T (as CCG, CCG+, 1d-1BD,
1d-1BD+) that maps each vertex v to the corresponding seed sλ(v).

In order to obtain a characterization of trees that are λ-realizable as CCG+, we need
the following definition. Given a graph G = (V,E) with vertex labeling λ, a forbidden pair
is a pair of edges {ab, cd} such that λ(a) < λ(c) < λ(b) < λ(d). Note that it is impossible
to embed the edges of a forbidden pair simultaneously above the x-axis.

Theorem 8.4 For a λ-labeled tree T the following statements are equivalent:

(i) T is λ-realizable as a CCG+.

(ii) T is λ-realizable as a 1d-1BD+.

(iii) T does not contain any forbidden pair.

Proof. We first show that (i) and (ii) and then that (ii) and (iii) are equivalent.
(i) ⇒ (ii): Given a λ-realization of T as CCG+ on some seed set S ⊂ R1, we can use

the idea of Proposition 8.1 (ii) to get a one-bend embedding in R2
+ on the same seed set by

drawing each edge as the two segment polyline from the first seed via the point of tangency
of the corresponding covering disks to the second seed.

(ii) ⇒ (i): Now we are given a λ-realization of T as 1d-1BD+ on some seed set S ⊂ R1.
Let v be a free vertex of T if T has no edge uw with λ(u) < λ(v) < λ(w). Note that T
has at least two free vertices, namely those with λ-values 1 and n. Pick any free vertex
v as root of T . Represent v by a seed at the origin and the unique unit disk D0 in R2

+
touching the origin. The root v partitions T \ {v} in two (possibly empty) connected
components. The vertices in one component, the right part, have λ-values greater than
v, while the vertices in the other component, the left part, have λ-values less than v. Let
R+

0 and R−0 be the regions delimited by the x-axis, D0, and the vertical lines x = 1 and
x = −1, respectively.

Now we place all seeds and the cover of the right part and the left part in R+
0 and R−0 ,

respectively. Name the children of v in the right part in order of decreasing λ-value r1, . . . , rt
and place them from right to left as in the proof of Proposition 8.4 (see Figure 8.13),
but with tiny gaps in between the left vertical tangency line of disk Di and the right
vertical tangency line of Di+1 for i = 1, . . . t− 1. The children l1, . . . , lt of v in the left part
are defined and placed symmetrically (with respect to the line x = 0). Now we recurse,
using the regions defined by each child disk, the vertical lines through its leftmost and its
rightmost point, and the x-axis.

(ii) ⇒ (iii): Trivial.
(iii) ⇒ (ii): We map each vertex v of T to the seed λ(v) ∈ R1. Let all edges be directed

from left to right with respect to the seed ordering on the x-axis and let vi (i = 1, . . . , n)
be the vertex in T that is mapped to seed λ(vi) = i. We insert the edges iteratively
by increasing order of the source vertices. For each i = 1, . . . , n we draw any outgoing
edge vivj as the two-segment polyline whose bend is placed at position (i+ 1/2, (j − i)/2i).
Figure 8.14 shows an example of this construction. Clearly, all edges with the same source
do not intersect (except at their common vertex). It remains to show that none of the
previously inserted edges is intersected by a new edge vivj . Since there are no forbidden
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Figure 8.14: Incremental 1d-1BD+ for a tree with no forbidden pairs.

pairs, it holds that for any previously inserted edge vkvl and the current edge vivj , the
four seeds are ordered as k < i < j ≤ l. The slope of the right leg of vkvl in the drawing is

− 1
2k
· l − k
l − k − 1/2

< − 1
2k

and the slope of the right leg of the new edge vivj is

− 1
2i
· j − i
j − i− 1/2

≥ − 1
2i−1 .

Since k ≤ i− 1 this means that the right leg of any previously inserted edge is steeper than
the right leg of vivj . Moreover, the bend of any previously inserted edge is to the left of i.
Hence edge vivj does not intersect any other edge when it is inserted. Once all edges are
drawn, we have found a valid 1d-1BD+ for T . ¤

Given the tree, statement (iii) can be checked in O(n logn) time using an interval tree,
therefore we immediately obtain the following corollary.

Corollary 8.1 Given a λ-labeled tree T , we can decide in O(n logn) time whether T is
λ-realizable as CCG+.

We now turn to question Q4. So given a set of seeds S, a tree T = (V,E), and a
bĳection between S and V that assigns each vertex to a seed, we give a decision algorithm
for the realizability of T as a triangle-CCG+ on S.

We call a family of homothetic triangles V-shaped if each triangle is symmetric to
a vertical line and its bottommost vertex is unique. In the following we will consider
only V-shaped triangles. First note that there are trees T and seed sets S for which
the answer to question Q4 is negative even if the mapping between vertices and seeds
is not fixed in advance. Figure 8.15 shows a complete binary tree T on seven vertices
and the one-dimensional point set S = {a(0), b(2), c(5), d(11), e(13), f(16), g(33)}. A case
distinction on the seed that represents the root vertex 1 shows that it is not possible to
find a representation of T as a triangle-CCG+ on S. The example in Figure 8.15 shows
the case where seed g represents the root. In this case any two covers of points in S \ {g}
that touch the covering triangle of g will overlap, even the covering triangles of the most
distant seeds a and f . Hence it is impossible to attach the two children to the root.

On the other hand, there is always a tree that can be realized on a given set of seeds
as Proposition 8.3 (ii) shows. Below we give an algorithm that decides this realizability
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Figure 8.15: Binary tree that is not realizable as triangle-CCG+ on the given seeds.
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Figure 8.16: Atomic triangles.

question in O(n logn) time. We say that a set of points on a line is in general position if no
point is equidistant to two other points, and we consider only such point sets. Furthermore,
we define the atomic V-shaped covering triangles for a given V-shaped family of triangles
a pair of seeds {s, t} as the unique congruent triangles ∆s and ∆t placed at s and t that
touch each other in a triangle vertex, see Figure 8.16.

Algorithm 8.1: V-shaped triangle-CCG+ on fixed seeds realizing a tree.
Input: seed set S with at least two seeds
Output: cover C of S
initialize L← S1
initialize C ← ∅2
while |L| > 2 do3
{s, t} ← closest pair in L4
{∆s,∆t} ← pair of atomic triangles for {s, t}5
choose u ∈ {s, t}6
add ∆u to C7
delete u from L8

add both atomic triangles for L = {s, t} to C9
return C10

Algorithm 8.1 generates a cover that realizes a corresponding tree as triangle-CCG+

on the given seeds. Note that this tree is not unique as the choice of the seed u in line 6
is arbitrary. It is not hard to see that the triangle-CCG+ obtained by Algorithm 8.1 is
indeed a tree due to our assumption concerning general position. Now we can finally state
our result based on Algorithm 8.1.

Theorem 8.5 Given a set S ⊂ R1 of seeds in general position and a tree T with a fixed
seed assignment for each vertex, we can decide in O(n logn) time whether T can be realized
as a V-shaped triangle-CCG+ on S.

Proof. We construct a cover that realizes T edge by edge. We start with T and an empty
cover C. Observe that the closest pair of seeds must form an edge of T , otherwise the
triangle-CCG+ of C would not be connected. Furthermore, one of the vertices of this
edge must be a leaf since only one of the atomic triangles can grow any further. Thus,
we determine the closest pair of seeds {s, t} and check whether st is a leaf edge of T . If
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this is not the case, we answer “no”. Otherwise we choose the seed u in line 6 as the
leaf vertex of edge st. Now Algorithm 8.1 adds the atomic triangle ∆u for u to C and
removes u from L in line 8. Accordingly, we delete the leaf u and its incident edge in T .
By induction the closest pair in L again corresponds to a leaf edge of the modified tree T
and we repeat the above process. If the construction terminates without answering “no” in
one of the iterations, it is clear that we have constructed a cover C that represents T as a
triangle-CCG+and we answer “yes”.

Finding the closest pair of seeds in line 4 is the time-critical part of Algorithm 8.1
and can be done by maintaining a priority queue that is initialized to the distances of all
neighboring seeds. This takes O(n logn) total time. ¤

From Theorem 8.5 it is clear that Algorithm 8.1 can be used to generate all trees that
can be realized as triangle-CCG+ on S and thus we obtain the following corollary.

Corollary 8.2 Let S ⊂ R1 be a set of seeds in general position, let T (S) be the set of trees
that are realizable on S as CCG+ with homothetic V-shaped triangles as covering objects,
and letM(S) be the set of trees that can be obtained by Algorithm 8.1. Then T (S) =M(S).

Proof. As all triangle-CCG+’s obtained by Algorithm 8.1 are trees that are realizable
on S it remains only to show that T (S) ⊆M(S). So consider any tree T ∈ T (S) and its
realization as triangle-CCG+. Since covering objects are V-shaped homothetic triangles the
y-coordinate of the contact point between two triangles is proportional to the distance of
the covered seeds. We sort the triangles in the realization of T in increasing order by their
height and impose the same order on the associated seeds. Then we apply Algorithm 8.1
under the constraint that u (and the triangle ∆u) in line 6 is chosen according to this
ordering of the seeds. It follows that in each iteration the point covered by the lowest
remaining triangle in the given triangle-CCG+ of T is a point of the closest pair. Hence
the algorithm is able to reconstruct T . ¤

Note that the restriction to V-shaped triangles in Theorem 8.5 and Corollary 8.2 is
made only for ease of presentation. The results for V-shaped triangle families can easily
be extended to families of homothetic triangles whose top sides are parallel to the x-axis.
It suffices to redefine the atomic triangles as the unique congruent triangles in the given
family that touch each other in a triangle vertex.

8.5 Disk or Triangle Seeds in the Plane
In this section, we consider a different class of seeds, namely disks or homothetic triangles
in the plane. We will cover them with the same kind of objects, that is, the covers for disks
are disks and the covers for homothetic triangles are homothetic triangles. If the seeds are
not points the main difference is that the minimal size of each cover is bounded, so the
results differ in many cases from those obtained in the previous sections when the seeds
were points. We first consider seeds in R2

+ that are tangent to the x-axis (for triangles the
bottom vertex is on the x-axis) and then how to translate the results to general seeds in
the plane.
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(a) Disks on the x-axis without connected
CCG+.

(b) Disks in the plane without connected CCG.

Figure 8.17: Disk seeds that cannot be covered by a connected disk cover. Seeds are drawn in gray,
covers in white.

Figure 8.18: There is always a connected CCG+ for homothetic triangle seeds on a line.

8.5.1 Connectivity
Unlike the connectivity results for points we can neither guarantee the existence of a
connected CCG+ for disk seeds tangent to a horizontal line nor the existence of a connected
CCG for disk seeds in the plane, see Figure 8.17. For homothetic triangles, however, we
can find a connected CCG+ as the next proposition shows.

Proposition 8.5 For a set S of homothetic-triangle seeds on a line there is always a
connected triangle-CCG+.

Proof. We consider the family of parallel lines induced by the triangle sides opposite to
each bottom vertex of the seeds. Among these lines there is one line g that contains all
seed triangles in its lower half space. We cover the seed belonging to g by a big triangle
such that the interval on the x-axis between the projections of the two vertices of the
top edge along the direction of the respective opposite triangle sides contains all bottom
vertices of the seeds, see the dashed projection lines in Figure 8.18. Then we inflate a
covering triangle for each of the seeds until it touches one of the previous triangles. Due
to the size of the first covering triangle each inflated triangle eventually touches another
covering triangle and hence the CCG+ is connected. ¤

The same method can be extended to find a connected CCG for any set of general
homothetic-triangle seeds in the plane.

Corollary 8.3 For a set S of homothetic-triangle seeds there is always a connected CCG.

Proof. The initial seed to be covered is selected as before and the size of its covering
triangle must be large enough such that all other seeds are contained in the (unbounded)
region between the two projection lines. This guarantees that inflating covering triangles
for the other seeds will always lead to a contact event. ¤

We cannot extend the result of Proposition 8.5 any further. It is easy to see that in the
example of Figure 8.18 no biconnected CCG+ exists (for example, the covering triangle of
the rightmost seed can never touch any covering object other than its left neighbor). For
disk seeds deciding whether there is a connected CCG turns out to be hard.
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Figure 8.19: Stopper element.
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Figure 8.20: The variable gadget.

Theorem 8.6 Given a set S of disk seeds, it is NP-hard to decide whether there is a
connected CCG on S, even if there are only four different seed radii.

Proof. The proof is by reduction from NP-complete problem Planar3-Sat [Lic82] that
has been introduced in Section 2.3. So given a planar Boolean 3-CNF formula ϕ, We
construct two types of gadgets, one for the variables of ϕ and one for the clauses of ϕ. First,
as an important building block, we define a stopper element consisting of three congruent
and pairwise touching disks as depicted in Figure 8.19. Observe that these disks can be
covered only by themselves—any larger cover of any disk would intersect the others.

Variable gadgets. For each variable of ϕ we place a set of congruent disk seeds with
radius r horizontally on a grid as shown in Figure 8.20. Both below and above the disks
we place small stopper elements such that, in order to touch them all in a CCG, each of
the variable seeds must be covered by a disk of radius 2r. These covers must be centered
on the same horizontal line as the seeds and they are either tangent to the leftmost point
or to the rightmost point of their respective seed. We define the cover in Figure 8.20a as
encoding the value false and the alternative cover in Figure 8.20b as encoding the value
true. In order to transmit the truth value into the clauses we connect vertical literal “wires”
to the variable gadget. The wires consist of seeds of radius r′ = (

√
2 − 1)r flanked by

stopper elements as before. For negated (non-negated) literals the wires are centered on
the vertical grid line tangent to the left (right) of a seed of the variable gadget. Hence, in
order to form a connected CCG, the covers of literal wires that are false are pulled towards
the variable and the covers of literals that are true are pushed away from it as illustrated
in Figure 8.20.

Clause gadgets. The clause gadget is depicted in Figure 8.21 and combines three literal
wires in a comb-like shape with a stopper element in the center. The left and right wires
make a 90-degree turn similar to the connection of a literal wire to its variable gadget.
Hence the horizontal literal wires use seeds of radius r′′ = (

√
2− 1)r′. We use the same

radius r′′ for the disks of the central stopper element. The wires stop in front of the center
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stopper element.
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(b) All literals are false and the central stopper
element cannot be connected.

Figure 8.21: The clause gadget.

of the clause, more precisely, they stop with the last seed of the wire that can be placed
without intersecting the central stopper element. The very last seeds of the three wires
are not framed by small stopper elements any more. Observe that in this construction
literal wires that are pushed into the clause (transmitting the value true) are able to
connect to the central stopper element by inflating the final covering disk appropriately
(see Figure 8.21a), while wires that are pulled away from the clause (transmitting the
value false) cannot connect to it. Inflating the final covering disk while keeping the contact
to the previous disk in the wire would lead to an overlap with the last stopper elements
in the wire (see Figure 8.21b). Hence the central stopper element of a clause gadget can
be connected to the remaining graph if and only if one of the literal wires transmits the
value true.

Reduction. In order to obtain a connected CCG, it is necessary to connect the stopper
element in the center of each clause to at least one literal wire. By construction this is
possible if and only if there is a variable assignment that satisfies all clauses. We further
need to ensure that all the variable gadgets, which are placed on a horizontal line, are in
the same connected component of the CCG. This can easily be achieved by placing a single
disk seed between any two neighboring variable gadgets that can be covered by a disk that
touches both neighboring gadgets irrespective of their truth values. Now it is easy to see
that all variable gadgets and all literal wires are in a single connected component. Hence
the whole CCG is connected if and only if each clause gadget is also connected to that
component by at least one literal wire and that is the case if and only if each clause is
satisfied by the truth value assignment encoded in the variable gadgets.

The variable-clause graph Hϕ of ϕ can be embedded on a grid whose size is quadratic
in the size of ϕ. Hence the grid on which the disk seeds in our construction are placed also
has polynomial size and the reduction takes polynomial time. We have used only four seed
radii. ¤

8.6 Concluding Remarks
In this chapter we have studied cover contact graphs, a new class of graph representations,
which are contact graphs of two-dimensional geometric objects (disks or triangles) that are
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pinned down to some degree by the requirement to cover a given set of seeds (points, disks,
or triangles) in the plane. Hence cover contact graphs are found in the cross section of
general contact graph representations and geometric covering problems. We have examined
two questions, namely whether the given seeds admit a connected cover contact graph and
whether a given graph can be realized on the given seeds as a cover contact graph. We have
shown that the connectivity question can be answered positively for point and triangle
seeds but it is NP-hard for disk seeds. The realization question is NP-hard already for
point seeds, but we have given two decision algorithms for trees that are to be realized on
point seeds on a line.

Open problems. Since cover contact graphs are a new topic in the area of graph
representations many interesting questions remain open. We know that every 3-vertex
graph can be represented as CCG on any set of three points. We have further given an
example of six points whose Delaunay triangulation is not representable as a CCG. The
status of this question for four and five points and planar graphs with four and five vertices
is still unknown. If we consider a set of point seeds in convex position, is there always a
triangulation that can be realized as CCG?

We have positively answered the connectivity question for point seeds, even a 2-connected
CCG is always possible. Does this extend to 3-connectivity, that is, does any set of points
admit a 3-connected CCG? For disk seeds we have shown that it is NP-hard to decide
whether a connected CCG exists. Is this decision problem still NP-hard if we ask for a
connected CCG+ for disk seeds in R2

+ that touch the x-axis?
In Theorem 8.4 we have characterized vertex-labeled trees that can be realized as

disk-CCG+ on a set points on a line in a prescribed vertex order. Can we give an equivalent
characterization of vertex-labeled trees that can be realized as disk-CCG, where the
difference to the given characterization is that disks may now touch on both sides of the
x-axis.

Finally, all our questions can be extended to other classes of seed objects and covering
objects.
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Chapter 9

Consistent Digital Rays

In this chapter we are considering a very fundamental and classic problem in digital
geometry, namely how to best represent a line segment in a raster graphics. This topic has
a direct impact to the visualization of geometric networks, where each edge is represented
as the line segment between the points representing its incident vertices. In Euclidean
geometry the line segment between two points is a well-defined object. And it is usually
in terms of Euclidean geometry that we think about visualizations of networks. However,
if a geometric network is to be displayed on a grid-based medium like a computer screen
it is essential to have a mapping from the Euclidean space to the display medium that is
consistent in a certain sense.

We show that, although being a well-studied subject, it is not obvious how to consistently
define line segments in a grid topology and at the same time maintain a certain visual
similarity between the Euclidean line segment and the grid line segment. We propose a
set of consistency axioms for line segments in the grid and consider the subproblem of
representing segments of rays from a fixed origin o in the grid. We recursively define a system
of consistent rays in the grid that asymptotically optimally represent the corresponding
Euclidean rays in terms of the Hausdorff distance. This chapter is based on joint work
with Jinhee Chun, Matias Korman, and Takeshi Tokuyama [CKNT08, CKNT09].

9.1 Introduction
The digital line segment dig(pq) between two grid points p and q is a fundamental digital
geometric object, but still its definition is not that obvious. Indeed, the digital representation
of line segments has been an active area of research for almost half a century now (see,
for example, the survey of Klette and Rosenfeld [KR04]). In digital geometry, a geometric
object is represented by a set of d-dimensional grid points in a digital grid G = Zd, and
its topological properties are considered under a grid topology defined by a graph on
the grid. In two dimensions, it is common to consider the orthogonal (or 4-neighbor)
grid topology, where each point p = (x, y) is connected to its four vertical and horizontal
neighbors (x, y− 1), (x, y+1), (x− 1, y), and (x+1, y); we focus on this topology. However,
as a variant, we may consider the 8-neighbor grid topology that connects each grid
point p = (x, y) to its 4-neighbors as before and additionally to its diagonal neighbors
(x+ 1, y − 1), (x+ 1, y + 1), (x− 1, y − 1), and (x− 1, y + 1). Given a grid topology, the
digital line segment dig(pq) between two grid points p and q is a path between p and q in
this topology.



198 Chapter 9: Consistent Digital Rays

q

p
s

t

g1

g2

Figure 9.1: Euclidean line segments and their DSSs. Intersections are indicated by bicolored pixels.
Axiom (S3) is violated since s, t ∈ dig(pq) but dig(st) 6⊆ dig(pq) (top); the intersection
of the DSSs g1 and g2 is not connected (bottom).

Since a digital line segment dig(pq) is a representation of a line segment pq in Euclidean
geometry, it is natural (at least from a mathematical perspective) to set up the following
axioms that a digital line segment should satisfy:

(S1) A digital line segment dig(pq) is a connected path between p and q under the grid
topology.

(S2) For any two grid points p and q, there is a unique digital line segment dig(pq) =
dig(qp).

(S3) For a digital line segment dig(pq) and two grid points s, t ∈ dig(pq), it holds that
dig(st) ⊆ dig(pq).

(S4) For any two grid points p and q there is a grid point r /∈ dig(pq) such that dig(pq) ⊂
dig(pr).

Note that axiom (S3) implies that a non-empty intersection of two digital line segments
is either a grid point or a digital line segment. Axiom (S4) implies that any digital line
segment can be extended to a digital line. We often identify a path in a grid with its vertex
set if the correspondence is clear. Accordingly, if we say that a grid point p is in a path P ,
it means that p is a vertex of P .

Unfortunately, popular definitions of two-dimensional digital line segments in computer
vision do not satisfy these axioms. For example, in the standard definition of a digital
straight segment (DSS) [KR04], a digital line segment (in the 8-neighbor topology) that
corresponds to the Euclidean line segment given by y = mx+ b, x0 ≤ x ≤ x1 is defined as
the set of grid points {(i, bmi+ b+ 0.5c) | x0 ≤ i ≤ x1} for |m| ≤ 1. Using this definition
the intersection of two DSSs is not always connected, and axiom (S3) is violated in some
cases as depicted in Figure 9.1.

In the two-dimensional grid, another possibility to define digital line segments would be
to use the system of L- and Γ-shaped shortest paths. An L- or Γ-shaped path between two
points p = (xp, yp) and q = (xq, yq) such that xp ≤ xq, is the (at most) 2-link path that
consists of the grid points on the vertical segment pp′ and on the horizontal segment p′q
where p′ = (xp, yq). It is easy to confirm that the system of these paths satisfies axioms
(S1)–(S4) for digital line segments. A clear drawback is that an L-shaped path is visually
very different from the Euclidean line segment, and the Hausdorff distance from pq to the
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L-shaped path between p and q becomes n/
√

2 for p = (0, n) and q = (n, 0). If, on the
other hand, one accepts to use a non-planar graph structure to define the topology on the
grid points, Pach et al. [PPS90] show that the shortest-path distance (using Euclidean
distance for the edge lengths) in the grid topology given by a suitable sparse graph is at
most (1 + ε) times the Euclidean distance. Accordingly, the polygonal path consisting of
the edge set of the shortest path between p and q in the graph gives a nice approximation
of the line segment pq. However, the graph structure is a union of many randomly chosen
lattice structures on the grid points using long edges with a variety of slopes; thus, the
vertex set of the polygonal path is too sparse for direct use as a digital line segment. Also,
the method does not guarantee an o(n) bound for the Hausdorff distance.

Thus, it seems that there is a trade-off between the axiomatic requirements and the
visual quality of digital line segments. It is a challenging problem to find a system of digital
line segments that satisfies the axioms and is visually alike Euclidean line segments at the
same time.

Here, we study a less ambitious but important subproblem, motivated by geometric
optimization applications: we consider only digital line segments that have the origin o as
one of their endpoints. In other words, we consider digital halflines emanating from o. Then
dig(op) is defined as the unique portion of the halfline that has p as its second endpoint.
We call such segments digital ray segments or simply digital rays emanating from o. For
digital rays, axioms (S1)–(S4) for digital line segments are adapted as follows:

(R1) A digital ray dig(op) is a connected path between o and p under the grid topology.
(R2) There is a unique digital ray dig(op) between o and any grid point p.
(R3) For a digital ray dig(op) and a grid point r ∈ dig(op), it holds that dig(or) ⊆ dig(op).
(R4) For any grid point p, there is a grid point r /∈ dig(op) such that dig(op) ⊂ dig(or).

We also give one additionalmonotonicity axiom, which is not combinatorial, but a reasonable
condition for a digital ray:

(R5) For any r ∈ dig(op), |or| ≤ |op|, where |ab| is the length of the Euclidean segment ab.

A system of digital rays is called consistent if it satisfies axioms (R1)–(R5). From these
axioms it follows that the union of all digital rays forms an infinite spanning tree T of
the grid graph on G rooted at o, such that dig(op) is the unique path between o and p in
the tree. Because of axiom (R4), T cannot have leaves. Thus, the problem is basically to
embed the infinite “star” consisting of the halflines emanating from o in the d-dimensional
Euclidean space as a tree in the d-dimensional grid. Although embedding a tree in a grid
is a popular topic in metric embedding and graph drawing, it is a novel and interesting
problem to geometrically approximate ray segments by paths.

Motivation. At first sight, studying consistent digital rays and their properties may
seem like a fairly restricted problem; yet, a consistent system of digital rays enables us
to define star-shaped regions in the grid G that are centered at some grid point o. These
digital analogues of star-shaped regions are used in optimization problems in a pixel grid. A
square pixel grid is a subdivision of an n×n square region into n2 unit squares called pixels.
We have a canonical one-to-one correspondence between pixels in a pixel grid P and grid
points in the two-dimensional grid G restricted to an n×n subgrid. Thus, we can translate
the definitions of digital rays and digital star-shaped regions in G to their counterparts
in P. A pixel grid image is an assignment of a color to each pixel. A monochromatic image
can be considered as a function from the set P of all pixels to real values in [0, 1] called
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gray levels, while a color image, for example taken with a digital camera, can be considered
as a triple of functions from P to real values in [0, 1] corresponding to the color levels of
red, green, and blue.

Image segmentation is an important task in computer vision, which separates an object
from the background in the picture. Asano et al. [ACKT01] formulated the problem as
a least-squares optimization problem and gave an efficient algorithm if the object is a
region bounded by two x-monotone curves. Several improved results such as controlling
smoothness of curves and higher dimensional extensions were given by Wu and Chen [WC02],
and the optimal-ratio formulation was given by Wu [Wu06]. Wu further pointed out that
image segmentation problems appear in medical applications. For example, some tumors
can be approximated by layers of concentric three-dimensional star-shaped annuli, where
a star-shaped annulus is the set difference of two star-shaped regions with a common
center o. Similarly, layers of plaques in diseased arteries form concentric star-shaped
annuli in the lumina of arteries. Certain medical imaging methods, for example optical
coherence tomography with an intravascular probe, transform concentric annuli into regions
between x-monotone curves. Wu [Wu06] applied his algorithm to extract regions between
x-monotone curves to such medical image data. For images that have not been projected
in a way that transforms concentric annuli into regions between x-monotone curves, for
example, X-ray computed tomography images, the methods of Wu cannot be applied
directly to extract the regions of interest. However, we can define a mapping of P based on
a system of consistent rays that transforms the image as required, apply Wu’s algorithm,
and then use the inverse mapping to find the corresponding annular region in the original
image.

Chen et al. [CCKT04] and Chun et al. [CST03] considered the pyramid approximation
problem to compute the least-squares approximation of an input terrain (given as a function
on P) where each horizontal slice (that is, a region bounded by a contour line) of the
output terrain is a special kind of rectilinear convex region as shown in Figure 9.2, where
heights are given by gray-levels. It was left as an open problem to solve the analogous
mountain approximation problem where each horizontal slice is a star shape. In Section 9.4
we show how our definition of consistent digital rays can be used to solve the mountain
approximation problem.

Related problems. In computational geometry, the problem of representing geometric
objects in digital geometry without causing topological and combinatorial inconsistencies
is a major concern, and algorithmic solutions have been considered from the viewpoint of
robust, finite-precision geometric computation [GY86, Sug01].

Suppose that we want to represent a set S of line segments digitally in a pixel grid.
Although ideally one would like to give a precisely defined and consistent system of digital
line segments, the difficulties mentioned in the previous section prevent us from doing so.
Rather, it is popular to use a dynamic method to digitize the line segments; that is, the
digital approximation of a line segment ` is affected by the configuration of the other line
segments of S. In particular, it is required to construct the arrangement of S in the digital
plane without changing the combinatorial structure of the arrangement. At the same time
all vertices of the arrangement must be located at grid points, and each line segment shall
be visually alike the original line segment. It is known that a grid of exponential size
is necessary to represent all the combinatorial types of arrangements of n straight line
segments [GPS89]; hence lines need to bend if we want to use a polynomial-size grid.

In the pioneering paper of Greene and Yao [GY86] and the follow-up work by Goodrich
et al. [GGHT97], each line segment is represented by a polygonal chain consisting of edges
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Figure 9.2: Input terrain (left) and pyramid approximation (right). Height values are depicted as
gray levels.

of the arrangement. It is necessary to carefully round each vertex of the arrangement to
a grid point in order to avoid combinatorial inconsistencies, and a method named snap
rounding was proposed. Since no two edges of the arrangement intersect each other, we
can draw edges using a popular method like DSS once we have a suitable representation of
the arrangement. We note that the snap rounding idea is important not only in the theory
of robust computation but also in the practical design of geometric editors or systems: for
example, the Ipe drawing editor [Sch95] is a pioneering system that uses snap rounding;
the idea has also been implemented in the CGAL project [cga].

This dynamic approach is different from our static approach, in which each digital line
segment is defined irrespective to the existence of other lines in the arrangement. In spite
of the success of the dynamic approach, we think that it is important to investigate how
well line segments can be digitized statically and to consider the combination of static and
dynamic methods to design efficient systems and algorithms in digital geometry.

Contributions. Our main result in this chapter is an asymptotically tight Θ(logn)
bound for the Hausdorff distance between dig(op) and op maximized over all points p in an
n× n grid (Section 9.2). The lower bound argument is based on discrepancy theory, and
the upper bound is attained by a systematic recursive construction of a two-dimensional
spanning tree of the n × n grid. Surprisingly, if we do not include the monotonicity
axiom (R5), we can reduce the bound to O(1). In Section 9.3, the construction is extended
to the d-dimensional case. Finally, in Section 9.4, we present how our system of consistent
digital rays can be used to define digital star shapes, which in turn are useful for the
mountain approximation problem.
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9.2 Digital Rays in the Two-Dimensional Grid
In this section we derive the lower and upper bound for the Hausdorff distance between
a Euclidean line segment and its digital counterpart in two dimensions. Section 9.3 will
discuss the extension of the results to the d-dimensional case.

We start with some basic notions. The Hausdorff distance H(A,B) of two objects A and
B is defined as H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) = maxa∈A minb∈B d(a, b)
and d(a, b) is some distance between the points a and b. Although it is most natural to
consider the Euclidean distance for d(a, b), we will use the L∞-metric in the following for
technical convenience. Since the ratio of the Euclidean distance to the L∞-distance in
d-dimensional space is in the interval [1,

√
d], the choice of the metric is irrelevant in a

constant-dimensional space when considering bounds in big-O and big-Ω notation.
Consider the two-dimensional integer grid G = {(i, j) | i, j ∈ Z}, which we may also

interpret as a vertex set V = G. We then define a planar graph G on V that represents
the adjacency relations of a 4-neighborhood pixel grid. In G = (V,E) each vertex (i, j) is
connected to its four neighbors (i, j− 1), (i− 1, j), (i+ 1, j), and (i, j + 1). This graph also
defines the orthogonal topology of the grid G. A subset of V (and thus of G) is connected
in this topology if its induced subgraph in G is connected.

9.2.1 The Lower Bound Result
We focus on the part G(n) of the planar orthogonal grid restricted to the region defined
by x + y ≤ n in the first quadrant. The remaining quadrants are handled analogously
by rotating G(n) around the origin. From the monotonicity axiom (R5) it follows that
dig(op) ⊂ G(n) for any p ∈ G(n) and that dig(op) is a shortest path in the grid. We
show that there exists a point p ∈ G(n) such that the Hausdorff distance H(dig(op), op) is
Ω(logn).

To derive the lower bound we use a classical result on pseudo-random number genera-
tion [Mat99, Nie92, Sch77]. The following historical summary is according to Schmidt’s
textbook [Sch77]. Consider a sequence X = (x0, x1, x2, . . .) of real numbers in [0, 1]. For
any given a ∈ [0, 1] and m ∈ N, define Xm(a) = |{0 ≤ i ≤ m | xi ∈ [0, a]}|. The
discrepancy of the sequence Xm = (x0, x1, . . . , xm) is defined as supa∈[0,1] |am −Xm(a)|.
Van der Corput conjectured in 1935 that for any sequence X, the discrepancy cannot
be bounded by a constant (indeed, 1, in the original conjecture). This was answered
affirmatively by van Aardenne-Ehrenfest in 1945. Roth gave an Ω(

√
logn) bound in 1954,

and the correct order of magnitude of the discrepancy is Θ(logn) as shown by Schmidt
in 1972. We make use of discrepancy theory in the form of Theorem 9.1 below. We
remark that a slightly stronger version of van der Corput’s conjecture was given in a list of
favorite questions of Erdős [Erd64]: He conjectured that there is a real number a such that
maxm<n |am−Xm(a)| is an unbounded function in n. In fact, Schmidt’s method yields a
Θ(logn) bound for this function.

Theorem 9.1 (Schmidt [Sch72]) Given a sequence X = (x0, x1, x2, . . .) of real numbers
in [0, 1] and a sufficiently large integer n, there is an integer m < n and a real number
a ∈ [0, 1] such that the subsequence Xm = (x0, x1, . . . , xm) satisfies |am−Xm(a)| > c logn,
where c is a positive constant independent of n.

Let T be the spanning tree of G(n) that is the union of dig(op) for all p ∈ G(n).
Figure 9.3 shows the spanning tree induced by a set of consistent rays. We will apply
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Figure 9.3: A spanning tree T of G(n) for n = 10. The labels attached to the leaves as callouts
are the elements of the low-discrepancy sequence X(T ) in the interval [0, 1], while the
inner labels are used in the construction of that sequence and determine the order of
the elements.

Theorem 9.1 to a sequence constructed from T to obtain a lower bound for the Hausdorff
distance between dig(op) and op. Let’s start with some preparations to construct that
sequence.

For m = 1, 2, . . . n+ 1, let L(m) = {(i,m− 1− i) | i = 0, . . . ,m− 1} be the subset of
G(n) satisfying x+ y = m− 1.

Lemma 9.1 For any integer m, 1 ≤ m ≤ n, the spanning tree T has a unique node of
degree 3 in L(m).

Proof. There are m grid points in L(m) and m+ 1 grid points in L(m+ 1). Since T does
not have any leaves in L(m) for m ≤ n, the m points of L(m) must all be connected to a
point in L(m+ 1) and, conversely, the m+ 1 points of L(m+ 1) must all be connected to
a point in L(m). In the 4-neighbor grid topology, this is only possible if there are exactly
one node of degree 3 and m− 1 nodes of degree 2 in L(m). ¤

We denote this unique degree-3 node in L(m) as the branching node of L(m). There is a
vertical and a horizontal edge incident to the branching node that lead to its two children
in L(m+ 1). We denote these two edges as the branching edges of L(m).

We associate the number j/n to the leaf (j, n − j) ∈ L(n+ 1) in order to obtain the
set N = {j/n : j = 0, 1, 2, . . . n} ⊂ [0, 1] of leaf labels, see Figure 9.3. For an edge e = uv
in T , where u is the parent of v, we define the subtree rooted at e to be the subtree of
T rooted at the child node v of e. Then for each edge e of T in G(n), the set of leaves
of L(n+ 1) in the subtree rooted at e are consecutive, and their associated numbers form
an interval I(e) ⊂ N . Let x(e) denote the largest element in I(e). An example for an
edge e is given in Figure 9.3, where I(e) = {0.4, 0.5, 0.6} and x(e) = 0.6.

We create a sequence X(T ) ⊂ [0, 1] as follows: we set x0 = 1, and for m = 1, . . . , n, we
set xm = x(em), where em is the upper (vertical) branching edge in L(m). Note that for any
two different vertical branching edges e and e′ the numbers x(e) and x(e′) differ since the
path from e to the leaf with the largest associated value in I(e) always uses the horizontal
branching edge at each encountered branching node. Thus, the obtained sequence X(T ) =
(x0, x1, . . . , xn), is a permutation of N that depends only on T . For example, the tree T
in Figure 9.3 creates the sequence X(T ) = (1, 0, 0.6, 0.3, 0.8, 0.2, 0.7, 0.4, 0.9, 0.1, 0.5). The
labels inside the nodes in Figure 9.3 show the correspondence between the unique internal
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branching node in L(i) and the leaf located at (nxi, n− nxi) in L(n+ 1) that is associated
with the number xi shown in the callouts. For each i = 1, . . . , n, the corresponding nodes
are labeled by i. In other words, each branching node and the rightmost leaf in the subtree
rooted at the upper branching edge of that node have the same label.

Let E(m) be the set of edges in T going from L(m) towards L(m+ 1).

Lemma 9.2 Let e and f be edges in E(m). If e is to the left of f (that is, the endpoint
of e in L(m + 1) has smaller x-coordinate than the endpoint of f in L(m + 1)), we
have x(e) < x(f).

Proof. Assume to the contrary that x(e) ≥ x(f). The case x(e) = x(f) contradicts the
fact that T is a tree since we would have two different paths from the root to the same
leaf. In the case x(e) > x(f), the paths from e and f to their largest leaves must cross.
But since the grid topology allows only horizontal and vertical edges between adjacent
grid points, the paths must cross in a common tree node, which again contradicts the fact
that T is a tree. ¤

Lemma 9.3 The set {x(e) : e ∈ E(m)} equals the set {x0, x1, x2, . . . , xm}.

Proof. A simple induction shows the lemma. First, let m = 1, and thus in all valid spanning
trees, E(m) consists of the vertical and horizontal edge leaving the origin. We denote these
edges by ev and eh, respectively. By definition we have x1 = x(ev). For eh, x(eh) = 1 is the
largest element (attached to the leaf (n, 0)) in I(eh). Hence, we indeed have x(eh) = x0.

Now assume that the statement holds for some m. All edges in the set E(m + 1),
except the two branching edges, just continue the corresponding predecessor edge in E(m)
and thus have the same x-values as their predecessor edges. It remains to consider the
branching node u in L(m + 1). Let e be the edge incident to u in E(m), and let ev
and eh be the vertical and the horizontal branching edge incident to u in E(m+ 1). By
definition xm+1 = x(ev); furthermore, we have x(e) = x(eh) since I(eh) ⊂ I(e) contains (by
Lemma 9.2) the largest element x(e) of I(e). Thus, the statement also holds for m+ 1.¤

The following theorem shows our lower bound.

Theorem 9.2 For any spanning tree T , there is a grid point p ∈ L(n + 1) and a grid
point q ∈ G(n) such that q is on the path dig(op) in T and the L∞-distance from q to the
line segment op exceeds c logn− 1, where c is the constant considered in Theorem 9.1.

Proof. To prove the theorem we consider the discrepancy of the sequence X(T ). From
Theorem 9.1 we have a real number 0 ≤ a ≤ 1 and two integers m < n for n large enough
such that |am−Xm(a)| > c logn. In the following there are two cases to consider for this
inequality, in each of which we determine a grid point q based on the value of Xm(a). This
point q is part of a digital ray dig(op) for some point p ∈ L(n+ 1). We use the discrepancy
of X(T ) to show a lower bound on the distance between op and q.

Case 1: Xm(a) > am+ c logn. Consider the node q in L(m+ 1) located at the grid
point (Xm(a)− 1,m− (Xm(a)− 1)), and let e be the edge between q and its parent in T .
By definition, q is on the path dig(op) from o to the node p = (x(e)n, n−x(e)n) ∈ L(n+1).
Because of the definition of Xm(a) and Lemma 9.3, the set {f ∈ E(m) | x(f) ≤ a} has
cardinality Xm(a). However, there are also exactly Xm(a) edges of E(m) to the left of
e, including e itself, since q is the Xm(a)-th node in L(m + 1) counted from the left.
Lemma 9.2 implies that no edge g to the right of e can attain x(g) ≤ a. Thus, e itself
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Figure 9.4: The L∞-distance between the point q on dig(op) and the Euclidean line segment op
is d. The gray square indicates the set of all points with L∞-distance at most d from q
and point q′ is the L∞-nearest point on op.

must satisfy x(e) ≤ a. Now, consider the L∞-distance of the line segment op and q. The
line segment op is defined by y = (1/x(e)− 1) · x and the L∞-nearest point from q on op
is the intersection point q′ of op and the line y = −x+m through q with slope −1. The
intersection point q′ has coordinates (x(e)m,m − x(e)m) and its L∞-distance from q is
(Xm(a)− 1− x(e)m) ≥ (Xm(a)− 1− am) > c logn− 1. Figure 9.4 sketches the situation.

Case 2: Xm(a) < am− c logn. Consider the node q in L(m+ 1) located at the grid
point (Xm(a),m−Xm(a)) and the edge e between q and its parent. Since there are only
Xm(a) edges f ∈ E(m) for which x(f) ≤ a and q is the (Xm(a) + 1)-th node in L(m+ 1)
we have x(e) > a (again, from Lemma 9.2). Node q is on the path dig(op) to the node
p = (x(e)n, n− x(e)n). We consider the L∞-distance of the line segment op and q, where
again (x(e)m,m−x(e)m) is the L∞-nearest point from q on op. The L∞-distance between
the two points is (x(e)m−Xm(a)) > (am−Xm(a)) > c logn. ¤

9.2.2 The Upper Bound Result
We deterministically construct a two-dimensional spanning tree DT(2) of G such that, for
every p = (i, j) ∈ V , the unique path from o to p in DT(2) defines the digital ray dig(op)
that represents the Euclidean line segment op. By the monotonicity axiom, dig(op) is
always a shortest path in the orthogonal grid.

We give the construction of DT(2) restricted to G(n) for n = 2k. By creating rotated
copies in the other quadrants and extending them to the infinite grid we get DT(2). To
simplify the description (especially, when we generalize to higher dimensions later), we trans-
form the grid by a linear map Φ that maps the lattice base {(1, 0), (0, 1)} to {(1, 0), (1, 1)},
respectively. The linear map Φ transforms the quadrant containing G(n) to the the first
octant and maps G(n) to a skew-grid with the base {(1, 0), (1, 1)} in the triangular region
{(x, y) | 0 ≤ y ≤ x ≤ n}. The set L(m) is mapped to the m-th column of the transformed
grid. Figure 9.5 shows the tree T that we will construct in the skew grid as well as the
corresponding tree Φ−1(T ) in G(n).

In the transformed grid Φ(G(n)), all edges are horizontal or diagonal with positive unit
slope. An edge connecting a vertex (i, j) and a vertex (i+ 1, j) or (i+ 1, j + 1) is called an
edge in the i-th edge-column. The i-th edge-column is called an even (odd) edge-column
if i is even (odd). Note that the column index starts from 0.

Since the infinite tree DT(2) cannot have leaves, the set of leaves of T restricted
to Φ(G(n)) must be the right endpoints of the edges in the rightmost edge-column, that is,
the set {(n, b) | b = 0, 1, 2, . . . , n}. Any such spanning tree, and thus also the one we will
construct, must satisfy the following lemma.
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Figure 9.5: The spanning tree T = T 4 (left) and the corresponding tree Φ−1(T ) in G(n) (right).
The center path and the two boundary paths are highlighted in bold. The gray regions
indicate how T 4 is recursively constructed by copying the columns of T 3.

Lemma 9.4 If an edge e ∈ T is horizontal (resp. diagonal), all the edges in T in the same
edge-column below e (resp. above e) must be horizontal (resp. diagonal).

Proof. If e is horizontal and there is a diagonal edge below e, then two edges in that column
must share their right endpoint by the pigeon hole principle. This creates a cycle in T ,
which contradicts the fact that T is a tree. If e is diagonal a similar argument holds. ¤

This lemma implies that there is not much freedom for defining T , and it is also a
crucial observation for generalizing the construction to higher dimensions.

We give a procedure to construct all paths from the root to the leaves of T . This
suffices to define T . For sake of convenience, we denote the spanning tree restricted to
the subgrid Φ(G(2k)) by T k. We have two boundary paths: The path towards (2k, 0) uses
only horizontal edges, and the path towards (2k, 2k) uses only diagonal edges. These are
the only paths for k = 0 and uniquely define T 0. If k ≥ 1, we first give the path towards
(2k, 2k−1), which we call the center path (see Figure 9.5). The center path is the alternating
chain of horizontal and diagonal edges, starting with the horizontal edge connecting the
origin o = (0, 0) and (1, 0). Thus, the center path has a horizontal edge in every even
column and a diagonal one in every odd column. We observe that the left endpoint of
an edge of the center path in an even column is on the diagonal line y = x/2, while its
right endpoint is below this line. The following lemma is a straightforward consequence of
Lemma 9.4.

Lemma 9.5 In the tree T k, all the edges in an even column below the center path are
horizontal and all the edges in an odd column above the center path are diagonal.

Let’s first consider the part of T k below and including the center path. The even
columns are determined by Lemma 9.5 and consist of horizontal edges only. The number
of edges between the upper and lower boundary paths in the i-th column of Φ(G(2k−1))
equals the number of edges between the center path and the lower boundary path in the
(2i+ 1)-th column of Φ(G(2k)). So we can simply copy the i-th column of T k−1 to the
lower half of the (2i + 1)-th column of T k. Similarly, we know the odd columns of the
part of T k above the center path and fill the even columns by copying the i-th column
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of T k−1 to the upper half of the (2i)-th column for i = 0, 1, . . . , 2k−1 − 1. These copies
do not conflict with the boundary paths of T k. Figure 9.5a shows how column 4 in T 3 is
copied to columns 8 and 9 in T 4.

This recursively constructs the tree T k for k ∈ N, and we can generate a spanning
tree T of the first octant of the whole infinite grid such that T k is the restriction of T
to Φ(G(2k)). Our tree in the orthogonal grid G(2k) is Φ−1(T k), which we can obviously
extend to DT(2), the tree on the whole orthogonal grid G.

Theorem 9.3 The set of digital rays defined by DT(2) is consistent. For any grid point
p ∈ G(n), the L∞-Hausdorff distance between dig(op) and op is less than 1 + logn.

Proof. It is easy to verify that the set of digital rays defined by DT(2) is consistent, that
is, it satisfies axioms (R1)–(R5). It remains to bound the distance between dig(op) and op.
Let p = (xp, yp) be any vertex in T = T k, and let q = (xq, yq) be any vertex on dig(op),
the path from p to o in T . We would like to claim that the vertical distance between op
and q is at most k by induction on k. If k ≤ 1, the claim is trivial. Thus, assume that the
claim holds for Tk−1. We can further assume that xq ≤ xp − 2, as we can check the claim
directly otherwise.

If dig(op) is the center path, the claim holds by construction of the center path. Thus,
we assume this is not the case. Since two paths in T cannot cross each other, both p and q
must be on the same side of the center path. We distinguish the following two cases:

Case 1. If p = (xp, yp) is below the center path (that is, yp < bxp/2c), then q = (xq, yq)
satisfies that yq ≤ bxq/2c. From the recursive definition of T we know that the odd columns
below the center path are copied from T k−1 and the even columns contain only horizontal
edges. Thus, p is a copy of p′ = (bxp/2c, yp), and q is a copy of q′ = (bxq/2c, yq).

Since the claim holds for T k−1, the vertical distance from q′ to the line op′ is at most k−1,
that is,

dy(q′, op′) = |yq − yp(bxq/2c)/(bxp/2c)| ≤ k − 1.

Now, consider the vertical distance dy(q, op) = |yq − ypxq/xp| from q to op. We have the
following inequality∣∣∣∣∣yp bxq/2cbxp/2c

− yp
xq
xp

∣∣∣∣∣ ≤ yp
∣∣∣∣∣xq + 1
xp − 1

− xq
xp

∣∣∣∣∣ = yp

∣∣∣∣∣ 1
xp

+ xq + 1
(xp − 1)xp

∣∣∣∣∣ ≤ yp
∣∣∣∣∣ 2
xp

∣∣∣∣∣ < 1 (9.1)

and thus

dy(q, op) ≤
∣∣∣∣∣yq − yp bxq/2cbxp/2c

∣∣∣∣∣+
∣∣∣∣∣yp bxq/2cbxp/2c

− yp
xq
xp

∣∣∣∣∣ ≤ (k − 1) + 1 = k. (9.2)

Case 2. If p = (xp, yp) is above the center path (that is, yp > bxp/2c), then q = (xq, yq)
satisfies that yq ≥ bxq/2c. The even columns above the center path are copied from Tk−1 and
the odd columns contain only diagonal edges. Thus, p is a copy of p′ = (bxp/2c, yp−bxp/2c),
and q is a copy of q′ = (bxq/2c, yq − bxq/2c).

Since the claim holds for T k−1, the vertical distance from q′ to the line op′ is

dy(q′, op′) =
∣∣∣∣∣yq −

⌊
xq
2

⌋
−
(
yp −

⌊
xp
2

⌋) bxq/2c
bxp/2c

∣∣∣∣∣ =
∣∣∣∣∣yq − yp bxq/2cbxp/2c

∣∣∣∣∣ ≤ k − 1, (9.3)

which is exactly the same expression as in Case 1. Hence, by (9.1) and the same argument
as above, we get dy(q, op) ≤ k.
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Since Φ−1 maps the vector (1, 0) to (1, 0) and the vector (0, 1) to (−1, 1), the L∞-
distance of q and a line op (with a positive slope) in G(n) is the same as the vertical
distance dy(Φ(q),Φ(op)) between the corresponding point and line in Φ(G(n)). Since the
adjacent grid points in a digital ray have distance 1 to each other, we can analogously show
that the L∞-distance from any point on a line segment to the corresponding digital line
segment is 1 + logn. ¤

Note that the tree DT(2) is related to a famous low-discrepancy sequence called the
van der Corput sequence [vdC35]. Assume that n is a power of 2, and construct the
sequence X(DT(2)) using the method of Section 9.2.1 (ignoring x0 = 1). Then, we
obtain X(DT(2)) = (0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, . . .), where in general for the 2-adic
expansion b1b2b3 . . . bs of i− 1 we have xi = 0.bsbs−1 . . . b1 for 1 ≤ i ≤ n. This sequence is
indeed the van der Corput sequence.

It is also an interesting observation that DT(2) has a quite uniform structure. Indeed,
for any grid point p = (x, y), the path from o to p has blog(|x|+ |y|)c or dlog(|x|+ |y|)e
branching vertices (excluding o) in DT(2).

9.2.3 Constant Distance Bound for Non-Monotonic Rays
Surprisingly, if we omit the monotonicity axiom (R5), the lower bound does not hold.
We instead give a constant upper bound on the Hausdorff distance in Theorem 9.4. The
same bound holds for the Fréchet distance if we regard a digital ray as the corresponding
connected path in the graph G defining the grid topology. The digital rays that we construct
are locally snake-like almost everywhere; but their bird’s eye views can approximate the
respective Euclidean line segments fairly well.

Theorem 9.4 If the monotonicity axiom (R5) is not considered, there exists a system of
digital rays in the plane grid such that the Hausdorff distance between each digital ray and
its corresponding Euclidean line segment is O(1).

Proof. The idea is as follows: We first consider a coarser grid of width 2, and construct a
spanning forest T1 of this grid, where internal leaves are allowed. Then, we replace each
node v of this forest by four nodes in the original unit-width grid such that v is located in
the center of gravity of these four nodes. Then we convert the forest T1 into a tree T2 in
the original finer grid.

Let c > 1 be an irrational constant. The forest T1 is constructed as follows: We consider
the belt R(k) ⊃ G(2k+1) \ G(2k) defined by 2k < x + y ≤ 2k+1 in the first quadrant
and subdivide it into trapezoids by lines `t : y = 2k−tc

tc x passing through the non-grid
points (tc, 2k − tc) on the line x+ y = 2k for t = 1, 2, . . . , b2k/cc. The widths of the two
parallel edges of each trapezoid are (at most)

√
2c and 2

√
2c, respectively. Further, each

trapezoid F is adjacent to one trapezoid p(F ) in R(k − 1) called the parent of F and
to two trapezoids l(F ) and r(F ) in the belt R(k + 1) that are called the left and right
child, respectively. Let q be the intersection of x+ y = 2k+1 and the dividing line of l(F )
and r(F ). The nearest grid point to q in F is called the exit node of F , and the nearest
grid points to q in l(F ) and r(F ) are called their entry nodes. Each trapezoid has exactly
one entry and one exit node. In Figure 9.6, the entry node and the exit node of F are
marked by “E” and “X”, respectively.

By gathering these trapezoids for all k ≥ dlog ce, we have a decomposition of the first
quadrant of the plane. Since c > 1, each trapezoid is wide enough so that the induced
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Figure 9.6: Trapezoid decomposition and two trees of the forest T1.
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(b)

Figure 9.7: The walks around the two trees (a) and the corresponding part of the tree T2 formed
by connecting the two walks (b).

subgraph of the grid points in a trapezoid is connected. It is easy to find a spanning tree
of the vertices in each trapezoid consisting of a trunk that is a shortest path from its entry
node to its exit node, together with branches such that the length of each branch (that is,
the path length from the trunk to the furthest leaf) is at most 2c as seen in Figure 9.6.
This gives a forest T1 consisting of small trees, one in each trapezoid. Now, let’s convert T1
into T2 as shown in Figure 9.7. Each node of T1 is replaced by four nodes at the corners of
the surrounding unit square. Thus, we can realize the walk around the subtree of T1 in F
as a Hamiltonian cycle in the finer grid. We cut the cycle at the exit node and connect to
the entry nodes of the trees in the two child trapezoids as in Figure 9.7. We obtain a tree T2
that has no internal leaves. For any grid point p ∈ F , the line segment op is contained in
the union of the ancestor trapezoids of F , and also all ancestors of p in the tree T2 are
in the same union of trapezoids. Since the width of each trapezoid is at most 2

√
2c, the

distance from any point q in the path dig(op) in T2 to the line op is at most 2
√

2c. It might
happen that the nearest point from q to the line op is not in the segment op since we do
not assume the monotonicity axiom. However, since the length of each branch of a subtree
in T1 is at most 2c, the Hausdorff distance between the segment op and the path from o
to p in the tree is at most (2

√
2 + 2)c.
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9.3 Digital Rays in Higher-Dimensional Grids
Analogously to the two-dimensional tree DT(2), we can construct a d-dimensional tree
DT(d) to define digital rays in d-dimensional space. We utilize the fact that a line in
d-dimensional space is uniquely determined by its projections to all two-dimensional
subspaces spanned by the first coordinate and the i-th coordinate for i = 2, 3, . . . , d. We
first demonstrate the construction for the case d = 3 and discuss the general case later.

Analogously to the two-dimensional case, we first transform the orthogonal grid by a
linear map that maps the base vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) to (1, 0, 0), (1, 1, 0),
and (1, 1, 1), respectively. Thus, the first octant of the orthogonal grid is mapped to the
part Q(3) defined by 0 ≤ z ≤ y ≤ x of the skew grid spanned by three types of edges
corresponding to the vectors (1, 0, 0), (1, 1, 0), and (1, 1, 1). Next, we define a spanning
tree T (3) in this skew grid and transform it back to a spanning tree in the orthogonal grid.

To define T (3), it suffices to define the parent of each vertex (i, j, k) ∈ Q(3). We use our
previous two-dimensional tree in the skew-grid Φ(G), which covers the range 0 ≤ y ≤ x in
the plane. We call this tree T (2) implying that it is a tree in the two-dimensional skew-grid.
We define two copies T (2;x, y) and T (2;x, z) of T (2) for the dimension pairs (x, y) and (x, z)
and call them the (x, y)-tree and the (x, z)-tree, respectively. The (x, y)-tree covers the
range 0 ≤ y ≤ x, and the (x, z)-tree covers the range 0 ≤ z ≤ x.

Given a grid point p = (i, j, k) ∈ Q(3), we call p (x, y)-horizontal (resp. (x, y)-diagonal)
if the edge between (i, j) and its parent in the (x, y)-tree is horizontal (resp. diagonal).
Similarly, p is called (x, z)-horizontal (resp. (x, z)-diagonal) if the edge between (i, k) and
its parent in the (x, z)-tree is horizontal (resp. diagonal).

The following case distinction defines the parent of p in T (3):

1. if (i, j, k) is (x, y)-horizontal and (x, z)-horizontal, its parent is (i− 1, j, k);
2. if (i, j, k) is (x, y)-diagonal and (x, z)-horizontal, its parent is (i− 1, j − 1, k);
3. if (i, j, k) is (x, y)-diagonal and (x, z)-diagonal, its parent is (i− 1, j − 1, k − 1).

There is one case missing, namely when (i, j, k) is (x, y)-horizontal and (x, z)-diagonal.
The key observation is that this case cannot occur. By the definition of Q(3), we have
k ≤ j, and by Lemma 9.4 there is never a diagonal edge below a horizontal one in an edge
column of T (2). Now if (i, j, k) is (x, y)-horizontal, it must also be (x, z)-horizontal.

Therefore, we have defined a graph T (3) in the grid Q(3), which uses only edges that
are parallel to the vectors (1, 0, 0), (1, 1, 0), or (1, 1, 1). Analogously, we can confirm that
every node has at least one child. The following lemma follows from the definition of T (3).

Lemma 9.6 For every p = (i, j, k) ∈ Q(3), there is a unique path P to the origin o in T (3).
Thus, T (3) is a tree rooted at o. The projection of P to the (x, y)-plane (resp. (x, z)-plane)
coincides with the path from (i, j) (resp. (i, k)) to o in the (x, y)-tree (resp. (x, z)-tree).

The next lemma is a consequence of Lemma 9.6 and Theorem 9.3:

Lemma 9.7 For any plane x = a where 0 ≤ a ≤ n, let (a, b, c) and (a, b′, c′) be its inter-
section points with op and dig(op), respectively. Then, |b− b′| < logn and |c− c′| < logn.

We use the inverse map from the skew grid Q(3) to the three-dimensional orthogonal
grid; this maps T (3) to an orthogonal tree DT(3).

Proposition 9.1 The L1 distance from any point on the digital ray in DT(3) to the corre-
sponding Euclidean line is at most 4 logn if the absolute value of each coordinate value of
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the point is bounded by n. Consequently, the L1-Hausdorff distance between a line segment
and the corresponding digital ray is a most 4 logn.

Proof. Let’s examine how the distance changes during the inverse map. The vectors (0, 1, 0)
and (0, 0, 1) are mapped to (−1, 1, 0) and (0,−1, 1), respectively. Thus, a vector (0, s, t) is
mapped to (−s, s− t, t) and | − s|+ |s− t|+ |t| ≤ 2|s|+ 2|t|. Thus, for |s| ≤ n and |t| ≤ n,
we can apply Lemma 9.7, which yields the proposition. ¤

For the general d-dimensional grid, we have the following theorem:

Theorem 9.5 Given a d-dimensional grid with nd grid points in the orthogonal topology,
we can define a spanning tree T (d) such that the L1-Hausdorff distance between the line
segment op and the digital ray dig(op) is less than 2(d − 1) logn if the absolute value of
each coordinate value of p is bounded by n.

Proof. Let x1, x2, . . . , xd be the coordinates of the d-dimensional space and define Q(d) by
0 ≤ xd ≤ xd−1 ≤ . . . ≤ x1. As before, we define copies T (2;x1, xi) of T (2) for the dimension
pairs (x1, xi), where i = 2, 3 . . . , d. Now, let’s consider a grid point p = (p1, p2, . . . , pd) ∈
Q(d) and define its parent in T (d). By Lemma 9.4, there exists an integer 2 ≤ i ≤ d+ 1
such that (p1, pj) is diagonal in T (2;x1, xj) for j < i and horizontal for j ≥ i. Note that
all edges (p1, pj) are horizontal (resp. diagonal) if i = 2 (resp. i = d+ 1). We connect p by
an edge with the vector (1, 1, . . . , 1, 0, . . . , 0, 0) to its parent, where the vector has (i− 1)
unit entries and (d− i+ 1) zero entries. This yields a spanning tree of the grid points of
Q(d). The remaining analysis is analogous to the three-dimensional case. ¤

9.4 Mountain Approximation
In the last part of this chapter we return to an application of consistent digital rays
mentioned in Section 9.1: mountain approximation. Recall that, geometrically, we want to
approximate a noisy input terrain given as a gray-level image by a more regular terrain,
in which each horizontal slice is a star-shaped region. So consider that we are given a
[0, 1]-valued function f on the pixel grid P. We denote f as a pixel image function. An
important task in computer vision is to approximate f by another pixel image function φ
from a family of functions F with certain desired properties. We can formulate this
problem as a least-squares minimization problem, in which we aim to minimize the L2-
distance |f − φ|2 = [

∑
p∈P(f(p)− φ(p))2]1/2.

For any pixel image function f we define its level set at height t as the set L(f, t) =
{p ∈ P | f(p) ≥ t}. A level set can be interpreted as a slice of the terrain at height t.
Suppose we are given a pixel o, either by user input or automatically detected. We call f
a digital mountain function with peak position o, if each of its level sets is a star-shaped
region centered at o. In the mountain approximation problem the family F of pixel image
functions of interest is the family of digital mountain functions with peak o. Figure 9.8
shows the approximation of an input function f by a digital mountain function φ.

Chen et al. [CCKT04] considered the related pyramid approximation problem, where
each level set is the union of rectangles containing the peak o. Using digital star-shaped
regions as level sets was left as an open problem. In fact, Chen et al. defined a more
general framework of pyramid approximations for closed region families, that is, families of
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Figure 9.8: Mountain approximation: the values of the pixel image functions f (left) and φ (right)
are represented by gray levels.

regions that are closed under intersection and union. So once we have a definition of a
closed family of star-shaped regions centered at o we can closely follow their results.

A natural definition of a digital star-shaped region that comes into mind is the set of all
pixels intersecting a given Euclidean star-shaped region. However, the family of star-shaped
regions with a common center according to this definition is not closed under intersection
and union, that is, the intersection of two digital star-shaped regions centered at o is not
necessarily a digital star-shaped region again. An example is illustrated in Figure 9.9,
where the intersection of two star-shaped regions is not star shaped. Instead, we use our
system of consistent digital rays to define digital star-shaped regions analogously to the
common definition of star-shaped regions in Euclidean space.

Definition 9.1 Given a system of consistent digital rays from a center o, a region R is a
digital star-shaped region centered at o if and only if dig(op) ⊆ R for any grid point p ∈ R.

The consistency of the digital rays implies that the family of star-shaped regions with a
common center according to Definition 9.1 is closed under intersection and union. Note
that Definition 9.1 can naturally be extended to star shapes in higher dimensional grids.
The quality of a digital star-shaped region is assured by the following theorem, which is an
immediate consequence of Theorems 9.3 and 9.4.

Theorem 9.6 There is a system of consistent digital rays with center o in P such that
for any Euclidean star-shaped region R with center o, R′ =

⋃
p∈P∩R dig(op) is a digital

star-shaped region with Hausdorff distance H(R,R′) ∈ O(logn). Conversely, there is a
system of consistent digital rays such that for any digital star-shaped region Q with center o,
Q′ =

⋃
x∈R2∩Q ox is a Euclidean star-shaped region with H(Q,Q′) ∈ O(logn). The O(logn)

bound improves to O(1) if we drop the monotonicity axiom.

With the above definition of the family of digital star-shaped regions centered at o we
can now apply the pyramid approximation framework of Chen et al. [CCKT04] as given in
the following results.
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o

S1

S2

Figure 9.9: Two star-shaped regions S1 and S2 centered at o. The pixels of S1 are colored in light
gray, those of S2 in dark gray. Pixels in S1 ∩ S2 are bicolored. The intersection S1 ∩ S2
is disconnected and thus not star shaped.

Proposition 9.2 (Chen et al. [CCKT04]) Let R be a closed region family, and let R(f, t)
be the region in R maximizing

∑
p∈R(f(p)− t) for a given pixel image function f and a

real value t. If there is more than one such region, there are a maximum and a minimum
(in terms of set inclusion) among them, which we denote as Rmax(f, t) and Rmin(f, t).

We call t a critical height if Rmax(f, t) 6= Rmin(f, t). Chen et al. [CCKT04] showed
that it suffices to compute Rmin(f, t) and Rmax(f, t) for each critical height t in order to
compute the optimal approximation φ.

Theorem 9.7 (Chen et al. [CCKT04]) Let F be the family of pixel image functions whose
level sets are regions in the closed region family R. Then for the function φ ∈ F that
minimizes |f − φ|2, the level set L(φ, t) = Rmax(f, t). Moreover, φ(p) = t for a pixel p ∈ P
if and only if p ∈ Rmax(f, t) \Rmin(f, t).

Consider the family S of digital star-shaped regions in P based on the spanning
tree DT(2) of G. For each vertex v ∈ V of the tree DT(2), we define a parametric
weight w(v, t) = f(v) − t, where f(v) is the value of the input function f at the pixel
corresponding to v. The pixels in the region R(f, t) are spanned by a rooted subtree of
DT(2) maximizing the sum of the parametric weights of the vertices. For a given t, it
is easy to compute R(f, t): we traverse DT(2) in a bottom-up fashion starting from the
leaves and remove each vertex v and the subtree rooted at v if the sum of the parametric
weights in the subtree of v (ignoring already removed vertices) is negative. The final subtree
obtained by the algorithm gives Rmax(f, t). If we replace “negative” by “non-positive” in
the above procedure, we obtain Rmin(f, t). Clearly, this can be done in linear time in terms
of the tree size.

Now, we can apply a so-called hand probing operation: Given two heights t1 < t2,
letR1 = Rmax(f, t1) and R2 = Rmax(f, t2), R1 6= R2. We find the height t3 with t1 < t3 < t2
such that R1 and R2 have the same parametric weight at t3 and compute R3 = Rmax(f, t3).
This operation can be done in linear time in terms of the tree size. If the height t3 is
a critical height, we define φ(p) = t3 for p ∈ Rmax(f, t3) \ Rmin(f, t3). We recursively
process the height intervals (t1, t3) and (t3, t2) and thus find all critical heights in O(h)
hand-probing operations, where h is the number of different heights in the input data.
Note that h is bounded by h ≤ min{N,Γ}, where Γ denotes the number of gray levels, for
example Γ = 256. In total we have a time complexity of O(Nh), where N is the size of the
tree DT(2), in our case N = n2.

We can speed up the algorithm to run in O(N log h) time using the methods of Chen et
al. [CCKT04]. Their idea is based on using a contracted tree that, for a query with heights
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t1 < t2, represents only the pixels in the set R1 \R2 instead of the full tree DT(2). Thus,
each full level of the binary search tree can be handled in O(N) time. Obviously, the number
of levels of the search tree is O(log h), and thus the optimal mountain approximation can
be computed in O(N log h) time. Note that if the peak position o is not specified by the
user, we need to search all candidate positions for the best one.

We finally remark that the above result can be easily extended to the d-dimensional
case, which is an analogue of the general pyramid construction problem considered by Chen
et al. [CCKT04]. Note that the mountain approximation algorithm can also be extended
to star-shaped regions based on the non-monotonic rays defined in Section 9.2.3.

9.5 Concluding Remarks
In this chapter we have investigated representations of digital line segments and, in
particular, digital rays as paths in a grid topology. We have proposed a set of consistency
axioms that are directly derived from the topological properties of Euclidean line segments.
There is a trade-off between the consistency of a family of digital line (or ray) segments
and their visual similarity to Euclidean line segments. We focused on families of digital
rays from a given origin and showed a lower bound of Ω(logn) for the worst-case Hausdorff
distance between digital and Euclidean rays in an n× n grid. Subsequently we presented a
simple recursive construction of a family of digital rays whose worst-case Hausdorff distance
is O(logn). If the monotonicity axiom is dropped, we even achieved a constant upper
bound on the Hausdorff distance. Finally, we illustrated how our consistent digital rays
can be used for the mountain approximation problem in computer vision.

Open problems. Although the O(logn) bound for the Hausdorff distance is asymptoti-
cally optimal, we can improve the constant factor: The lower bound factor in discrepancy
theory is merely 0.06 [Nie92]. An obviously important problem is to investigate the defini-
tion of consistent digital line segments for all pairs of grid points or, as a first step, for
digital rays from multiple origins. As mentioned in Section 9.1, if the set of digital line
segments satisfies the axioms, the distance bound seems to become Ω(n); it is an interesting
question to prove or disprove this.
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Conclusion

In this thesis we have studied several network visualization problems or, more precisely,
the induced graph layout problems. As Chapter 1 has indicated, there is a need for
network visualizations in various disciplines. Here, we have focused on three applications:
schematic public transport maps, dynamic interactive maps, and comparative drawings
of binary trees, for example, in phylogenetics. The problems have been formulated as
optimization problems for several aesthetic optimization criteria: mental-map preservation,
bend minimization for metro lines, drawing-area minimization, crossing minimization,
morphing-distance minimization, and maximization of selected labels in map labeling. For
some of these problems we have designed efficient algorithms, but most of them turned
out to be NP-hard. For a few of the NP-hard problems we have nonetheless been able
to compute exact solutions, for example, using mixed-integer programming or branch-
and bound algorithms. Otherwise, we have given approximation algorithms or heuristic
methods that, at least for some of the problems, have been implemented and experimentally
evaluated.

The above mentioned layout problems are not only practically relevant, but they also
contain a rich structure that is equally interesting from a theoretical perspective. In
addition, we have studied two graph representation problems for cover contact graphs and
their complexity. The question of how to consistently represent Euclidean line segments
and ray segments in a pixel grid has been studied in the last part of the thesis. There is a
trade-off between visual quality and compliance with some basic topological requirements,
and we obtained a tight bound for the subproblem of representing consistent rays in such
a pixel grid.

Outlook
Each of the problems studied in this thesis still raises a number of interesting open problems
for further research. These have been addressed in the respective chapters. Here, we
want to take, to some extent, a wider perspective on the field of network visualizations.
The graph drawing literature provides several multi-purpose visualization algorithms, for
example, the spring embedder paradigm. Spring embedders do not make any assumptions
on the properties of the graph to be drawn. This certainly makes them versatile tools for
exploring unknown properties in graphs. But, on the other hand, spring embedders also
cannot give any quality guarantees for the resulting layout. If available, domain knowledge
of the graph at hand and its properties are a valuable piece of information that can, if
incorporated into a layout algorithm, largely improve the quality of the resulting layout.
Examples of such domain-specific layout algorithms have been presented in this thesis, for
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Figure 10.1: Route map of Continental Airlines.

instance, for public transport networks or for pairs of phylogenetic trees.
There is still a large need for domain-specific layout algorithms, in particular, in

application areas that are just discovering that their data is in fact network data, or
that layout algorithms present an interesting alternative to replace or assist the tedious
manual creation of network visualizations. As an example, the domain of geographic data
and cartography offers a rich pool of challenging and practically relevant graph drawing
problems. Here, a distinct feature of the network data is that nodes and links are usually
given with coordinates. Depending on the visualization goal, these coordinates can be
modified to a certain degree in order to simplify the presentation of the network. This
process is known as generalization in cartography.

For example, in airline route maps, direct flight connections are depicted as arcs radiating
from the major hubs, see Figure 10.1. Since the actually flown routes differ from day
to day depending on air traffic and weather conditions, there is no need to draw them
accurately. Rather, there is a lot of flexibility, in particular, there is no embedding that
needs to be preserved. What are the aesthetic constraints for such a map? The angular
resolution around hub nodes is necessarily low but more important for the readability is
the crossing angle of arcs. Visually following a line in the vicinity of a crossing of about 90
degrees is usually no problem, whereas one gets easily lost at crossings with very small
angles. This effect has recently been observed in a user study by Huang [Hua08]. Crossing
angle maximization thus seems like an interesting and important criterion for network
readability—maybe more than traditional crossing minimization.

Another visualization problem arises in online route planners that generate an optimal
route for each individual route request. Usually, this route is highlighted in a conventional
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geographic road map. On the other hand, a schematic visualization of such a route that
highlights only those route properties that are relevant for navigation such as turning
directions at road intersections may be more adequate to assist a car driver. In a schematic
route visualization, for example, edge directions are discretized to a small set of orientations
with the main requirement that perceived turning angles at intersections are preserved. A
non-uniform scale is used to depict inner-city roads and highway segments. Hand-drawn
sketches of routes often follow these layout principles intuitively, and an initial study to
draw route maps automatically was presented by Agrawala and Stolte [AS01]. Algorithmic
approaches for schematizing individual routes on demand would complement popular route
planning services on the web. Rather than creating a single elaborate map that (more or
less) fits all users, the goal shifts towards creating many highly individual maps, each of
which fits a single user and his specific use.

These are just two examples of applications, in which new and application-specific graph
layout techniques hold great potential. They also underline the importance of the audience
of network visualizations. After all, the visualizations are to be used by humans and the
way we, as humans, read network visualizations is not yet systematically understood. So
before designing useful layout algorithms, it is necessary to evaluate which aesthetic criteria
and design rules make a visualization easy to read and understand. The positive effects
on graph readability have been confirmed for classic aesthetic criteria like crossing and
bend minimization [PCJ96, Pur97]. But these experiments were performed for abstract
and rather small graphs, which are not necessarily representative for the networks that
typically arise in an application. Once there is experimental evidence from user studies
that certain criteria are more important than others for a specific use of a visualization, we
can study the algorithmic implications for the corresponding graph layout and optimization
problems.

There is definitely a need for more and better visualizations of networks. Graph drawing
plays a key role towards that goal and it definitely remains a very attractive and interesting
field for algorithmic research.



218 Chapter 10: Conclusion



Bibliography

[ABH+06] Manuel Abellanas, Sergey Bereg, Ferran Hurtado, Alfredo García Olaverri,
David Rappaport, and Javier Tejel. Moving coins. Comput. Geom. Theory
Appl., 34(1):35–48, 2006. [see page 177]

[ABKS09] Evmorfia Argyriou, Michael A. Bekos, Michael Kaufmann, and Antonios
Symvonis. Two polynomial time algorithms for the metro-line crossing
minimization problem. In I. G. Tollis and M. Patrignani, editors, Proc. 16th
Internat. Symp. Graph Drawing (GD’08), number 5417 in Lecture Notes
Comput. Sci., pages 336–347. Springer-Verlag, 2009. [see pages 65, 66, 67,
and 76]

[ACKT01] Tetsuo Asano, Danny Z. Chen, Naoki Katoh, and Takeshi Tokuyama. Ef-
ficient algorithms for optimization-based image segmentation. Internat. J.
Comput. Geom. Appl., 11(2):145–166, 2001. [see page 200]

[AdCC+08] Nieves Atienza, Natalia de Castro, Carmen Cortés, M. Ángeles Garrido,
Clara I. Grima, Gregorio Hernández, Alberto Márquez, Auxiliadora Moreno,
Martin Nöllenburg, José Ramon Portillo, Pedro Reyes, Jesús Valenzuela,
Maria Trinidad Villar, and Alexander Wolff. Cover contact graphs. In
S.-H. Hong, T. Nishizeki, and W. Quan, editors, Proc. 15th Internat. Symp.
Graph Drawing (GD ’07), volume 4875 of Lecture Notes Comput. Sci., pages
171–182. Springer-Verlag, 2008. [see page 173]

[AdCH+06] Manuel Abellanas, Natalia de Castro, Gregorio Hernández, Alberto Márquez,
and Carlos Moreno-Jiménez. Gear system graphs. Manuscript, 2006. [see
page 177]

[AGM08] Matthew Asquith, Joachim Gudmundsson, and Damian Merrick. An ILP for
the metro-line crossing problem. In J. Harland and P. Manyem, editors, Proc.
14th Computing: The Australasian Theory Symp. (CATS’08), volume 77 of
CRPIT, pages 49–56. Australian Comput. Soc., 2008. [see pages 64, 65, 66,
67, 76, 77, and 81]

[AH06] Silvania Avelar and Lorenz Hurni. On the design of schematic transport
maps. Cartographica, 41(3):217–228, 2006. [see pages 28, 30, and 31]

[AM00] Silvania Avelar and Matthias Müller. Generating topologically correct
schematic maps. In Proc. 9th Internat. Symp. Spatial Data Handling
(SDH’00), pages 4a.28–4a.35, Beĳing, 2000. [see page 29]

[Aro03] Sanjeev Arora. Approximation schemes for NP-hard geometric optimization
problems: A survey. Math. Program. Ser. B, 97(1–2):43–69, 2003. [see
page 177]



220 Bibliography

[AS01] Maneesh Agrawala and Chris Stolte. Rendering effective route maps: Im-
proving usability through generalization. In E. Fiume, editor, Proc. 28th
Ann. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH’01),
pages 241–249. ACM, 2001. [see page 217]

[Ata99] Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook.
CRC Press, 1999. [see page 223]

[Ave07] Silvania Avelar. Convergence analysis and quality criteria for an iterative
schematization of networks. Geoinformatica, 11:497–513, 2007. [see page 29]

[Ave08] Silvania Avelar. Visualizing public transport networks: An experiment in
Zurich. J. Maps, pages 134–150, 2008. [see page 29]

[AvKS98] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement
by maximum independent set in rectangles. Comput. Geom. Theory Appl.,
11(3–4):209–218, 1998. [see pages 112, 113, and 125]

[Bar80] D. J. Bartram. Comprehending spatial information: The relative efficiency
of different methods of presenting information about bus routes. J. Applied
Psychology, 65(1):103–110, 1980. [see pages 26 and 60]

[Bar03] Albert László Barabási. Linked: How Everything Is Connected to Everything
Else and What It Means for Business, Science, and Everyday Life. Plume,
2003. [see page 1]

[BBB+09] Kevin Buchin, Maike Buchin, Jaroslaw Byrka, Martin Nöllenburg, Yoshio
Okamoto, Rodrigo I. Silveira, and Alexander Wolff. Drawing (complete)
binary tanglegrams: Hardness, approximation, fixed-parameter tractability.
In I. G. Tollis and M. Patrignani, editors, Proc. 16th Internat. Symp. Graph
Drawing (GD’08), volume 5417 of Lecture Notes Comput. Sci., pages 324–335.
Springer-Verlag, 2009. [see page 139]

[BBdG+07] Melanie Badent, Carla Binucci, Emilio di Giacomo, Walter Didimo, Ste-
fan Felsner, Francesco Giordano, Jan Kratochvíl, Maurizio Palladino, and
Francesco Trotta. Homothetic triangle contact representations of planar
graphs. In Proc. 19th Canadian Conf. Comput. Geom. (CCCG’07), pages
233–236, Ottawa, Canada, 2007. [see page 176]

[BBDZ08] Joachim Böttger, Ulrik Brandes, Oliver Deussen, and Hendrik Ziezold. Map
warping for the annotation of metro maps. Computer Graphics and Applica-
tions, 28(5):56–65, 2008. [see page 29]

[BdBMT98] Paola Bertolazzi, Giuseppe di Battista, Carlo Mannino, and Roberto Tamas-
sia. Optimal upward planarity testing of single-source digraphs. SIAM J.
Comput., 27(1):132–169, 1998. [see page 143]

[BDLN05] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena Nonato.
Orthogonal drawings of graphs with vertex and edge labels. Comput. Geom.
Theory Appl., 32(2):71–114, 2005. [see pages 30, 42, and 59]

[BDY06] Ken Been, Eli Daiches, and Chee Yap. Dynamic map labeling. IEEE Trans.
Visualization and Computer Graphics, 12(5):773–780, 2006. [see pages 109,
110, and 113]



Bibliography 221

[BE05] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodolog-
ical Foundations, volume 3418 of Lecture Notes Comput. Sci. Springer-Verlag,
2005. [see pages 1 and 4]

[BEKW02] Ulrik Brandes, Markus Eiglsperger, Michael Kaufmann, and Dorothea
Wagner. Sketch-driven orthogonal graph drawing. In S. Kobourov and
M. Goodrich, editors, Proc. 10th Internat. Symp. Graph Drawing (GD’02),
volume 2528 of Lecture Notes Comput. Sci., pages 1–11. Springer-Verlag,
2002. [see page 28]

[Ber83] Jaques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Madison:
University of Wisconsin Press, 1983. (French edition, 1967). [see pages 11
and 12]

[Bes02] Sergei Bespamyatnikh. An optimal morphing between polylines. Internat. J.
Comput. Geom. Appl., 12(3):217–228, 2002. [see page 85]

[BFN85] Carlo Batini, L. Furlani, and Enrico Nardelli. What is a good diagram?
A pragmatic approach. In Proc. 4th Internat. Conf. Entity-Relationship
Approach, pages 312–319. IEEE Computer Society, 1985. [see page 15]

[Bil05] Philip Bille. A survey on tree edit distance and related problems. Theoret.
Comput. Sci., 337(1–3):217–239, 2005. [see pages 140 and 141]

[BK96] Heinz Breu and David G. Kirkpatrick. On the complexity of recognizing
intersection and touching graphs of disks. In F. J. Brandenburg, editor, Proc.
3rd Internat. Symp. Graph Drawing (GD’95), volume 1027 of Lecture Notes
Comput. Sci., pages 88–98. Springer-Verlag, 1996. [see page 176]

[BK98] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard.
Comput. Geom. Theory Appl., 9(1–2):3–24, 1998. [see page 176]

[BKK+04] Adam L. Buchsbaum, Howard Karloff, Claire Kenyon, Nick Reingold, and
Mikkel Thorup. OPT versus LOAD in dynamic storage allocation. SIAM J.
Comput., 33(3):632–646, 2004. [see page 113]

[BKPS08] Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvo-
nis. Line crossing minimization on metro maps. In S.-H. Hong, T. Nishizeki,
and W. Quan, editors, Proc. 15th Internat. Symp. Graph Drawing (GD’07),
volume 4875 of Lecture Notes Comput. Sci., pages 231–242. Springer-Verlag,
2008. [see pages 61, 64, 65, 66, 67, 75, and 76]

[BKR+99] Ulrik Brandes, Patrick Kenis, Jörg Raab, Volker Schneider, and Dorothea
Wagner. Explorations into the visualization of policy networks. Journal of
Theoretical Politics, 11(1):75–106, 1999. [see page 4]

[BLR00] Thomas Barkowsky, Longin Jan Latecki, and Kai-Florian Richter. Schema-
tizing maps: Simplification of geographic shape by discrete curve evolution.
In C. Freksa, W. Brauer, C. Habel, and K. F. Wender, editors, Proc. Spa-
tial Cognition II, volume 1849 of Lecture Notes Comput. Sci., pages 41–53.
Springer-Verlag, 2000. [see page 29]



222 Bibliography

[BNPW08] Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff.
Optimizing active ranges for consistent dynamic map labeling. In Proc.
24th Ann. ACM Symp. Comput. Geom. (SoCG’08), pages 10–19, 2008. [see
page 109]

[BNPW09] Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff.
Optimizing active ranges for consistent dynamic map labeling. Comput.
Geom. Theory Appl., 2009. To appear. [see page 109]

[BNUW07] Marc Benkert, Martin Nöllenburg, Takeaki Uno, and Alexander Wolff. Min-
imizing intra-edge crossings in wiring diagrams and public transportation
maps. In M. Kaufmann and D. Wagner, editors, Proc. 14th Internat. Symp.
Graph Drawing (GD’06), volume 4372 of Lecture Notes Comput. Sci., pages
270–281. Springer-Verlag, 2007. [see pages 61 and 66]

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimiza-
tion. Athena Scientific, 1997. [see page 23]

[Cc99] Bernard Chazelle and 36 co-authors. The computational geometry impact
task force report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors,
Advances in Discrete and Computational Geometry, volume 223, pages 407–
463. American Mathematical Society, 1999. [see page 113]

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk
graphs. Discrete Math., 86(1–3):165–177, 1990. [see page 174]

[CCKT04] Danny Z. Chen, Jinhee Chun, Naoki Katoh, and Takeshi Tokuyama. Efficient
algorithms for approximating a multi-dimensional voxel terrain by a unimodal
terrain. In Proc. 10th Ann. Internat. Conf. Computing and Combinatorics
(COCOON’04), volume 3106 of Lecture Notes Comput. Sci., pages 238–248.
Springer-Verlag, 2004. [see pages 200, 211, 212, 213, and 214]

[CdBvD+01] Sergio Cabello, Mark de Berg, Steven van Dĳk, Marc van Kreveld, and
Tycho Strĳk. Schematization of road networks. In Proc. 17th Ann. ACM
Symp. Comput. Geom. (SoCG’01), pages 33–39, 2001. [see page 29]

[CDR04] Sergio Cabello, Erik D. Demaine, and Günter Rote. Planar embeddings of
graphs with specified edge lengths. In G. Liotta, editor, Proc. 11th Internat.
Symp. Graph Drawing (GD’03), volume 2912 of Lecture Notes Comput. Sci.,
pages 283–294. Springer-Verlag, 2004. [see page 182]

[CEBY97] Shmuel Cohen, Gershon Elber, and Reuven Bar-Yehuda. Matching of
freeform curves. Computer-Aided Design, 29(5):369–378, 1997. [see page 85]

[CF07] Nicholas A. Christakis and James H. Fowler. The spread of obesity in a large
social network over 32 years. New England J. Medicine, 357(4):370–379,
2007. [see page 1]

[CG02] Alesandro Cecconi and Martin Galanda. Adaptive zooming in web cartogra-
phy. Computer Graphics Forum, 21(4):787–799, 2002. [see page 84]

[cga] Cgal, Computational Geometry Algorithms Library. http://www.cgal.
org. [see page 201]

http://www.cgal.org
http://www.cgal.org


Bibliography 223

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weĳia Jia. Vertex cover: Further observations
and further improvements. J. Algorithms, 41:280–301, 2001. [see page 21]

[CKNT08] Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama.
Consistent digital rays. In Proc. 24th Ann. ACM Symp. Comput. Geom.
(SoCG’08), pages 355–364, 2008. [see page 197]

[CKNT09] Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama.
Consistent digital rays. Discrete Comput. Geom., 2009. To appear. [see
page 197]

[CLR87] Fan R. K. Chung, Frank Thomas Leighton, and Arnold L. Rosenberg.
Embedding graphs in books: A layout problem with applications to VLSI
design. SIAM J. Algebraic and Discrete Methods, 8(1):33–58, 1987. [see
page 187]

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001. [see
pages 11, 13, 17, 20, and 151]

[CMS95] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of
algorithms for point-feature label placement. ACM Transactions on Graphics,
14(3):203–232, 1995. [see page 113]

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Readings
in Information Visualization: Using Visison to Think. Morgan Kaufmann,
1999. [see pages 3, 5, and 11]

[CR99a] Vĳay Chandru and M. R. Rao. Integer programming. In Atallah [Ata99],
chapter 32, pages 32/1–32/45. [see page 23]

[CR99b] Vĳay Chandru and M. R. Rao. Linear programming. In Atallah [Ata99],
chapter 31, pages 31/1–31/37. [see page 21]

[CS03] Charles R. Collins and Kenneth Stephenson. A circle packing algorithm.
Comput. Geom. Theory Appl., 25(3):233–256, 2003. [see page 174]

[CST03] Jinhee Chun, Kunihiko Sadakane, and Takeshi Tokuyama. Efficient al-
gorithms for constructing a pyramid from a terrain. In J. Akiyama and
M. Kano, editors, Proc. Japanese Conf. on Discrete and Computational
Geometry (JCDCG’02), volume 2866 of Lecture Notes Comput. Sci., pages
108–117. Springer-Verlag, 2003. [see page 200]

[CV05] Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation
algorithms for geometric set cover. In Proc. 21st Ann. ACM Symp. Comput.
Geom. (SoCG’05), pages 135–141, 2005. [see page 177]

[CvK03] Sergio Cabello and Marc van Kreveld. Approximation algorithms for aligning
points. In Proc. 19th Ann. ACM Symp. Comput. Geom. (SoCG’03), pages
20–28, 2003. [see page 29]

[dBCvKO08] Mark de Berg, Ottfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag, 3rd
edition, 2008. [see pages 129 and 135]



224 Bibliography

[dBETT99] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall,
1999. [see pages 6 and 15]

[dBvKS98] Mark de Berg, Marc van Kreveld, and Stefan Schirra. Topologically correct
subdivision simplification using the bandwidth criterion. Cartography and
GIS, 25:243–257, 1998. [see page 107]

[dCCDM02] Natalia de Castro, Francisco Javier Cobos, Juan Carlos Dana, and Alberto
Márquez. Triangle-free planar graphs as segment intersection graphs. J.
Graph Algorithms Appl., 6(1):7–26, 2002. [see page 176]

[DEG07] Michael B. Dillencourt, David Eppstein, and Michael T. Goodrich. Choosing
colors for geometric graphs via color space embeddings. In M. Kaufmann
and D. Wagner, editors, Proc. 14th Internat. Symp. Graph Drawing (GD’06),
volume 4372 of Lecture Notes Comput. Sci., pages 294–305. Springer-Verlag,
2007. [see page 12]

[DEKM98] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological
Sequence Analysis. Cambridge University Press, 1998. [see page 75]

[DF98] Rod G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-
Verlag, 1998. [see page 21]

[DFK04] Vida Dujmovič, Henning Fernau, and Michael Kaufmann. Fixed parameter
algorithms for one-sided crossing minimization revisited. In G. Liotta, editor,
Proc. 11th Internat. Symp. Graph Drawing (GD’03), volume 2912 of Lecture
Notes Comput. Sci., pages 332–344. Springer-Verlag, 2004. [see page 142]

[dFOdM07] Hubert de Fraysseix and Patrice Ossona de Mendez. Representations by
contact and intersection of segments. Algorithmica, 47(4):453–463, 2007. [see
page 176]

[dFOdMP91] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. Represen-
tation of planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.
[see page 176]

[dFOdMR94] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On
triangle contact graphs. Combin. Probab. Comput., 3:233–246, 1994. [see
page 175]

[dFOdMR08] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl.
Representation of planar hypergraphs by contacts of triangles. In S.-H.
Hong, T. Nishizeki, and W. Quan, editors, Proc. 15th Internat. Symp. Graph
Drawing (GD’07), volume 4875 of Lecture Notes Comput. Sci., pages 125–136.
Springer-Verlag, 2008. [see page 176]

[DHJ+97] Bhaskar DasGupta, Xin He, Tao Jiang, Ming Li, John Tromp, and Louxin
Zhang. On distances between phylogenetic trees. In Proc. 18th Ann. ACM-
SIAM Symp. Discrete Algorithms (SODA’97), pages 427–436, 1997. [see
pages 140 and 141]



Bibliography 225

[dNE08] Hugo A. D. do Nascimento and Peter Eades. User hints for map labeling. J.
Visual Languages and Computing, 19(1):39–74, 2008. [see page 30]

[DP73] David Douglas and Thomas Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. The
Canadian Cartographer, 10(2):112–122, 1973. [see pages 84 and 87]

[DS04] Tim Dwyer and Falk Schreiber. Optimal leaf ordering for two and a half
dimensional phylogenetic tree visualization. In N. Churcher and C. Churcher,
editors, Proc. Australasian Symp. Information Visualization (invis.au’04),
volume 35 of CRPIT, pages 109–115. Australian Computer Society, 2004.
[see pages 143, 161, and 163]

[EET76] Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs
of curves in the plane. J. Combin. Theory Ser. B, 21(1):8–20, 1976. [see
page 176]

[EHPGM01] Alon Efrat, Sariel Har-Peled, Leonidas J. Guibas, and T. M. Murali. Mor-
phing between polylines. In Proc. 12th Ann. ACM-SIAM Symp. Discrete
Algorithms (SODA’01), pages 680–689, 2001. [see pages 85 and 90]

[EJS05] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time ap-
proximation schemes for geometric intersection graphs. SIAM J. Comput.,
34(6):1302–1323, 2005. [see page 112]

[EKP04] Cesim Erten, Stephen G. Kobourov, and Chandan Pitta. Intersection-
free morphing of planar graphs. In Proc. 11th Internat. Symp. Graph
Drawing (GD’03), volume 2912 of Lecture Notes Comput. Sci., pages 320–
331. Springer-Verlag, 2004. [see page 85]

[Epp08] David Eppstein. Principles of graph drawing. http://www.ics.uci.edu/
~eppstein/pubs/IMBS-graph-drawing-talk.pdf, May 2008. Talk at In-
stitute for Mathematical Behavioral Sciences. [see page 15]

[Erd64] Paul Erdős. Problems and results on diophantine approximation. Compos.
Math., 16:52–65, 1964. [see page 202]

[EW94] Peter Eades and Nicholas Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994. [see page 142]

[FKP05] Henning Fernau, Michael Kaufmann, and Mathias Poths. Comparing trees
via crossing minimization. In R. Ramanujam and S. Sen, editors, Proc. 25th
Internat. Conf. Found. Softw. Techn. Theoret. Comput. Sci. (FSTTCS’05),
volume 3821 of Lecture Notes Comput. Sci., pages 457–469. Springer-Verlag,
2005. [see pages 141, 142, 143, 144, 145, 149, 163, 170, and 171]

[For86] Steven Fortune. A sweepline algorithm for Voronoi diagrams. In Proc. 2nd
Ann. ACM Symp. Comput. Geom. (SoCG’86), pages 313–322, 1986. [see
page 179]

[Fre00] Linton Clarke Freeman. Visualizing social networks. Journal of Social
Structure, 1(1), 2000. [see page 4]

http://www.ics.uci.edu/~eppstein/pubs/IMBS-graph-drawing-talk.pdf
http://www.ics.uci.edu/~eppstein/pubs/IMBS-graph-drawing-talk.pdf


226 Bibliography

[FW91] Michael Formann and Frank Wagner. A packing problem with applications to
lettering of maps. In Proc. 7th Ann. ACM Symp. Comput. Geom. (SoCG’91),
pages 281–288, 1991. [see page 113]

[Gar94] Ken Garland. Mr Beck’s Underground Map. Capital Transport Publishing,
1994. [see pages 26, 30, 55, 58, and 62]

[GCV+07] Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal,
and Albert-László Barabási. The human disease network. Proc. Natl. Acad.
Sci. USA, 104(21):8685–8690, 2007. [see pages 1, 2, and 3]

[GDCV99] Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz Velho. Warping and
Morphing of Graphical Objects. Morgan Kaufmann, 1999. [see page 84]

[GG03] S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Systematic Biology,
52(5):696–704, 2003. [see page 164]

[GGHT97] Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J.
Tanenbaum. Snap rounding line segments efficiently in two and three
dimensions. In Proc. 13th Ann. ACM Symp. Comput. Geom. (SoCG’97),
pages 284–293, 1997. [see page 200]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979. [see pages 11, 17,
18, and 22]

[GJ83] Michael R. Garey and David S. Johnson. Crossing number is NP-complete.
SIAM J. Algebraic and Discrete Methods, 4(3):312–316, 1983. [see page 67]

[GPQX07] Carsten Görg, Mathias Pohl, Ermir Qeli, and Kai Xu. Visual representations.
In A. Kerren, A. Ebert, and J. Meyer, editors, Human-Centered Visualization
Environments, volume 4417 of Lecture Notes Comput. Sci., chapter 4, pages
163–230. Springer-Verlag, 2007. [see page 11]

[GPS89] Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate
representation of order types requires exponential storage. In Proc. 21st
Ann. ACM Symp. Theory Comput. (STOC’89), pages 405–410, 1989. [see
page 200]

[GT83] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a
special case of disjoint set union. In Proc. 15th Ann. ACM Symp. Theory
Comput. (STOC’83), pages 246–251, 1983. [see page 151]

[GT96] Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm
with applications to graph drawing. In S. North, editor, Proc. 4th Internat.
Symp. Graph Drawing (GD’96), volume 1190 of Lecture Notes Comput. Sci.,
pages 201–216. Springer-Verlag, 1996. [see pages 16 and 33]

[GT01] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625,
2001. [see page 16]



Bibliography 227

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115–1145, 1995. [see pages 142, 156, and 157]

[GY86] Daniel H. Greene and F. Frances Yao. Finite-resolution computational geom-
etry. In Proc. 27th Ann. IEEE Symp. Foundations Comput. Sci. (FOCS’86),
pages 143–152, 1986. [see page 200]

[Hal80] William K. Hale. Frequency assignment: Theory and applications. Proc.
IEEE, 68(12):1497–1514, 1980. [see page 174]

[HJLM93] Frank Harary, Michael S. Jacobson, Marc J. Lipman, and Fred R. McMorris.
Abstract sphere-of-influence graphs. Math. Comput. Modelling, 17(11):77–83,
1993. [see page 180]

[HK01] Petr Hliněný and Jan Kratochvíl. Representing graphs by disks and balls (a
survey of recognition-complexity results). Discrete Math., 229(1–3):101–124,
2001. [see page 176]

[Hli00] Petr Hliněný. Contact Representations of Graphs. PhD thesis, Charles
University Prague, Faculty of Mathematics and Physics, 2000. [see page 176]

[Hli01] Petr Hliněný. Contact graphs of line segments are NP-complete. Discrete
Math., 235(1–3):95–106, 2001. [see page 176]

[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for cover-
ing and packing problems in image processing and VLSI. J. ACM, 32:130–136,
1985. [see pages 112, 123, 124, and 176]

[HMdN06] Seok-Hee Hong, Damian Merrick, and Hugo A. D. do Nascimento. Automatic
visualization of metro maps. J. Visual Languages and Computing, 17(3):203–
224, 2006. [see pages 29, 30, 31, 34, 40, 43, 49, 50, 52, 53, and 55]

[HMM00] Ivan Herman, Guy Melan con, and M. Scott Marshall. Graph visualiza-
tion and navigation in information visualization: a survey. IEEE Trans.
Visualization and Computer Graphics, 6(1):24–43, 2000. [see page 6]

[Hro03] Juraj Hromkovic. Algorithmics for Hard Problems. Springer-Verlag, 2nd
edition, 2003. [see page 19]

[HSV+94] Mark S. Hafner, Philip D. Sudman, Francis X. Villablanca, Theresa A.
Spradling, James W. Demastes, and Steven A. Nadler. Disparate rates
of molecular evolution in cospeciating hosts and parasites. Science,
265(5175):1087–1090, 1994. [see page 140]

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974. [see page 176]

[Hua08] Weidong Huang. An eye tracking study into the effects of graph layout. Arxiv
report, October 2008. Available at http://arxiv.org/abs/0810.4431. [see
pages 171 and 216]

http://arxiv.org/abs/0810.4431


228 Bibliography

[HvW08] Danny Holten and Jarke J. van Wĳk. Visual comparison of hierarchically
organized data. In Proc. 10th Eurographics/IEEE-VGTC Symp. Visualization
(EuroVis’08), pages 759–766, 2008. [see pages 143, 161, and 162]

[HW02] William C. Hahn and Robert A. Weinberg. A subway map of cancer pathways,
2002. Poster in Nature Reviews Cancer. [see pages 2, 4, and 27]

[Inf07] Information Architects. Web trend map 2007 version 2.0. http://
informationarchitects.jp/ia-trendmap-2007v2, 2007. [see page 27]

[Jen06] Bernhard Jenny. Geometric distortion of schematic network maps. SoC
Bulletin, 40:15–18, 2006. [see page 29]

[JLM95] Michael S. Jacobson, Marc J. Lipman, and Fred R. McMorris. Trees that are
sphere-of-influence graphs. Appl. Math. Lett., 8:89–93, 1995. [see page 180]

[JM97] Michael Jünger and Petra Mutzel. 2-layer straightline crossing minimization:
Performance of exact and heuristic algorithms. J. Graph Algorithms Appl.,
1(1):1–25, 1997. [see pages 30 and 142]

[JW05] Christopher B. Jones and J. Mark Ware. Map generalization in the web
age. Internat. J. Geographical Information Sci., 19(8–9):859–870, 2005. [see
page 84]

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984. [see page 21]

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc.
34th Ann. ACM Symp. Theory Comput. (STOC’02), pages 767–775, 2002.
[see page 144]

[Kic08] Kick Design. The kick map. http://www.kickmap.com, November 2008.
[see page 5]

[KM94] Jan Kratochvíl and Jiří Matoušek. Intersection graphs of segments. J.
Combin. Theory Ser. B, 62(2):289–315, 1994. [see page 176]

[KM99a] Gunnar W. Klau and Petra Mutzel. Combining graph labeling and com-
paction. In J. Kratochvíl, editor, Proc. 8th Internat. Symp. Graph Drawing
(GD’99), volume 1731 of Lecture Notes Comput. Sci., pages 27–37. Springer-
Verlag, 1999. [see pages 17 and 30]

[KM99b] Gunnar W. Klau and Petra Mutzel. Optimal compaction of orthogonal
grid drawings. In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger,
editors, Proc. 7th Conf. on Integer Programming and Combinat. Optimization
(IPCO’99), volume 1610 of Lecture Notes Comput. Sci., pages 304–319.
Springer-Verlag, 1999. [see page 30]

[Koe36] Paul Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad.
Wiss. Leipzig, Math.-Phys. Klasse, 88:141–164, 1936. [see pages 173, 175,
176, and 182]

http://informationarchitects.jp/ia-trendmap-2007v2
http://informationarchitects.jp/ia-trendmap-2007v2
http://www.kickmap.com


Bibliography 229

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible
representatives. SIAM J. Discr. Math., 5(3):422–427, 1992. [see pages 18,
113, 117, and 121]

[KR04] R. Klette and A. Rosenfeld. Digital straightness—a review. Discrete Appl.
Math., 139(1–3):197–230, 2004. [see pages 197 and 198]

[Kre02] Valdis Krebs. Uncloaking terrorist networks. First Monday, 7(4), 2002. [see
page 1]

[KV05] Subhash Khot and Nisheeth K. Vishnoi. The unique games conjecture, inte-
grality gap for cut problems and embeddability of negative type metrics into
l1. In Proc. 46th Ann. IEEE Symp. Foundations Comput. Sci. (FOCS’05),
pages 53–62, 2005. [see pages 141 and 144]

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods
and Models, volume 2025 of Lecture Notes Comput. Sci. Springer-Verlag,
2001. [see pages 6 and 15]

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129,
2002. [see pages 177, 181, 186, and 187]

[LCR+06] Heng Li, Avril Coghlan, Jue Ruan, Lachlan James Coin, Jean-Karim Hériché,
Lara Osmotherly, Ruiqiang Li, Tao Liu, Zhang Zhang, Lars Bolund, Gane
Ka-Shu Wong, Weimou Zheng, Paramvir Dehal, Jun Wang, and Richard
Durbin. TreeFam: a curated database of phylogenetic trees of animal gene
families. Nucleic Acids Research, 34:D572–D580, 2006. [see page 164]

[Len90] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley & Sons, 1990. [see page 63]

[Li06] Heng Li. Constructing the TreeFam Database. PhD thesis, Institute of
Theoretical Physics, Chinese Academy of Science, 2006. [see page 164]

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982. [see pages 18, 113, 182, and 193]

[LJLH05] Fran cois Lecordix, Yolène Jahard, Cécile Lemarié, and Etienne Hauboin.
The end of carto 2001 project: Top100 based on bdcarto database. In Proc.
8th ICA Workshop on Generalisation and Multiple Representation, A Coruña,
Spain, July 2005. [see page 92]

[Low89] David Lowe. Organization of smooth image curves at multiple scales. Internat.
J. Computer Vision, 3(2):119–130, 1989. [see page 88]

[LPR+08] Antoni Lozano, Ron Y. Pinter, Oleg Rokhlenko, Gabriel Valiente, and Michal
Ziv-Ukelson. Seeded tree alignment. IEEE/ACM Trans. Comput. Biology
and Bioinformatics, 5(4):503–513, 2008. [see pages 141 and 143]

[LS02] Ulrich Lauther and Andreas Stübinger. Generating schematic cable plans
using springembedder methods. In P. Mutzel, M. Jünger, and S. Leipert,
editors, Proc. 10th Internat. Symp. Graph Drawing (GD’01), volume 2265



230 Bibliography

of Lecture Notes Comput. Sci., pages 465–466. Springer-Verlag, 2002. [see
page 29]

[Mac95] Alan M. MacEachren. How Maps Work: Representation, Visualization, and
Design. The Guilford Press, 1995. [see page 11]

[Mat99] Jiří Matousěk. Geometric Discrepancy: An Illustrated Guide. Springer-
Verlag, 1999. [see page 202]

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment
and the mental map. J. Visual Languages and Computing, 6(2):183–210,
1995. [see page 85]

[MG07] Damian Merrick and Joachim Gudmundsson. Path simplification for metro
map layout. In M. Kaufmann and D. Wagner, editors, Proc. 14th Internat.
Symp. Graph Drawing (GD’06), volume 4372 of Lecture Notes Comput. Sci.,
pages 258–269. Springer-Verlag, 2007. [see page 29]

[Mit92] Joseph S. B. Mitchell. L1 shortest paths among polygonal obstacles in the
plane. Algorithmica, 8(1–6):55–88, 1992. [see page 178]

[MM99] Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory.
SIAM Monographs on Discrete Mathematics. SIAM, 1999. [see page 175]

[MN90] Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorith-
mica, 5(1–4):215–241, 1990. [see page 136]

[MNWB07] Damian Merrick, Martin Nöllenburg, Alexander Wolff, and Marc Benkert.
Morphing polygonal lines: A step towards continuous generalization. In
A. Winstanley, editor, Proc. 15th Ann. Geograph. Inform. Sci. Research
Conf. UK (GISRUK’07), pages 390–399, Maynooth, Ireland, 2007. [see
page 86]

[Mor53] J. L. Moreno. Who Shall Survive? Beacon House, 1953. [see page 4]

[Mor96] Alastair Morrison. Public transport maps in western European cities. Car-
tographic J., 33(2):93–110, 1996. [see page 26]

[MPN+05] Lauren Ancel Meyers, Babak Pourbohloul, M. E. J. Newman, Danuta M.
Skowronski, and Robert C. Brunham. Network theory and SARS: predicting
outbreak diversity. J. Theoretical Biology, 232(1):71–81, 2005. [see page 1]

[MRS07] William A. Mackaness, Anne Ruas, and L. Tiina Sarjakoski, editors. General-
isation of Geographic Information: Cartographic Modelling and Applications.
Elsevier, 2007. [see page 84]

[MSS95] M. Marek-Sadowska and M. Sarrafzadeh. The crossing distribution problem.
IEEE Trans. Computer-Aided Design, 14(4):423–433, 1995. [see page 67]

[MUV02] Xavier Muñoz, Walter Unger, and Imrich Vrt’o. One sided crossing minimiza-
tion is NP-hard for sparse graphs. In P. Mutzel, M. Jünger, and S. Leipert,
editors, Proc. 9th Internat. Symp. Graph Drawing (GD’01), volume 2265
of Lecture Notes Comput. Sci., pages 115–123. Springer-Verlag, 2002. [see
page 142]



Bibliography 231

[Nag05] Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing
number in two-layered drawings. Discrete Comput. Geom., 33(4):565–591,
2005. [see page 142]

[NBW06] Mark Newman, Albert-László Barabási, and Duncan J. Watts. The Structure
and Dynamics of Networks. Princeton University Press, 2006. [see page 1]

[Nes04] Keith V. Nesbitt. Getting to more abstract places using the metro map
metaphor. In Proc. 8th Internat. Conf. Information Visualisation (IV’04),
pages 488–493. IEEE, 2004. [see page 27]

[Ney99] Gabriele Neyer. Line simplification with restricted orientations. In F. K.
Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors, Proc. 6th Internat.
Workshop Algorithms and Data Structures (WADS’99), volume 1663 of
Lecture Notes Comput. Sci., pages 13–24. Springer-Verlag, 1999. [see page 29]

[Nie92] Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods, volume 63 of CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, 1992. [see pages 202 and 214]

[Nie06] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford Univer-
sity Press, 2006. [see page 21]

[NK00] Masatoshi Nei and Sudhir Kumar. Molecular Evolution and Phylogenetics.
Oxford University Press, 2000. [see page 140]

[NMWB08] Martin Nöllenburg, Damian Merrick, Alexander Wolff, and Marc Benkert.
Morphing polylines: A step towards continuous generalization. Computers,
Environment and Urban Systems, 32(4):248–260, 2008. [see page 83]

[Nöl05] Martin Nöllenburg. Automated drawing of metro maps. Technical Report
2005-25, Fakultät für Informatik, Universität Karlsruhe, 2005. Available
at http://digbib.ubka.uni-karlsruhe.de/volltexte/1000004123. [see
pages 28 and 33]

[Nöl07] Martin Nöllenburg. Geographic visualization. In A. Kerren, A. Ebert, and
J. Meyer, editors, Human-Centered Visualization Environments, volume 4417
of Lecture Notes Comput. Sci., chapter 6, pages 257–294. Springer-Verlag,
2007. [see pages 83 and 109]

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12
of Lecture Notes Series on Computing. World Scientific, 2004. [see pages 6
and 15]

[NVWH09] Martin Nöllenburg, Markus Völker, Alexander Wolff, and Danny Holten.
Drawing binary tanglegrams: An experimental evaluation. In Proc. 11th
Workshop Algorithm Engineering and Experiments (ALENEX’09), New York,
2009. SIAM. To appear. [see page 139]

[NW] Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-quality
metro maps by mixed-integer programming. IEEE Trans. Visualization and
Computer Graphics. Submitted and under revision. [see page 25]

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000004123


232 Bibliography

[NW06] Martin Nöllenburg and Alexander Wolff. A mixed-integer program for
drawing high-quality metro maps. In P. Healy and N. S. Nikolov, editors,
Proc. 13th Internat. Symp. Graph Drawing (GD’05), volume 3843 of Lecture
Notes Comput. Sci., pages 321–333. Springer-Verlag, 2006. [see page 25]

[O’R03] O’Reilly. Open source route map. http://www.oreilly.de/artikel/
routemap.pdf, 2003. [see page 27]

[Ove03] Mark Ovenden. Metro Maps of the World. Capital Transport Publishing,
2003. [see pages 26, 28, 31, 44, 62, 64, and 81]

[PA95] János Pach and Pankaj K. Agarwal. Combinatorial Geometry. John Wiley
and Sons, New York, 1995. (Contains a proof of Koebe’s theorem.). [see
page 173]

[PAF95] Corinne Plazanet, Jean-Georges Affholder, and Emmanuel Fritsch. The im-
portance of geometric modeling in linear feature generalization. Cartography
and Geographic Information Systems, 22(4):291–305, 1995. [see page 86]

[Pag02] Roderic D. M. Page, editor. Tangled Trees: Phylogeny, Cospeciation, and
Coevolution. University of Chicago Press, 2002. [see pages 139, 140, and 141]

[PCJ96] Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph
drawing aesthetics. In F. J. Brandenburg, editor, Proc. 3rd Internat. Symp.
Graph Drawing (GD’95), volume 1027 of Lecture Notes Comput. Sci., pages
435–446. Springer-Verlag, 1996. [see pages 15 and 217]

[PCJ97] Helen C. Purchase, Robert F. Cohen, and Murray I. James. An experimental
study of the basis for graph drawing algorithms. J. Experimental Algorithms,
2:Article 4, 1997. [see pages 62 and 141]

[PGP03] Ingo Petzold, Gerhard Gröger, and Lutz Plümer. Fast screen map labeling—
data-structures and algorithms. In Proc. 23rd Internat. Cartographic Conf.
(ICC’03), pages 288–298, Durban, South Africa, 2003. ICA. [see page 113]

[PPH99] Ingo Petzold, Lutz Plümer, and Markus Heber. Label placement for dynam-
ically generated screen maps. In Proc. 19th Internat. Cartographic Conf.
(ICC’99), pages 893–903, Ottawa, Canada, 1999. ICA. [see page 113]

[PPS90] János Pach, Richard Pollack, and Joel Spencer. Graph distance and Euclidean
distance on the grid. In R. Bodendiek and R. Henn, editors, Topics in
Graph Theory and Combinatorics, pages 555–559. Physica-Verlag, 1990. [see
page 199]

[PS05] Sheung-Hung Poon and Chan-Su Shin. Adaptive zooming in point set
labeling. In M. Liśkiewicz and R. Reischuk, editors, Proc. 15th Internat.
Symp. Fundam. Comput. Theory (FCT’05), volume 3623 of Lecture Notes
Comput. Sci., pages 233–244. Springer-Verlag, 2005. [see page 113]

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In G. di Battista, editor, Proc. 5th Internat. Symp. Graph
Drawing (GD’97), volume 1353 of Lecture Notes Comput. Sci., pages 248–261.
Springer-Verlag, 1997. [see pages 62, 139, 141, and 217]

http://www.oreilly.de/artikel/routemap.pdf
http://www.oreilly.de/artikel/routemap.pdf


Bibliography 233

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs Combin., 17(4):717–728, 2001. [see page 177]

[Rob05] Maxwell J. Roberts. Underground Maps After Beck. Capital Transport,
2005. [see pages 28, 31, and 55]

[RRR98] Venkatesh Raman, B. Ravikumar, and S. Srinivasa Rao. A simplified NP-
complete MAXSAT problem. Inform. Process. Lett., 65(1):1–6, 1998. [see
page 145]

[Sac94] Horst Sachs. Coin graphs, polyhedra, and conformal mapping. Discrete
Math., 134(1-3):133–138, 1994. [see page 174]

[SB04] Monika Sester and Claus Brenner. Continuous generalization for visualization
on small mobile devices. In P. F. Fisher, editor, Proc. 11th Internat. Symp.
Spatial Data Handling (SDH’04), pages 355–368. Springer-Verlag, 2004. [see
page 84]

[Sch72] Wolfgang M. Schmidt. Irregularities of distribution, VII. Acta Arithmetica,
21:45–50, 1972. [see page 202]

[Sch77] Wolfgang M. Schmidt. Lectures on Irregularities of Distribution. Tata Inst.
Fund. Res. Bombay, 1977. [see page 202]

[Sch84] Edward R. Scheinerman. Intersection classes and multiple intersection
parameters of graphs. PhD thesis, Princeton University, 1984. [see page 176]

[Sch86] Alexander Schrĳver. Theory of Linear and Integer Programming. Wiley,
1986. [see page 23]

[Sch88] Philip J. Schneider. Phoenix: An interactive curve design system based on
the automatic fitting of hand-sketched curves. Master’s thesis, Department
of Computer Science, University of Washington, 1988. [see page 87]

[Sch95] Otfried Schwarzkopf. The extensible drawing editor Ipe. In Proc. 11th
Ann. ACM Symp. Comput. Geom. (SoCG’95), pages C10–C11, 1995. [see
page 201]

[SE98] Tatiana Samoilov and Gershon Elber. Self-intersection elimination in meta-
morphosis of two-dimensional curves. The Visual Computer, 14(8–9):415–428,
1998. [see page 85]

[Sez01] Tevfik Metin Sezgin. Feature point detection and curve approximation
for early processing of free-hand sketches. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 2001. [see pages 86 and 87]

[SG01a] Vitaly Surazhsky and Craig Gotsman. Controllable morphing of compatible
planar triangulations. ACM Trans. Graphics, 20(4):1–21, 2001. [see page 85]

[SG01b] Vitaly Surazhsky and Craig Gotsman. Morphing stick figures using optimized
compatible triangulations. In Proc. 9th Pacific Conf. Computer Graphics and
Applications (PG’01), pages 40–49. IEEE, 2001. [see pages 85, 86, and 107]



234 Bibliography

[SGSK01] Elmer S. Sandvad, Kaj Grønbæk, Lennert Sloth, and Jørgen Lindskov Knud-
sen. A metro map metaphor for guided tours on the Web: the Webvise Guided
Tour System. In Proc. 10th Internat. World Wide Web Conf. (WWW’01),
pages 326–333. ACM, 2001. [see page 27]

[Shn92] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Trans. Graphics, 11(1):92–99, 1992. [see page 17]

[Shn96] Ben Shneiderman. The eyes have it: A task by data taxonomy for information
visualizations. In Proc. IEEE Symp. Visual Languages, pages 336–343, 1996.
[see page 5]

[SN87] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular Biology and Evolu-
tion, 4(4):406–425, 1987. [see page 164]

[SR04] Jonathan M. Stott and Peter Rodgers. Metro map layout using multicriteria
optimization. In Proc. 8th Internat. Conf. Information Visualisation (IV’04),
pages 355–362. IEEE, 2004. [see pages 30, 31, 34, 40, 43, 49, 50, 52, and 55]

[SR05] Jonathan M. Stott and Peter Rodgers. Automatic metro map design tech-
niques. In Proc. 22nd Internat. Cartographic Conf. (ICC’05), A Coruña,
Spain, 2005. ICA. [see pages 30, 49, 50, 52, and 55]

[SRB+05] Jonathan M. Stott, Peter Rodgers, Remo Aslak Burkhard, Michael Meier,
and Matthias Thomas Jelle Smis. Automatic layout of project plans using a
metro map metaphor. In Proc. 9th Internat. Conf. Information Visualisation
(IV’05), pages 203–206. IEEE, 2005. [see page 27]

[Sto08] Jonathan Stott. Automatic Layout of Metro Maps Using Multicriteria
Optimisation. PhD thesis, University of Kent, Computing Laboratory, 2008.
[see pages 30, 49, 50, 55, and 60]

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual
understanding of hierarchical system structures. IEEE Trans. Systems, Man,
and Cybernetics, 11(2):109–125, 1981. [see pages 15, 142, 143, and 162]

[Sug01] Kokichi Sugihara. Robust geometric computation based on topological
consistency. In V. N. Alexandrov, J. Dongarra, B. A. Juliano, R. S. Renner,
and C. J. K. Tan, editors, Proc. Internat. Conf. Computational Science,
Part 1 (ICCS’01), volume 2073 of Lecture Notes Comput. Sci., pages 12–26.
Springer-Verlag, 2001. [see page 200]

[Syd08] Sydney CityRail. http://www.cityrail.nsw.gov.au/networkmaps/
network_map.pdf, 2008. [see pages 31 and 32]

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM J. Comput., 16(3):421–444, 1987. [see pages 16
and 33]

[Tei02] Steven L. Teig. The X Architecture: not your father’s diagonal wiring. In
Proc. Internat. Workshop on System-Level Interconnect Prediction (SLIP’02),
pages 33–37. ACM, 2002. [see page 28]

http://www.cityrail.nsw.gov.au/networkmaps/network_map.pdf
http://www.cityrail.nsw.gov.au/networkmaps/network_map.pdf


Bibliography 235

[Thu80] William P. Thurston. The Geometry and Topology of 3-Manifolds. Princeton
University Notes, 1980. [see page 174]

[Tou88] Godfried T. Toussaint. A graph-theoretical primal sketch. In Godfried T.
Toussaint, editor, Computational Morphology: A Computational Geometric
Approach to the Analysis of Form, pages 229–260. North-Holland, 1988. [see
page 180]

[Tra08] Transport for London. http://www.tfl.gov.uk/gettingaround/1106.
aspx, 2008. [see page 56]

[Tuf90] Edward R. Tufte. Envisioning Information. Graphics Press, 1990. [see
pages 3, 11, and 12]

[Tuf97] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence
and Narrative. Graphics Press, 1997. [see pages 3 and 11]

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 2nd edition, 2001. [see pages 2, 3, 11, and 60]

[Vaz01] Vĳay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001. [see
pages 20 and 177]

[vdC35] Johannes van der Corput. Verteilungsfunktionen I & II. Nederl. Akad.
Wetensch. Proc., 38:813–820, 1058–1066, 1935. [see page 208]

[vK01] Marc van Kreveld. Smooth generalization for continuous zooming. In Proc.
20th Internat. Cartographic Conf. (ICC’01), pages 2180–2185. ICA, 2001.
[see page 84]

[vKSW99] Marc van Kreveld, Tycho Strĳk, and Alexander Wolff. Point labeling with
sliding labels. Comput. Geom. Theory Appl., 13(1):21–47, 1999. [see pages 113
and 122]

[vOV04] René van Oostrum and Remco C. Veltkamp. Parametric search made
practical. Comput. Geom. Theory Appl., 28(2–3):75–88, 2004. [see page 90]

[War04] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, 2004. [see page 11]

[Wat03] Duncan J. Watts. Six Degrees: The Science of a Connected Age. W W
Norton & Co., 2003. [see page 1]

[WC02] Xiaodong Wu and Danny Z. Chen. Optimal net surface problems with
applications. In Proc. 29th Internat. Colloquium Automata, Languages and
Programming (ICALP’02), volume 2380 of Lecture Notes Comput. Sci., pages
1029–1042. Springer-Verlag, 2002. [see page 200]

[WD99] Robert Weibel and Geoffrey Dutton. Generalising spatial data and dealing
with multiple representations. In Paul A. Longley, Michael F. Goodchild,
David J. Maguire, and David W. Rhind, editors, Geographical Information
Systems – Principles and Technical Issues, volume 1, chapter 10, pages
125–155. John Wiley & Sons, 1999. [see page 84]

http://www.tfl.gov.uk/gettingaround/1106.aspx
http://www.tfl.gov.uk/gettingaround/1106.aspx


236 Bibliography

[Wel91] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer,
editor, New Results and New Trends in Computer Science, volume 555 of
Lecture Notes Comput. Sci., pages 359–370. Springer-Verlag, 1991. [see
page 176]

[Wie08] Wiener Linien. http://www.wienerlinien.at/media/files/2008/SVP_
Deutsch_3288.pdf, 2008. [see page 46]

[Wil01] Thomas Willhalm. Software packages. In M. Kaufmann and D. Wagner,
editors, Drawing Graphs: Methods and Models, volume 2025 of Lecture Notes
Comput. Sci., pages 274–281. Springer-Verlag, 2001. [see page 16]

[Wol07] Alexander Wolff. Drawing subway maps: A survey. Informatik – Forschung
und Entwicklung, 22(1):23–44, 2007. [see page 29]

[WS96] Alexander Wolff and Tycho Strĳk. The Map-Labeling Bibliography. http:
//i11www.ira.uka.de/map-labeling/bibliography, 1996. [see page 113]

[Wu06] Xiaodong Wu. Efficient algorithms for the optimal-ratio region detection
problems in discrete geometry with applications. In T. Asano, editor, Proc.
17th Internat. Symp. Algorithms and Computation (ISAAC’06), volume 4288
of Lecture Notes Comput. Sci., pages 289–299. Springer-Verlag, 2006. [see
page 200]

[ZC06] Wan Nazmee Wan Zainon and Paul Calder. Visualising phylogenetic trees. In
W. Piekarski, editor, Proc. 7th Austalasian User Interface Conf. (AUIC’06),
volume 50 of CRPIT, pages 145–152. Australian Comput. Soc., 2006. [see
page 143]

http://www.wienerlinien.at/media/files/2008/SVP_Deutsch_3288.pdf
http://www.wienerlinien.at/media/files/2008/SVP_Deutsch_3288.pdf
http://i11www.ira.uka.de/map-labeling/bibliography
http://i11www.ira.uka.de/map-labeling/bibliography


Index

λ-realizable, 188
3-Sat, 17
4-neighborhood, 197
8-neighborhood, 197

active range, 110
active range height, 112
active range optimization, see ARO
adjacent, 13
aesthetics, 15
ancestor, 14
approximation algorithm, 19
ARO, 112

simple, 112
atomic triangles, 190
available range, 110

CCG, 174
CCG+, 175
characteristic point, 86
children, 14
correspondence problem, 86
correspondence relation, 88
cover, 174
cover contact graph, see CCG
current-level crossing, 150
cycle, 13

dendrogram, 140
depth, 13
descendant, 14
digital line segment, 197
digital ray, 199

consistent, 199
digital star shape, 212
dilation, 111
discrepancy, 202
drawing conventions, 15
DT(d), 209
DT(2), 205

edge, 13

efficient algorithm, 17
embedding, 14
extended world coordinates, 110
extrusion, 111

face, 14
fixed-parameter tractable, 20
forbidden pair, 188

generalization, 83
continuous, 84

graph, 13
bipartite, 13
connected, 13
geometric, 14
planar, 14
plane, 14
vertex-labeled, 13

graph labeling, 41
graph layout, 14

Hausdorff distance, 202
homothetic triangles, 175, 191
hyperinfluence graph, 180

incident, 13
integer linear programming, 21, 159
intermediate station, 63

layout constraints, 15
layout problem, 12
level set, 211
line cover, 32, 62
line crossing, 64
line layout, 64
line order, 63

compatible, 64
linear programming, 21
lowest common ancestor, 14
LP relaxation, 21

map labeling



238 Index

dynamic, 110
placement, 110
selection, 110
static, 110

mental map, 85
metro graph, 32, 61
metro map layout, 33

hard constraints, 32
labeling, 41
soft constraints, 33

metro-line crossing minimization, see MLCM
mixed-integer programming, 21, 34
MLCM, 64
MLCM-P, 64, 76
MLCM-PA, 64, 76
MLCM-T1, 65, 80
morphing, 84

distance, 90
mountain approximation, 200, 210

network, 1, 13
node, 13
node-link diagram, 14
NP, 17
NP-complete, 18
NP-hard, 18

octilinear, 26, 31
optimality gap, 22

P, 17
parent, 14
path, 13
pendant edge, 49
periphery condition, 64, 76
phylogenetic tree, 139
phylogeny, see phylogenetic tree
pixel, 199
pixel grid, 199
pixel image function, 211
Planar3-Sat, 18
polynomial-time approximation scheme,

see PTAS
polynomial-time reduction, 18
positional variables, 11
PTAS, 20
pyramid approximation, 200

rendering problem, 12

seed, 174
sibling, 14
spring embedder, 15, 29
subgraph, 13

induced, 13

tanglegram, 139
crossing number, 141

tanglegram layout, 141
taxon, 139
terminus, 63
topology-shape-metrics, 16
total edge size, 32, 63
trace, 125
trajectory problem, 86
tree, 13

binary, 13
complete, 14
rooted, 13

truncated extrusion, 111

underlying network, 61

V-shaped triangle, 189
vertex, 13

admissible, 64
degree, 13

visual variables, 11
positional, 11
retinal, 11



List of Publications

Book Chapter
[1] Geographic visualization. In: Andreas Kerren, Achim Ebert, and Joerg Meyer,

editors, Human-Centered Visualization Environments, volume 4417 of Lecture Notes
Comput. Sci., chapter 6, pages 257–294. Springer-Verlag, 2007. [see pages 83 and 109]

Journal Articles

[2] Optimizing active ranges for consistent dynamic map labeling. Comput.
Geom. Theory Appl., 2009. Special issue of SoCG’08, to appear. Joint work with Ken
Been, Sheung-Hung Poon, and Alexander Wolff. [see page 109]

[3] Consistent digital rays. Discrete Comput. Geom., 2009. Special issue of SoCG’08,
to appear. Joint work with Jinhee Chun, Matias Korman, and Takeshi Tokuyama.
[see page 197]

[4] Algorithms for multi-criteria boundary labeling. J. Graph Algorithms Appl.,
2009. Special issue of GD’07, to appear. Joint work with Marc Benkert, Herman
Haverkort, and Moritz Kroll.

[5] Morphing polylines: A step towards continuous generalization. Computers,
Environment and Urban Systems, 32(4):248–260, 2008. Special issue of GISRUK’07.
Joint work with Damian Merrick, Alexander Wolff, and Marc Benkert. [see page 83]

[6] Drawing and labeling high-quality metro maps by mixed-integer program-
ming. IEEE Trans. Visualization and Computer Graphics. Submitted and under
revision. Joint work with Alexander Wolff. [see page 25]

Articles in Refereed Conference Proceedings

[7] Drawing binary tanglegrams: An experimental evaluation. In: Proc. 11th
Workshop Algorithm Engineering and Experiments (ALENEX’09), pages 106–119,
New York, 2009. SIAM. Joint work with Markus Völker, Alexander Wolff, and Danny
Holten. [see page 139]

[8] Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-
parameter tractability. In: I. G. Tollis and M. Patrignani, editors, Proc. 16th
Internat. Symp. Graph Drawing (GD’08), volume 5417 of Lecture Notes Comput. Sci.,
pages 324–335. Springer-Verlag, 2009. Joint work with Kevin Buchin, Maike Buchin,
Jaroslaw Byrka, Yoshio Okamoto, Rodrigo I. Silveira, and Alexander Wolff. [see
page 139]



240 List of Publications

[9] Optimizing active ranges for consistent dynamic map labeling. In: Proc.
24th Ann. ACM Symp. Comput. Geom. (SoCG’08), pages 10–19, 2008. Joint work
with Ken Been, Sheung-Hung Poon, and Alexander Wolff. [see page 109]

[10] Consistent digital rays. In: Proc. 24th Ann. ACM Symp. Comput. Geom.
(SoCG’08), pages 355–364, 2008. Joint work with Jinhee Chun, Matias Korman,
and Takeshi Tokuyama. [see page 197]

[11] Boundary labeling with octilinear leaders. In: J. Gudmundsson, editor, Proc.
11th Scandinavian Workshop on Algorithm Theory (SWAT’08), volume 5124 of Lecture
Notes Comput. Sci., pages 234–245. Springer-Verlag, 2008. Joint work with Michael A.
Bekos, Michael Kaufmann, and Antonios Symvonis.

[12] Algorithms for multi-criteria one-sided boundary labeling. In: S.-H. Hong
and T. Nishizeki, editors, Proc. 15th Internat. Symp. Graph Drawing (GD’07), volume
4875 of Lecture Notes Comput. Sci., pages 243–254. Springer-Verlag, 2008. Joint work
with Marc Benkert, Herman Haverkort, and Moritz Kroll.

[13] Cover contact graphs. In: S.-H. Hong and T. Nishizeki, editors, Proc. 15th Internat.
Symp. Graph Drawing (GD’07), volume 4875 of Lecture Notes Comput. Sci., pages
171–182. Springer-Verlag, 2008. Joint work with Nieves Atienza, Natalia de Castro,
Carmen Cortés, M. Ángeles Garrido, Clara I. Grima, Gregorio Hernández, Alberto
Márquez, Auxiliadora Moreno, José Ramon Portillo, Pedro Reyes, Jesús Valenzuela,
Maria Trinidad Villar, and Alexander Wolff. [see page 173]

[14] Morphing polygonal lines: A step towards continuous generalization. In:
A. Winstanley, editor, Proc. 15th Ann. Geographic Information Sci. Research Conf.
UK (GISRUK’07), pages 390–399, Maynooth, Ireland, 11–13 April 2007. Joint work
with Damian Merrick, Alexander Wolff, and Marc Benkert. [see page 86]

[15] Minimizing intra-edge crossings in wiring diagrams and public transporta-
tion maps. In: M. Kaufmann and D. Wagner, editors, Proc. 14th Internat. Symp.
Graph Drawing (GD’06), number 4372 in Lecture Notes Comput. Sci., pages 270–281.
Springer-Verlag, 2007. Joint work with Marc Benkert, Takeaki Uno, and Alexander
Wolff. [see pages 61 and 66]

[16] A mixed-integer program for drawing high-quality metro maps. In: P. Healy
and N. S. Nikolov, editors, Proc. 13th Internat. Symp. Graph Drawing (GD’05), volume
3843 of Lecture Notes Comput. Sci., pages 321–333. Springer-Verlag, 2006. Joint work
with Alexander Wolff. [see page 25]

Articles in Non-Refereed Workshop Proceedings
[17] Improved algorithms for length-minimal one-sided boundary labeling. In:

Proc. 23rd European Workshop Comput. Geom. (EuroCG’07), pages 190–193, Graz,
Austria, 19–21 March 2007. Joint work with Marc Benkert.

[18] Validation in the cluster analysis of gene expression data. In: R. Mikut
and M. Reischl, editors, Proc. 14th Workshop Fuzzy-Systeme und Computational
Intelligence, pages 13–32, Dortmund, Germany, November 2004. GI Fachgruppe Fuzzy-
Systeme und Soft-Computing, Universitätsverlag Karlsruhe. Joint work with Jens
Jäkel.



List of Publications 241

Thesis
[19] Automated drawing of metro maps. Master’s thesis, Fakultät für Informatik,

Universität Karlsruhe (TH), August 2005.



242 List of Publications



Curriculum Vitæ

Name Martin Nöllenburg

Date of Birth 28 June 1979

Place of Birth Heilbronn

Nationality German

06/1998 Abitur (university entrance qualification), Gymnasium Neckargemünd

08/1998–08/1999 Alternative civilian service as emergency medical technician, Malteser
Hilfsdienst Wiesloch

10/1999 Enrollment as a student in Informatics at Universität Karlsruhe (TH)

09/2002–05/2003 Visiting student at McGill University, Montréal, Canada supported
by a scholarship of the German Academic Exchange Service (DAAD)

08/2005 Diploma in Informatics, Universität Karlsruhe (TH)

10/2005–02/2009 Ph.D. student and research assistant in the project “Geometric Net-
works and their Visualization” funded by the German Research Foun-
dation (DFG), Fakultät für Informatik, Universität Karlsruhe (TH).
Advisor: PD Dr. Alexander Wolff

29.01. – 23.02.2007 Research guest of Prof. Takeshi Tokuyama at Tohoku University,
Sendai, Japan and Dr. Takeaki Uno, National Institute of Informatics,
Tokyo, Japan

10.09. – 21.09.2007 Research guest of Dr. Joachim Gudmundsson, NICTA, Sydney, Aus-
tralia


	Acknowledgments
	Deutsche Zusammenfassung
	Introduction
	Thesis Outline

	Preliminaries
	Visual Variables
	Graphs and Graph Drawing
	Graphs
	Graph Drawing

	Complexity
	Approaches for NP-hard Problems
	Approximation Algorithms
	Fixed-Parameter Algorithms
	Mathematical Programming


	Metro Maps: Layout and Labeling
	Introduction
	Related Work
	Model
	Design Rules
	Formal Model

	Mixed-Integer Programming
	Coordinate System and Metric
	Octilinearity and Edge Length (H1) & (H3)
	Circular Vertex Orders (H2)
	Edge Spacing (H4)
	Line Bends (S1)
	Relative Positions (S2)
	Total Edge Length (S3)
	Summary of the Model

	Reduction of the Problem Size
	Reduction of the Network Size
	Reduction of the MIP Size

	Labeling
	Results and Evaluation
	Vienna
	Sydney
	London

	Concluding Remarks

	Metro Maps: Line Crossings
	Introduction
	Related Work
	Line Layout for a Single Edge
	Preprocessing
	Dynamic Programming Algorithm
	Improving the Running Time

	Line Layout for a Path
	Line Layout under the Periphery Condition
	Concluding Remarks

	Dynamic Maps: Morphing Polylines
	Introduction
	Related Work
	Model and Algorithm
	Characteristic Points
	Optimal Correspondence
	Distance Functions

	Case Study
	Road Network Data
	River Data
	Provincial Border Data

	Concluding Remarks

	Dynamic Maps: Labeling
	Introduction
	Complexity
	General 1d-ARO with Constant Dilation
	General 1d-ARO with Proportional Dilation
	Simple 2d-ARO with Proportional Dilation

	Algorithmic Toolbox
	Dynamic Programming
	Left-to-Right Greedy algorithm
	Line Stabbing
	Divide and Conquer
	Top-to-Bottom Fill-Down Sweep
	Level-Based Small-to-Large Greedy Algorithm

	Concluding Remarks

	Optimal Tanglegram Layout
	Introduction
	Related Work
	Complexity
	Algorithms
	Approximation Algorithm
	Fixed-Parameter Algorithm
	Exact Algorithms
	Greedy Heuristic

	Experimental Evaluation
	Algorithms in the Evaluation
	Data
	Performance
	Running Time
	Discussion

	Concluding Remarks

	Cover Contact Graphs
	Introduction
	Related Work
	Point Seeds in the Plane
	Connectivity
	Realizability

	Point Seeds on a Line
	Realizability

	Disk or Triangle Seeds in the Plane
	Connectivity

	Concluding Remarks

	Consistent Digital Rays
	Introduction
	Digital Rays in the Two-Dimensional Grid
	The Lower Bound Result
	The Upper Bound Result
	Constant Distance Bound for Non-Monotonic Rays

	Digital Rays in Higher-Dimensional Grids
	Mountain Approximation
	Concluding Remarks

	Conclusion
	Outlook

	Bibliography
	Index
	List of Publications
	Curriculum Vitæ

