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Conventions, Notations, and Glossary

General conventions
x, x deterministic variable/vector
x, x random variable/vector
x̂, x̂ mean value of random variable/vector
x̃, x̃ realization of random variable/vector
A general matrix
AT matrix transpose
A−1 matrix inverse
A† Moore-Penrose matrix inverse
R, R+ set of real numbers and non-negative real numbers
E {x}, Cov {x} mean and covariance of random vector x

Symbols for distributed-parameter system description

r := [x, y]T spatial coördinate in cartesian form
p(r, t), s(r, t) space-time continuous state and input of the physical system
L(·) linear operator
Ψi(·), ψi(·) global and local shape function
Nx number of shape functions (degree of freedom)
Ω, Ωe global and elemental solution domain
∂Ω general boundary domain
ΩD, ΩN domain with Dirichlet/Neumann boundary conditions
gD, gN Dirichlet/Neumann boundary condition
MG, NG, DG global mass, global advection, and global diffusion matrix
M g

ij, N
g
ij, D

g
ij individual entries of corresponding global matrices

Symbols for lumped-parameter system description
ak(·), hk(·) nonlinear system function and nonlinear measurement function
Ak, Bk, Hk system matrix, input matrix, and measurement matrix for linear systems
xk, uk, yk state vector, input vector, and measurement vector
Nx, Nu, Ny dimension of state vector, input vector, and measurement vector
ηP
k
, ηM

k
, ηI

k
vector containing parameters of system model, measurement model,
and system input model

Pp, Pm, Pi dimension of parameter vectors
zk augmented vector containing state vector xk and parameter vector η

k
Nz dimension of augmented state vector
wxk, w

η
k, w

z
k state noise vector, parameter noise vector, and augmented state noise vector

vk measurement noise vector
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Notation

Symbols for probability density functions

f(·) general probability density function
f̃(·) true density function to be approximated
fL(ŷ

k
|zk) likelihood function

fT (zk+1|zk) transition density
fp(xk+1) predicted density at time k + 1
f e(xk) posterior density after measurement step at time k
fv(vk) probability density function of measurement noise vk
fw(wk) probability density function of system noise wk
δ(·) Dirac delta function
N (·, µ,C) Gaussian density with mean vector µ and covariance matrix C

Parameters for Sliced Gaussian Mixture Filter (SGMF)

αik total weight of i-th density slice
βijk weight of j-th component of i-th density slice
γijk weight resulting from the measurement step
ξi
k

position of i-th density slice
µij
k

mean of j-th component of i-th density slice
Cij
k covariance matrix of j-th component of i-th slice

MD, M i
G number of density slices and Gaussian components for i-th slice

Parameters for Covariance Bounds Filter (CBF)

NC number of substate vectors
C̃k covariance matrix to be bounded
CB
k covariance bound for completely unknown correlations

Ek covariance bound for arbitrary correlation constraints
Uk, Sk, Ak matrices responsible for completely unknown correlation,

symmetric constraints, and asymmetric constraints
βijk scaling parameter between individual components of covariance bound
rijavrg, r

ij
d averaged and difference correlation coefficient

κk, κ∗k parameter vector for covariance bounds and its optimal selection
ξ, ξ(r) parameter vector and function for the generalized correlation parameter

Constants and units of considered space-time continuous system
(necessary for the used descriptive examples)

ρ in kgm−3 material density
cp in J kg−1 K−1 heat capacity
k in Jm−1 s−1K−1 thermal conductivity
p(r, t) in K or ◦C continuous system state (here, a temperature distribution)
s(r, t) in Jm−3 s−1 continuous input driving the physical system
v in m s−1 velocity of convection field
α := k

ρ cp
in m2 s−1 diffusion coefficient

γ := 1
ρ cp

in m3 KJ−1 system input coefficient
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SRI simultaneous reconstruction and identification
SRL simultaneous reconstruction and localization
SRSL simultaneous reconstruction and source localization
SPLL simultaneous probabilistic localization and learning
SGMF Sliced Gaussian Mixture Filter
CBF Covariance Bounds Filter
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Zusammenfassung

Diese Arbeit entstand im Rahmen des DFG-Graduiertenkollegs 1194 “Selbstorganisierende
Sensor-Aktor-Netzwerke” im Teilprojekt I1 “Dezentrale Rekonstruktion verteilter kontinuier-
licher Phänomene aus orts- und zeitdiskreten Messungen”. Eine der Hauptanwendungen von
Sensornetzwerken ist die Beobachtung, Überwachung und Vermessung von dynamisch verän-
derlichen, räumlich verteilten physikalischen Phänomenen, wie beispielsweise einer Temperatur-
oder Schadstoffverteilung. Dabei führen die in der Umwelt verteilten, miniaturisierten Sensor-
knoten zeit- und ortsdiskrete Messungen durch. Das Ziel dieser Forschungsarbeit ist es, aus den
diskreten Messungen das komplette verteilte Phänomen zu rekonstruieren, also in physikalisch
korrekter Weise zu interpolieren. Bei der Vermessung solcher verteilter Phänomene muss ein
Kompromiss zwischen Genauigkeit und Realisierungsaufwand gefunden werden, wobei hierfür
die Sensoranzahl sowie die Messrate entscheidende Größen darstellen. Die in dieser Arbeit ent-
wickelten Verfahren und Methoden zeichnen sich durch die Einbeziehung von physikalischem
Hintergrundwissen in Form von Systemmodellen aus und führen dadurch zu genauen Interpo-
lationsergebnissen bei vertretbarem Messaufwand. Hierbei werden alle auftretenden Unsicher-
heiten, d.h. ausgehend von dem Modellierungsprozess bis hin zu den eigentlichen Messungen,
in einer systematischen und integrierten Weise berücksichtigt.

Für die Rekonstruktion des zeitvarianten, räumlich verteilten physikalischen Phänomens aus
den orts- und zeitdiskreten messbaren Daten wurden im Rahmen dieser Arbeit probabilistische
modellbasierte Interpolationsverfahren entwickelt. Ein verteiltes Phänomen, also ein soge-
nanntes verteilt-parametrisches System, kann mittels stochastischer partieller Differentialglei-
chungen mathematisch beschrieben werden, die nicht nur die zeitliche Veränderung, sondern
auch die räumlichen Ausbreitung berücksichtigen. Da eine direkte Verwendung solch einer
Beschreibung für Rekonstruktionszwecke sehr komplex ist, ist eine Konversion des Modells
inklusive dessen Unsicherheitsbeschreibung in ein entsprechend konzentriert-parametrisches
System notwendig. Diese Darstellungsform dient als Grundlage für den Entwurf eines geeigneten
Bayes’schen Zustandschätzers. Durch die probabilistische und modellbasierte Herangehensweise
ist es möglich, die charakteristischen Größen, die das verteilte System an jedem Ort und zu
jedem Zeitpunkt vollständig beschreiben, in einer physikalisch korrekten Weise zu bestimmen.
Dadurch, dass auch Aussagen über das verteilte physikalische Phänomen an Nichtmesspunkten
getroffen werden können, ist für eine gegebene Genauigkeit der Interpolation eine deutlich gerin-
gere Anzahl an Sensorknoten notwendig. Weiterhin kann das Ergebnis des modellbasierten
Interpolationsalgorithmus als Eingang für die Generierung von optimalen Messparametern in
Bezug auf Ort und Zeitpunkt verwendet werden.

Eine der Hauptschwierigkeiten bei der modellbasierten Rekonstruktion ist, dass Modellpara-
meter sowohl des zu untersuchenden verteilten physikalischen Phänomens, als auch des ver-
wendeten Messsystems (also des Sensornetzwerks) meist unbekannt oder nur durch aufwändige
Methoden bestimmt werden können. Als weitere Schwierigkeit kommt hinzu, dass diese Mod-
ellparameter in den meisten Fällen als orts- und zeitvariant angenommen werden müssen. Um
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Zusammenfassung

diese Unsicherheiten bei der Rekonstruktion des Zustands zu berücksichtigen und Informationen
über das zu beobachtende verteilte physikalische Phänomen in Form von Modellparametern
zu erhalten, wurden effiziente Verfahren zur simultanen Rekonstruktion und Identifikation en-
twickelt. Dieser simultane Ansatz führt selbst für ursprünglich lineare Modellgleichungen zu
einem hochdimensionalen nichtlinearen Schätzproblem. Aus diesem Grund wurde im Rah-
men dieser Forschungsarbeit ein spezielles Filter entwickelt, das sogenannte S liced Gaussian
M ixture F ilter (SGMF). Dieses Filter nutzt vorhandene lineare Unterstrukturen in nicht-
linearen Schätzproblemen aus, um einen insgesamt effizienteren Schätzprozess zu ermöglichen.
Durch das entwickelte Framework können die orts- und zeitdiskreten Messwerte des Sensornetz-
werks für eine autonome Anpassung der Modellbeschreibung an das zu beobachtende physikalis-
che Phänomen genutzt werden. Die dadurch erreichten Möglichkeiten werden anhand von
folgenden Szenarien eindrücklich demonstriert: (a) Identifikation von Materialkennwerten in
Form von Modellparametern, (b) Lokalisierung von Sensorknoten durch ausschließlich lokale
Beobachtung eines verteilten Phänomens und (c) Quellen- und Senkenlokalisierung.

Bei großen Sensornetzwerken wird aus verschiedenen Gründen eine dezentrale Verarbeitung der
Informationen in den einzelnen Sensorknoten einer Verarbeitung in einem zentralen Knoten
vorgezogen. Die bei einer zentralen Informationsverarbeitung entstehenden stochastischen Ab-
hängigkeiten zwischen den auf unterschiedlichen Knoten gespeicherten Teilschätzungen wer-
den bei einer dezentralen Verarbeitung nicht gespeichert und gehen somit verloren. Aller-
dings ist bei der Fusion von zwei Teilschätzungen deren Abhängigkeitsstruktur, also im All-
gemeinen die Verbundwahrscheinlichkeitsdichte, erforderlich. Für den Fall von Gauß’schen
Wahrscheinlichkeitsdichten existieren besondere Verfahren, die es erlauben, die unbekannten
stochastische Abhängigkeiten systematisch zu berücksichtigen. Um eine korrekte Verarbeitung
von unsicheren Informationen zu gewährleisten, werden dabei alle möglichen Abhängigkeiten
durch eine Beschreibung mit Hülldichten, den sogenannten Kovarianzhüllen, berücksichtigt.
In dieser Arbeit wurde ein spezielles Filter entwickelt, das Covariance Bounds Filter (CBF),
welches zusätzliches Hintergrundwissen über die stochastischen Abhängigkeiten in Form von
(symmetrischen und asymmetrischen) Korrelationsbedingungen berücksichtigt. Dadurch wer-
den konsistente und konservative Schätzergebnisse bei der dezentralen Rekonstruktion von sehr
weiträumig verteilten physikalischen Phänomenen erreicht. Für den nicht Gauß’schen Fall
wurden, unter gewissen strukturellen Annahmen, Möglichkeiten zur Parametrierung der un-
bekannten Verbundwahrscheinlichkeitsdichte durch sogenannte verallgemeinerte Korrelations-
parameter hergeleitet. Durch eine entsprechende Verarbeitung der entstehenden parametrierten
Dichtemenge und der Findung entsprechender Hülldichten, könnten Verfahren für dezentrale
nichtlineare Schätzprobleme konzipiert werden. Hierfür legen die in dieser Arbeit entwickelten
parametrierten Verbunddichten eine wichtige Grundlage.

Das Zusammenwirken der entwickelten Verfahren zur probabilistischen modellbasierten Rekon-
struktion und Identifikation von räumlich verteilten physikalischen Phänomenen wird anhand
von mehreren simulativen Fallstudien umfassend gezeigt und deren Leistungsfähigkeit evaluiert.
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Abstract

This work was performed within the DFG Research Training Group 1194 “Self-organizing
Sensor-Actuator Networks” in the subproject I1 “Decentralized Reconstruction of Continuous
Phenomena based on Space-Time Discrete Measurements”. One of the main applications for
sensor networks is the observation, monitoring, and exploration of space-time continuous phys-
ical phenomena, such as temperature distributions or biochemical concentrations. In practical
implementations, the individual miniaturized sensor nodes are widely deployed either inside
the phenomenon or very close to it, and are gathering measurements. The main goal of this
research work is the reconstruction and identification of the complete continuous phenomena
using space-time discrete measurements. For the exploration by a sensor network, a trade-off
between accuracy and cost needs to be found, where the number of used sensor nodes and their
respective measurement rate can be regarded as deciding measures. The framework developed
in this work is characterized by the rigorous exploitation of physical background knowledge in
terms of a system model. This approach leads to more accurate interpolation results with jus-
tifiable measurement costs. The uncertainties inherently arising during the modelling process
and existing in the measurements are systematically considered in an integrated fashion.

This research work is devoted to the development of probabilistic model-based interpolation tech-
niques for the reconstruction of space-time continuous phenomena using discrete measurements.
In general, space-time continuous phenomena, which are also called distributed-parameter sys-
tems, can be modelled by stochastic partial differential equations that describe not only the
dynamic, but in particular the distributed properties. The derivation of reconstruction tech-
niques that is directly based on such system description is a challenging task. For that reason,
the model description including its uncertainty representation is converted into a corresponding
lumped-parameter system. Based on this system description, an appropriate Bayesian estima-
tor can be derived. Thanks to the probabilistic and model-based approach, the space-time
continuous state vector describing the system in the entire area of interest can be reconstructed
in a systematic and physically correct fashion. Due to the fact that the system is reconstructed
even at non-measurement points, a lower number of sensor nodes is required for a given re-
construction accuracy. The results of the reconstruction can be used for several additional
tasks concerning the observation of physical phenomena. For example, optimal placements and
measurement time sequences for the individual measuring nodes can be derived.

In many cases, the underlying true physical phenomenon deviates from the nominal mathemat-
ical model, basically caused by neglecting particular physical effects or external disturbances.
Hence, one of the main challenges for a model-based approach is that parameters of both the
physical phenomenon being observed and the spatially distributed measurement system are
usually imprecisely known or can be identified only with complex and expensive methods. In
addition, these model parameters usually need to be regarded as varying over space and time.
This research work is devoted to the development of efficient methods not only for reconstruct-
ing the space-time continuous system state, but also for identifying specific model parameters.
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Abstract

In general, the proposed simultaneous state and parameter estimation approach leads to a
nonlinear and high-dimensional estimation problem, even when the original model equations
are linear. To cope with such estimation problems, a special estimator is proposed, the so-
called S liced Gaussian M ixture F ilter (SGMF). This estimator exploits linear substructures
in nonlinear estimation problems leading to an overall more efficient estimation process. The
performance is presented by means of various simulation studies: (a) identification of process
parameters, (b) localization of sensor nodes exclusively based on local observation of a space-
time continuous phenomenon, and (c) localization of sources and leakages. Thanks to the
proposed framework the space-time discrete measurements can be used for the autonomous
adaptation of the system model to the physical phenomenon being observed.

In the case of large sensor networks, a decentralized processing of the information in the indi-
vidual sensor nodes is prefered due to various reasons. The processing of information and the
propagation through the network leads to stochastic dependencies between the individual esti-
mates. Although local estimates are stored in each node, their dependencies are not stored in
the sensor network. However, for processing local estimates, their stochastic dependencies, i.e.,
their joint statistics, are required. In the case of Gaussian probability density functions, methods
are developed that allow the decentralized reconstruction of space-time continuous phenomena
while systematically considering the imprecisely known stochastic dependencies. In order to en-
sure correct processing of the information, the estimator is required to systematically consider
all possible dependencies. To cope with such estimation problems, a novel estimator is derived,
the so-called Covariance Bounds Filter (CBF). This special robust estimator allows the in-
corporation of additional background knowledge about the stochastic dependencies in order to
obtain more accurate and consistent estimation results. In the non-Gaussian case, various types
of parameterizations of the unknown joint probability density function are introduced. These
density functions are parameterized by a so-called generalized correlation parameter. The pro-
cessing of these density functions results in a set of corresponding probability density functions.
By finding bounding densities that sufficiently represent the entire resulting set, approaches for
decentralized nonlinear estimation problems can be derived. The parameterized joint densities
that are proposed in this research work lay the foundation for these methods.

The performance of the methodology developed for the probabilistic model-based reconstruction
and identification of space-time continuous systems is demonstrated by means of various sim-
ulation studies. These results clearly show the novel prospects for sensor network applications
offered by the obtained methods.
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CHAPTER 1

Introduction
In recent years, advances in science and technology have made it possible to build wireless
sensor networks providing a smart interaction with the environment [39]. Networks consisting
of a large number of such miniaturized and autonomous sensor nodes offer novel possibilities
for industrial, medical, urban, and many other applications. An important application for
such networks is the observation and the monitoring of natural physical phenomena, such
as temperature distribution, biochemical concentration [67, 108, 155], fluid flow, deflection
and vibration in buildings. More specific scenarios are the observation of the microclimate
throughout the volume of redwood trees or entire forests, and the reconstruction of surface
motion of a beating heart during minimally invasive surgery [10, 107].

For the observation of aforementioned space-time continuous phenomena, spatially distributed
measurement systems can be exploited as huge information fields collecting readings over time
across a volume of space. In practical implementations, the individual sensor nodes are widely
deployed either inside the phenomenon or very close to it. Then, by distributing locally obtained
measurements and estimates through the sensor network, significant information about internal
variations can be coöperatively exhibited in an intelligent and autonomous manner. Thanks to
the extended perception that provides useful information both to mobile agents and to humans,
corresponding tasks can be accomplished more efficiently. Hence, dangerous situations, such
as forest fires, seismic sea waves, or snow avalanches can be forcasted or even prevented. The
distributed properties of the sensor network lead to a good spatial resolution, which can be
adapted autonomously depending on the dynamics of the physical phenomenon being observed.
Besides the observation task, the sensor nodes are able to interact with the physical phenomenon
itself by integrated actuators [35, 48, 52, 104].

The large number of nodes significantly increases the fault tolerance and the robustness of the
entire network, even for low reliability and availability of the individual nodes. However, these
advantages are opposed by certain constraints that need to be considered in the design pro-
cess of such spatially distributed measurement systems. For example, the energy constraints
resulting from the required autonomy impose severe performance limits with respect to commu-
nication bandwidth and processing power. In addition, the intrinsic mobility, possible failure,
and selective switch-off for energy reasons, leads to a regularly changing topology of the sensor
network. It is often desirable to reduce communication activities to a minimum and to reduce
the heavy computational burden. Moreover, for large sensor networks a decentralized approach
is desirable implying that just parts of the information about the physical phenomenon are
independently processed. Due to these constraints, novel requirements need to be tackled not
only regarding the communication, but in particular regarding the techniques for information
processing. In this thesis, the focus lies on the development of efficient techniques1 for process-
ing the information in a spatially distributed measurement system (e.g., sensor network) with
the aim to observe a space-time continuous phenomenon.
1 Here, efficient means with a low computational load and in a decentralized fashion
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Chapter 1. Introduction

1.1 Prospective Sensor Network Applications

This section is devoted to a more detailed description of prospective application scenarios where
sensor networks, with the methodology proposed in this thesis, can provide novel possibilities.
It is emphasized that the applications are not restricted to the following.

Snow avalanches and snowmelt For snow monitoring scenarios, there may exist two ap-
plications of special interest: (a) forcasting snow avalanches, and (b) predicting flood runoffs.
Snow avalanches are a major hazard to people, equipment or facilities, such as buildings, ski
slopes, roads, power lines, and railways, in mountainous regions throughout the world. Each
year snow avalanches cause casualties and damages, not only in non-protected areas but also in
popular cross-country skiing areas, e.g., Wasatch mountains in Utah. For supporting avalanche
forecasting systems, useful information can be offered by intelligent and autonomous sensor
networks [12, 89, 90, 114]. The individual sensor nodes that are deployed within the snowpack
collect measurable information about the snow state, such as temperature, light intensity, pres-
sure, or humidity. Based on these observations and after further processing, measures about the
stability of the snowpack could be estimated, e.g., stress/strain distribution or location of so-
called weak layers. Then, the sensor network may predict the possibility of avalanches [23, 45]
and supports the optimization of defense structures in avalanche starting zones [134]. The
methods proposed in this thesis can be conceptually used for example for the reconstruction of
the space-time continuous snow state using just a low number of sensor nodes (see Chapter 2).
Having a strong mathematical model about the temperature distribution in the snowpack,
this model may be exploited for localizing sensor nodes that are deeply deployed in the snow
by locally measuring the temperature, i.e., without depending on global positioning systems
(see Section 4.4). An additional scenario where sensor networks could provide novel prospects
is the accurate evaluation of snowmelt. By this means, water resources can be utilized more
efficiently and flood runoffs can be forcast more accurately [86].

Ice condition in skating rinks A further scenario worth mentioning is the application of
sensor networks for monitoring the condition and composition of ice in skating rinks [1]. For
speed skaters to reach faster times, the optimal ice composition and especially the optimal
temperature distribution of the ice is quite essential. For that reason, temperature nodes
deployed at different locations within the icepack allow the estimation of the actual temperature
distribution on the surface and eventually the environmental conditions that are necessary for
achieving an optimal ice composition. In addition, the sensor nodes could be directly linked
to ice making machines, so that they can be adjusted in order to compensate for changes in
temperature, wind, or humidity [1]. The proposed methodology for the reconstruction and
identification of space-time continuous phenomena can be used to identify the ice condition
appearing as some parameters in the governing model equations, such as material properties,
diffusion coefficient or viscosity (see Section 4.3).

Quality of groundwater Groundwater is an invaluable commodity endangered by various
influences, such as the immoderate extraction [27] or the contamination by depositing nitrate
concentration [2]. Spatially distributed measurement systems, such as sensor networks, offer
the possibility to monitor and to observe the quality of the groundwater in certain areas. Using
the measurements obtained from the individual sensor nodes, a map can be generated that
describes the advective transport [5, 145] and the nitrate concentration [2]. Such maps about
specific physical quantities visualize crucial influence factors as well as serve as an instrument for
decisions and identification of nitrate contamination sources. In addition, optimal measurement
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Figure 1.1: Visualization of the model-based approach for the estimation of distributed phenomena by means of a
sensor network. Additional background knowledge in terms of mathematical models is exploited in order to obtain
physically correct and more accurate estimation results. The result can be used to achieve additional tasks, e.g.,
identification of parameters, localization of sensor nodes, or planning of node locations and measurement sequences.

locations and sequences can be derived in order to perform the entire reconstruction and source
localization process in a more efficient manner. The method for source localization proposed in
this thesis can be used to localize sources of contamination, even in the case of imprecisely known
distribution of the nitrate concentration or imprecisely known parameters in the governing
model equations (see Section 4.5).

1.2 Mathematical Description of Dynamic Systems

In all aforementioned applications for sensor networks, the number of nodes and the measure-
ment rates should be as low as possible due to economic and energetic reasons. It can be stated
that the lower the measurement rate of the individual nodes, the higher their durability. There-
fore, a trade-off between energy costs and accuracy has to be found. In addition, for obtaining
measurements about the physical phenomenon being observed not all locations are directly
accessible. Since measurements are available only at discrete locations, no direct information is
available between the individual sensor nodes. In order to derive the desired continuous form
with sufficient spatial and temporal accuracy, the measurements need to be interpolated be-
tween the node locations. In general, there are different approaches: (a) interpolation based on
a mathematical model that describes the dynamic behavior and distribution of the underlying
physical phenomenon, and (b) without using any physical background knowledge.

There are various reasons making a model-based approach for the interpolation1 of the space-
time continuous state of physical phenomena essential and inevitable. One of the major reasons
is to give noisy measurements a physical meaning. Moreover, fusing space-time discrete mea-
surements with respective information derived from physical background knowledge leads to a
systematic and physically correct smoothing of the estimation results. Concerning space-time
continuous phenomena, there is another reason calling for a model-based approach. Due to the
distribution property, the individual sensor nodes are able to measure the physical quantity only

1 In this work, the interpolation based on a system model is also called state reconstruction.
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Chapter 1. Introduction

at discrete locations, i.e., no direct information between nodes is available. By exploiting addi-
tional background information about the physical phenomenon being observed, more meaningful
and more accurate information can be derived even at non-measurement points. Furthermore,
additional information about the physical phenomenon in terms of model parameters can be
obtained; see Figure 1.1.

There are several ways for classifying dynamic systems and its model description. In this
research work, they are classified as (a) lumped -parameter models and (b) distributed -parameter
models; main properties are visualized in Figure 1.2.

Lumped-parameter model The key characteristic of a lumped-parameter system is that the
system state depends only on time. In general, such systems can be described by a system of
ordinary differential equations according to

L
(
x(t), x(1)(t), . . . , x(i)(t)

)
= s(t) , (1.1)

where x(t) denotes the time-continuous state vector, x(i)(t) are their i-th derivatives, and s(t)
represents the system input vector. Examples of systems that can be described by lumped-
parameter models (1.1) are bird flocks or swarms of robots1.

Accounting for the uncertainties arising in the modelling process and caused by external dis-
turbances, the state and input vector are modelled as random variables2 that are described by
probability density functions. In the stochastic case, equation (1.1) is called stochastic ordinary
differential equation that describes an underlying random process [46]. In comparison, a deter-
ministic process deals with only one possible, exactly known realization of the physical system.
In a random process, however, there is some indeterminacy in its future behavior. Roughly
speaking, although initial conditions are precisely known, there are many possibilities on the
state and input vector, and thus on how the process might behave.

Distributed-parameter model On the other hand, space-time continuous phenomena are
usually described by distributed-parameter models. The space-time continuous state p(r, t)
does not only depend on time but also on the spatial coördinate r ∈ R2 or R3. Examples of
systems that can be described by distributed-parameter models are temperature distributions,
irrotational fluid flows, heat conductions, and wave propagations. Distributed-parameter mod-
els can be described by partial differential equations. In its most general form, the linear partial
differential equation without cross-derivatives is given in implicit form by

L
(
p(r, t), s(r, t),

∂p(r, t)

∂t
, . . . ,

∂ip(r, t)

∂ti
, ∇p(r, t), . . . , ∇jp(r, t)

)
= 0 , (1.2)

where p(r, t) : R3 × R → R and s(r, t) : R3 × R → R denotes the system state and system
input at time t and at spatial coördinate r := [x, y, z]T ∈ R3. The j-th derivative of the
operator ∇ is defined as ∇j = ∂j

∂xj
+ ∂j

∂yj
+ ∂j

∂zj
. The system input s(·), the system state p(·),

and its derivatives are related by means of a linear operator L (·). In addition, the dynamic
behavior and distributed properties strongly depend on specific parameters collected in the
process parameter vector ηP

k
.

1 It is emphasized that in the case of lumped-parameter models the states and parameters
are lumped at discrete points, however still can be spatially distributed, e.g., the position
and velocity of the individual birds in a bird flock.

2 In this work, random variables are denoted bold face.
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Figure 1.2: Classification of dynamic physical systems into (a) lumped-parameter systems (such as bird flocks)
and (b) distributed -parameter systems (such as temperature distributions). The mathematical model describing the
dynamic and distributed behavior can be converted from the distributed-parameter form into lumped-parameter
form. In contrast, the model of certain lumped-parameter systems, such as a swarms of robots, can be expanded to
a distributed-parameter form in order to derive a possibly simpler system description.

In the stochastic case, the equation (1.2) is called stochastic partial differential equation de-
scribing an underlying random field. Such fields are of great interest in studying natural pro-
cesses with spatially varying properties. A random field can be regarded as a generalization of
the aforementioned stochastic process such that the underlying process is spatially correlated,
i.e., the covariance function contains a certain structure characterizing the spatial correlation.
Roughly speaking, adjacent values do not differ as much as values that are farther apart. This
structure is modelled in terms of the stochastic partial differential equation.

Conversion of system descriptions At this point, it is worth mentioning that the mathe-
matical model of a given space-time continuous system can be converted from the distributed-
parameter form into a lumped-parameter form. Hence, the partial differential equation (1.2) can
be expressed by a system of coupled ordinary differential equations (1.1) that still sufficiently
characterizes the distributed properties by respective coupling terms. This can be achieved by
the spatial decomposition of the solution domain (considered in this thesis).

In contrast, the mathematical model of certain lumped-parameter systems, such as swarms
of robots, can be expanded to a distributed-parameter model for obtaining a possibly simpler
system description. For example, the expanded form can be exploited to derive simple control
algorithms for the individual robots that results in a self-organized and emergent behavior of the
entire swarm [51, 52, 128, 129]. This expansion to distributed-parameter mathematical models
is not considered in this work. However, it is imaginable to employ the proposed techniques,
for example, to a swarm of robots in order to obtain the state and specific parameters of the
dynamic and distributed behavior of the swarm.

Modelling of uncertainties There are several sources of uncertainties to be systematically
considered in the system description. The first source can be regarded as an inherent uncer-
tainty in the physical phenomenon being observed. This arises from the general impossibility of
an exhaustive deterministic description of the dynamic behavior and the distributed properties;
for example, the irregularity contained within the uncertainty principle of quantum mechanics
or the kinetic theory of gas. The second source can be related to a lack of knowledge about the
processes involved. The derivation of a mathematical model describing perfectly the physical
behavior of the distributed system is rather complex and due to the computational complexity
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xk, û(ηI

k
),ηP

k


+wk

Unknown parameters
of system input

Location of sources
Intensity and frequency

ηI
k

Figure 1.3: Overview and challenges of the simultaneous state and parameter estimation of distributed phenomena.
Examples of unknown parameters to be estimated in the system model and the measurement model.

in most cases not desirable. This is in particular the case for sensor network applications asso-
ciated with their constraints in computational load and storage capacity. Hence, an abstraction
and reduction of the complex mathematical model description is necessary in order to derive a
simpler model characterized by less parameters.

The simpler description is supposed to need less computational load and still be sufficiently
accurate to describe the physical system and the measurement system. By using many more
observations of the random process under consideration and by improving the measuring de-
vices, the degree of these uncertainties can usually be reduced. However, for accurate and
consistent observation results, the aforementioned types of uncertainties need to be systemati-
cally considered during the estimation process. In this research work, the space-time continuous
system state p(r, t), system input s(r, t), and boundary conditions are represented as random
variables1. The term estimate is understood to be a mathematical description, for example, of
the system state with its associated uncertainties.

In the case of stochastic uncertainty modelling, the uncertainties of the reconstructed space-
time continuous system (1.2) at time step k are described in terms of a conditional probability
density function f e(pk|r); conditioned on the spatial coördinate r ∈ R2 or R3. Due to its
property as a universal function approximator, the density function is modelled as a Gaussian
mixture density [4], as follows

pk(r) ∼ f e(pk|r) :=
N∑
i=1

wik(r) · N
(
pk − p̂eik (r), Cei

k (r)
)
, (1.3)

where N (·) denotes the Gaussian density function with space continuous mean p̂eik (·) : R3 → R,
space continuous variance Cei

k (·) : R3 → R+ and weight wik(·) : R3 → R+. This probability
density function can be regarded as a Gaussian mixture density that is spatially distributed,
i.e., parameters of the density function depend on the spatial coördinate. Throughout the entire
estimation process, the uncertainties in the mathematical model (1.2) and the measurements
are systematically considered. This consideration leads to physically correct and accurate
reconstruction results in terms of the probability density function f e(pk|r).
1 In this work, random variables x are denoted bold face and are associated with a

probability density function f(x).
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1.3 Problem Formulation and Contributions

The main goal is to derive a framework including respective methods for the identification of
space-time continuous phenomena and the reconstruction between the spatially distributed,
however space-time discrete measurements. For most real world applications additional back-
ground knowledge about the physical system is available. For example, considering a heat
distribution phenomenon the entire process can be mathematically described by a convection-
diffusion equation. In order to obtain accurate estimation results that ensure physical correct-
ness such available background knowledge needs to be exploited.

System model In general, space-time continuous phenomena, which are also called distributed-
parameter systems, can be modelled by stochastic partial differential equations (1.2) that de-
scribe the distributed and dynamic properties. The formulation of the considered problem
as a state and parameter estimation problem allows the application of model-based Bayesian
techniques in a systematic manner. However, the reconstruction and identification based on a
distributed-parameter model (1.2) is a challenging task. For sensor network applications effi-
cient algorithms are of special interest arising from their constraints, such as low computational
power and low storage capacity. For that reason, the system model (1.2) characterized by a
space-time continuous system state p(r, t) is converted into a corresponding lumped-parameter
form (1.1). For this concersion there are various techniques available, such as finite difference
method, finite element method, or spectral element method.

The resulting lumped-parameter model is represented in discrete-time by a finite-dimensional
state vector xk ∈ RNx that still sufficiently characterizes the distributed properties of the con-
sidered physical phenomenon. It is shown that the conversion leads to a high-dimensional and
nonlinear system model with linear substructures. The nonlinearity is mainly caused by non-
linear relationships between the system state p(r, t) and unknown parameters η

k
characterizing

the underlying process. Hence, the considered system model can be stated as follows

xk+1 = ak

(
xk,η

P

k
, ûk(η

I

k
),wx

k

)
, (1.4)

where ak(·) : RNx × RPp × RNu × RPi → RNx denotes a system of nonlinear equations. The
variables Nx, Pp, and Nu are the dimensions of the state vector, the process parameter vector,
and the system input vector, respectively. The input vector uk ∈ RNu is a finite-dimensional
vector describing the space-time continuous system input s(r, t) and wx

k ∈ RNx represents
stochastic uncertainties in the system model. The process parameter vector ηP

k
∈ RPp consists

of all the unknown parameters to be identified, such as unpredictable variations of physical
constants or material properties. The system input vector ηI

k
∈ RPi contains parameters in the

input model, such as location and intensity of spatially distributed sources and leakages.

Measurement model The physical properties of the spatially distributed measurement sys-
tem is mathematically described by a measurement model. Basically, this model relates the
measurements ŷ

k
∈ RNy to the finite-dimensional state vector xk ∈ RNx , according to

ŷ
k

= hk

(
xk,η

M

k
,vyk

)
, (1.5)

where hk(·) : RNx × RPm → RNy is a system of nonlinear equations. The variable Ny repre-
sents the dimension of the measurement vector and Pm is the dimension of the measurement
parameter vector ηM

k
. The random vector vyk denotes a noise term that characterizes stochastic

uncertainties in the measurements.
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The measurement parameter vector ηM
k
∈ RPm contains all the unknown parameters in the

measurement model. Sensor bias and sensor variances, for example, could be included for the
purpose of tracking wear of the sensor nodes. Furthermore, unknown locations of the individual
sensor nodes could be collected; this case is of special interest in this research work.

Reconstruction of space-time continuous systems (Part I) The main goal is the re-
construction and interpolation of the not directly measurable space-time continuous system
state p(r, t) that characterizes a given physical phenomenon (1.2) in the entire area of interest.
In this thesis, methods are considered that allow the conversion of distributed-parameter sys-
tems into a description appropriate for a more efficient interpolation process; see Figure 1.4.
In the case of linear partial differential equations (1.2), the resulting lumped-parameter system
(1.4) is of a linear type and is represented by a high-dimensional state vector xk ∈ RNx .

The lumped-parameter model (1.4) can be regarded as a generic system model that is required
for deriving a corresponding probabilistic model description. The probabilistic form describes
the dynamic behavior of the physical phenomenon including an uncertainty description in terms
of a transition density function fT (xk+1|xk). Based on such system description, the Bayesian
estimator allows the calculation of the probability density function f e(xk) representing the
space-time discrete system state xk. In order to obtain an estimate of the space continuous
system state pk(r), this density function needs to be converted into a space continuous form.
The conversion results in a conditional probability density function f e(pk|r); conditioned on
the spatial coördinate r ∈ R3. Roughly speaking, the resulting conditional density function can
be regarded as a density function that is spatially distributed and thus, represents the space
continuous state pk(r) of the physical phenomenon (1.2). Due to the fact that the physical
phenomenon is reconstructed even at non-measurement points, a lower number of sensor nodes
is required for a given accuracy. The results can be used for several additional tasks, such as
optimal placements and measurement sequences for the individual sensor nodes, or localization
and identification tasks.

Identification of space-time continuous systems (Part II) In many cases, the underly-
ing true physical phenomenon deviates from the nominal mathematical model (1.2). This is
basically caused by neglecting particular physical effects or external disturbances during the
modelling process. Hence, one of the main challenges for model-based approaches is that model
parameters η

k
∈ RP are usually imprecisely known or can be identified only with complex and

expensive methods. For space-time continuos phenomena, the model parameters usually need
to be regarded as varying over space and time. In such cases, simultaneous approaches are
desired that reconstruct the space continuous system state pk(r) and simultaneously identify
model parameters η

k
.

It is shown that for the parameter identification of space-time continuous phenomena, the
mathematical model turns into a nonlinear high-dimensional system model according to (1.4);
however, with linear substructures that can be exploited. In general, for the estimation of non-
linear systems, approximation methods are necessary due to its high computational demand and
the resulting non-parametric density representation. The main goal, here, is the exploitation
of linear substructures in nonlinear estimation problems in order to arrive at an overall more
efficient estimation process. To cope with such combined linear/nonlinear estimation problems,
a novel estimator is proposed, the so-called Sliced Gaussian Mixture Filter (SGMF). Besides
the exploitation of the linear substructure by decomposing the estimation problem, there are
two key features leading to a significantly improved estimation result: (a) the definition of a
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Figure 1.4: Visualization of conversion and decomposition methods for deriving a more efficient reconstruction
and identification process of space-time continuous phenomena. The novelty of the reconstruction task is the
interpolation of spatially distributed measurements by using physical background knowledge and the systematic
consideration of uncertainties. Thanks to the simultaneous parameter estimation, additional tasks can be efficiently
performed, such as identification and localization processes.

novel general-purpose density representation for the decomposition of the estimation problem
into a linear and a nonlinear part, and (b) a systematic density approximation that is based on
minimizing a certain distance measure.

Thanks to the developed framework for the efficient identification of space-time continuous
phenomena, the spatially distributed measurements can be used for the autonomous adaptation
of the mathematical models. Then, a unifying approach for most important tasks concerning
the observation of physical phenomena by a sensor network can be obtained; see Figure 1.4.

• Identification of process parameters (SRI-method)

• Localization of individual sensor nodes based on local observations (SRL-method)

• Localization of spatially distributed sources and leakages (SRSL-method)

Decentralized observation of space-time continuous systems (Part III) For the observa-
tion of space-time continuous phenomena that are distributed over a wide area, sensor networks
consisting of a higher number of nodes are necessary. In such cases, decentralized processing
of the information in the individual sensor nodes is preferred due to various reasons, e.g.,
communication bandwidth, computational load, and storage capacity. The local processing of
information and the propagation through the network leads to stochastic dependencies between
the individual estimates that cannot be stored within the network. Thus, although local es-
timates are stored on each node, their stochastic dependencies are imprecisely known in the
case of decentralized estimation approaches. The main challenge, here, is that for fusing in-
dividual local estimates, their stochastic dependencies and joint statistics are required. As a
consequence, the joint probability density function needs to be reconstructed or an appropriate
so-called bounding density needs to be derived. In this research work, methods for the de-
centralized estimation of space-time continuous phenomena are developed that systematically
consider the imprecisely known stochastic dependencies during the estimation process.

In the case of Gaussian densities, the stochastic dependencies are sufficiently described by the
classical correlation coefficient. In many research works dealing with decentralized estimation,
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it is usually assumed that the correlation coefficient between the considered random vectors
are unconstrained and completely unknown, i.e., the maximum absolute correlation coefficient
is less than or equal to one. Using just the natural bound of the coefficient would lead to quite
conservative and usually not sufficient estimation results. In contrast, additional background
knowledge about the correlation coefficient can be exploited to find tighter bounds. The con-
straints can be classified into three types, (a) completely unknown correlation, (b) symmetric
correlation constraints, and (c) asymmetric correlation constraints. The proposed robust esti-
mator Covariance Bounds Filter (CBF) allows the consideration of such knowledge about the
correlation constraints and leads to correct and consistent estimation results.

In the case of non-Gaussian densities, the classical correlation coefficient is not a sufficient
measure for describing the stochastic dependencies. Due to the universal approximation prop-
erties, it is assumed that the marginal densities (local estimates) and their joint densities can
be represented by Gaussian mixture probability density functions. In this case, the joint den-
sity can be reconstructed and parameterized by so-called generalized correlation parameters.
The processing of these parameterized joint densities leads to a set of corresponding estimation
results. By finding bounding densities, the development of decentralized approaches for the
nonlinear/non-Gaussian case might be possible. The proposed parameterization of the joint
densities for given marginal densities lais the foundation for these methods.

1.4 Thesis Organization

The thesis is divided into three main parts, not accounting for the introduction and conclu-
sions. Each part clarifies the attained methods, their respective contributions and performance
by means of demonstrative examples and simulation studies. The structure of the thesis is il-
lustrated in Figure 1.5. In the first part (Chapter 2), systematic methods for the model-based
interpolation of spatially distributed measurements are derived that allow the state reconstruc-
tion of space-time continuous systems. The second part (Chapter 3 and Chapter 4) is devoted
to nonlinear estimators that are necessary for the parameter identification of space-time contin-
uous systems and their application to the most common tasks, such as identification and local-
ization tasks. The third part (Chapter 5 and Chapter 6) consists of decentralized approaches
for the efficient estimation of space-time continuous systems that are widely distributed by
using a large sensor network. The chapters of the thesis are structured as follows:

Chapter 2 addresses the state reconstruction of space-time continuous physical systems
based on space-time discrete measurements obtained from a spatially distributed measurement
system. The novelty is the rigorous exploitation of additional background knowledge in terms
of a model about the physics and the consideration of uncertainties. By this means, the physical
system can be interpolated in a systematic and physically correct fashion, i.e., an estimate can
be obtained at any desired location in the entire area of interest. The state reconstruction
method lays the foundation for the methods introduced in the following chapters.

Chapter 3 introduces an efficient method for the estimation of special types of nonlin-
ear dynamic systems containing a linear substructure. A special nonlinear estimator — Sliced
Gaussian Mixture Filter (SGMF) — is proposed that allows the decomposition of the esti-
mation problem into a (conditionally) linear and a nonlinear problem using a special density
representation. The systematic approach for the density approximation necessary within the
proposed framework is based on the minimization of a certain distance measure that allows the
derivation of (close to) optimal and deterministic estimation results. Compared to an estimator
working on the entire problem at once, this decomposition leads to an overall more efficient

10



1.4. Thesis Organization
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State Reconstruction
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Figure 1.5: Structure and organization of the thesis.

process. This is beneficial for the parameter identification of space-time continuous systems;
due to the high-dimensional linear substructure consisting in the nonlinear system description.

Chapter 4 presents a method for the simultaneous state and parameter estimation of
space-time continuous physical systems monitored by a spatially distributed measurement sys-
tem. The main challenge is that the parameter identification leads to a high-dimensional and
nonlinear estimation problem. Thanks to the high-dimensional linear substructure contained
in the augmented model description, the development of an overall more efficient estimation
process is possible, e.g., by using the estimator derived in the preceding chapter. The proposed
simultaneous approach provides novel prospects in sensor network applications. For example,
the network is able to estimate the space-time continuous state of the physical phenomenon,
identify non-measurable quantities, verify and validate the correctness of the estimation results,
and eventually adapt its algorithms and behavior in an autonomous fashion. This is examined
by various simulated case studies: (a) the identification of process parameters, (b) the sensor
node localization based on local observations of a space-time continuous physical phenomenon,
and (c) the localization of spatially distributed sources and leakages.

Chapter 5 addresses the problem of decentralized state reconstruction of space-time
continuous systems observed by a sensor network. For decentralized reconstruction, a novel
methodology consisting of three stages is proposed: (a) the conversion of the distributed-
parameter system into a lumped-parameter system description, (b) the decomposition of the
resulting system model into subsystems and the mapping to the individual sensor nodes, and
(c) the decomposition of the probability density function leading to a decentralized estimation
approach. The main problem of a decentralized approach is that due to the propagation
of local information through the network unknown correlations are caused. This fact needs
to be considered during the reconstruction process in order to obtain correct and consistent
estimation results. Here, a special robust estimator — the Covariance Bounds Filter (CBF)
— is developed for the local reconstruction update on each sensor node. This estimator allows
the incorporation of background knowledge about correlation constraints (e.g., symmetric and
asymmetric constraints) in order to derive tighter bounds, and thus more accurate estimation
results. By this means, sensor nodes are able to reconstruct the local substate of the physical
phenomenon using local estimates obtained and communicated by adjacent nodes only.
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Chapter 1. Introduction

Chapter 6 discusses the challenges of processing random variables represented by non-
Gaussian density functions with imprecisely known stochastic dependencies. To cope with
such problems, various types of parameterizations of the unknown joint density function are
introduced. These density functions are parameterized by so-called generalized correlation pa-
rameters. The processing of these density functions leads to a set of corresponding estimation
results. By finding bounding densities that sufficiently represent the entire set of resulting
densities (similar to the covariance bounds in the Gaussian case), the development of decen-
tralized approaches for the nonlinear/non-Gaussian case may be possible. The parameterized
joint densities proposed in this research work lay the foundation for such methods.

Chapter 7 presents conclusions and suggests future directions for the completion and
extension of the methods introduced in this thesis.

12



CHAPTER 2

Reconstruction and Interpolation of
Space-Time Continuous Systems

This chapter is devoted to the reconstruction of space-time continuous systems1 using mea-
surements that are obtained from a spatially distributed measurement system, such as a sensor
network. The physical system being observed here can also be regarded as a huge spatially
distributed random field. The main goal of the state reconstruction then, is to estimate the
value of the space-time continuous state in the entire area of interest. For the derivation of ac-
curate and physically correct estimates between the individual measurement points, systematic
interpolation and extrapolation methods are necessary.

The model-based reconstruction approach proposed in this chapter is based on the rigorous
exploitation of additional background knowledge in terms of mathematical models; in this re-
search work stochastic partial differential equations. Such models describe the dynamic behavior
as well as the distributed properties of the physical system being monitored. In order to derive
more precise reconstruction results, basically, two different sources of information are exploited:
(1) the measurements obtained from the sensor network and (2) a mathematical model of the
physical system and the measurement system. Thanks to the mathematical model describing
the physical behavior at any spatial coördinate, the space-time continuous physical system can
be reconstructed not only at the actual measurement locations but also between the individ-
ual nodes. The novelty is the exploitation of a model about the physics and the integrated
treatment of uncertainties occuring in the model description and arising from noisy measure-
ments. This leads to an interpolation and extrapolation of space-time discrete measurements
in a systematic and physically correct manner.

The results of the reconstruction process can be used for several additional tasks concerning the
observation of physical systems by a spatially distributed measurement system. For example,
optimal placements and measurement time sequences for the individual measuring nodes can
be derived, as proposed in [167, 169]. In addition, the results can be exploited for the following
tasks considered in this work: the identification of parameters characterizing the model of the
physical system (see Section 4.3), the localization of several nodes of the spatially distributed
measurement system based on local observations only (see Section 4.4), and the model-based
source and leakage localization (see Section 4.5).

The model-based approach for the reconstruction and interpolation of space-time continuous
systems that is described in this chapter is based on the puplications [167, 169, 182, 183].
However, here, explanations of the process are given for physical systems that are spatially
distributed in two dimensions. Furthermore, the performance of the method, challenges, and
novel prospects for sensor network applications are presented in a considerably extended form
by means of various simulated case studies.
1 In the literature, this type of physical system is often called

distributed-parameter system, see Section 1.2.
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direct methods conversion methodsOrdinary Kriging Indicator Kriging

Estimation of space-time continuous systems
(i.e., interpolation of random fields)

Complexity of used modelsimple/imprecise complex/precise

Kriging methods
(stochastic models)

Bayesian Maximum
Entropy (BME)

Stochastic PDE-based
estimation approaches

Figure 2.1: Overview of different approaches for the state and parameter estimation of space-time continuous,
distributed-parameter systems (i.e., interpolation of random fields). The methods based on stochastic partial
differential equations can be further classified into direct methods and conversion methods.

2.1 Related Work

There are various techniques for the interpolation and extrapolation of space-time continu-
ous systems, also called random fields. An overview and a possible classification of different
approaches being discussed in the remainder of this section is visualized in Figure 2.1. In
general, the methods can be classified with respect to the type and the complexity of the
underlying model description. The model complexity could range from simple toward more
sophisticated, i.e., containing detailed descriptions about the physical behavior, for example in
terms of stochastic partial differential equations.

The most common approach for interpolating a spatially distributed random field is the Kriging
interpolation [38, 40, 60, 95, 144], which belongs to the family of linear least squares estimation
algorithms. In the limited space of this thesis, it is not possible to give a comprehensive
survey of all existing methods, such as simple Kriging, ordinary Kriging, indicator Kriging,
and cokriging, to name just a few. Rather the key idea and main properties common to all of
these types are stated. In the statistical community the very same approach is also known as
Gaussian process regression [151, 152]. All these methods have in common that they obtain an
estimate of the space-time continuous state by weighting individual measurements proximate
to the desired location. Roughly speaking, the weights of closer measurements are higher since
they are more likely to be similar to the value being estimated. The important point is that
these approaches are based on a stochastic model of spatial dependencies in terms of either
variograms or mean/variance functions. The variogram is a function relating the variance to
spatial separations and provides a concise description of the spatial variability. A severe problem
not easy to cope with is that the design of the variograms does not adapt locally to the character
of spatial variation and especially not to the dynamics of the physical system. Possible ways to
solve this problem are non-stationary variogram models [9], which are based on a segmentation
of the considered area in separate segments. Then, after defining the size and location of each
subregion the corresponding local variograms need to be derived. In addition, Kriging methods
were primarily developed to account for exact measurements, and thus only realizations of the
space-time continuous system (i.e., assumed to be precisely measured) can be considered for the
interpolation. This means, existing uncertainties in the measurements cannot be sufficiently
considered for the derivation of consistent and correct interpolation results. Another serious
disadvantage is that additional background knowledge, for example about the physical behavior,
cannot be exploited for more accurate and physically correct interpolation results.
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2.1. Related Work
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Figure 2.2: Visualiztion of the conversion of generative system models under the assumption of bounded variation
over space-time. It is noted that the corresponding density representation is required to be converted in the same
fashion as the system model. In this work, the stochastic partial differential equation (SPDE) is converted into a
system of ordinary stochastic differential equation (SODE). Based on the resulting model, a probabilistic description
in terms of a transition density can be derived that is required for solving the Chapmann-Kolmogorov equation.

In general, more accurate estimates can be derived by exploiting additional background informa-
tion, for example about the physical characteristic of the space-time continuous system. This is
especially the case for the region between the individual sensor nodes, where direct information
can be derived only from such background knowledge. The method called Bayesian Maximum
Entropy (BME) allows the incorporation of additional background information into the inter-
polation process [18, 33, 34, 41]. This includes a wide variety of data sources of various forms,
like intervals of values, probability density functions or mathematical models about the physi-
cal system in terms of ordinary differential equations. The BME method can be regarded as a
two-stage procedure. In the first stage (prior stage), general knowledge, such as physical laws,
is incorporated and the most general prior distribution is derived by maximizing the entropy,
which is a measure of the information content. In the second stage (posterior stage), specific
knowledge in terms of hard and soft measurements is incorporated in order to obtain an im-
proved interpolation result. However, for the consideration of partial differential equations (1.2),
an additional and more complex Space Transformation (ST) for each discretization point is
required [131]. By this transformation, for each point in the considered solution domain, the
partial differential equation is transformed into a one-dimensional ordinary differential equation
that can be implemented into the BME framework.

The most general approaches for the interpolation of a random field are those based on stochas-
tic partial differential equations (1.2) representing the dynamic behavior and the distributed
properties of the underlying physical system. In general, the methods can be classified into
(a) direct methods and (b) conversion methods; see Figure 2.1. The direct methods are based
on optimization techniques directly applied to the space-time continuous model. Basically,
the analytic solution is used to obtain a large optimization problem. Solving this usually
nonlinear problem, the model parameters, source locations, or node locations can be identi-
fied [68, 98, 108]. For direct approaches, assumptions and restrictions have to be made that
are often inappropriate in order to obtain an analytic solution. In addition, the development
of a Bayesian estimator is rather complex; in particular for the simultaneous approach, i.e.,
simultaneously estimate the state and parameters (see Chapter 4).

On the other hand, the conversion methods are based on converting the mathematical de-
scription into a finite-dimensional model; see Figure 2.2. This means, the stochastic partial
differential equation (SPDE) is converted into ordinary differential equations, difference equa-
tions or algebraic equations. Based on the resulting space-time discrete model, a probabilistic
description in terms of a transition density function can be derived that is necessary for solving
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Figure 2.3: Overview of the four main stages for the model-based reconstruction of space-time continuous physical
systems by means of a spatially distributed measurement system. The main stages can be further divided into the
following: (a) the preprocessing stage, i.e., the model derivation stage, and (b) the actual reconstruction stage.

the Chapmann-Kolmogorov equation [109]. This methodology was proposed by various au-
thors [3, 44, 80, 118, 139]. For all these methods, it is important to make the assumption of
bounded variation over space-time. Roughly speaking, a continuous function is regarded to be
of bounded variation, when the integral along the path has a finite value. When this assump-
tion does not hold, then more sophisticated and complex methods are required for deriving the
future behavior of the physical system, such as Itô calculus [91] or Fokker-Planck [111].

The state reconstruction and parameter identification method developed in this research work
is based on the conversion of the stochastic partial differential equation (SPDE) into a system
of ordinary stochastic differential equation (SODE). It is noted that the corresponding density
representation is required to be converted in the same fashion as the system model. The main
challenge is that the simultaneous state and parameter estimation of space-time continuous
systems leads to a high-dimensional strongly nonlinear estimation problem. To cope with this
difficulty, special estimators based on linearizations at consecutive state trajectories [97] or
linearization of the system description [118] were employed in other research works. However,
due to the estimation based on a linearized model, accurate results and convergence are not
assured. Here, the high-dimensional linear substructure is exploited that naturally exists in
the otherwise nonlinear estimation problem; this results in a more efficient reconstruction and
identification process. In addition, linearization is not required, and thus convergence is assured.
This novel approach is introduced in the second part of the thesis (Chapter 3 and Chapter 4).

2.2 Overview of the Reconstruction Process and Considered System

In this section, an overview of the proposed model-based approach for the state reconstruction
of space-time continuous systems is given. The entire reconstruction process can be separated
into four main stages, visualized in Figure 2.3. Before they are described in more detail, a
brief description is given in the remainder of this section.

1) Conversion of the system model The state reconstruction of physical systems based on
a distributed-parameter description is a challenging task. The main reason is that employing
an estimator within the Bayesian framework requires a lumped-parameter system description.
Hence, it is proposed by various authors [118, 139, 154] to convert the mathematical model
from the distributed-parameter form into a lumped-parameter description. For this conversion
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Figure 2.4: Visualization of the two-dimensional L-shaped solution domain Ω ∈ R2 and assumed conditions at
the boundary domains ∂Ω (Dirichlet condition at ΓD and Neumann conditions at ΓN ). The physical system is
driven by the space-time continuous input s(r, t). The convection field v := [vx, vy]T and the material properties
are assumed to be homogeneous in the entire domain Ω of interest, for simplicity reasons.

there exists various numerical methods. Based on the resulting lumped-parameter system de-
scription, the state of the space-time continuous system can be uniquely characterized by a
finite-dimensional state vector. It is important to emphasize that the conversion of stochastic
partial differential equations (1.2) does not only need to be performed on the actual model
equations but especially on their associated uncertainty representation.

2) Derivation of measurement model For the estimation of physical systems using a spa-
tially distributed measurement system, a special measurement model needs to be derived. This
model considers the physical properties of the individual nodes as well as the distributed char-
acteristic of the entire network, i.e., the topology. Basically, the derived model is responsible
for mapping the readings received from the sensor nodes to the common global state vector
characterizing the physical system.

3) Application of appropriate Bayesian estimator Based on the aforementioned lumped-
parameter system and measurement model, the derivation of an appropriate Bayesian estimator
is possible in a more efficient manner. In general, the structure of the estimator strongly
depends on the structure of the obtained system description, i.e., being linear or nonlinear.
Moreover, especially for sensor network applications, a recursive estimation scheme is essential.
This means, although more and more measurements are obtained, the network only stores a
density representation of a fixed size. Thanks to the probabilistic approach, uncertainties both
in the measurements and the mathematical model (including uncertain model parameters and
uncertain node locations) are considered.

4) Conversion into continuous space In order to reconstruct the space-time continuous
state at any desired spatial coördinate, the estimated finite-dimensional state vector needs to
be converted back into the continuous space. It is important to emphasize that within this
processing step, in particular, the probability density function of the finite-dimensional state
vector needs to be mapped. This results in a probability density function that represents the
physical system at any location.
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Figure 2.5: Stationary solution of the deterministic space-time continuous system in the considered L-shaped
solution domain Ω with the assumed boundary conditions and system inputs. Solution of (a) the diffusion equation
with a diffusion coefficient α = 0.8m2 h−1 and (b) the convection-diffusion equation with velocity v = [8, 8]T mh−1.

Example 2.1: Considered space-time continuous physical system
The methods introduced in this chapter can be applied to the general case of linear partial differential
equations (1.2). However, throughout the entire work, we consider a certain space-time continuous
system occuring in many applications, the convection-diffusion system. The governing stochastic
partial differential equation can be stated in the solution domain Ω ∈ R2 as follows

L(p(r, t)) :=
∂p(·)
∂t
− α

(
∂2p(·)
∂x2

+
∂2p(·)
∂y2

)
︸ ︷︷ ︸

diffusion term

+

(
vx
∂p(·)
∂x

+ vy
∂p(·)
∂y

)
︸ ︷︷ ︸

convection term

− γ s(r, t) , (2.1)

where r := [x, y]T ∈ R2 denotes the spatial coördinate and p(r, t) and s(r, t) are the space-time
continuous system state and the space-time continuous system input. The vector v := [vx, vy]

T ∈ R2

represents the homogeneous convection field. The diffusion coefficient α ∈ R is characterized by
specific material properties, such as the medium density ρ, the heat capacity cp, and the thermal
conductivity k, according to α := κ/(ρ cp). The system input coefficient γ ∈ R that is here
represented by γ := 1/(ρ cp) characterizes the influence of the system input s(·) on the physical
system. In the case of inhomogeneous systems, all these material properties and the convection field
depend on the spatial coördinate r. In this work, only homogeneous physical systems are considered
for simplicity; however the extension is conceptually straightforward.

For the estimation of the space-time continuous physical system (2.1), knowledge about the boundary
conditions is necessary. There are several types of such conditions depending on the constraints at
the boundaries of the solution domain Ω. In this thesis, the following conditions are assumed

Dirichlet boundary condition p(r, t) = gD(r, t) , ∀r ∈ ΓD ,

Neumann boundary condition n · ∇p(r, t) = −gN(r, t) , ∀r ∈ ΓN ,

where gN(·) specifies a condition on the derivative, is referred to as a Neumann boundary condition
and gD(·) is the so-called Dirichlet boundary condition. The solution domain Ω and the conditions
at their respective boundary domains ∂Ω are visualized in Figure 2.4. �
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Figure 2.6: Realization of the space-time continuous system in the considered L-shaped solution domain Ω with
assumed boundary conditions and system inputs: (a) diffusion equation (i.e., without convection) with a diffusion
coefficient α = 0.8m2 h−1 and (b) the convection-diffusion equation with velocity v = [8, 8]T mh−1.

The two-dimensional convection-diffusion equation (2.1) can be used as the governing equation
for various physical phenomena arising in sensor network applications, such as the observation of
temperature distributions or nitrate concentrations in the groundwater [5, 145]. The numerical
solution of the physical system in the deterministic case is depicted in Figure 2.5 for specific
initial and boundary conditions, with and without an underlying convection field. The assumed
model parameters for the derivation of the solution are stated in more detail in Example 2.4.
It can be clearly seen that the physical system is moving from the location of the spatially
distributed inputs through the entire solution domain Ω ∈ R2, driven by the diffusion process
and the convection field. It is emphasized that the derivation of a perfect mathematical model
can be rather complex and due to the computational complexity in most cases not desirable. A
possible realization of the space-time continuous physical system (2.1) is depicted in Figure 2.6.
The arising uncertainties associated with the abstraction and reduction process need to be
systematically considered.

2.3 Conversion of Space-Time Continuous Systems

In general, the application of a Bayesian estimation approach for the state and parameter es-
timation based on a distributed-parameter system (1.2) is a challenging task. For that reason,
in this research work, the stochastic partial differential equation (2.1) including its density rep-
resentation is converted into a finite-dimensional lumped -parameter system (1.1). This system
description can be derived by methods for solving partial differential equations; see Figure 2.3.
An overview of different methods is given in the remainder of this section.

Spectral methods and grid/mesh-based methods The modal analysis method (also called
spectral method) basically uses a set of global expansion functions for the approximation of the
solution of the partial differential equation (1.2). This method just needs a few parameters to
represent a smooth solution in the entire solution domain [43, 116]. It is generally understood
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that spectral methods use expansion functions1 that have a nonzero definition throughout the
entire solution domain [24]. However, such functions can be found only for simple problems
with simple boundary conditions. Moreover, there are grid/mesh-based methods, such as the
finite-difference method [36, 136], the finite-element method [11, 20, 28], and the spectral-
element method [42, 79, 85]. These methods require a set of expansion functions that are
only locally defined in finite sub-regions. The systematic decomposition of the solution domain
into appropriate subdomains2 involved in these methods allows the conversion of space-time
continuous systems even for rather complex geometries, and thus complex boundary conditions.
Since these techniques use expansion functions that are locally defined in a finite region, it is
possible to derive a probabilistic system model sufficient for a decentralized estimation approach;
see Chapter 5. This fact becomes especially important for physical systems that are distributed
over a wide area and large sensor networks. All the aforementioned methods can be used
with the same numerical methodology, the so-called Galerkin formulation. In this thesis, the
conversion necessary for the state reconstruction is based on a predefined mesh.

Mesh-free methods In comparison, mesh-free methods were developed providing several ad-
vantages [15, 16, 37, 101]. These methods convert the distributed-parameter system (1.2) into
a lumped-parameter form without requiring a predefined mesh; instead they are based on a set
of nodes scattered within the considered solution domain. It is important to note that unlike
the meshes, the scattered nodes do not contain any information about the relationship between
the individual nodes. This means, it is not necessary to employ complex and computationally
demanding re-meshing algorithms that are required for mesh-based methods in order to derive
more precise results in the case of large deformations or strong discontinuities. The scattered
nodes in mesh-free methods can be arbitrarily added and relocated without changing their re-
lation to other nodes. A comprehensive overview on the theory and the description of various
mesh-free methods with focus on mechanics of solids, beams, and plates is given in [94] and
with focus on fluid dynamics and crack growths is given in [93]. The conversion process based
on mesh-free methods results in a finite-dimensional system description that is similar to the
mesh-based methods. Thus, the implementation of these methods in the proposed framework
is conceptually straightforward.

Lattice Boltzmann modelling There are methods that directly derive expressions in explicit
algebraic form, such as lattice Boltzmann modelling [148]. These methods are based on directly
modelling the microscopic kinetic behavior on uniform grids with only local interactions, and
thus allow parallelization and decentralization in a straightforward way. However, it is unclear
how the uncertainties are consistently considered throughout the entire modelling process. In
addition, the lattice Boltzmann method can be regarded as a finite difference discretization of
the model equations. This means, there is a coupling of the grid size with the time step leading
to the necessity of performing many time steps when refining the grid [135]. Moreover, the
generalization of non-uniform grids is quite complex.

In the remainder of this section, the conversion of the system description and its underlying
density representation is described based on: (a) the spatial and temporal discretization and
(b) the Galerkin formulation. It is shown that the employment of such grid/mesh-based con-
version methods to linear stochastic partial differential equations (1.2) always results in linear
lumped-parameter systems in state-space form. Based on such a system description, probabilis-
tic models can be derived that are necessary for the Bayesian estimator in order to reconstruct
the space-time continuous state of the physical system.
1 In the case of modal analysis method the expansion functions

consists of trigonometric functions.
2 For FDM and FEM/SEM they are respectively called grid points and elements.
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Figure 2.7: Schematic diagram of the spatial/temporal discretization using the finite-difference method. (a) Spa-
tial discretization of the system description in the considered solution domain Ω. The nodes are classified into
software nodes that are necessary only for describing the physical system and hardware nodes that are responsible
for obtaining measurements. (b) Discretization of the distributed system using a finite difference scheme.

2.3.1 Spatial/temporal Discretization Methods

Finite-difference method The finite-difference method is undoubtedly the simplest method
for the conversion of partial differential equations (1.2), however, suffers from computational
inefficiency and possible discretization errors. In the first step, the solution domain Ω ∈ R2 is
spatially discretized into a grid consisting of so-called software nodes. Then, in the second step,
the differential terms at these nodes are replaced by finite differences in the partial differential
equation (1.2). In this research work, the space-time continuous physical system is converted,
for simplicity, using the following central finite difference scheme

∂p(r, t)

∂t
≈
pi,jk+1 − p

i,j
k

∆t
,

∇p(r, t) ≈ p
i+1,j
k − pi−1,j

k

2∆x
+
pi,j+1
k − pi,j−1

k

2∆y
,

∇2p(r, t) ≈ p
i+1,j
k − 2pi,jk + pi−1,j

k

∆x2
+
pi,j+1
k − 2pi,jk + pi,j−1

k

∆y2
, (2.2)

where ∆t is the sampling time and ∆x and ∆y denote the spatial sampling period in the
respective directions. The superscript (i, j) and subscript k in pi,jk denote the value of the
physical system at the software nodes (i, j) and at the time step k.

Inserting the finite differences (2.2) into the partial differential equation (1.2) directly results in
a system of difference equations, and thus the desired state-space model (1.4). The structure of
the resulting equation is visualized in a schematic diagram focusing on one software node (i, j) in
Figure 2.7. However, this so-called forward integration in time leads to poor numerical stability
due to the limited accuracy of floating point arithmetic. In order to avoid such instabilities in
case of forward integrations, small step sizes both in space and in time have to be chosen. This
certainly results in many iterations that are necessary to calculate the propagation over time.
Another way to overcome instabilities is to employ implicit integration methods, such as the
Crank-Nicolson integration method [36, 182, 183]. A numerical integration method is called
implicit, when after substituting the finite differences (2.2) into the equation being integrated,
the value to be determined occurs on both sides of the equation. The Crank-Nicolson method
is based on the central finite differences (2.2) in space, and a trapezoidal rule in time; thus, can
be regarded as an implicit method.
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Resulting lumped-parameter system It can be shown that employing any common finite
difference scheme (i.e., explicit or implicit), any kind of linear stochastic partial differential
equation (1.2) can be converted into a finite-dimensional system description in linear form

xk+1 = Ak xk + Bk (ûk +wx
k) . (2.3)

The system state vector xk := [p1
k, . . . , p

Nx
k ]T ∈ RNx contains the values of the space-time

continuous state p(·) at the corresponding Nx software nodes. The matrices Ak ∈ RNx×Nx and
Bk ∈ RNx×Nx are the so-called system matrix and input matrix, respectively. The system input
vector ûk ∈ RNx contains the values of the space-time continuous input s(·) at the respective
software nodes, and wx

k ∈ RNx denotes its corresponding discretized process noise term.

Example 2.2: Spatial/temporal discretization for rectangular solution domains
In this example, the structure of the state-space model (2.3) resulting from the central finite-
difference method is best envisioned for a rectangular solution domain Ω; see Figure 2.7. The exten-
sion to more complicated domains and the application to different types of linear partial differential
equations (1.2) is straightforward.

The space-time discrete state vector is represented by xk := [p1,1
k , . . . , p1,m, . . . , pm,mk ]T ∈ Rm2

containing the value of the physical system at the individual software nodes (i, j). The variable m
denotes the total number of nodes used for the discretization in each dimension. The parameters
are assumed to be inhomogeneous, which means they do depend on the spatial coördinates. Then,
the conversion of the system (2.1) results in the following system matrix Ak ∈ Rm2×m2 ,

Ak =
∆t

∆h2


Ã1
k B̃1

k 0 · · · 0

C̃2
k Ã2

k B̃2
k · · · 0

... . . . . . . . . . ...
0 · · · C̃m−1

k Ãm−1
k B̃m−1

k

0 · · · 0 C̃m
k Ãm

k

+ Im2 ,

where Im2 ∈ Rm2×m2 represents the identity matrix and the submatrices Ãi ∈ Rm×m are given by

Ãi
k =


−4αi,1k αi,1k − ∆h

2
vi,1x 0 · · · 0

αi,2k + ∆h
2
vi,2x −4αi,2k αi,2k − ∆h

2
vi,2x · · · 0

... . . . . . . . . . ...
0 · · · αi,m−1

k + ∆h
2
vi,m−1
x −4αi,m−1

k αi,m−1
k − ∆h

2
vi,m−1
x

0 · · · 0 αi,mk + ∆h
2
vi,mx −4αi,mk

 ,

and the submatrices B̃i
k ∈ Rm×m and C̃i

k ∈ Rm×m are respectively given by

B̃i
k =

α
i,1
k − ∆h

2
vi,1y · · · 0

... . . . ...
0 · · · αi,mk − ∆h

2
vi,my

 , C̃i
k =

α
i,1
k + ∆h

2
vi,1y · · · 0

... . . . ...
0 · · · αi,mk + ∆h

2
vi,my

 .
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2.3. Conversion of Space-Time Continuous Systems

For the conversion of the space-time continuous system, the input function s(z, t) needs to be
discretized at the same software nodes (i, j) as the space-time continuous system state p(z, t). This
leads to the input vector uk := [s1,1

k , . . . , s1,m, . . . , sm,mk ]T ∈ Rm2 . The input matrix Bk is given by
a diagonal matrix with sampling time ∆t and input parameters γi,jk on the diagonal entries,

Bk = diag
{
γ1,1
k ∆t, . . . , γ1,m

k ∆t, . . . , γm,mk ∆t
}
.

A detailed description of the boundary conditions, such as Dirichlet boundary condition and Neumann
boundary condition, and how these conditions are considered throughout the conversion process is
omitted in this thesis; instead the reader is refered to [36, 136]. �

2.3.2 Spatial Decomposition of System Description

The conversion of space-time continuous systems using mesh-based methods, such as the spec-
tral method, finite-element method, or spectral-element method, may be used with the same
numerical methodology, the so-called Galerkin formulation. Within this formulation, it is as-
sumed that the exact solution of a partial differential equation (1.2) can be expanded as an
infinite sum of shape functions Ψ(·). The approximated solution is then derived by truncating
this expansion and projecting the resulting error onto the finite-dimensional subspace spanned
by the shape functions. The lumped-parameter system model in discrete-time state-space form,
can be derived in three stages (shown in Figure 2.8).

1. Spatial decomposition of the space-time continuous system description (see Section 2.3.2)
and system input, including its uncertainty representation (see Section 2.3.3).

2. Selection of appropriate shape functions as a finite-dimensional set for representing the
solution in the continuous-space domain of interest (see Section 2.3.4).

3. Temporal discretization of the resulting system of stochastic ordinary differential equations
in order to arrive at a discrete-time system in state-space form (see Section 2.3.5).

Finite expansion of the solution domain The purpose of the spatial decomposition is to
convert the stochastic partial differential equation (1.2) into a system of stochastic ordinary
differential equations (1.1). In a first step, the solution domain Ω ∈ R2 is spatially decomposed
into Nel non-overlapping subdomains Ωe (the so-called finite elements). Then, an appropriate
representation of the solution p(·) within each subdomain Ωe needs to be defined. The Galerkin
formulation assumes that the solution p(·) and the input s(·) in the entire domain Ω can be
represented by a piecewise approximation, the finite expansion, according to

p(r, t) :=
Nx∑
i=1

Ψi(r)xi(t) = Ψ(r)T · x(t) , s(r, t) :=
Nx∑
i=1

Ψi(r)ui(t) = Ψ(r)T · u(t)

where Ψ(r)T : RNx × R2 → R represents a linear mapping containing analytic functions Ψi(·)
called shape functions ; see Section 2.3.4. The vectors x(t) ∈ RNx and u(t) ∈ RNx are the vectors
collecting their corresponding weighting coefficients. The variable Nx represents the number of
shape functions used for approximating the solution in the domain of interest.
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∂p(r, t)

∂t
− α∇2p(r, t) = γ s(r, t)

(Stochastic) partial diff. equation

(a) Conversion of system description (b) Shape functions

(Stochastic) ordinary diff. equation

xk+1 = Akxk + Bk(ûk + wx
k)

Generative system model

Figure 2.8: (a) Visualization of the individual stages for the conversion of stochastic partial differential equations
into a time-discrete system model in state-space form. The process consists of a spatial decomposition leading to
a system of stochastic ordinary differential equation and based on that a temporal discretization. (b) Examples of
shape functions used for the spatial decomposition of the solution domain Ω ∈ R2, piecewise linear functions and
orthogonal polynomials in a nodal/modal expansion.

It is important to note that the individual shape functions Ψi(·) are usually defined to be non-
zero only in a local finite region that are typically made up of non-overlapping subdomains.
Truncating the series of shape functions (2.4) results in an approximate solution. It is obvious
that concerning the finite expansion, the values of the individual shape functions Ψi(r) depend
only on the spatial coördinate, whereas the weighting coefficients xi(t) depend only on time.
Because of that, this conversion method can be regarded as a separation approach, meaning that
spatial and temporal dependencies in the space-time continuous system state p(·) are separated.
The essence of aforementioned conversion methods lies in the choice of the shape functions
Ψi(·), e.g., piecewise linear functions, orthogonal functions, or trigonometric functions.

Projection onto finite space (weak formulation) The approximated solution in terms of
the finite expansion (2.4) cannot satisfy the infinite-dimensional description in terms of the
stochastic partial differential equation (2.1). The consequence is that a residual RΩ remains.
To make this residual small in some sense a weighted integral over the solution domain Ω ∈ R2

has to be minimized, according to∫
Ω

Ψi(r)

[
∂p(r, t)

∂t
− α∇2p(r, t) + v · ∇p(r, t)− γs(r, t)

]
︸ ︷︷ ︸

SPDE to be converted

dr = 0 , (2.4)

which needs to be performed for all members of the finite expansion (i.e., i = 1 . . . Nx). The
minimization of the weighted integral automatically leads to the best numerical approximation
of the solution p(·) governed by the convection-diffusion equation (2.1). The weighted inte-
gral (2.4) can also be regarded as a projection of the resulting approximation error onto the
finite-dimensional space that is spanned by the shape functions Ψi(·).
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2.3. Conversion of Space-Time Continuous Systems

In the following, the arguments in the shape functions Ψi(r), in the solution p(r, t), and in
the system input s(r, t) are omitted for brevity reasons. The weighted integral (2.4) can be
reformulated by using the rules of product differentiation, leading to∫

Ω

Ψi∂p

∂t
dr − α

∫
Ω

[
∇ · (Ψi∇p)−∇Ψi · ∇p

]
dr︸ ︷︷ ︸

=
∫
Ω Ψi∇2p dr

+

∫
Ω

Ψi v · ∇p dr − γ
∫

Ω

Ψis dr = 0 , (2.5)

which can be considered as the weak formulation of the partial differential equation (2.1). The
second integral can be further manipulated using the Gauss’ divergence theorem given as follows∫

Ω

∇ · (Ψi∇p) dr =

∮
∂Ω

Ψi n · ∇p︸ ︷︷ ︸
=:−gN

dl ,

where n is the unit vector that is normal to the boundary domain ∂Ω pointing outward. The
rough meaning of the theorem is that the areal integral of the divergence of any differentiable
vector function over the domain Ω ∈ R2 is equal to the flux across the boundary domain ∂Ω.
The term gN is the so-called Neumann boundary condition specifying the flux at the boundary
domain ∂Ω into the considered solution domain Ω.

Stochastic ordinary differential equation Replacing the solution function p(·) and the input
function s(·) in the weak formulation (2.5) by the finite expansion (2.4), we arrive at following
system of Nx linear stochastic ordinary differential equations

Nx∑
i=1

M g
ij

∂xi(t)

∂t
+

Nx∑
i=1

N g
ij x

i(t) + α
Nx∑
i=1

Dg
ij x

i(t) = γ

∮
∂Ω

Ψi n · ∇p dl︸ ︷︷ ︸
=:b(t)

+γ
Nx∑
i=1

M g
ij u

i(t) (2.6)

where the terms M g
ij, D

g
ij, and N

g
ij represent specific integrals of the shape functions Ψi(·) over

the entire solution domain Ω to be evaluated. These integrals are given by

M g
ij :=

∫
Ω

Ψi(r)Ψj(r) dr , Dg
ij :=

∫
Ω

∇Ψi(r) · ∇Ψj(r) dr , N g
ij :=

∫
Ω

Ψi v · ∇Ψj dr ,

(2.7)
which makes obvious that they contain information about the structure of the decomposed
solution domain Ω ∈ R2 and merely depend upon the choice of the shape functions Ψi(·). This
means, the solution of the integrals (2.7), and thus the structure of the stochastic ordinary
differential equations (2.6) depends on the method used for the conversion of the space-time
continuous system description, e.g., finite-element method or spectral-element method.

The individual integrals (2.7) can be assembled to the global mass matrix MG, the global
advection matrix NG, and the global diffusion matrix DG, respectively. By this means, it
is obvious that aforementioned conversion of linear partial differential equations (1.2) always
results in a system of linear ordinary differential equations, according to

ẋ(t) = −M−1
G (NG + αDG)︸ ︷︷ ︸

=:Ã(t)

x(t) + γ u(t) + M−1
G b(t) , (2.8)

where Ã(t) ∈ RNx×Nx is the system matrix of the continuous-time system. The boundary
conditions of the space-time continuous system to be monitored are collected in the so-called
boundary condition vector b(t) ∈ RNx . The vector x(t) ∈ RNx denotes the continuous-time state
vector containing the weighting coefficients xi(t) of the finite expansion (2.4). A more detailed
description on numerically solving the integrals (2.7) can be found [79].
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Chapter 2. Reconstruction and Interpolation of Space-Time Continuous Systems

2.3.3 Spatial Decomposition of Sytem Input and Process Noise

In the previous section, the Galerkin formulation for the conversion of a space-time continuous
system (2.1) into a system of ordinary differential equations (2.8) was introduced. This section
is devoted to the conversion of the space-time continuous system input s(r, t) and its underlying
probability density function f s(s|r, t) into a finite-dimensional lumped-parameter form in terms
of the space-discrete time-continuous state vector u(t) ∼ fu(u|t). This additional conversion is
necessary for solving the system of stochastic ordinary differential equations (2.8).

Density representation of the space-time continuous system input In this research work,
the space-time continuous system input s(·) is modelled as a variable represented by following
probability density function

s(r, t)︸ ︷︷ ︸
=:ŝ(·)+ws(·)

∼ f s(s|r, t) := N (ŝ(r, t), Cs(r, t)) , (2.9)

where N (·) is the Gaussian density function with respective mean and variance. In general,
both the mean ŝ(·) and the variance Cs(·) of the system input s(·) are space-variant. Here,
for simplicity reasons, it is assumed that the system input is spatially and temporal mutually
independent. This means, the noise term ws(r, t) is represented by zero-mean white Gaussian
process noise with following property

E {ws(r1, t) ·ws(r2, t)} =

{
0 for r1 6= r2

Cs(r, t) for r1 = r2 = r
.

The main goal in this section is to derive a finite-dimensional input vector u(t) ∼ fu(u|t)
(including its density representation) for a given space-time continuous system input s(·). The
finite-dimensional input u(t) then can be used for solving the stochastic ordinary differential
equation (2.8) for the state vector x(t) ∼ fx(x|t).

Projection onto finite space (projection problem) In order to convert the space-time con-
tinuous input s(r, t) ∼ f e(s|r, t) to the lumped-parameter input u(t) ∼ fu(u|t), the infinite-
dimensional description needs to be projected onto the finite-dimensional space represented by
the shape functions Ψi(r). This can be achieved in a similar way to the integral (2.4) by solving
the following projection problem∫

Ω

Ψi(r)
Nx∑
j=1

Ψj(r)uj(t)︸ ︷︷ ︸
=s(r,t)

dr =

∫
Ω

Ψi(r)s(r, t)dr ,

which must hold for all shape functions Ψi(·) of the finite expansion (2.4), with i = 1 . . . Nx.
The definition of appropriate shape functions, and accordingly a lumped-parameter form of the
space-time continuous system input s(·) leads to the following matrix problem to be solved

∫
Ω

Ψ1(r)Ψ1(r) dr . . .
∫

Ω
Ψ1(r)ΨNx(r)dr

... . . . ...∫
Ω

ΨNx(r)Ψ1(r) dr . . .
∫

Ω
ΨNx(r)ΨNx(r) dr


︸ ︷︷ ︸

=:MG

 u1(t)
...

uNx(t)


︸ ︷︷ ︸

=:u(t)

=


∫

Ω
Ψ1(r)s(r, t) dr

...∫
Ω

ΨNx(r)s(r, t) dr


︸ ︷︷ ︸

=:s̃(t)

. (2.10)
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Ψ1(r) Ψ3(r) Ψ5(r)
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Ψ7(r)
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0

1
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(a) Finite expansion of solution domain
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(b) Conversion of spatially distributed input

Spatially distributed input s(r, t)

s(·) := ŝ(·) + ws(·)

u(t) := û(t) + wu(t)

Lumped-parameter input u(t)

Figure 2.9: (a) Spatial decomposition of the solution p(r, t) in the considered domain using finite expansions,
which are represented by shape functions Ψi(r) and corresponding weighting coefficients xi(t). (b) Conversion of the
space-time continuous system input s(r, t) including its density representation. This results in a lumped-parameter
description u(t) represented by shape functions Ψi(r) and weighting coefficients ui(t).

The global mass matrix MG ∈ RNx×Nx used in the matrix problem (2.10) is the same as the one
used for the spatial decomposition of the stochastic partial differential equation (2.1). Since the
mass matrix MG is symmetric and square, the problem (2.10) can be solved for the lumped-
parameter system input u(t) ∈ RNx by simply using the inverse matrix M−1

G . This leads to
following mapping for deriving the input vector u(t)

u(t) = M−1
G · s̃(t) , (2.11)

which can be regarded as the conversion of the system input (i.e., including its density repre-
sentation) from space-time continuous form into the lumped-parameter space.

Integration of space-time continuous system input In the following, some remarks are
given on the derivation of the random vector s̃(t) ∈ RNx required for solving the matrix problem
(2.10). This vector contains the values that result from the areal integration of the space-time
continuous system input s(r, t) weighted with corresponding shape functions Ψi(r, t). Using
the notation proposed in (2.9), the integration can be achieved as follows

s̃i(t) =

∫
Ω

Ψi(r) (ŝ(r, t) +ws(r, t)) dr , (2.12)

where ws(·) denotes the process noise. In the special case of space-invariant process noise (i.e.,
the system at any spatial coördinate in the considered solution domain is disturbed by the same
uncorrelated noise) the derivation of the random vector s̃(t) can be significantly simplified to

s̃i(t) =

∫
Ω

Ψi(r)ŝ(r, t) dr︸ ︷︷ ︸
=:ˆ̃s

i
(t)

+ws(t)

∫
Ω

Ψi(r) dr︸ ︷︷ ︸
=:w̃si(t)

.

Assuming the noise term ws(·) to be zero-mean Gaussian distributed according to N (0, Cs(t)),
then the covariance matrix C̃s(t) of the integrated system input vector s̃(t), i.e., the right-hand
side of (2.10), can be derived as follows

C̃s(t) = Cs(t) diag
{∫

Ω

Ψ1(r)dr , . . . ,
∫

Ω

ΨNx(r)dr
}

, (2.13)
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which consists only of diagonal entries. Eventually, the finite-dimensional input vector u(t)
can be obtained by mapping the integrated system input s̃(t) according to (2.11). Hence, in
the Gaussian case, the mean û(t) and the covariance matrix C̃u(t) of the desired system input
u(t) ∼ N

(
û(t), C̃u(t)

)
can be derived as follows

û(t) = M−1
G

ˆ̃s(t) , C̃u(t) = M−1
G C̃s(t)

(
M−1

G

)T
, (2.14)

where MG ∈ RNx×Nx is the precalculated global mass matrix. It is emphasized that these
equations can be used for calculating the finite-dimensional input vector u(t) only when the
assumption of space-invariant process noise ws(r, t) holds. In the case of space-variant process
noise the integral (2.12) must be solved.

2.3.4 Selection of Shape Functions

In this section, the decomposition of the entire solution domain Ω into smaller subdomains Ωe

and the definition of shape functions Ψi(r) in the respective subdomains Ωe is described. For
simplicity, the decomposition process is explained and visualized for the one-dimensional case.
The functional description can be easily extended to the multi-dimensional case [79].

Definition of standard domain The calculation of the individual entries of the mass ma-
trix MG, the global advection matrix NG, and the global diffusion matrix DG using global
shape functions Ψi(r) is uneconomical and numerically intractable, see (2.7). This is in par-
ticular the case when a large number of subdomains Ωe, and thus a large number of different
global shape functions Ψi(r) is used for a sufficiently accurate approximation. Hence, it is
reasonable to perform the calculation of the integrals (2.7) in a so-called standard domain
Ωst = {ξ| − 1 ≤ ξ ≤ 1}. The result can then be mapped to any desired global domain Ωe using
an isoparametric transformation χe(ξ) that expresses global coördinates r in terms of local ξ.

Types of polynomial expansions In general, for a fixed mesh, the so-called p-type expan-
sions achieve a higher accuracy of the solution by increasing the polynomial order inside the
individual subdomains Ωe. For the construction of p-type expansions, it is favorable to select a
set of orthogonal functions, such as Legendre polynomials [79, 182], Chebyshev polynomials or
trigonometric functions [24, 116]. The most commonly used polynomials that offer some nu-
merical advantages compared to others are based on the Legendre polynomials. In the standard
domain Ωst, these polynomials are defined as follows

Lm(ξ) :=
1

2mm!

dm(ξ2 − 1)m

dξm
, (2.15)

with m denoting the degree of the used polynomial. The Legendre polynomials (2.15) lay
the foundation of different elemental expansions for the approximation of the solution in the
subdomain Ωe, namely nodal and modal polynomial expansions.

• Nodal polynomial expansion: Based on the Legendre polynomials (2.15) the nodal polyno-
mial expansion is defined in the standard domain Ωst as follows

ψep(ξ) :=
(1− ξ2)L′m(ξ)

m(m+ 1)Lm(ξp)(ξp − ξ)
, (2.16)
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Figure 2.10: Examples of orthogonal polynomials as a representation for the shape functions. The solution p(r, t)
is approximated in the respective subdomains Ωe by means of following shape functions: (a) nodal polynomial
expansion (for m = 4 refinement) and (b) modal polynomial expansion (for m = 6 refinement). The shape
functions are depicted in the global bases and the local bases, and can be mapped by means of r = χ(ξ).

where Lm and L′m is the Legendre polynomial of degree m and its derivative with respect
to the argument, and ξp represents the p-th Gauss-Lobatto-Legendre quadrature points
defined by the corresponding root of (1 − ξ2)L′m(ξ) = 0. The choice of these quadrature
points plays an important role in the stability of the approximation. The nodal polynomial
expansions ψep(ξ) for m = 4 are shown in the standard domain Ωe in Figure 2.10 (a).

• Modal polynomial expansion: The modal polynomial expansion based on the Legendre
polynomials (2.15) is represented in the standard domain Ωst by

ψep(ξ) :=


1−ξ

2
p = 1 ,

(1− ξ2)L′p−1(ξ) 0 < p < m ,
1+ξ

2
p = m .

(2.17)

The lowest expansion modes ψe1(ξ) and ψem(ξ) are the same as the shape functions for
the finite-element method. These modes are considered as boundary modes since they are
the only modes that are nonzero at the boundaries of the respective subdomain Ωe. The
modal polynomial expansion ψep(ξ) for m = 6 is visualized in Figure 2.10 (b).

Calculation in elemental domain By means of the aforementioned local shape functions
ψep(ξ), the global matrices (2.7) can be derived more efficiently by the calculation on the standard
domain Ωst and then mapping the result to any desired global domain Ωe by the isoparametric
transformation χe(ξ). The entries of the local matrices M e

ij and De
ij can be derived as

M e
ij =

∫ 1

−1

ψei (ξ)ψ
e
j (ξ)dξ , De

ij =

∫ 1

−1

dψei (ξ)
dξ

dψej (ξ)
dξ

dξ .

Considering the conditions at the elemental boundary nodes, e.g., r1 and r2, the local matrices
M e

ij and De
ij can be easily transformed and assembled to the global matrices MG and DG [79].
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2.3.5 Derivation of the Space-Time Discrete System Model

In the previous sections, it was demonstrated how the space-time continuous system in terms of
the stochastic partial differential equation (2.1) is converted into a lumped-parameter system.
This resulting description is characterized by a system of stochastic ordinary differential equa-
tions (2.8). For the derivation of an overall more efficient reconstruction process, a temporal
discretization of the time-continuous differential equation including its density representation
is required. The result of this discretization step is a lumped-parameter system model in time-
discrete state-space form. This description is the foundation for designing a Bayesian estimator
for reconstructing the entire spatially distributed physical system.

Uncertainty description for time-continuous case In order to derive a probabilistic system
model, the space-time continuous state p(r, t), the space-time continuous input s(r, t), and the
boundary conditions b(r) are modelled as random variables. Hence, the state vector, the input
vector, and the boundary vector after the spatial decomposition are assumed to be given as

x(t) := x̂(t) + w̃x(t) , u(t) := û(t) + w̃u(t) , b(t) := b̂(t) + w̃b(t) ,

where the input uncertainties w̃u(t) and the boundary condition uncertainties w̃b(t) are as-
sumed to be Gaussian zero-mean white noise. The joint covariance matrix is given as

Cov
{[
w̃u(t)

w̃b(t)

]}
:=

[
C̃u(t) 0

0 C̃b(t)

]
= C̃g(t) ,

which further means that the input uncertainty w̃u(t) and the boundary uncertainty w̃b(t)
are mutually independent. The lumped-parameter system state x(t) is assumed to be given
by (2.4) and the system input u(t) can be derived using (2.12) and (2.11).

Density function for time-discrete case In general, the time-discrete state vector xk cannot
be uniquely characterized by a Gaussian probability density function, rather turns out to be
arbitrary. This is especially the case for the parameter identification of space-time continuous
systems; see Chapter 4. For example, for the localization of individual sensor nodes by means of
local observations (see Section 4.4) or the localization of sources and leakages (see Section 4.5),
the density function could be multimodal and consists of a quite complex shape. Before the
more involved case of arbitrary density functions is considered (nonlinear/non-Gaussian case),
we restrict our attention to Gaussian probability density

xk ∼ fx(xk) := N (xk − x̂k,Cx
k) ,

where x̂k and Cx
k respectively denote the mean vector and the covariance matrix. Due to

the linear description of the stochastic partial differential equation (2.1), and the resulting
linear stochastic ordinary differential equation (2.8), this assumption is sufficient for the state
reconstruction, i.e., precisely known mathematical models.

Estimation based on time-continuous models Modelling the state vector and the system
inputs as random vectors, the lumped-parameter system (2.8) can be expanded to a stochastic
system description in time-continuous state-space form, according to

ẋ(t) = −M−1
G (NG + αDG)︸ ︷︷ ︸

Ã(t)

x(t) +
[
γ I M−1

G

]︸ ︷︷ ︸
B̃g(t)

[
û(t) + w̃u(t)

b̂(t) + w̃b(t)

]
︸ ︷︷ ︸
g̃(t):=ĝ(t)+w̃g(t)

, (2.18)
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where Ã(t) ∈ RNx×Nx represents the system matrix. The matrix B̃g(t) ∈ RNx×2Nx and the
vector g̃(t) ∈ R2Nx containing the input and boundary conditions are the so-called augmented
input matrix and augmented input vector, respectively. Knowing the density function of the
underlying state vector xk at the present time and future distributed system inputs, then the
values of all future states of system can be deduced.

Based on the aforementioned stochastic differential equation (2.18), a time-continuous estimator
can be developed. The Projection Filter [14, 21, 81] converts the stochastic ordinary differen-
tial equation (2.18) into a deterministic partial differential equation; also called Kolmogorov’s
forward equation or Fokker-Planck equation [111]. This deterministic equation describes how
the probability density function that represents the state vector xk evolves over time. Using the
Projection Filter for solving the high-dimensional stochastic differential equation (2.18) leads to
a high-dimensional deterministic partial differential equation that needs lots of computational
resources. Hence, in this work an additional temporal discretization step is performed in order
to derive a time-discrete model (2.18). This discretization leads to a model beneficial for sensor
network applications. The resulting model describes the propagation of the probability density
function of a time-discrete state vector xk to the next time step.

Temporal discretization Here, we assume that the system input û(t) and the boundary
condition b̂(t) change only at discrete time steps, i.e., ĝ(t) = ĝ

k
for t ∈ [tk, tk+1]. Then, the

solution of the stochastic ordinary differential equation (2.18) is given at some arbitrary time
instants tk+1 in terms of the system state xk+1 := x(tk+1) as

xk+1 = eÃ∆t︸︷︷︸
=:Ak

xk +

∫ tk+1

tk

eÃ(tk+1−τ)B̃g(τ) dτ︸ ︷︷ ︸
=:Bgk

ĝ
k

+

∫ tk+1

tk

eÃ(tk+1−τ)B̃g(τ)w̃g(τ) dτ ,

where ∆t := tk+1 − tk is the sampling period. The system matrix Ak characterizing the
transition of the state to the next time step k+ 1 can be derived by performing the exponential
of the respective matrix. There are several ways to actually compute the exponential of a
matrix; an overview is given in [100]. The most common way is to use the convergent power
series according to

Ak := eÃ∆t =
∞∑
i=0

(Ã∆t)i

i!
≈ I−M−1

G (NG + αDG) ∆t , (2.19)

which roughly speaking is analogous to the definition of the exponential of a scalar. For small
values of the sampling time ∆t the matrix exponential can be approximated as stated in (2.19).
Using the same assumption of a small time step for computing the integral of the augmented
input matrix Bg

k results in

Bg
k :=

∫ tk+1

tk

eÃ(tk+1−τ)B̃g(τ) dτ ≈

[
γ∆t I︸ ︷︷ ︸

Buk

∆tM−1
G︸ ︷︷ ︸

Bbk

]
, (2.20)

where the fact was exploited that the exponential of a matrix can be approximated by the
identity matrix for small ∆t. The resulting equation for the system matrix Ak and the in-
put matrix Bk is similar to the result of performing a finite difference step (2.2) directly on
the stochastic differential equation (2.18); see Section 2.3.1. When the assumption of small
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time steps ∆t does not hold, then more components of the used power series of the matrix
exponential (2.19) needs to be considered [76, 132].

Similar to the system state, the noise term is growing as time passes, both due to the actual
integration and the injected noise term w̃g(t) itself. Hence, integrating the time-continuous
system model (2.18) over a time interval ∆t, the covariance matrix Cg

k affecting the system at
time step k can be obtained as follows

Cg
k :=

∫ tk+1

tk

eÃ(tk+1−τ)B̃g(τ) C̃g(τ) B̃g(τ) eÃ
T(tk+1−τ) dτ

≈
[
γ∆tI ∆tM−1

G

]︸ ︷︷ ︸
Bgk

[
1

∆t
C̃u(tk) 0

0 1
∆t

C̃b(tk)

]
︸ ︷︷ ︸

=:Cg
k

[
γ∆tI

∆t
(
M−1

G

)T

]
, (2.21)

as described in [149]. In general, the calculation of this integral is quite difficult and computa-
tionally demanding for large system matrices. However, an approximation sufficiently accurate
for small time steps ∆t can be derived as stated in (2.21) [132].

Time-discrete state-space model The aforementioned methods for the spatial decomposi-
tion and the temporal discretization always result in a linear system model, in the case of linear
partial differential equations (1.2). Hence, the mathematical model describing the dynamic and
the distributed behavior of the physical system being observed can be stated as follows

xk+1 = Ak(η
P

k
)xk + Bu

k(η
P

k
) (ûk +wu

k) + Bb
k(η

P

k
) (b̂k +wb

k) . (2.22)

The system noise wu
k and the boundary noise wb

k are assumed to be zero-mean Gaussian and
stochastically independent with following joint covariance matrix

Cov
{[
wu
k

wb
k

]}
=

[
1

∆t
C̃u(tk) 0

0 1
∆t

C̃b(tk)

]
, (2.23)

where ∆t is the sampling time. The matrix Ak ∈ RNx×Nx represents the system matrix, Bu
k ∈

RNx×Nx is the input matrix, and Bb
k ∈ RNx×Nx denotes the boundary matrix. These matrices, in

general, strongly depend on parameters of the space-time continuous system (1.2) collected in
the process parameter vector ηP

k
∈ RPp . In the case of the two-dimensional convection-diffusion

equation (2.1), this vector may contain the following model parameters

ηP
k

:=
[
α γ vx vy . . .

]T ∈ RPp ,

where α denotes the diffusion coefficient, γ is the system input coefficient, vx and vy is the
velocity of the convection field. The parameters contained in the vector ηP

k
are not restricted

to the aformentioned parameters, rather can be easily extended depending on the structure of
the space-time continuous system that is given in general form in (1.2).

Properties of spatial decomposition As a way of summary, the structure of the mathe-
matical model resulting from the spatial decomposition is depicted in Figure 2.11. Their main
properties are stated as follows:
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Figure 2.11: By means of the spatial decomposition the mathematical description of the space-time continuous
physical system is converted into a system of coupled ordinary differential equations. In the given example, the
dynamic and distributed behavior is characterized by the mass matrix MG, the convection matrix NG, and the
diffusion matrix DG. The physical system is defined in the entire solution domain Ω by the shape functions Ψi(r)
and their respective weighting coefficients xi(t); in general, an infinite number of components, i.e., Nx →∞

• By means of the spatial decomposition, the space-time continuous system (characterized by
a stochastic partial differential equation) can be converted into a generally infinite number
of coupled lumped-parameter systems (characterized by a system of stochastic ordinary
differential equations). Due to computational reasons, however, just a finite number are
used for the approximation of the solution.

• The state of the physical system is uniquely characterized by the underlying shape func-
tions Ψi(r) (used as a domain representation) and their corresponding weighting coeffi-
cients xi(t). This fact can be regarded as a decomposition into a spatial dependent part and
a temporal dependent part, i.e., the shape functions depend only on the spatial coördinate
and the weighting coefficients only on the time [169, 182].

• The specific structure of all the matrices consisting in the resulting system of coupled
differential equations (2.8) merely depend on the choice of shape functions. Especially, by
selecting special shape functions, the coupled system of equations can be entirely decou-
pled. This is the case for modal analysis methods (spectral methods) using trigonometric
functions and using just one single element [10, 116].

The system model (2.22) can be used for the stochastic simulation of the space-time continuous
system by simply propagating the finite-dimensional state vector xk in terms of the density
function over time. Based on this propagation, the space-continuous state pk(r) of the under-
lying system is directly derived using the finite expansion (2.4) for given initial conditions and
boundary conditions. By this means, several realizations of the physical system can be gener-
ated. However, for the state reconstruction, the aim is not just the simulation of the system
behavior. Instead, the goal is the reconstruction of the entire space-time continuous state pk(r)
using space-time discrete, spatially distributed measurements.

2.4 Derivation of the Measurement Model

In order to incorporate measurements obtained from a spatially distributed measurement system
into the reconstruction process, it is necessary to derive a special mathematical model charac-
terizing the properties of the entire measurement system. For spatially distributed systems,
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Chapter 2. Reconstruction and Interpolation of Space-Time Continuous Systems

such as sensor networks, not only the physical properties need to be modelled but especially the
distributed properties. In particular, the dependency on the locations, and thus the topology of
the sensor network needs to be sufficiently considered.

The vector containing the spatial coördinates of the i-th sensor node is represented as rsik :=

[rsxk , rsyk ]T ∈ R2 in the two-dimensional case. Then, the node coördinates of the entire network
can be collected in the node location vector rMk ∈ R2·M

rMk :=
[
(rs1k )

T
(rs2k )

T
. . .

(
rsMk

)T
]T

∈ R2·M , (2.24)

where M is the number of considered nodes in the network. The mathematical model of
spatially distributed measurement system consists of two parts , (a) the measurement equation
and (b) the output equation, described in the remainder of this section.

Measurement equation The measurement equation describes the physical properties of the
individual nodes in the network. This equation relates the nominal value of measurements ŷik
at their respective node locations rsik to the value of the physical system pk(·), according to

ŷsik = hsik
(
pk(r

si
k )
)

+ vsik , (2.25)

where the uncertainties vsik ∼ N (·) are assumed to be zero-mean white Gaussian. The uncer-
tainties of the individual sensor nodes are possibly correlated with other nodes. This arises for
example from spatially distributed disturbances that affects more than one sensor node. The
covariance matrix Cv

k ∈ RM×M of the measurement noise vk is given as follows

Cov


 vs1k...
vsMk

 :=

Cs11 · · · Cs1M

... . . . ...
CsM1 · · · CsMM

 ,

whereM denotes the number of nodes contained in the sensor network. In general, the mapping
hsik (·) : R → R in the aforementioned measurement equation consists of nonlinear functions
characterizing the physical principle of the actual sensor nodes.

Output equation For the reconstruction of space-time continuous systems, it is essential to
characterize the distribution properties of the measurement system M, such as the location
of the individual nodes (topology of the network). This is described by means of the output
equation. The output equation relates the system state pk(·) at the measurement points directly
to the finite-dimensional state vector xk ∈ RNx , according to

pk(r
si
k ) =

Nx∑
j=1

Ψj(rsik )xjk , (2.26)

where Ψi(·) : R2 → R represents the value of the shape functions at the location rsik of the i-th
sensor node. It is noted that the shape functions Ψi(·) used here needs to be identical to the
functions in the finite expansion (2.4) used for the spatial decomposition.

Complete measurement model The complete measurement model for the reconstruction of
the space-time continuous system can be derived by plugging the output equation (2.26) into
the measurement equation (2.25). For simplicity and brevity, we assume that the individual
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Figure 2.12: (a) Components of the generative model of spatially distributed measurement systems for the estima-
tion of physical systems. The measurement equation relates the measurements ŷik to the space-time continuous state
p(rsik , tk), which is then related to the finite-dimensional state vector xk by the output equation. (b) Construction
of the measurement matrix Hk depending on the shape functions and the location of the individual sensor nodes.

sensor nodes directly measure the space-time continuous system pk(r
si
k ) at their respective

locations rsik . In this case, the measurement matrix Hk ∈ RM×Nx for the entire network is
assembled by simply evaluating the individual shape functions Ψi(·) at the node locations rsik .
This leads to following linear measurement model

ŷ
k

=

Ψ1(rs1k ) · · · ΨNx(rs1k )
... . . . ...

Ψ1(rsMk ) · · · ΨNx(rsMk )


︸ ︷︷ ︸

=:Hk(rMk )

xk + vk , (2.27)

where vk denotes the measurement noise and M represents the number of sensor nodes used
in the network. The measurement model (2.27) directly relates the nominal values ŷ

k
∈ RM of

the measurements to the state vector xk ∈ RNx . It is obvious that the measurement matrix Hk

merely depends on the location vector rMk containing the individual node locations. For illus-
tration purposes, the structure of the measurement matrix Hk and in particular its dependency
on the node locations is illustrated in the following example.

Example 2.3: Structure of the measurement model
In this example, we clarify the structure of the measurement matrix Hk subject to piecewise linear
shape functions, for simplicity purposes only for the one-dimensional case. The entire solution
domain Ω ∈ R is decomposed into 3 subdomains and appropriate piecewise linear shape functions
Ψi(·) : R → R are defined on each subdomain Ωi. Assuming a network consisting of two nodes
that are located at rs1k and rs2k , then the measurement model is given as follows

[
ŷs1k
ŷs2k

]
=


Ψ1(r̂s1k )︷ ︸︸ ︷

c1
1 + c1

2 r̂
s1
k

Ψ1(r̂s1k )︷ ︸︸ ︷
c1

3 + c1
4 r̂

s1
k 0 0

0 c2
1 + c2

2 r̂
s2
k︸ ︷︷ ︸

Ψ2(r̂s1k )

c2
3 + c2

4 r̂
s2
k︸ ︷︷ ︸

Ψ2(r̂s2k )

0



x1
k

x2
k

x3
k

x4
k

+ vk .
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The constants cji arise from the definition of the piecewise linear shape functions in each subdomain,
i.e., the geometry of the applied grid for the finite elements. The construction of the measurement
matrix Hk is shown in Figure 2.12 (b). Basically, the shape functions Ψi(r) are evaluated at the
locations rsik and define respective entries in the measurement matrix. The extension to orthogonal
polynomials [182] and trigonometric functions [116] can be derived in a straightforward fashion. �

2.5 Process of State Reconstruction

This section is devoted to a detailed description of the state reconstruction process for physical
systems that are observed by spatially distributed measurement systems. Here, the parameters
in the system model (2.22) and the measurement model (2.27) are assumed to be precisely
known. The introduced reconstruction process allows the derivation of estimates not only at
the actual measurement points but also at non-measurement points, i.e., between the individual
nodes in the sensor network. It is shown that assuming a precise mathematical model, the space-
time continuous system can be extrapolated and interpolated between the measurements in a
systematic and physically correct manner.

In general, depending on the structure of the model description, i.e., being linear or nonlin-
ear, an appropriate estimator has to be chosen. For the state reconstruction based on linear
partial differential equations (1.2), the system model (2.22) and the measurement model (2.27)
are linear in terms of the random state vector xk ∈ RNx . Thus, it is sufficient to use linear
estimators, such as the Kalman filter, in order to obtain the best possible estimate, and even-
tually reconstruct the entire physical system. In the case of a nonlinear system model and/or
a nonlinear measurement model, the employment of nonlinear estimators is necessary1. In the
next chapter, an efficient nonlinear estimator is introduced exploiting linear substructures in
the mathematical model (2.22) for such cases. For a detailed description of state-of-the-art of
nonlinear estimation approaches refer to Section 3.1.

Based on the (linear) system and the (linear) measurement model, the actual state reconstruc-
tion process consists of three steps : (1) the prediction step, (2) the measurement step, and
(3) the conversion back into the continuous space. These steps are alternately performed.

2.5.1 Prediction Step

The purpose of the prediction step is to propagate the current estimate of the finite-dimensional
state vector xk ∼ f e(xk) through the system equation (2.22) to the next time step k + 1. This
leads to an estimate for the predicted state vector xk+1 ∼ fp(xk+1) in terms of the predicted
density function. For the state reconstruction, we assume a precise mathematical model (2.22)
of the underlying space-time continuous system, i.e., precisely known parameter vector ηP

k
.

For linear dynamic systems characterized by Gaussian densities , the stochastic nature of the
random vector xk is uniquely characterized by the mean and covariance matrix. Hence, the
predicted probability density function xk+1 ∼ N

(
xk+1 − x̂

p
k+1,C

p
k+1

)
can be calculated by

x̂pk+1 = Ak(η
P

k
) x̂ek + Bu

k(η
P

k
) ûk + Bb

k(η
P

k
) b̂k ,

Cp
k+1 = Ak(η

P

k
) Ce

k

(
Ak(η

P

k
)
)T

+ Bu
k(η

P

k
) Cu

k

(
Bu
k(η

P

k
)
)T

+ Bb
k(η

P

k
) Cb

k

(
Bb
k(η

P

k
)
)T

, (2.28)

1 This is the case for the simultaneous state reconstruction and parameter identification of
space-time continuous systems, see Chapter 4.
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Figure 2.13: Overview of the model-based reconstruction process for space-time continuous physical systems. The
process consists of the prediction step, the measurement step (filtering), and a so-called interpolation step. Thanks
to the model-based approach, the extrapolation and the interpolation between the actual measurement points can
be achieved in a systematic and physically correct fashion.

where x̂ek ∈ RNx and Ce
k ∈ RNx×Nx are the mean and the covariance matrix of the estimated

state vector xk from the previous processing step. The covariance matrix of the system input
vector uk and the boundary vector bk are given by Cu

k := 1
∆t

C̃u(tk) and Cb
k := 1

∆t
C̃b(tk),

respectively; see Section 2.3.5.

There are several features to note about the prediction step (2.28) that is necessary for the state
reconstruction of space-time continuous systems. It is obvious that the structure of the system
matrix Ak(η

P
k

) and the input matrix Bk(η
P
k

) merely depends on the process parameter vector
ηP
k

containing the parameters in the partial differential equation (2.1). This means, for the
accurate reconstruction by means of a sensor network, parameters characterizing the behavior
of the physical system need to be precisely known. Due to such dependencies, the deviation of
the model description from the true behavior leads to poor estimation results; see Section 2.6.2.
On the other hand, thanks to the dependency of the model description on such parameters, the
identification problem can be stated as a simultaneous state and parameter estimation problem.
Hence, the space-time continuous system can be reconstructed and unknown parameters can
be identified in a simultaneous fashion. The method for the simultaneous reconstruction and
parameter identification (SRI method) is introduced in Section 4.3.

2.5.2 Measurement Step (Filtering)

For the purpose of improving the estimate of the space-time continuous system, measurements
are incorporated into the reconstruction process. The distributed measurements ŷ

k
∈ RNy

are related to the state vector xk ∈ RNx via the measurement model (2.27) derived in the
previous section. Assuming a precise measurement matrix H(ηS

k
), i.e., precisely known node

locations and sensor characteristics, the mean x̂ek and covariance matrix Ce
k of the estimated
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finite-dimensional state vector xk ∼ N (xk − x̂ek,Ce
k) can be derived by

x̂ek = x̂pk + Cp
k

(
Hk(η

S

k
)
)T
(
Cv + Hk(η

S

k
)Cp

k

(
Hk(η

S

k
)
)T
)−1 (

ŷ
k
−Hk(η

S

k
)x̂pk

)
,

Ce
k = Cp

k −Cp
k

(
Hk(η

S

k
)
)T
(
Cv + Hk(η

S

k
)Cp

k

(
Hk(η

S

k
)
)T
)−1

Hk(η
S

k
)Cp

k , (2.29)

where x̂pk ∈ RNx and Cp
k ∈ RNx×Nx are respectively the predicted mean and the predicted co-

variance matrix of the preceding prediction step. The matrix Cv denotes the possibly correlated
covariance matrix of the individual nodes in the entire sensor network.

There are several properties of the measurement step (2.29) essential for the estimation of space-
time continuous systems. The structure of the measurement matrix Hk(η

S
k
) merely depends on

the location ηS
k
of the individual sensor nodes. This means, for the accurate state reconstruction

of the physical system, the node locations are required to be precisely known. Due to this
dependency, deviations of true locations from the modeled ones lead to poor estimation results.
On the other hand, thanks to the dependency of the measurement matrix Hk(η

S
k
) on the node

locations, the localization problem can be reformulated as a simulatneous state and parameter
estimation problem. By this means, the distributed physical system can be reconstructed and
the sensor nodes can be localized in a simultaneous fashion. The method for the simultaneous
reconstruction and node localization (SRL method) is introduced in Section 4.4.

By means of the prediction step (2.28), the finite-dimensional state vector xk characterizing the
space-time continuous state p(r, t) is spatially correlated in a natural way based on the physical
model. In the measurement step (2.29) these correlations are exploited to obtain an improved
estimate of the space-time continuous system not only at the measurement points but also
between the individual nodes. This means, the individual measurements are interpolated in a
systematic and physically correct manner. Compared to classical interpolation methods (such
as Kriging methods), this fact is certainly a novelty and leads to physically correct interpolation
results while considering uncertainties in the model and the measurements.

2.5.3 Conversion into Continuous Space

The prediction step propagates the finite-dimensional state vector xk ∼ f e(xk) over time while
exploiting a mathematical model of the space-time continuous system. Then, the measurement
step incorporates the measurements received from the sensor network. In order to obtain an
estimate of the distributed state pk(r) ∼ f e(pk|r) at any desired spatial coördinate, the state
vector xk needs to be converted back into the continuous-space. This conversion can also be
regarded as a so-called interpolation step deriving estimation results between the locally defined
estimated states xik. This step eventually results in the density function f e(pk|r), which can
be seen as a conditional probability density function conditioned on the spatial coördinate r.
Hence, the space continuous state pk is characterized in the entire domain. The conversion can
be achieved as follows

pk =
Nx∑
i=1

Ψi(r)xik = Ψ(r)T · xk , (2.30)

where Ψi(r) : R2 → R denote the same shape functions used for the conversion of the space-
time continuous system. It is emphasized that the mapping (2.30) consists of a system of linear
equations merely depending on the shape functions Ψi(·) used during the spatial decomposition
and the spatial coördinate r in the continuous space.
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Figure 2.14: The conversion of the random state vector xk into the continuous space results in a description
of the distributed state pk(r) in terms of the density function fe(pk|r) (in this thesis only Gaussian density and
Gaussian mixture density are considered). Visualization of an example for the estimation result of the model-based
reconstruction process: (a) distributed mean p̂ek(r) in the entire solution domain, sectional drawing at x = 0.5 in
terms of (b) density function and (c) mean and confidence interval (3σ-bound).

Based on the linear mapping (2.30) the density function characterizing the space-continuous
state pk can be derived according to

f e(pk|r) =

∫
RNx

fC
(
pk −Ψ(r)Txk

)︸ ︷︷ ︸
fC(pk|xk,r)

f e(xk) dxk , (2.31)

where fC (·) denotes the transition density for the conversion process. In Figure 2.14 the density
function f e(pk|r) resulting from the conversion is visualized, and respective sectional drawings
of the density are shown. The remainder of this section is devoted to the actual derivation of
the density function (2.31) for different types of prior density function f e(xk) characterizing the
state vector xk. In this work, Gaussian densities (for the state reconstruction) and Gaussian
mixture densities (for the state and the parameter estimation) are of special interest.

Gaussian density In the case of the state reconstruction with precisely known model param-
eters the estimated finite-dimensional state vector xk is uniquely characterized by a Gaussian
density. The density function f e(pk|r) can be derived in the entire domain as follows

pk ∼ f e(pk|r) = N (pk − p̂ek(r), Ce
k(r)) ,

where N (·) denotes the Gaussian density with respective mean and variance conditioned on
the spatial coördinate r ∈ R2. Thanks to the linear characteristic of the mapping (2.31), the
mean p̂ek(·) and the variance Ce

k(·) are given by

p̂ek(r) = Ψ(r)Tx̂ek ,

Ce
k(r) = Ψ(r)T Ce

k Ψ(r) ,

which uniquely represent the stochastic of the underlying physical system. It is obvious that
p̂ek(·) and Ce

k(·) depend on the spatial coördinate r, and thus characterize the distributed mean
and distributed variance of the entire random field in the area of interest.
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Chapter 2. Reconstruction and Interpolation of Space-Time Continuous Systems

Gaussian mixture density For the state and parameter estimation of space-time continuous
systems, the density function f e(xk) representing the finite-dimensional state vector xk turns
out to be a non-Gaussian density function; see Chapter 4. In this work, this density is modelled
as a Gaussian mixture density due to its properties as a universal approximator,

f e(xk) =
N∑
i=1

wikN
(
xk − x̂eik ,Cei

k

)
,

where wik, x̂
ei
k , and Cei

k respectively are the weights, the mean, and the covariance matrix of
the individual Gaussian components. The variable N denotes the number of used components.
Then, the density function f e(pk|r) is a Gaussian mixture density according to

pk(r) ∼ f e(pk|r) =
N∑
i=1

wikN
(
pk − p̂eik (r), Cei

k (r)
)
, (2.32)

where the mean p̂eik (·) and variance Cei
k (·) of the individual components are given by

p̂eik (r) = Ψ(r)T x̂eik ,

Cei
k (r) = Ψ(r)T Cei

k Ψ(r) . (2.33)

This equation can be used to derive the stochastic properties in terms of the density function
for the space-time continuous system in the entire solution domain r ∈ Ω.

2.6 Simulation Results

In this section, the performance of the proposed model-based state reconstruction is demon-
strated based on the convection-diffusion system (2.1). This is achieved by the rigorous in-
vestigation of different simulated case studies interesting for sensor network applications. The
purpose is to emphasize the clear advantage of a model-based approach compared to interpo-
lation methods not using any physical background knowledge and to show the novel prospects
for sensor network applications. In particular, the following case studies are investigated:

1. The first simulation study shows the performance of the state reconstruction in the case
of a precisely known model description. To be more specific, all the parameters in the
stochastic partial differential equation (2.1), the location of the individual measurement
points, and the parameters of the space-time continuous input are precisely known.

2. In the second case study, the degradation of the reconstruction performance caused by
parameter deviations in the mathematical model (2.1) are demonstrated. The purpose is
the motivation for simultaneous state reconstruction and parameter identification methods
(see Chapter 4) in order to obtain accurate interpolation results.

3. The third simulated case study is devoted to the investigation of the effect of the node
locations on the reconstruction error. This clearly shows the necessity for more sophis-
ticated planning algorithms in order to find optimal measurement locations leading to
optimal reconstruction and identification results. The derivation of such techniques is not
considered in this thesis, rather see [22, 167, 169].
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2.6.1 Simulated Case Study 1: Precise System Description

In this case study, the performance of the reconstruction method using physical background
knowledge is demonstrated in the case of a precisely known mathematical model. The under-
lying space-time continuous physical system is described in the following.

Example 2.4: State reconstruction of space-time continuous physical systems
Throughout this section, we assume the underlying physical system to be governed by the two-
dimensional convection-diffusion equation (2.1), introduced in Example 2.1. The process parameters
of the respective stochastic partial differential equation are given by:

Dirichlet/Neumann boundary conditions gD = 20 ◦C , gN = 0 ◦Cm−1

Model parameters of physical system αtrue = 0.8m2 h−1 , γtrue = 1m3 ◦C cal−1

Homogenous convection field v(r, t) =
[
8 , 8

]T mh−1

Space-time continuous system input ŝ(r, t) = 103

(
e−

(0.5−x̂)2

0.1
− (0.5−ŷ)2

0.0005 + e−
(1.5−x)2

0.0005
− (1.5−y)2

0.1

)
Cs(r, t) = 0.5 cal2 m−6 h−2

The two-dimensional L-shaped solution domain Ω ∈ R2, boundary conditions, and the location of
the system input s(r, t) are depicted in Figure 2.4. The individual sensor nodes in the spatially
distributed measurement system are randomly deployed in the considered solution domain Ω. The
stochastic partial differential equation (2.1) including its density representation is converted into a
lumped-parameter time-discrete system (2.22) based on piecewise linear shape functions, i.e., using
the finite-element method. The parameters of the conversion process are assumed to be given by
Nx = 833, Nel = 1536 (spatial decomposition) and ∆t = 0.001 h (time discretization constant).
Similar to the conversion of the stochastic partial differential equation (2.1), the corresponding
noise term of the system input s(r, t) represented by the mutually independent spatially distributed
variance Cs(r, t) needs to be converted. In the homogeneous case, this conversion can be specifically
achieved by using (2.13), (2.14) and (2.23). The covariance matrix of the boundary condition noise is
assumed to be C̃b(tk) = 0.05 ·INx cal

2 m−6 h−2 and the covariance matrix of the spatially distributed
measurement system is given by Cv = 0.5 · INy K2. �

By means of the resulting generative system model (2.22) and the generative measurement
model (2.27) with aforementioned parameters, it is possible to design the state reconstruction
process based on a linear Bayesian estimator, such as the Kalman filter. The numerical solution
of the physical system (2.1) in the deterministic case, i.e., without process noises, is visualized
for different time steps in Figure 2.15. Compared to this deterministic case, typical realizations
of the stochastic case with aforementioned process noise parameters are shown in Figure 2.16.

The goal is the reconstruction of the space-time continuous system state p(r, t) using both a
mathematical model describing the physical characteristic and measurements obtained from
a sensor network. It is important to emphasize that the novelty of the proposed approach
is to consider remaining uncertainties arising from noisy measurements and occuring in the
mathematical model. For the pure reconstruction of the entire distributed system using a sensor
network, we assume the model parameters to be precisely known. The simulation results are
depicted in Figure 2.17 and in Figure 2.18.
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Figure 2.15: Simulation setup: Numerical solution of the deterministic physical system considered for the
verification of the reconstruction process. The solution p(x, y) of the physical system is visualized in the entire
L-shaped solution domain for different time steps: (a) k = 10, (b) k = 50, and (c) k = 200.
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Figure 2.16: Simulation setup: Realization of the space-time continuous system considered for the verification
of the reconstruction process. The solution p(x, y) of the physical system is visualized in the entire L-shaped solution
domain for different time steps: (a) k = 10, (b) k = 50, and (c) k = 200.
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2.6.2 Simulated Case Study 2: Incorrect Process Parameters

In the previous case study, the parameters of the stochastic partial differential equation (2.1)
exploited for the state reconstruction were assumed to be precisely known. Hence, the entire
physical system can be accurately reconstructed, even at non-measurement points thanks to
the model-based and systematic interpolation approach.

In many cases, however, the underlying true physical system deviates from the nominal math-
ematical model, basically caused by neglecting particular physical effects or external distur-
bances. Furthermore, respective model parameters could vary over time without knowing the
exact dynamic behavior of such variations. In addition, due to the distributed characteristic of
the physical system, not only the states are distributed and inhomogeneous, but also the param-
eters decribing the dynamic behavior. Considering all these issues in the mathematical model
quickly increases the complexity of the model description, and thus the computational load.
On the other hand, neglecting these physical effects leads to a deviation of the mathematical
model and causes a degradation of the reconstruction performance. This means, for practical
applications a trade-off between accuracy and computational load needs to be found. In par-
ticular, the equations (2.28) and (2.29) used for the reconstruction process requires a rather
precise model of the underlying physical system and a precisely known uncertainty description.

If any of the aforementioned assumptions are violated, then the performance of the model-based
reconstruction process can quickly degrade. In this simulated case study, degradations of the
performance caused by assuming parameters in the stochastic partial differential equation (2.1)
that deviate from the true parameters are described by means of an example; in particular
the severe effect to the accuracy of the estimation result is shown. The degradation of the
results undoubtedly justifies the simultaneous approach for the state reconstruction and the
identification of possibly deviating parameters (introduced in Chapter 4).

Example 2.5: Reconstruction with incorrect process parameters
In this example, we consider a physical system that is represented by the two-dimensional convection-
diffusion equation (2.1) with respective model parameters as described in Example 2.4. The state re-
construction is performed on the basis of the prediction step (2.28) and the measurement step (2.29)
with the nominal parameter set for the diffusion coefficient αmodel according to

αmodel ∈ {0.5 , 0.6 , . . . , 1.5} m2 h−1 ,

where the true parameter is assumed to be given by αtrue = 0.8m2 h−1. The distributed measurement
system consists of different number of nodes randomly deployed in the domain of interest,

S ∈ {2 , 3 , 4 , 5 , 6 , 8 , 10 , 15 , 20 , 25 , 30 , 40 , 50 , 60 , 80 , 100} .

The reconstruction process is performed for a simulation time ofNt = 200 time steps (tsim = 20min).
For each combination of the modelled diffusion coefficient αmodel and the number S of randomly
deployed nodes, 50 independent Monte Carlo simulation runs have been performed. This results in
NMC = 50 true realizations x̃ik of the state vector characterizing the distributed state pk(r). �

Based on the reconstruction process described in Section 2.5 the entire space-time continuous
system can be reconstructed using the nominal mathematical model descriptions. The esti-
mated finite-dimensional state vector xk can be directly derived from (2.28) and (2.29). The
mean êxk and variance Crmse

x of the root mean square error exk (rmse) of the state vector xk, and
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(a) Simulation setup and location of sensor nodes
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Figure 2.17: Simulated case study 1 (precise model): (a) Location of sensor nodes for the depicted simulation
results and location of the profile for the sectional drawings. (b) Typical results of the reconstruction process at
time step k = 200; spatially distributed mean p̂k(x, y) and spatially distributed variance Ck(x, y) in the entire
solution domain Ω. (c) Sectional drawing of the reconstruction result at x = 0.5m over time.
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Figure 2.18: Simulated case study 1 (precise model): (a) Estimation results at a measurement point (x =
0.5m, y = 0.5m) and at a non-measurement point (x = 0.5m, y = 0.6m); depicted are a realization (red),
the solution of the deterministic case (green dotted), the mean estimate (blue), and the 3σ-bound (gray shaded).
(b) Sectional drawing of the estimation result at x = 0.5m for different time steps k = 5, 20, 60. It is obvious that
the reconstruction results (interpolation) between the individual sensor nodes improves over the time, thanks to the
exploitation of the physical model and the measurements obtained from the network.
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Figure 2.19: Simulated case study 2 (deviating model): Reconstruction results for using a mathematical
model deviating from the true physical system, e.g., the modeled diffusion coefficient αmodel deviates from the true
coefficient αtrue. (a) Mean of root means square error êxT (rmse) averaged over time versus the diffusion coefficient
αmodel and the number S of sensor nodes. (b) Detailed figure of the rmse for αmodel ∈ {0.8, 1.1, 1.4} m2 h−1.

the error averaged over time are approximated by calculating according to

êxk =

√√√√ 1

NMC

NMC∑
i=1

‖x̃ik − x̂eik ‖ , Crmse
x =

1

NMC − 1

NMC∑
i=1

(exik − êxk)2 , êxT =
1

Nt

Nt∑
k=1

êxk ,

(2.34)
where x̂eik denotes the mean of the estimated state vector and x̃ik is a specific realization. The
simulation results for the state reconstruction with incorrect model parameters is shown in
Figure 2.19. It can be clearly seen that the more the nominal parameter αmodel deviates from
the true parameter αtrue, the more the performance of the estimation results degrades. Roughly
speaking, the physical system is less accurately interpolated between the individual measure-
ment points in the case of incorrect model parameters. Using a higher number of sensor nodes
also can improve the reconstruction result in the case of deviating model description to a certain
degree. Due to a higher number of sensor nodes (i.e., denser sensor network), the distance be-
tween the individual measurement points automatically decreases, and thus basically, a shorter
distance needs to be interpolated. An additional explanation of the simulation result is that the
more information obtained from the measurement system, the less the reconstruction result de-
pends on the (possibly deviating) mathematical model description. However, in this simulated
case study, where the sensor network consists of more than S = 100 nodes, the reconstruction
error still turns out to be quite high in the case of a deviating model description. This certainly
shows the necessity of simultaneous approaches for the interpolation (i.e., state reconstruction)
and the identification of possibly deviating model parameters. In particular, this leads to an
improved performance of the reconstruction process while using a decreased number of sensor
nodes; see Section 4.3.
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Figure 2.20: Simulated case study 3 (effect of node locations): Visualization of the variance field Ck(x, y) at
time step k = 300 for a sensor network consisting of (a) 3 nodes, (b) 5 nodes, and (c) 10 nodes. The variance in
the close surrounding to the sensor nodes is much lower than further away. In addition, it is obvious that besides
the number of used sensor nodes, their optimal placement plays an important role in deriving a precise estimation
result (low variance) of the entire space-time continuous system.

2.6.3 Simulated Case Study 3: Effect of Sensor Locations

This simulated case study is devoted to an investigation of the effect of measurement locations
on the accuracy of the reconstruction result. In the sense of space-time continuous systems,
methods for optimal sensor placement make it possible to derive optimal sequences and lo-
cations. Then, the costs of measurements can be minimized for a given reconstruction error.
The relationship between such planning methods and the model-based reconstruction method
proposed in this research work is schematically visualized in Figure 1.1. The aim of such tech-
niques, as introduced in [22, 169], is to derive the best possible measurement parameters for
performing future measurements. The term best possible here means: maximum information
gain under certain constraints, such as limited energy or number of nodes, leading to accu-
rate reconstruction results [112, 167]. It is obvious from Figure 2.20 that not only increasing
the number of used sensor nodes but especially selecting appropriate locations leads to more
accurate results, i.e., estimates with a lower variance in the entire area of interest. Here, the
clear advantage of model-based reconstruction methods using physical background knowledge
becomes obvious, because only then the necessity of gathering information at non-measurement
points can be evaluated in a systematic and physically correct fashion.

Example 2.6: Effect of sensor locations
In this example, the effects of sensor locations on the accuracy of the state reconstruction is investi-
gated and the benefits of optimum locations is demonstrated. As the underlying physical system, the
system described in Example 2.4 is chosen, and the simulation is performed forNt = 80 (tsim = 8min)
time steps. The initial state vector for the reconstruction process is assumed to be deviated from
the realization, i.e., given by x̂0 = 0. As potential sensor locations, all individual points on a regular
grid (with a grid size of ∆x = 0.05m and ∆y = 0.5m) were tested by performing for each assumed
location NMC = 20 state reconstruction experiments. �

In Figure 2.21, the root mean square error (rmse) according to (2.34) of the state reconstruction
versus the assumed node location is depicted. As predicted, the best possible location of one
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Figure 2.21: Simulated case study 3 (effect of node locations): Visualization of the mean of the state vector
root mean square error (rmse) averaged over time versus the node location. (a) The physical system is driven only
by a diffusion process. In this case the node location rsopt = [0.6 , 1.35]T m results in the best reconstruction results
with the least error. (b) The system is driven by diffusion process and convection field. Here, the best location
turns out to be rsopt = [0.6 , 1.1]T m.

single sensor node for taking measurements is simply the center of the area of interest Ω. Also
note that the accuracy of the estimates is almost twice as great for the optimal point as for
the outermost tested locations. That indicates even sophisticated and more involved methods
of sensor placement can be worthwhile for the observation of space-time continuous physical
systems, especially when precise reconstruction results are of interest. In the simulated case
study the effect of only one sensor node was considered. The investigation of effects in the
case of more than one sensor node and the derivation of methods for optimal placements and
sequences is out of the scope of this thesis, and thus not considered here. Rather see publications
on this particular topic, such as [87, 112, 138, 167, 169].

2.7 Summary and Discussion

This chapter introduces the methodology for the systematic state reconstruction of space-time
continuous systems; considered are systems that are governed by stochastic partial differential
equations. In particular, it is described how finite-dimensional probabilistic models are derived
characterizing the dynamic and the distributed properties of the physical system as well of the
measurement system. Then, based on the finite-dimensional system description, a Bayesian
estimator is designed for reconstructing the physical system in the entire area of interest, even
at non-measurement points. Here, it is emphasized that the conversion of linear stochastic
partial differential equations always results in a linear lumped-parameter system. The dis-
tributed properties of the physical system is then described by respective coupling terms. The
entire reconstruction process is presented by means of a specific physical phenomenon that is
governed by convection-diffusion system. However, the extension to higher dimensions and to
physical systems governed by more sophisticated linear stochastic partial differential equations
is conceptually straigthforward.

Compared to classical interpolation techniques, the novelty of the proposed method is the rig-
orous exploitation of additional background knowledge in terms of mathematical models, for
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example about the physical behavior. Based on such an approach, the interpolation and also
extrapolation of spatially distributed measurements is achieved in a systematic and physi-
cally correct fashion. Moreover, throughout the entire process the uncertainties arising in the
modelling process and inherently existing in the measurements are systematically considered.
By this means, a measure of the reconstruction result is obtained in terms of a space-continuous
probability density function representing the system state including its uncertainty description.
The application of such model-based reconstruction provides novel prospects for several addi-
tional tasks in various sensor network applications, such as optimal sensor placement, parameter
and system identification in order to improve the knowledge about the physical system being
monitored. Especially tackling the problem of system identification is essential for self-organized
and autonomous behavior in a completely unknown surrounding. The methods proposed in this
chapter lays the foundation for such additional tasks in sensor network applications.

The drawback of the derived technique is the necessity of a model description with sufficiently
precise model parameters. It is shown by a simulation study that deviations in the mathe-
matical model leads to degradations of the reconstruction result. This makes sophisticated
identification methods necessary. Due to the fact that for space-time continuous systems the
proposed parameter identification process leads to a high-dimensional and nonlinear estimation
problem, effficient estimation methods are necessary. For that reason, a novel estimator that
is based on the decomposition of the nonlinear estimation problem into a linear part and a
nonlinear part is introduced in Chapter 3. By this means, the high-dimensional linear sub-
structure naturally existing in the model of space-time continuous systems can be exploited for
the identification of such systems; see Chapter 4. By using methods for the identification of
an appropriate mathematical model, as introduced in Section 4.3, it would be possible for the
sensor nodes to identify, observe, and reconstruct unknown distributed physical systems. In
addition, it is possible to derive novel passive localization techniques based on the local obser-
vation of physical systems, and thus without the necessity of additional infrastructure (such as
a global positioning systems); see Section 4.4.
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CHAPTER 3

Estimation of Nonlinear Dynamic Systems
with Linear Substructures

This chapter addresses the framework for an efficient estimator for nonlinear systems with lin-
ear substructures, so-called mixed linear/nonlinear dynamic systems. Based on a novel density
representation — sliced Gaussian mixture density — the decomposition into a (conditionally)
linear and nonlinear estimation problem is derived. The proposed Sliced Gaussian Mixture
Filter (SGMF) consists of a systematic approximation procedure that minimizes a certain dis-
tance measure, and thus allows the derivation of (close to) optimal and deterministic estimation
results. This leads to high-quality representations of the probability density function of the sys-
tem states. Compared to an estimator performing on the entire estimation problem at once,
the decomposition results in an overall more efficient estimation process.

The methods for the efficient state estimation by exploiting linear substructures in nonlinear
systems presented in this chapter were published at [170, 172, 181]. However, explanations and
the derivation of the estimator equations are stated in a considerably extended way and further
simulation results clarify the advantages compared to other estimators.

3.1 Related Work

Linear state estimation The estimation of the state that represents a dynamic system
from noisy measurements is a common task in many applications. The exact solution to this
problem can be found only in some special cases. For linear systems with Gaussian noise, the
Kalman filter [77] provides optimal estimation results in an analytic form. This is the case for
the state reconstruction of space-time continuous systems governed by linear partial differential
equations (1.2); see Section 2.5. However, since most systems cannot be truly regarded as
linear, linear estimators do not apply directly to most physical systems. For nonlinear systems
with non-Gaussian noise an analytic solution of the estimation problem cannot be derived and
exactly solving the problem within a Bayesian framework becomes computationally demanding.
Hence, approximation methods as described in the following are inevitable.

Estimation based on linearizations There exist a vast variety of approaches for the
state estimation of nonlinear systems. The well-known extended Kalman filter (EKF) [133]
is based on a local linearization of the nonlinear equations and the application of the stan-
dard Kalman filter to the resulting linearized equations. This filter was employed for various
application scenarios, such as localization and tracking, and the parameter identification of
space-time continuous physical systems [118, 154]. Due to the linearization of the nonlinear
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Sliced Gaussian Mixture Filter

Nonlinear system with
linear substructure

Linear problem
(high-dimensional)

Nonlinear problem
(low-dimensional)

(efficient and analytic)
Linear estimator (Kalman filter)

(accurate and systematic)
Nonlinear estimator (Dirac mixture)

Figure 3.1: Visualization of decomposing a nonlinear system with a linear substructure by means of the Sliced
Gaussian Mixture Filter (SGMF). The nonlinear estimation problem is decomposed into a linear part (application
of analytic estimator such as Kalman filter) and into a nonlinear part (application of accurate and systematic
nonlinear estimator such as Dirac mixture filter).

system, such estimators result in analytic equations that can be implemented in a straightfor-
ward and efficient fashion. However, for strongly nonlinear systems the errors occuring during
the linearization process lead to a divergence of the estimation results. Some properties of the
EKF can be found in [8, 132]. The so-called Gaussian Filters, such as the unscented Kalman fil-
ter (UKF) [72, 74, 142] or the extended approach proposed in [64], use deterministic samplings
of the true probability density function that characterizes the system state. Compared to the
extended Kalman filter, this offers an increased higher-order accuracy. The methods based on
a system approximation (EKF) and a density approximation (UKF) result in a single Gaussian
density. This type is often not sufficient for representing the underlying true density function.

Particle filter and Dirac mixture filter One possibility for increasing the performance
of the estimation result is to use a kind of sample representation for the probability density
function, like in particle filters (PF) [6, 8, 19]. In this filter framework, the density is represented
by a set of realizations, the so-called particles. This allows the point-wise analytic calculation
of the estimation problem. Due to complexity reasons, the samples are usually not drawn
from the underlying density function, instead so-called proposal densities are used. The main
drawbacks of particle filters are sample degenerations and impoverishments mainly caused by
positioning the individual particles at unfavorable locations with less support for approximating
the underlying density function. Furthermore, in most applications, a high number of particles is
necessary to achieve sufficiently accurate estimation results. A more involved and sophisticated
way for increasing the performance using discrete density representations is the so-called Dirac
mixture filter (DMF) [59, 126]. This estimator is based on the systematic positioning of the
individual Diracs while minimizing a certain distance measure. By means of this systematic and
deterministic approach, the underlying probability density function can be usually represented
with less parameters and yields more accurate results with respect to the selected distance
measure.

Marginalized particle filter In many applications, the nonlinear equations of the math-
ematical model contain linear substructures. For example, in navigation, localization [178],
tracking, robot mapping and localization, and parameter identification of space-time contin-
uous physical systems [181]. The performance of nonlinear estimators can be significantly
improved with respect to accuracy and implementation effort, when the linear substructure in
such systems is rigorously exploited during the estimation process. This can be achieved by the
decomposition of the entire estimation problem into a linear problem and a nonlinear problem.
One possibility for exploiting linear substructures is the marginalized (or Rao-Blackwellized)
particle filter (MPF) [6, 25, 31, 92, 49]. Herein, the dimensionality of the estimation problem
is reduced by a marginalization over the linear subspace. Then, the remaining density is subse-
quently represented by particles. By this means, the standard particle filter is adopted to cope
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3.1. Related Work
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Figure 3.2: Visualization of the three stages of the Sliced Gaussian Mixture Filter (SGMF): (a) Decomposition
of the estimation problem by means of a special density representation, (b) the efficient procedure of the prediction
step and measurement step, and (c) the systematic reapproximation of the resulting Gaussian mixture density by
a sliced Gaussian mixture density.

with the reduced nonlinear estimation problem, whereas the Kalman filter is used to find the
optimal estimate for the linear subspace associated with each particle. In [78] the complexity
of the marginalized particle filter (MPF) is analyzed and a method for actually performing this
analysis is given. A comprehensive overview and references to the state-of-the-art about theory,
analysis, and various applications can be found in [50].

Drawbacks of PF and MPF Thanks to the exploitation of linear substructures during
the overall estimation process, the marginalized particle filter (MPF) undoubtedly improves
the performance in comparison to the standard particle filter (PF). However, the most severe
drawbacks still remain within this estimator framework. Similar to the standard particle filter,
special algorithms have to be achieved in order to avoid effects like sample degeneration and
impoverishment. In addition, the filter does not provide measures on how well the estimated
joint density actually represents the true density to be estimated. This means, for determining
which number of particles are high enough for a sufficient performance, there appears to be no
other way than actually simulating the entire estimation process. Another drawback is that the
framework of the marginalized particle filter as introduced in [78, 124, 123] is restricted to single
Gaussian densities in the linear subspace. This means, for the representation of multimodal
densities several particles would be necessary. It is well known that the particle filters are
often incapable of maintaining multimodality during the entire estimation process. Then, the
degeneration of single particles results in a loss of entire (possibly important) modes under
unfavorable circumstances. A possible solution to tackle this problem for the standard particle
filter are offered by mixture tracking methods that rely on clustering algorithms in order to
reposition the particles of a completely discrete density representation [143]. However, it is
not clear how such an operation translates into the mixed representation of the marginalized
particle filter. As it stands, there is no other interaction between the individual particles of
the marginalized particle filter than stemming from the resampling step after the measurement
update. In its standard implementation, this boils down to duplicating some samples while
discarding others.

The estimator – S liced Gaussian M ixture F ilter (SGMF) – proposed in this research work
leads to more accurate estimation results by combining the key idea of the Rao-Blackwellization
[25] with the systematic approach of the Dirac mixture filter [59, 126]; see Figure 3.1.
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3.2 Overview of the Sliced Gaussian Mixture Filter (SGMF)

In this chapter, a novel approach for the efficient recursive estimation of nonlinear systems
with linear substructures is introduced. Besides the exploitation of the linear substructure
by decomposing the estimation problem (as in the marginalized particle filter), there are two
key features leading to a significantly improved estimation result: (a) the definition of a novel
general-purpose density representation for the decomposition of the estimation problem and
approximation purposes, and (b) a systematic and deterministic (nonrandom) density approx-
imation for a recursive estimation process. Basically, within this framework, sliced Gaussian
mixture densities are used as density representations. The resulting S liced Gaussian M ixture
F ilter consists of three stages. In the remainder of this section, the stages and the novelties
are briefly described; see also Figure 3.2 for the visualization of the individual stages.

1) Decomposition: In the first stage, the general nonlinear estimation problem is decom-
posed into a conditionally linear problem (usually high-dimensional state estimation) and a
nonlinear problem (usually lower-dimensional parameter identification). The decomposition
during the estimation process can be achieved by means of a novel density representation, the
sliced Gaussian mixture densities. Basically, this density consists of a discrete representation
(Dirac mixture) in the nonlinear subspace and a continuous representation (Gaussian mixture)
in the linear subspace; see Figure 3.2.

2) Decomposed estimation step: Based on the previous decompostion into a conditionally
linear and nonlinear estimation problem, both the prediction step and the measurement step
can be performed with an overall more efficient performance. This means, once the slices with
the Gaussian mixture components have been positioned, the predicted and estimated density in
the linear subspace can be computed in an efficient and analytic fashion (using a set of Kalman
filters). The estimation in the nonlinear subspace is performed using nonlinear estimators,
such as the Dirac mixture filter (DMF) [59, 126]. The posterior density function turns out
to be a Gaussian mixture density that is continuous both in the linear and in the nonlinear
subspace. Thus, the subsequent reapproximation procedure can take full advantage of the
complete knowledge about the joint density being approximated.

3) Systematic reapproximation: The estimation based on the sliced Gaussian mixture den-
sities leads to a density representation consisting of Gaussian mixtures in all subspaces. In
order to bound the complexity, the resulting continuous probability density needs to be reap-
proximated by means of density slices. The positioning of the slices is performed in a systematic
and determinstic (nonrandom) fashion that minimizes a specific distance measure between the
true probability density function and the density to be approximated. Besides providing a mea-
sure for the evaluation of the approximation performance, this results in less parameters that
are necessary for a sufficient density representation. Roughly speaking, the density slices are
positioned exactly at the locations with most support for the approximated density function.
Less density slices, in addition, means that the application of fewer Kalman filters is required
for the linear subspace, which is of special interest for high-dimensional state vectors (e.g.,
space-time continuous physical systems). Furthermore, the final positions of the density slices
are not independent, and therefore, a kind of interaction between them is enforced in a natural
way. There are different approaches for the actual derivation of an (exactly or almost) optimal
solution to the approximation problem.
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Example 3.1: Considered model structure for the SGMF
The key idea of decomposing the estimation problem by sliced Gaussian mixture densities and
the deterministic reapproximation can be applied to general dynamic systems occuring in various
application scenarios. However, in order to show the novelties of the estimation approach, a specific
system structure is considered similar to the structure of the state and parameter estimation of
space-time continuous systems. In particular, it is similar to the identification of process parameters,
the localization of individual nodes based on local measurements, and the localization of sources
and leakages; compare the structure given in Section 4.1. The following nonlinear dynamic system
with a linear substructure is considered,

xk+1 = Ak(ηk)xk + Bk(ηk) (ûk +wx
k) ,

η
k+1

= ak(ηk) +wη
k , (3.1)

where xk ∈ RNx and η
k
∈ RNη denote the linear and nonlinear substate vectors being decomposed

by the sliced Gaussian mixture density. For simplicity reasons, the noise terms wx
k and wη

k are
assumed to be zero-mean white Gaussian with following covariance matrix

Cov
{[
wx
k

wη
k

]}
=

[
Cx
w 0

0 Cη
w

]
= Cw , (3.2)

which means that the process noises in linear and nonlinear subspace are mutually independent.
Furthermore, the structure of the measurement model is given by

ŷ
k

= Hk(ηk)xk + hk(ηk) + vk . (3.3)

where the noise term vk is assumed to be zero-mean white Gaussian noise with covariance matrix Cv.
The structure of the considered system description is shown in Figure 3.4 (a). This model structure
is quite often referred to as a conditionally linear dynamic model [31], which means, given the
trajectory of the nonlinear state vector η

k
, the system can be regarded as linear. �

3.3 Density Representation

Joint probability density function By employing a special density representation, the esti-
mation problem based on the nonlinear system description (3.1) and (3.3) can be decomposed
into a (conditionaly) linear and nonlinear problem. This density function consists of a discrete
function in the nonlinear subspace η

k
∈ RNη (parameter space) and a continuous function in

the linear subspace xk ∈ RNx (state space). To be more specific, the sliced Gaussian mixture
density is represented as follows

f(xk, ηk) :=

MD∑
i=1

αik δ(ηk − ξ
i

k
)︸ ︷︷ ︸

Dirac mixture

f(xk|ξik)︸ ︷︷ ︸
Gaussian mixture

, (3.4)

where δ(·) denotes Diracs’ delta distribution and αik ∈ R+ are their corresponding weighting
coefficients. The variable MD denotes the number of density slices used for representing the
system state and parameters. The notation and the structure of the density (3.4) is visualized in
Figure 3.3. The density parameters ξi

k
∈ RPη can be regarded as the positions of the individual

density slices and MD denotes their number.
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Figure 3.3: Notations and visualization of sliced Gaussian mixture densities consisting of Dirac mixtures in
nonlinear subspace η

k
and Gaussian mixtures in linear subspace xk.

Discrete marginal density (nonlinear subspace) The marginal density function character-
izing the random vector η

k
∼ f(η

k
) in the nonlinear subspace is given by the following Dirac

mixture representation

f(η
k
) =

MD∑
i=1

αikδ(ηk − ξ
i

k
) ,

MD∑
i=1

αik = 1 , αik ≥ 0 , (3.5)

where αik ∈ R+ and ξi
k
represent the weights and positions of the Dirac function δ(·), respec-

tively. The Dirac mixture function (3.5) can be used to represent arbitrary continuous density
functions and can be exploited for deriving an efficient process for the prediction and measure-
ment step of general nonlinear systems [59, 126]. Basically, the discrete property of the density
representation (3.5) is responsible for decomposing the estimation problem. Roughly speaking,
by fixing the value of the parameter vector η

k
for the nonlinear subspace, the estimation prob-

lem of the system structure (3.1) and (3.3) turns out to be a linear problem. This means, for
a set of discrete values for η

k
, which is equal to the Dirac mixture density representation, the

estimation problem can be solved by a set of linear estimators; as shown in Section 3.4.

Continuous marginal density (linear subspace) In general, the density along the individual
slices, i.e., in the nonlinear subspace η

k
, can be represented by any continuous density function.

In this thesis, Gaussian mixture densities are employed due to their properties as a universal
approximator for arbitrary density functions [4]. Then, the density function for the (conditional)
linear subspace xk ∼ f(xk|ξik) is given by

f(xk|ξik) =

M i
G∑

j=1

βijk N
(
xk − µijk ,C

ij
k

)
,

M i
G∑

j=1

βijk = 1 , βijk ≥ 0 , (3.6)

with weights βijk ∈ R+, means µij
k
∈ RNx , and covariance matrices Cij

k ∈ RNx×Nx of the j-th
component of the Gaussian mixture contained in the i-th density slice. The variable M i

G is
the number of Gaussian mixture components used for representing the respective density slices.
Here, it is important to emphasize that the density parameters βijk , µ

ij
k
, and Cij

k of the individual
mixture components are conditioned on the nonlinear subspace η

k
, and thus are conditioned

on the location ξi
k
of the density slices.
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Application to mixed linear/nonlinear systems The sliced Gaussian mixture densities as
given in (3.4) can be used for the approximation of arbitrary density functions arising in estima-
tors for nonlinear dynamic systems. However, the full advantages of such density representation
can be exploited in the case of system structures that allow a decomposition of the estimation
problem into a linear and a nonlinear part. This is the case for so-called mixed linear/nonlinear
systems. For example, having the system structure (3.1) and (3.3) with a known fixed parame-
ter vector η

k
, then the system description should turn out to be linear. Since only in this case,

the system can be regarded as a linear description along the individual density slices, where it
is sufficient to employ analytic and linear estimators such as the Kalman filter. In the following
section, it is shown how the density representation (3.4) can be exploited for deriving a more
efficient estimation process for systems with linear substructures.

3.4 Decomposed Estimation Step

The aim of the Bayesian estimator is to calculate the density function representing the system
state as precisely as possible. Due to its high computational demand and the resulting non-
parametric density representation, approximation methods are necessary for nonlinear dynamic
systems. In general, the Bayesian estimator consists of two steps being performed alternately:
(a) the prediction step and (b) the measurement step; visualized in Figure 3.4 (b). This section
is devoted to the Bayesian estimation based on the sliced Gaussian mixture densities (3.4). It
is shown, how this density representation can be exploited for decomposing the general-purpose
prediction step and the general-purpose measurement step into a linear and nonlinear part.

3.4.1 Prediction Step

The purpose of the prediction step is to determine the predicted density function fp(zk+1)
characterizing the random vector zk+1 for the next discrete time step k+1 based on a given prior
density function f e(zk) for zk. This can be achieved by evaluating the well-known Chapman-
Kolmogorov equation [109]

fp(zk+1) =

∫
RNz

fT (zk+1|zk)︸ ︷︷ ︸
Transition density

f e(zk) dzk , (3.7)

where fT (zk+1|zk) is the so-called transition density containing the information of the con-
sidered dynamic system in terms of a probabilistic system model. It is noted that for brevity
reasons the state vector is denoted as zk := [xT

k , η
T
k

]T. For the derivation of (3.7), it was as-
sumed that the underlying physical process is a Markov process of first order. This means, the
state zk+1 for the next time step depends only on the current state zk and the current system
input uk, however, does not depend on the states and system inputs further in the past. The
additive noise term wz

k subject to the considered system model, similar to (3.1), is assumed to
be zero-mean white Gaussian with following density function

ωzk ∼ fwk (wzk) := N
(
wzk − µwk ,C

w
k

)
, (3.8)

where µw
k

:= 0 is the mean vector and Cw
k is the system covariance matrix. Assuming the

process noise wz
k to be given by (3.8), the transition density fT (·) can be derived according to

fT (zk+1|zk) = N
(
zk+1 − ak(zk, ûk),Cw

k

)
, (3.9)

where ak(·) is the nonlinear system model. Thus, the transition density (3.9) characterizes the
probability of the transition of the state zk to the next time step; and its structure strongly
depends on the actual structure of the underlying system model.
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Figure 3.4: (a) Visualization of the considered dynamic system with a linear substructure. The system and the
measurement matrix are characterized by the nonlinear substate η

k
. For simplicity, the input ûk is omitted here.

(b) Structure of the model-based Bayesian estimation process consisting of a prediction and measurement step.

Efficient SGMF prediction step In the case of a system structure as given in Example 3.1,
the existing linear substructure can be exploited for deriving a more efficient prediction step.
The prior density function f e(xk, ηk) is assumed to be given by a sliced Gaussian mixture
representation (3.4). By means of such representation, and thanks to the conditionally linear
system model, the solution of the Chapman-Kolmogorov equation (3.7) can be derived by
solving a linear and nonlinear estimation problem.

The true predicted density f̃p(xk+1, ηk+1
) for the next discrete time step can be determined by

substituting the prior density into the Chapman-Kolmogorov equation (3.7), leading to

f̃p(xk+1, ηk+1
) =

∫
RNx

∫
RNη

fT (xk+1, ηk+1
|xk, ηk)︸ ︷︷ ︸

Transition density

MD∑
i=1

αikδ(ηk − ξ
i

k
)f e(xk|ξeik )︸ ︷︷ ︸

Prior SGM density

dxk dη ,

which cannot be solved analytically for general nonlinear systems and arbitrary representations
of the prior density f e(xk|ξeik ). However, in view of the system model (3.1), the transition
density fT (·) can be stated as follows

fT (·) = N
([
xk+1 −Ak(ηk)xk −Bk(ηk) ûk

η
k+1
− ak(ηk)

]
,Cw

)
,

with uncorrelated process noise between the linear and nonlinear subspace, i.e., the covariance
matrix Cw is structured according to (3.2). In this case, the transition density fT (·) can be
written simply as a product of two density functions; one for the nonlinear subsystem and one
for the conditionally linear subsystem. By this kind of decomposition of the transition density,
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we arrive at the following equation for the prediction step,

f̃p(xk+1, ηk+1
) =

∫
RNx

∫
RNη

Nonlinear subsystem︷ ︸︸ ︷
N
(
η
k+1
− ak(ηk),C

η
w

)

· N
(
xk+1 −Ak(ηk)xk −Bk(ηk) ûk,C

x
w

)
︸ ︷︷ ︸

Conditionally linear subsystem

M∑
i=1

αikδ(ηk − ξ
ei

k
)f e(xk|ξeik ) dxk dηk ,

which already makes the key idea for the decomposition into a linear and a nonlinear estimation
problem obvious. Applying the sifting property of Diracs’ delta distribution and rearranging
the individual terms leads to

f̃p(xk+1, ηk+1
) =

MD∑
i=1

αikN
(
η
k+1
− ak(ξeik ),Cη

w

)
·
∫

RNx
N
(
xk+1 −Ak(ξ

ei

k
)xk −Bk(ξ

ei

k
) ûk,C

x
w

)
f e(xk|ξeik ) dxk , (3.10)

where the estimated density f e(xk|ξeik ) is stated as a Gaussian mixture density (3.6). It can
be clearly seen that in the case of conditionally linear dynamic models (3.1), the integral term
can be solved analytically using a linear prediction step for Gaussian mixtures [4]. To be more
specific the integral term in (3.10) yields∫

Rr
N
(
xk+1 −Ak(ξ

ei

k
)xk −Bk(ξ

ei

k
) ûk,C

x
w

) M i
G∑

j=1

βijk N
(
xk − µijk ,C

ij
k

)
dxk

=

M i
G∑

j=1

βijk N
(
Ak(ξ

ei

k
)µeij

k
+ Bk(ξ

ei

k
)ûk,Ak(ξ

ei

k
)Ceij

k Ak(ξ
ei

k
)
T

+ Cx
w

)
,

which also can be regarded as a bank of independent Kalman prediction steps. Hence, the
predicted density f̃p(·) results in a Gaussian mixture continuous both in the linear subspace xk
and nonlinear subspace η

k
,

f̃p(xk+1, ηk+1
) =

MD∑
i=1

M i
G∑

j=1

αikβ
ij
k N

(
η
k+1
− ξpi

k+1
,Cη

w

)
N
(
xk+1 − µpijk+1

,Cpij
k+1

)
. (3.11)

The means µpij
k+1

and covariance matrices Cpij
k+1 in the linear subspace are calculated by applying

the standard Kalman prediction step. The means ξpi
k+1

in the nonlinear subspace are derived by
simply repositioning the density slices according to the nonlinear system equation (3.1). Thus,
the parameters of the predicted density (3.11) are given as follows:

Mean vectors µpij
k+1

:= Ak(ξ
ei

k
)µeij

k
+ Bk(ξ

ei

k
)ûk

Covariance matrices Cpij
k+1 := Ak(ξ

ei

k
)Ceij

k Ak(ξ
ei

k
)
T

+ Cx
w

Positions of density slices ξpi
k+1

:= ak(ξ
ei

k
)

Here, it is worthwhile mentioning that although ξpi
k

represents the individual position of the
sliced Gaussian mixture density f e(·), the ξpi

k+1
denotes the means of the resulting Gaussian

mixture density in nonlinear subspace. The transition of the density slices to a Gaussian
mixture density continuous in all subspaces is shown in Figure 3.2 (b)-(c).
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3.4.2 Combined Measurement/Prediction Step

The purpose of the measurement step is to incorporate the measurements ŷ
k
obtained from

a possibly spatially distributed measurement system M into the estimation process. By this
means, the estimation of the system state vector zk ∼ f e(zk) can be further improved. The
estimated density f e(zk) at time step k can be determined by Bayes’ formula

f e(zk) = c · fL(ŷ
k
|zk) · fp(zk) , (3.12)

where the coefficient c is a normalization constant. The density function fL(ŷ
k
|zk) is the so-

called likelihood function [8, 109] describing the conditional probability for the occurence of the
measurement ŷ

k
under the condition zk. The additive noise vk subject to the measurement

model (3.3) is assumed to be zero-mean white Gaussian as follows

vk ∼ fwk (vk) := N
(
vk − µvk,C

v
k

)
, (3.13)

where µv
k

:= 0 is the mean vector and Cv
k is the covariance matrix. Assuming the measurement

noise vk to be given by (3.13), the likelihood function fL(·) can be derived according to

fL(ŷ
k
|zk) = N

(
ŷ
k
− hk(zk),Cv

k

)
,

where hk(·) denotes the general nonlinear measurement model. It is obvious that the structure
of the likelihood function fL(·) depends on the structure of the underlying measurement model.
By plugging the general-purpose measurement step (3.12) into the general-purpose prediction
step (3.7) the individual steps of the estimation process can be performed in a combined fashion,
leading to the so-called combined measurement and prediction step. The remainder of the section
is devoted to the derivation of an efficient update process for the combined measurement and
prediction step in terms of the sliced Gaussian mixture densities (3.4).

Combined SGMF measurement/prediction step In the combined estimation step, first, the
measurement step is performed on a sliced Gaussian mixture density, followed by the prediction
step as introduced in the previous section. This means, the predicted density at time step k+1
can be derived by the substitution of Bayes’ formula (3.12) into the Chapman-Kolmogorov
equation (3.7). Assuming the prior density at time step k is given as a sliced Gaussian mixture
density (3.4), then the predicted density fp(xk+1, ηk+1

) can be derived as follows

fp(xk+1, ηk+1
) =

∫
RNx

∫
RNη

fT (xk+1, ηk+1
|xk, ηk) c f

L(ŷ
k
|xk, ηk) f

p(xk, ηk)︸ ︷︷ ︸
=:fe(xk,ηk)

dxkdηk . (3.14)

The estimated density f e(xk, ηk) can be obtained from the normalized product of the prior
density function fp(·) and the likelihood function fL(·) incorporating the measurements ŷ

k
. In

terms of the sliced Gaussian mixture densities (3.4), the estimated density f e(·) is given as

f e(xk, ηk) = cN
(
ŷ
k
−Hk(ηk)xk − hk(ηk),Cv

)
·
M∑
i=1

αikδ
(
η
k
− ξpi

k

)
·
N i∑
j=1

βijk N
(
xk − µpijk ,Cpij

k

)

=
M∑
i=1

αikδ
(
η
k
− ξpi

k

) N i∑
j=1

βijk γ
ij
k N

(
xk − µeijk ,Ceij

k

)
. (3.15)
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Figure 3.5: Classification of approaches for the approximation of general densities by means of sliced Gaussian
mixture densities. During the approximation process the marginal density (nonlinear subspace η

k
) or the joint

density (linear subspace xk and nonlinear subspace η
k
) can be considered. Furthermore, it can be classified into

global optimal or (sub)optimal approximation, and batch or sequential approximation.

Thanks to the special structure of the assumed measurement model (3.3) and by representing
the prior density fp(·) as sliced Gaussian mixture densities (3.4), the likelihood function needs
to be evaluated only at the positions ξpi

k
of the individual density slices. The weights γijk , the

mean vectors µeij
k
, and the covariance matrices Ceij

k in the estimated density (3.15) can be
derived by actually performing the multiplication of the two Gaussian densities and exploiting
the sifting properties of the Dirac mixture (as shown in the previous section). This eventually
results in the following equations for the density paramters:

Weight of the slices γijk = N
(
ŷ
k
− hk

(
ξpi
k

)
−Hk

(
ξpi
k

)
µpij
k
,Hk

(
ξpi
k

)
Cpij
k Hk

(
ξpi
k

)T
+ Cv

)
Mean vectors µeij

k
= µpij

k
+ Kk

(
ŷ
k
− hk

(
ξpi
k

)
−Hk

(
ξpi
k

)
µpij
k

)
Covariance matrices Ceij

k = Cpij
k −KkHk

(
ξpi
k

)
Cpij
k

Kalman gains Kk = Cpij
k Hk

(
ξpi
k

)T (
Cv + Hk

(
ξpi
k

)
Cpij
k Hk

(
ξpi
k

)T)−1

It is worth mentioning that the positions of the density slices ξpi
k

are not affected by the
measurement step. Rather the mean, the covariance matrices, and the weights of the individual
components of the Gaussian mixture are simply updated according to the measurements. In
order to perform the combined measurement and prediction step, the estimated density (3.15)
has to be substituted into (3.14). Applying the prediction step results in a Gaussian mixture
continuous in the linear xk and the nonlinear subspace η

k
,

f̃p(xk+1, ηk+1
) =

M∑
i=1

N i∑
j=1

αikβ
ij
k γ

ij
k N

(
η
k+1
− ξpi

k+1
,Cn

w

)
N
(
xk+1 − µpijk+1

,Cpij
k+1

)
. (3.16)

The mean µpij
k+1

and the covariance matrices Cpij
k+1 of the predicted density (3.16) for the time

step k+1 are calculated by applying the equations for the efficient prediction step as introduced
in the previous section.
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3.5 Reapproximation Step

In the previous section, the efficient estimation update of the sliced Gaussian mixture den-
sity (3.4) was introduced, which results in a Gaussian mixture that is continuous in all sub-
spaces. This means, in order to bound the complexity and derive a recursive estimation process,
the densities (3.16) and (3.11) after the processing need to be reapproximated by a sliced Gaus-
sian mixture density. The novelty of the methods introduced in this section is the systematic
and deterministic (nonrandom) approach for the derivation of the density slice locations based
on minimizing a certain distance measure. This results in locations of the density slices with
the most support for the approximation of the underlying true density function, and thus less
parameters are necessary for a sufficiently accurate result.

The approximation is performed in three stages : (1) the approximation of the marginal density
in nonlinear subspace by a Dirac mixture density, (2) the extension of the result to sliced
Gaussian mixtures over the complete state space, and (3) the reduction of Gaussian mixture
components in order to bound the complexity.

1) Approximation of nonlinear subspace There are several approaches for the ap-
proximation of the resulting density function. One possible approach is to derive the location
of the slices by only considering the marginal density f̃p(η

k
) in the nonlinear subspace [172].

The other more sophisticated possibility is to consider the joint density f̃p(xk, ηk) (linear and
nonlinear subspace) using all information available after the processing step in order to derive
possibly better locations for the slices. Besides the classification concerning the considered space
(marginal subspace or joint space) for the approximation, the approaches can be classified into:
batch approximation or sequential approximation. The batch approximation [125, 126, 127] is
a solution procedure for arbitrary true density functions on the basis of homotopy continuation
(progressive Bayes). This procedure results in an optimal solution. The sequential approxima-
tion [59, 83, 84] is based on inserting one component of the Dirac mixture density at a time.
In addition, a classification into optimal and (sub)optimal approaches is possible. In Figure 3.5
the classification of prospective approaches for the approximation of arbitrary density functions
by means of the sliced Gaussian mixture densities is depicted.

Selection of distance measure For the systematic and deterministic derivation of the
density slice locations, the selection of appropriate distance measure plays an essential role. Due
to the fact that the sliced Gaussian mixture densities contain discrete functions in the nonlinear
subspace, the definition of distance measures in the density space is not appropriate. Basically,
the density function used for the approximation is zero at most locations (i.e., nonzero values
only at the density slices itself), and thus a comparison and the evaluation of a distance measure
in density space at such points does not make much sense. One way to overcome this problem
is to choose a distance measure defined in the distribution space, such as the Cramer-von Mises
distance. For the one-dimensional case this distance measure is defined as follows

Dn =
1

2

∫
R

(
F̃ (ηk)− F (ηk)

)2

dηk , (3.17)

where F̃ (·) denotes the distribution function to be approximated. Due to the fact that the
distance measure (3.17) is not symmetric in the multi-dimensional case, this measure converges
to a certain value only when the considered distribution functions are exactly equal. Thus, the
derivation of more sophisticated distance measures is necessary in such cases, which is out of
the scope of this thesis. A more detailed description can be found in [58, 69].
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Figure 3.6: Visualization of the approximation process by considering the nonlinear subspace ηk, and thus the
determination of the position of the density slices. (a) Visualization of Dirac component at assumed position ξik.
(b) The Dirac component at location ξik is replaced by two Dirac components at positions ξi1k and ξi2k .

Example 3.2: Sequential derivation of slice locations for one-dimensional case
This example is devoted to the brief description of a variation of the sequential greedy algorithm
proposed in [59] for deriving the location of the density slices. The description of the method
is restricted to the one-dimensional case, however, can be extended to several dimensions. It is
assumed that the true density to be approximated is given as a Gaussian mixture density

f̃(xk, ηk) =

MG∑
j=1

α̃jkN
(
xk − µ̃jk, C̃

lj
k

)
N
(
ηk − ξ̃jk, C̃

nj
k

)
,

with weighting factors α̃jk, means µ̃jk and ξ̃jk, and covariances C̃ lj
k and C̃nj

k . Here, it is important to
note that the individual components of the Gaussian densities, each represented as a product of two
Gaussians, consist of mutually independent linear and nonlinear parts.

In the sequential algorithm proposed in [59], every density slice corresponds to an interval [lik, u
i
k]

in the nonlinear subspace of the state space. Thus, the individual slices approximate the true
marginal density f̃(ηk) only in the corresponding interval. This is shown in Figure 3.6 (a). The
key idea for the density approximation, and thus the derivation of appropriate locations for the
density slices, is based on splitting the intervals characterized by respective density slices. In the
first step, the specific interval for inserting new density slices (or Dirac components) is determined,
based on the maximum deviation between the distributions of the true prior and the approximating
density function. Here, the distance measure (3.17) is chosen, whereas in the multi-dimensional
case respective other measures are necessary, such as the one proposed in [58, 69, 83, 84]. Then,
the interval with the highest deviation is chosen for the following splitting phase. This interval
corresponds to the region where the approximation deviates most from the true density. The density
slice with the position ξik, weight α

i
k and interval [lik, uk] is replaced by two respective slices. The new

positions ξi1k and ξi2k are selected to split the probability mass of the true density over the intervals
into halves. The derivation of new locations for the density slices is depicted in Figure 3.6 (b). By
increasing the number of density slices, the approximation converges towards the true distribution.

�
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Figure 3.7: Approximation of a Gaussian mixture density f̃(xk, ηk) with 4 components for a different number
of density slices M = 3 and M = 7. (a)–(b) True joint density f̃(xk, ηk) and joint distribution F̃ (xk, ηk) to
be approximated (surface) and their respective approximation f(xk, ηk) and F (xk, ηk) (red lines). (c)–(d) True
marginal density f̃(ηk) and true marginal distribution F̃ (ηk to be approximated (blue line), and their respective
approximations f(ηk) and F (ηk) (red line).

2) Extension to complete state space In the previous example, it was described how
the locations of the individual density slices are derived based on the minimization of a certain
distance measure. After the derivation of the locations, this information needs to be extended
to a sliced Gaussian mixture representation over the entire state space, i.e., in the linear and
nonlinear subspace. This can be achieved by the evaluation of the Gaussian mixture f̃(xk, ηk) at
every density slice determined by the aforementioned algorithm, leading to a Gaussian mixture
density in the linear subspace

f(xk|ξik) =

MG∑
j=1

c · α̃jkN
(
ξik − ξ̃

j
k, C̃

j
k

)
︸ ︷︷ ︸

=:βijk

·N
(
xk − µ̃jk, C̃

j
k

)
(3.18)

for every density slice i = 1 . . .MD with a number of M i
G individual components. The total

number of Gaussian components is denoted as MG :=
∑

iM
i
G. The corresponding parameters

for the Gaussian components are assigned as follows:

βijk =
α̃jkN

(
ξik − ξ̃

j
k, C̃

j
k

)
∑L

j=1 β
ij
k

, µijk = µ̃jk , and Cij
k = C̃j

k .

For bounding the complexity, the number of components of the resulting Gaussian mixture
density (3.18) needs to be reduced by component reduction algorithms, such as the methods
presented in [65, 99, 121, 122].
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Figure 3.8: Root mean square error (rmse) of mean and 2nd central moment of the approximation with sliced
Gaussian mixture. The approximation error is shown in (a) nonlinear subspace and (b) linear subspace for a
growing number of density slices.

Example 3.3: Reapproximation of Gaussian mixture with 4 components
In this example, a Gaussian mixture with 4 components is approximated by a sliced Gaussian mixture.
The mean values of the state vector zk = [xk, ηk]

T of the individual components are given by

ẑ
(1)
k =

[
5
−3

]
, ẑ

(2)
k =

[
0
−4

]
, ẑ

(3)
k =

[
5
4

]
, ẑ

(4)
k =

[
−1
5

]
,

the covariance matrices are assumed to be as follows

C
(1)
k =

[
2 0
0 3

]
, C

(2)
k =

[
4 0
0 4

]
, C

(3)
k =

[
3 0
0 4

]
, C

(4)
k =

[
5 0
0 3

]
,

and the weights are assumed to be equal to 0.25. The approximation of the Gaussian mixture density
for different numbers of density slices is visualized in Figure 3.7. The upper and lower parts show the
approximation with M = 3 and M = 5 slices, respectively. The relative errors of the mean and 2nd
central moment of the linear and nonlinear subspace are computed for a growing number of density
slices (2–40 components). The root mean square errors (rmse) are displayed in Figure 3.8 (a)–(b).
It can be clearly seen, that the relative errors of the systematic reapproximation decrease quite fast
in magnitudes in both subspaces. In addition, the relative error of the 2nd central moment in the
linear subspace is close to zero. This is due to the exploitation of Gaussian mixture densities with
its excellent approximation properties in the linear subspace. �

3) Gaussian Mixture Reduction For multiple processing steps in the Sliced Gaussian
Mixture Filter, the number of overall Gaussian components increases. Let Nk the number of
Gaussian mixture components in the time step k and M the number of Dirac impulses (slices),
then Nk = M · Nk−1 = Mk−1 · N . In order to limit the exponentially increasing number of
components, a component reduction is required. In general, the component reduction can take
place before or after the density approximation.With a reduction before the density approxi-
mation, a tradeoff between accuracy and execution time can be made. Component reduction
after the density approximation limits the maximum number of Gaussian components and thus,
prevents exponential growth in computation time. Different approximation algorithms with a
wide range of complexity and approximation quality exist, e.g., [65, 122, 150].
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(a) Brute force integration (b) MPF (1000 particles) (c) SGMF (20 particles)
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Figure 3.9: Visualization of joint densities for the system description in Example 3.4 after combined filter and
prediction step at time step k = 2. (a) brute force numeric integration, (b) marginalized particle filter (1000
particles), and (c) sliced Gaussian mixture filter (20 slices).

3.6 Simulation Results

In this section, the performance of the Sliced Gaussian Mixture Filter is demonstrated by
means of simulation results for the folowing nonlinear dynamic system.

Example 3.4: Nonlinear system with linear substructure
In this example, we consider a nonlinear two-dimensional system with a linear substructure that can
be exploited during the estimation process. The system equation is given by

xk+1 = (0.7− 0.2ηk)︸ ︷︷ ︸
Ai
k

xk + (0.3 + 0.2η)︸ ︷︷ ︸
Bik

ûk +wx
k , ηk+1 = ηk +wη

k ,

where wx
k and wη

k are zero mean additive Gaussian noise with variances of Cx
w = 1 and Cη

w = 0.5,
respectively. The system input ûk is assumed to be ûk = −5sin(0.2 k). The measurement equation
is given by a polynomial of degree 5

ŷk = ηk︸︷︷︸
Hi
k

xk − 0.32 (ηk)
5 − 1.6 (ηk)

4 − 5.6 (ηk)
2 − 16ηk − 9.12 + vk ,

where vk denotes the measurement noise with a variance of Cv = 20. The system was simulated
for 20 consecutive time steps and 50 independent Monte-Carlo simulation runs. �

The density function after the combined filter and prediction step is calculated by brute force
numeric integration for having a ground truth for comparison purposes; see Figure 3.9. In
Figure 3.9 (b), the simulation result of the marginalized particle filter with 1000 particles
is shown as a histogram of particles in the nonlinear subspace. The corresponding Gaussian
components are added up in the linear subspace. Due to the randomly chosen position of
the particles, the marginalized particle filter produces a joint density deviating from the true
density. The resulting joint density after combined filter and prediction step for the Sliced
Gaussian Mixture Filter using 20 slices is depicted in Figure 3.9 (c). It can be seen that the
density derived by the Sliced Gaussian Mixture Filter hardly deviates from the brute force
solution and appears smoother compared to the density from the marginalized particle filter.
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Figure 3.10: Visualization of simulation results of Example 3.4. It is depicted the root mean square of relative
errors of mean in nonlinear and linear subspace. Comparison of the Sliced Gaussian Mixture Filter (green) and the
marginalized particle filter (red) with 30 times more particles than slices.

The root mean square of the relative error of the mean is shown in Figure 3.10 of nonlinear and
linear subspace. The Sliced Gaussian Mixture Filter (SGMF) is compared with the marginalized
particle filter (MPF) with 30 times more particles than slices. During the simulation a maximum
number of 10 Gaussian components per slice was allowed, whereas 2.37 components were utilized
on average. It is obvious that the deviation decreases with growing number of slices. The
plateau at the right-hand side of the graph arises from discretization errors in the calculation of
the true density function. It can be stated that the SGMF significantly outperforms the MPF
in this simulation study. Compared to the SGMF with M = 30 slices, the MPF needs far more
particles M ≈ 1500, in order to reach the same error of the mean value. In addition, especially
in the linear subspace, the SGMF performs substantially better than the MPF; this is mainly
due to the exploitation of Gaussian mixture densities with its good approximation properties
in linear subspace. Thanks to the low number of slices compared to the higher number of
particles, the Sliced Gaussian Mixture Filter requires less memory storage.

3.7 Summary and Discussion

This chapter was devoted to the exploitation of linear substructures in certain dynamic systems
in order to derive a more efficient estimation process. The proposed estimator is based on a
novel density representation — sliced Gaussian mixture density — consisting of a Gaussian
mixture density in the linear subspace and a Dirac mixture density in the nonlinear subspace.
The systematic approximation approach reduces a distance measure between the true density
and an approximation given as a sliced Gaussian mixture density. It is emphasized that al-
though a particular model structure (3.1) and (3.3) was chosen for the sake of simplicity, the
principles of the S liced Gaussian M ixture F ilter (SGMF) can be applied to more general
conditionally linear models. For example, it was assumed that the random variables in linear
subspace are uncorrelated to random variables in nonlinear subspace. The extension to the
correlated case would be especially interesting for tracking applications, and can be achieved
in a straightforward fashion.

There are three key features significantly improving the performance compared to other state-
of-the-art estimator: (a) the usage of a special kind of density representation allowing the sys-
tematic decomposition of the estimation problem, (b) a systematic (nonrandom) approximation

67



Chapter 3. Estimation of Nonlinear Dynamic Systems with Linear Substructures

technique that is (close to) optimal in terms of a certain distance measure, and (c) considera-
tion of all density slices enforcing a kind of interaction between the slices in an almost natural
way. The improved performance was demonstrated by means of simulated case studies based
on a model structure similar to the one for the simultaneous state and parameter estimation of
spatially distributed systems, introduced in Chapter 4. This means, the SGMF lays the foun-
dation for deriving an efficient process for the parameter identification of space-time continuous
physical systems.

In this thesis, the technique for approximating arbitrary density function using sliced Gaus-
sian mixture densities considered only the marginal density function (i.e., nonlinear subspace).
Prospective extension of the proposed novel estimator would be the consideration of the entire
joint density (i.e., both in linear and nonlinear subspace). By this means, the accuracy of the
approximation could be further improved and less density slices would be necessary to obtain
a precise density representation. For additionaly reducing the number of density slices, it is
possible to consider both the system equation (transition density) and measurement equation
(likelihood) for the determination of optimal position of the slices.
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CHAPTER 4

Simultaneous State and Parameter Estimation
of Space-Time Continuous Systems

In this chapter, the methodology for the efficient simultaneous state and parameter estimation
of space-time continuous physical systems is introduced. A common way for the parameter
estimation is to augment the system state that characterizes the current state with all the pa-
rameters that characterize the dynamic behavior of the system. In most cases, the augmentation
results in a nonlinear system description, even the original system model was of a linear type.
Due to the fact that the conversion of space-time continuous systems yields a high-dimensional
system model in state space form, the parameter identification within a Bayesian framework
turns out to be a high-dimensional/nonlinear problem. In order to derive an efficient process,
special estimators are required, such as the S liced Gaussian M ixture F ilter introduced in the
previous chapter. The contributions of the proposed methodology are demonstrated by means
of common tasks arising in sensor network applications:

• S imultaneous Reconstruction and Identification (SRI method): This task is responsible
for the identification of process parameters characterizing the dynamic and distributed
behavior of the physical system being observed; see Section 4.3. In general, the goal is the
derivation of a strong mathematical model with known structure and parameters that can
be exploited for performing additional tasks, i.e., node and source localization.

• S imultaneous Reconstruction and Localization (SRL method): The novel method for
the node localization is based on only locally measuring a space-time continuous physical
system, i.e., without using global positioning systems; see Section 4.4. Basically, this is
achieved by the rigorous exploitation of a mathematical model of the physical system;
possibly derived by aforementioned identification process.

• S imultaneous Reconstruction and Source Localization (SRSL method): This task deals
with the efficient localization of spatially distributed sources and leakages driving the
physical system; see Section 4.5. Hence, spatially distributed measurements are exploited
for identifying locations, for example, of a pollutant concentration. The clear advantage
of the simultaneous approach is that besides the location, the actual (often imprecisely
known) space-time continuous state of the physical system is estimated.

The three tasks for the efficient observation of space-time continuous systems can be performed
seperately or in a combined fashion depending on the actual application scenario; visualized
in Figure 4.1. For example, sensor nodes with imprecisely known location simultaneously

69



Chapter 4. Parameter Identification of Space-Time Continuous Systems
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Figure 4.1: Visualization of three tasks for the estimation of space-time continuous physical systems. The individual
tasks are managed by a planning and scheduling technique. (a) The first task consists of the identification of the
environment in order to derive a mathematical model of the physical system being monitored (identification task).
Based on the derived mathematical model (b) newly deployed sensor nodes (node localization task) and (c) sources
driving the physical system can be localized (source localization task).

identify process parameters of the physical system, perform source and leakage localization
(e.g., of a pollutant concentration), and improve their knowledge about their own position
based on locally measuring and exchanging information with other nodes. The different tasks
are managed by sophisticated planning and scheduling techniques. All the proposed methods
on their own provide novel prospects not only for the observation of physical systems but also
for sensor network applications in general. Thanks to the simultaneous approach, the network is
able to estimate the entire state of the space-time continuous system, identify non-measurable
quantities, verify and validate the correctness of the estimation results, and eventually adapt
its algorithms and behavior in an autonomous and self-organized fashion.

The methods presented in this chapter were published at [177, 178, 180, 181]. However, ex-
planations for the identification and the novel localization methods are given in a considerably
extended way for two-dimensional space-time continuous physical systems, and the performance
is demonstrated by respective simulation results.

4.1 State Augmentation of the System Description

It was demonstrated in Chapter 2 that by exploiting additional background information about
the physical system in terms of a mathematical model, more accurate estimates can be derived;
especially between the individual nodes. In addition, non-measurable quantities can be identi-
fied, e.g., additional useful information about the physical system, such as material properties,
sources of chemical concentrations or leakages. Moreover, by exploiting mathematical models
of the physical system, the individual sensor nodes can be localized by the evaluation of local
measurements of the space-time continuous system. This means, one of the most important
issues for model-based approaches is the parameter estimation, also referred to as parameter
identification or inverse problem. The main goal is the estimation of parameters in the sys-
tem/measurement model from observed measurements such that the predicted state is close
to the observations. The identification of such model parameters becomes even more essen-
tial for sensor network applications in harsh and unkown environments, and for unpredictable
variations of the space-time continuous system being observed.
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4.1. State Augmentation of the System Description

Augmented state vector For the simultaneous state and parameter estimation of physical
systems, the unknown parameters are treated as additional state variables. By this means,
conventional estimation techniques can be used to simultaneously identify parameters, such as
parameters in the stochastic partial differential equation (2.1) or node locations, and the state
of the space-time continuous system. Hence, an augmented state vector zk ∈ RNz consisting of
the system state xk ∈ RNx and the additional unknown parameters η

k
∈ RP is defined by

zk :=

 (xk)
T︸ ︷︷ ︸

(Linear) state space

,
(
ηP
k

)T
,
(
ηM
k

)T
,
(
ηI
k

)T
︸ ︷︷ ︸

(Nonlinear) parameter space ηT
k

T ∈ RNz ,

where the vector ηP
k
∈ RPp collects unknown process parameters in the system model, such as

the diffusion coefficient or the convection field. The random vector ηM
k
∈ RPm contains unknown

parameters in the measurement model, such as locations of the individual sensor nodes. The
vector ηI

k
∈ RPi consists of parameters in the input model, e.g., locations and intensity of the

spatially distributed inputs and leakages.

Augmented system model The augmentation of the state vector xk with the additional
parameter vector η

k
being identified leads to an augmented system description. The augmented

lumped-parameter model of the space-time continuous system can be stated as follows
xk+1

ηP
k+1

ηM
k+1

ηI
k+1


︸ ︷︷ ︸
zk+1

=


Ak(η

P
k
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k(η
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k

) ûk(η
I
k
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k(η
P
k

) b̂k
aPk (ηP

k
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aMk (ηM
k

)

aIk(η
I
k
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︸ ︷︷ ︸
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k(η

P
k
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k + Bb

k(η
P
k

)wb
k

wP
k

wM
k

wI
k


︸ ︷︷ ︸

wzk

,

(4.1)
where the matrix Ak(·) ∈ RNx×Nx represents the system matrix, Bu

k(·) ∈ RNx×Nx is the input
matrix, and Bb

k(·) ∈ RNx×Nx denotes the boundary matrix. These matrices depend on parame-
ters in the distributed-parameter system (1.2) collected in the process parameter vector ηP

k
. The

input parameter vector ηI
k
characterizes the properties of the system input s(r, t), e.g., location

of spatially distributed sources. The nonlinear functions ak (·) : RP → RP describe the dynamic
behavior of the parameters to be estimated; see Section 4.4.4. It is important to emphasize
that the augmented system model (4.1) contains a high-dimensional linear substructure that
can be exploited by the application of a more efficient estimator, as introduced in Chapter 3.

Augmented measurement model The augmentation leads to following augmented measure-
ment model characterizing the properties of the spatially distributed measurement system

ŷ
k

= Hk(η
M

k
)xk︸ ︷︷ ︸

hk(zk)

+vk , (4.2)

where Hk(·) ∈ RM×Nx represents the measurement matrix. This matrix strongly depends on the
actual configuration and topology of the measurement system. In particular, the individual node
locations rsik := [rsxk , r

sy
k ]T ∈ R2 collected in the measurement parameter vector ηM

k
characterizes

the measurement matrix Hk(·), and thus the actual measured values. The structure of the
augmented model description (4.1) and (4.2) is shown in Figure 4.2.
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Figure 4.2: Visualization of the augmented system description that contains a high-dimensional linear substructure
in terms of the state vector xk. The system input ûk depends on input parameters ηI

k
, such as source location or

input intensitiy. The process parameter vector ηP
k
affects the system matrix Ak and the input matrix Bk, and thus

the distributed properties and the dynamic behavior. The node locations contained in the parameter vector ηM
k

characterize the measurement matrix Hk.

4.2 Overview and Considered Space-Time Continuous System
This section is devoted to a general overview of the simultaneous state and parameter estimation
process for observing and identifying space-time continuous physical systems. The main goal
of the estimation process within a Bayesian framework is to obtain a precise estimate of the
augmented state vector zk ∈ RNz in terms of the probability density function f e(zk). Referring
to the augmented system descriptions (4.1) and (4.2), it is obvious that for the parameter
estimation, the system and measurement equations are of a high-dimensional/nonlinear type.
This is mainly due to the nonlinear relationship between the state vector xk ∈ RNx with
respective parameter vectors η

k
∈ RP ; visualized in Figure 4.2.

The linear substructure that is containing in the augmented models (4.1) and (4.2) are ex-
ploited by using the SGMF, introduced in Chapter 3. This allows the decomposition of the
high-dimensional/nonlinear estimation problem into a linear part (state reconstruction) and a
nonlinear part (parameter identification). By this means, an overall more efficient process can
be derived for simultaneously estimating the state xk ∼ f(xk) and the parameter η

k
∼ f(η

k
).

The entire process is depicted in Figure 4.3.

Joint densities for the state/parameter estimation Within the proposed SGMF frame-
work, the joint probability density of the state xk and the parameters η

k
are given as a sliced

Gaussian mixture density according to

zk ∼ fp(xk, ηk) :=

MD∑
i=1

M i
G∑

j=1

αik β
ij
k δ

(
η
k
− ξpi

k

)
︸ ︷︷ ︸

Parameter subspace

N
(
xk − µpijk ,Cpij

k

)
︸ ︷︷ ︸

State subspace

, (4.3)

where the linear subspace RNx is represented by a Gaussian mixture and the nonlinear sub-
space RP by a Dirac mixture density. Thanks to the density representation (4.3) and the special
structure of the system (4.1) and (4.2), the state and parameters of space-time continuous sys-
tems can be decomposed. The decomposed prediction and measurement step (see Section 3.4)
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Figure 4.3: General overview of the entire process for the simultaneous state and parameter estimation of space-
time continuous physical systems. The high-dimensional linear substructure is exploited by using the Sliced Gaussian
Mixture Filter (SGMF) in order to estimate the entire augmented state vector (state/parameter vector) in an efficient
and systematic manner. The state vector xk is then used for actually reconstructing the space continuous state pk(r)
of the physical system. Thanks to the simultaneous approach, additional parameters, such as diffusion coefficient,
node locations, and source locations, collected in the parameter vector η

k
, are identified.

leads to following Gaussian mixture density

zk+1 ∼ fp(xk+1, ηk+1
) =

MD∑
i=1

M i
G∑

j=1

αik β
ij
k γ

ij
k N

(
η
k+1
− ξpi

k+1
,Cη

w

)
N
(
xk+1 − µpijk+1

,Cpij
k+1

)
,

(4.4)
which consists of continuous densities in all subspaces, i.e., in the linear subspace RNx as well as
in the nonlinear subspace RP . For the recursive estimation, this density function needs to be
re-approximated by the sliced Gaussian mixture density (4.3); see Section 3.5 for more details.

Marginal density of parameter and space-time continuous state The processing based on
decomposing the estimation problem allows the efficient derivation of the joint density fp(xk, ηk)
representing the augmented state vector zk := [ (xk)

T (η
k
)T ]T . The parameters η

k
∼ fp(η

k
)

can be identified by simply marginalizing over the state vector xk, according to

η
k
∼ fp(η

k
) =

∫
RNx
fp(xk, ηk) dxk =

MD∑
i=1

αikN
(
η
k
− ξpi

k
,Cη

w

)
,

which obviously can be performed in a very efficient manner by simply summing over the
individual density slices.

For the space-time continuous state pk(r) ∼ fp(pk|r), an additional, more involved conversion
step into the continuous space is necessary. This step can also be regarded as a so-called
interpolation step allowing the derivation of an estimate of the distributed state at any desired
location r := [x, y] ∈ R2. Similar to the conversion introduced in Section 2.5.3, the probability
density function fp(pk|r) for the system state can be obtained by

pk(r) ∼ fp(pk|r) =

∫
RNx

∫
RP

fC(pk −Ψ(r)Txk)f
p(xk, ηk)dxkdηk , (4.5)

where fC(·) represents the transition density for the conversion process (2.30). Using the
expressions (2.33) for the mean and the variance of the Gaussian mixture density resulting from
the conversion step, the parameters of the probability density function (4.5) can be efficiently
derived in a similar way. Then, an estimate of the physical system in terms of fp(pk|r) can be
obtained at any desired spatial coördinate r in the area of interest; see Figure 4.3.
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Considered space-time continuous physical system As proof of concept, the novel prospects
of the proposed methods for the simultaneous state and parameter identification of space-time
continuous systems are demonstrated and evaluated using the same example scenario. In the
following, the process parameters of the underlying physical system are stated:

Example 4.1: Considered physical system for the parameter estimation
Throughout this chapter, the underlying space-time continuous system is represented by the two-
dimensional convection-diffusion equation (2.1), introduced in Example 2.1. Unless stated otherwise,
the parameters of the physical system are assumed to be as follows

Dirichlet/Neumann conditions gD = 20 ◦C , gN = 0 ◦Cm−1

Model parameters of physical system αtrue = 1.0m2 h−1 , γtrue = 1.0m3 ◦C cal−1

Homogeneous convection field v(r, t) =
[
8 , 8

]T mh−1

Spatially distributed system input ŝ(r, t) = 4 · 103

(
e−

(0.5−x)2

0.1
− (0.5−y)2

0.0005 + e−
(1.5−x)2

0.0005
− (1.5−y)2

0.1

)
Cs(r, t) = 0.5 cal2 m−6 h−2

The mathematical model of the physical system is converted into a lumped-parameter system de-
scription based on piecewise linear shape functions, i.e., using the finite-element method. The
parameters of the spatial decomposition and the temporal discretization are given by Nx = 225,
Nel = 384 (spatial decomposition) and ∆t = 0.001 h (temporal discretization). Similar to the
conversion of the stochastic partial differential equation (2.1), the corresponding noise term of the
system input s(r, t) represented by the mutually independent spatially distributed variance Cs(r, t)
needs to be converted. In the homogeneous case (as considered in this work), this conversion can
be specifically achieved as described in Chapter 2. Here, the covariance matrix of the boundary
condition noise is assumed to be C̃b(tk) = 0.05 · INx cal

2 m−6 h−2 and the covariance matrix of the
spatially distributed measurement system is given by Cv

k = 0.5 · INy K2. �

4.3 Application 1: Identification of Process Parameters

The model-based state reconstruction of space-time continuous physical systems by means of
a sensor network is based on a mathematical model that describes the dynamic behavior and
distributed properties. Assuming an appropriate and sufficiently accurate model description,
the physical system is uniquely characterized by so-called process parameters and boundary
conditions, and thus can be reconstructed by means of the methods proposed in Chapter 2.
However, in practical implementations the process parameters, such as diffusion coefficient,
might not be known in advance and usually need to be identified. It was clearly shown in
Section 2.6.2 that deviating process parameters result in a degradation of the reconstruction
accuracy. This makes the process parameter identification one of the most important issues
concerning the model-based observation of space-time continuous physical systems. For sensor
network applications, the parameter identification becomes even more essential due to the
harsh environment, and unpredictable variations of the physical system being monitored. It
is important to emphasize that inherently existing uncertainties not only in the measurements
but also in the assumed model structure need to be considered in a systematic way during the
identification process.

The main goal of the identification stage is to use measurements in order to estimate imprecisely
known or completely unknown process parameters ηP

k
∼ f(ηP

k
) in the system model (1.2). This
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process yields parameter estimates such that the estimated state pk(r) ∼ f(pk|r) sufficiently ac-
curate explains the observations obtained by the sensor network [138]. The space-time discrete
samples measured by the individual sensor nodes are incorporated into the mathematical model
in order to improve its accuracy in terms of estimated process parameters [118, 119]. Here,
the identification of parameters characterizing the dynamic and distributed properties is called
S imultaneous Reconstruction and Identification method (SRI method), see Figure 4.1 (a).

Density parameters for SRI method The augmentation of the state xk with the purpose
of identifying unknown process parameters ηP

k
leads to a nonlinear system description that in

general requires the employment of nonlinear Bayesian estimators. However, in this research
work, the high-dimensional linear substructure containing in the nonlinear probabilistic system
model (4.1) is systematically exploited by the SGMF; see Section 4.2 for a more detailed
description. In the case of precisely known parameters ηM

k
in the measurement model (i.e,

precisely known location rSk of the sensor nodes), the density parameters of the predicted
density function (3.11) are given as follows

• The parameters of the resulting predicted density fp(xk+1, η
P
k+1

) for the prediction step are
given as follows

Mean vectors µpij
k+1

= Ak

(
ξi
k

)
µeij
k

+ Bu
k

(
ξi
k

)
ûk + Bb

k b̂k

Covariance matrices Cpij
k+1 = Ak

(
ξi
k

)
Ceij
k Ak

(
ξi
k

)T
+ Bu

k

(
ξi
k

)
Cu
kB

u
k

(
ξi
k

)T
Positions of density slices ξi

k+1
= aPk

(
ξi
k

)
• For the combined measurement/prediction step, the parameters of the estimated probability
density function f e(xk, ηPk ) can be derived by

Weights of the slice γijk = N
(
ŷ
k
−Hkµ

pij
k
,HkC

pij
k Hk

T + Cv
k

)
Mean vectors µeij

k
= µpij

k
+ Kk

(
ŷ
k
−Hkµ

pij
k

)
Covariance matrices Ceij

k = Cpij
k −KkHkC

pij
k

Kalman gains Kk = Cpij
k Hk

T
(
Cv
k + HkC

pij
k Hk

T
)−1

Example 4.2: Identification of diffusion coefficient
In the following study, the performance of the method for identifying process parameters ηP

k
based

on the SGMF is demonstrated. The underlying physical system is assumed to be modelled by the
convection-diffusion equation (2.1) with nominal parameters stated in Example 4.1. For visualization
purposes, the numeric solution of the considered partial differential equation is shown in Figure 4.4 for
the deterministic case. As an example of a process parameter ηP

k
being identified, in this simulated

case study the diffusion coefficient αtrue is chosen, the true parameter is αtrue = 1.0m2 h−1. The
main goal here is to identify the diffusion coefficient αk and simultaneously reconstruct the initially
unknown state p(r, t). In this particular case, the system matrix Ak(·) and the input matrix Bu

k(·),
which generally depend on process parameters ηP

k
, can be derived as follows

Ak

(
ξi
k

)
= I−M−1

G (NG + ξik DG)∆t , Bu
k

(
ξi
k

)
= γ∆t I .

The convection field, and thus the convection matrix NG is assumed to be known; see (2.19) and
(2.20) in Section 2.3.5 for a more detailed description on deriving the aforementioned matrices. �
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Figure 4.4: Visualization of the considered physical system for the identification of the process parameter α. The
parameters and assumptions of the simulated case study are stated in Example 4.2. Depicted is the numeric solution
(deterministic case) at time step (a) k = 10, (b) k = 50, and (c) k = 100.

Reconstruction with deviating diffusion coefficient In the case of precisely known process
parameters characterizing the underlying space-time continuous system (2.1), the framework
introduced in Chapter 2 could be applied for the reconstruction of the space-time continuous
system state p(·). It was already demonstrated in Section 2.6.2 that the proposed model-based
approach requires a rather precise description about the physical system being observed. If any
assumption about the structure or about the process parameters is violated, the performance
of the estimation result can quickly degrade leading to poor reconstruction results. However,
in many cases, the real physical system deviates from the nominal model; this is especially the
case for sensor networks deployed in harsh and unknown environments.

Before the proposed simultaneous approach for the identification of process parameters ηP
k
is

demonstrated, the degradation in the case of ignoring deviating parameters is shown in terms
of Example 4.2. For that reason, the state reconstruction is performed assuming a nominal
parameter set according to αmodel ∈ {0.1, 0.2, . . . , 2.0} m2 h−1. For each assumed nominal
diffusion coefficient αmodel in the model (2.1), totally MMC = 200 independent simulation runs
have been performed, resulting in 200 true realizations x̃ik of the physical system. The root
mean square error exk (rmse) and the error variance Crmse

x of the estimated state vector xk are
approximated by calculating the average according to (2.34). The mean êxk of the state vector
rmse based on deviating nominal diffusion coefficients αmodel is depicted in Figure 4.5. It can
be easily seen that the more the assumed diffusion coefficient αmodel deviates from the true
parameter, the more the performance of the reconstruction result degrades. In addition, the
accuracy of the reconstructed space-time continuous system (2.1) seems to be more sensitive
to coefficients αmodel that are assumed being too low rather than ceofficients that are too high.

Simultaneous approach (SRI method) In the following, the performance of the SGMF-
based parameter identification applied to space-time continuous physical systems (2.1) is demon-
strated. In particular, the accuracy of the identified process parameter ηP

k
needs to be inves-

tigated in comparison to another nonlinear estimation method; the marginalized particle filter
(MPF). In Figure 4.6 (a) an example simulation run for the estimation of the parameter ηPk = αk
derived by the SGMF (20 slices) and the MPF (40 particles) is visualized. It is obvious that
after a certain transition time the SGMF offers a nearly exact parameter estimation, while the
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Figure 4.5: Root mean square error exk (rmse) for the reconstruction based on incorrect nominal diffusion coefficient
over MMC = 200 independent simulation runs. The true diffusion coefficient is assumed to be αtrue = 1.0m2 h−1.
(a) Mean êxk of the state vector rmse for different nominal diffusion coefficients αmodel. It is obvious that with the
deviation of the parameter the performance quickly degrades. (b) Mean êxk and standard deviation

√
Crmse
x of state

vector rmse for different nominal parameters αmodel ∈ {0.4, 0.6, 0.8, 1.0}m2 h−1.

MPF slightly jitters. In addition, although less parameters are required, the SGMF converges
faster to the true parameter than an identification process based on MPF.

The mean êαk and variance Crmse
α of the root mean square error eαk (rmse) of the diffusion

coefficient α, and the error averaged over time is approximated by calculating according to

êαk =
1

NMC

NMC∑
i=1

|αtrue − α̂eik | , Crmse
α =

1

NMC − 1

NMC∑
i=1

(eαik − êαik )2 , eαiT =
1

Nt

Nt∑
k=1

|αtrue − α̂eik | ,

(4.6)
where α̂eik is the mean of the estimated diffusion coefficient for the i-th simulation run. The mean
and standard deviation of the rmse eαk of the diffusion coefficient considering all 50 performed
simulation runs is depicted in Figure 4.6 (b). The error eαiT of all 50 runs is visualized in
Figure 4.6 (c). From these results it can be clearly seen that the SGMF-based identification
in most cases outperforms the MPF. This is basically due to the systematic (non-random)
positioning of the density slices in the case of SGMF, while the slices for the MPF are placed
randomly; see Chapter 3. In Figure 4.6 (d), the error (i.e., error mean êxk and variance Crmse

x )
between a reconstruction process based on incorrect parameters and the proposed simultaneous
approach is compared. The significantly improved performance clearly justifies the systematic
consideration of uncertainties in parameters during the reconstruction as proposed in this work.

4.4 Application 2: Node Localization based on Local Observations

The sensor data derived from the individual nodes in most applications has only limited utility
without precise information about their locations. The knowledge about the locations of the
individual nodes of the spatially distributed measurement system is particularly important for
the accurate reconstruction of space-time continuous systems. This was already demonstrated
in the simulated case study in Section 2.6.3. Manually measuring the location of every individual
node in the entire sensor network becomes infeasible, especially when the number of sensor

77



Chapter 4. Parameter Identification of Space-Time Continuous Systems

20 80 1000 time step k
0

1

2

3
SGMF (20 slices)

MPF (40 particles)

α
/m

2
h
−

1

10 40 500 simulation run
10−2

10−1

100

101

102

SGMF (20 slices)

MPF (40 particles)

Error eα
i /m2h−1

100

101

102

20 80 1000 time step k

Simultaneous approach
αmodel = 0.4

αmodel = 1.0

20 80 1000 time step k
10−2

10−1

100

101

SGMF (20 slices)

MPF (40 particles)

êα
k


Crmse

α

(a) Diffusion coefficient α for specific run

Rmse eα
k/m2h−1

Rmse ex
k/K

(b) Diffusion coefficient rmse

(c) Diffusion coefficient rmse averaged over time (d) State vector rmse

Figure 4.6: Comparison of the Sliced Gaussian Mixture Filter (SGMF) using 20 slices and the marginalized
particle filter (MPF) using 40 particles for the identification of the true diffusion coefficient αtrue = 1.0m2 h−1.
(a) Mean/variance of the diffusion coefficient α for a specific run. (b) Mean and standard deviation of the
root mean square error eαk (rmse) of diffusion coefficient considering all performed simulation runs. (c) Diffusion
coefficient rmse eiαk averaged over time for all runs. (d) Mean êxk and standard deviation

√
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x ) of state vector
rmse; compared is the reconstruction based on deviating parameters and the proposed simultaneous approach.

nodes is large, the nodes are inaccessible or in the case of mobile sensor deployments. Hence,
the aforementioned issues make the localization problem one of the most important tasks to be
considered in the area of sensor networks. In this section, a novel approach for localizing nodes
in a sensor network is proposed — the so-called S imultaneous Reconstruction and Localization
method (SRL method); see Figure 4.1 (b). The novelty is the localization based only on local
observations of a space-time continuous physical system while rigorously exploiting background
knowledge about the dynamic and the distributed behavior.

In general, the main goal of a localization and positioning system is to provide an estimate
about the location of the individual nodes in the sensor network in the area of interest. There
are several ways to classify the huge diversity of localization methods. In this thesis, these
methods are classified into active localization methods and passive localization methods:

• Active localization methods: Active localization methods obtain an estimate of the
sensor node location based on signals that are artificially stimulated and measured by the
network itself or by a global positioning system; see Figure 4.7. The stimuli usually used in
such scenarios consist of artificially generated acoustic events or radio signals. It is obvious
that the active localization is performed in fairly controlled and well accessible environ-
ments. As it stands, these circumstances incur significant installation and maintenance
costs. A comprehensive survey on active localization methods can be found in [62].
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Localization methods

Active localization Passive localization

Global positioning system Based on natural physical systems
Artificial signals between nodes Field strength distribution

Acoustic wave propagation
Temperature distribution
Topological surface map

Figure 4.7: Classification of localization methods: (a) Active localization, such as methods based on artificial
signals between nodes and global positioning systems, and (b) passive localization, such as methods based on
locally measuring a naturally existing space-time continuous physical system (considered in this thesis).

• Passive localization methods: In the case of passive localization methods, which on
the contrary occur in a non-controlled and a possibly inaccessible environment, the stimuli
necessary for the localization process occur naturally. In Figure 4.7 prospective examples
of natural physical systems that can be used as stimuli for localization purposes are stated.
The clear advantage of using passive methods for the localization is that they do not need
additional infrastructure. This certainly keeps the installation and maintenance costs at a
very low level. In addition, these methods become particularly important for applications
where global positioning systems are simply not available. This is for example the case for
sensor networks that monitor the snow cover [61], for applications in deep sea, for indoor
localization [115, 137, 147], or in the case of robotic-based localization [88].

There are various techniques and methods that can be considered for localization systems us-
ing different kind of infrastructures in different scenarios. In general, for the estimation of a
space-time continuous physical system, the existing infrastructure could consist of a number
of sensor nodes both with known locations and with unknown or uncertain locations. For the
minimization of the installation and maintenance costs, it is beneficial to develop a method
that requires no additional hardware such as a global positioning system or other heavy infras-
tructure. Moreover, there are various application scenarios without possible access to a global
positioning system, such as the indoor localization of mobile phones [146, 147] or sensor networks
deployed deep inside the snowpack for predicting snow avalanche risks (see Section 1.1).

4.4.1 Key Idea of the Proposed Passive Localization Method

In this research work, a novel passive localization process is developed that does not require
global positioning systems or the localization based on landmarks. The key contribution of the
proposed localization approach is the rigorous exploitation of a strong mathematical model of
the physical system in terms of stochastic partial differential equations (1.2). By this means,
individual nodes would be able to localize themselves in a non-controlled environment using only
local observations of a space-time continuous physical system. The use of such a model for node
localizations was proposed in [61]; however, there was no consideration of uncertainties naturally
occuring in the measurements and in the used mathematical models. The simultaneous approach
based on the SGMF that is proposed in this thesis allows the systematic consideration of
uncertainties. This approach is called simultaneous reconstruction and localization method (SRL
method); see Figure 4.1 (b).
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Figure 4.8: Visualization of the key idea of the SRL method , which is based on locally measuring a space-time
continuous physical system. (a) Space continuous mean p̂k(x, y) of a physical system that is characterized by a
strong mathematical model describing the dynamic and distributed behavior. (b) Sectional drawing of the system
at a specific location in x-direction. Depicted are the possible locations (deterministic case) and the respective
density function f(rsyk ) (stochastic case) based on a specific measured value of the physical system.

In addition, for the state reconstruction of space-time continuous systems, the precise knowledge
about the node locations is essential for obtaining precise estimation results. However, by using
any kind of positioning system, uncertainties in the location estimate inherently remain. In
order to obtain consistent and in particular accurate reconstruction results, these uncertainties
in the node location need to be systematically considered during the reconstruction process. The
SGMF-based simultaneous reconstruction and localization approach, not only allows (a) the
localization of sensor nodes, but also (b) the systematic consideration of uncertainties in the
node locations during the state reconstruction process ; as proposed in Chapter 2.

The key idea of the proposed localization approach is depicted in Figure 4.8. Roughly speaking,
for localizing individual sensor nodes, the space-time continuous representation of the physical
system is exploited in an inverse manner. This means, locally measured physical quantities are
used to obtain possible locations where the measured values could have been generated. In the
considered stochastic approach an expression for the location rsik := [rsxk , r

sy
k ] ∈ R2 of the i-th

sensor node being identified is obtained in terms of density functions. Hence, collecting the
node locations in the parameter vector ηM

k
∈ R2·M according to (2.24), the probability density

function f e(ηM
k

) needs to be derived. It is shown that the localization problem can be formulated
as a simultaneous state and parameter estimation problem: with the finite-dimensional state
vector xk representing the space-time continuous physical system and with the individual node
locations rsik contained in the parameter vector ηM

k
. By this means, the sensor nodes are

localized and the state of the physical system is reconstructed in a simultaneous fashion. The
improved knowledge about the observed physical system can be exploited for other nodes to
localize themselves using only local observations.

4.4.2 Identification/Calibration Stage

The first stage is the identification/calibration stage, which is responsible for building a suf-
ficiently accurate probabilistic model of the considered space-time continuous system and its
environment. This can be regarded as a system identification and training phase; see Fig-
ure 4.1 (a). For the derivation of a sophisticated model (structure and parameters) describing

80



4.4. Application 2: Node Localization based on Local Observations

the underlying physical system exploited for the localization, a series of calibration measure-
ments is required. This can be performed by using a certain number of nodes sensing the
space-time continuous system at known locations. In this work, these nodes are assumed to
be responsible only for identifying the underlying physical system, however, not necessarily
for the actual localization process. At each sensor node with the precisely known position
rBSik := [rbxk , r

by
k ]T ∈ R2, a realization of the physical system is locally measured. The positions

of the sensor nodes are collected in the known location vector rBSk ∈ R2·MBS as follows

rBSk :=
[
(rBS1
k )T , (rBS2

k )T , . . . , (rMBS
k )T

]T ∈ R2×MBS ,

where MBS denotes the total number of sensor nodes with known location considered for the
identification/calibration stage.

For physical systems that are distributed over a wide area, gathering the measurements for
the identification stage can become tedious. However, the automation of this process can be
achieved using mobile devices (with accurate navigation system) moving in the area of interest in
an autonomous and self-organized manner. Such a system, for example, was proposed in [120],
where mobile robots autonomously collect information about the signal strength distribution
that can be used for indoor localization purposes [115, 117].

The identification stage strongly differs in the way it actually makes use of the measurements
obtained. In general, the localization based on static/distributed as well as dynamic/distributed
physical systems would be of interest. Depending on the type of the physical system, the
description being obtained during the identification stage is different. For static systems a
model only in terms of a probability density function is required, whereas for dynamic systems
additional parameters describing the dynamic behavior need to be identified.

Static physical systems In the case of localizing the individual sensor nodes based on a static
physical system, the identification stage consists only of finding an appropriate model description
in terms of the conditional density function p(r) ∼ f e(p|r). This description characterizes the
spatial distribution of the considered physical quantity and its underlying uncertainty in the
area of interest. In this sense, for each position r ∈ R2 a probability density function f e(·)
about the spatially distributed system P is obtained. In Figure 4.9, a descriptive example of
such model is depicted that can be used for the localization in the one-dimensional case. There
are several ways for the actual derivation of the model describing the spatial distribution of the
physical quantity. For example, this can be achieved by data-driven approaches [47], which use
the calibration measurements to directly estimate the underlying probability density function
f e(p|r) of the static/distributed physical system. Another way is to use probabilistic learning
techniques, such as the S imultaneous Probabilistic Localization and Learning method (SPLL
method) proposed in [110] that additioinaly allows the simultaneous localization during the
identification and calibration stage.

Dynamic physical systems For dynamic physical systems, it is not sufficient to derive a de-
scription only about the current spatial distribution of the physical quantity, rather additional
parameters characterizing the dynamic behavior are necessary. The main advantage of exploit-
ing dynamic systems for the localization is that additional information about the dynamic allows
excluding specific values of the otherwise possibly ambiguous location estimates. However, this
advantage is opposed by the more sophisticated and costly identification/calibration stage that
usually must be accomplished before or simultaneous to the actual localization stage. This
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means, the identification of the parameters of the model description (1.2) for the underlying
physical system is required. This can be achieved by the SRI approach proposed in Section 4.3.

4.4.3 Localization Stage

Then, during the localization stage, the previously created and identified model is exploited to
estimate the location of individual sensor nodes by local measurements of the physical system.
This stage can be seen as the application stage performing the actual localization task based
on locally measuring the physical system. It is important to emphasize that after a prior iden-
tification of the model structure, in general, it is possible to perform the identification of model
parameters, the state reconstruction, and the localization of sensor nodes in a simultaneous
fashion. The separation of the identification/localization stage is made here only for clearly
and independently stating the individual basic ingredients of the SRL method.

In the localization stage, the individual sensor nodes with unknown or imprecisely known
location rsik ∈ R2 are locally measuring the underlying space-time continuous system, e.g.,
temperature distribution or signal strength distribution. The locations of the M sensor nodes
being identified are collected in the location parameter vector ηM

k
∈ R2·M according to (2.24).

Based on the measurements and on the model description generated in the preceding identifica-
tion/calibration stage, the location of these sensor nodes are estimated in terms of the density
function f e(ηM

k
). Hence, the main goal of the SRL method is to estimate the augmented state

vector zk := [ (xk)
T (ηM

k
)T ]T including the state of the physical system and the node locations.

In the special case of the pure localization method, i.e., precisely known process parameters ηP
k

and input model parameters ηI
k
, the complexity of the augmented probabilistic system descrip-

tion (4.1) can be reduced leading to a high-dimensional linear system model. The only nonlinear
structure here is possibly contained in the function aMk (·) describing the dynamic properties of
the individual sensor nodes. On the contrary, the augmented measurement model (4.2) turns
out to be a nonlinear relationship, mainly due to the multiplication of the node locations ηM

k
to

be identified with the finite-dimensional state vector xk ∈ RNx . The structure of the measure-
ment matrix H(·) and especially the dependency on the individual node locations rsik collected
in the parameter vector ηM

k
is illustrated in Example 2.3.

Density parameters for SRL method In the estimation process, the high-dimensional linear
substructure contained in the nonlinear generative measurement model (4.2) is systematically
exploited by the Sliced Gaussian Mixture Filter (SGMF); see Section 4.2 for a more detailed
description. In the case of a known strong mathematical description of the underlying physical
system (i.e., known model parameters ηP

k
and input parameters ηI

k
), then the density parameters

of the predicted density function (3.11) are given as follows:

• For the prediction step the parameters of the resulting predicted density fp(xk+1, η
M
k+1

)

can be derived by

Mean vectors µpij
k+1

= Akµ
eij
k

+ Bu
kûk + Bb

kb̂k

Covariance matrices Cpij
k+1 = AkC

eij
k Ak

T + Bu
kC

uij
k Bu

k
T + Bb

kC
bij
k Bb

k
T

Positions of density slices ξi
k+1

= aMk

(
ξi
k

)
• In the case of available measurements ŷ

k
the parameters of estimated density f e(xk, ηMk )

in terms of the combined measurement step are given by
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Figure 4.9: Visualization of a model that can be used for the SRL method based on static physical systems. The
model is given in terms of a conditional density function f(p|r) over the position r and the space-time continuous
state p(·); here depicted for the one-dimensional case for simplicity purposes only.

Weights of the slices γijk = N
(
ŷ
k
−Hk

(
ξi
k

)
µpij
k
,Hk
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Cpij
k Hk

(
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Mean vectors µeij
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k
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(
ŷ
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−Hk

(
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)
µpij
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)
Covariance matrices Ceij
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k −KkHk

(
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k

)
Cpij
k

Kalman gains Kk = Cpij
k Hk

(
ξi
k

)T (
Cv
k + Hk

(
ξi
k

)
Cpij
k Hk

(
ξi
k

)T)−1

4.4.4 Tracking of Movable Sensor Nodes

This section is devoted to some remarks on extending the proposed SRL method to the tracking
of movable sensor nodes; so-called sensor-actuator nodes. In general, such networks of sensor-
actuator nodes can be used for the intelligent exploration of space-time continuous systems
where the individual nodes autonomously move in the area of interest. By cruising in the entire
area in an intelligent manner, the movable sensor-actuator nodes gather specific information
(in terms of state/parameter vectors) about the physical system being observed. The goal for
example could consist of optimizing a certain object function, such as minimizing the variance
field (state estimation) or maximizing the information gain (parameter identification). In [63] a
control algorithm is proposed for a swarm of robots with the purpose to minimize the variance
of a specific information field. However, the implemented mathematical model describing the
grow of the uncertainty does not consider physical background knowledge. Thus, it does not
sufficiently take the dynamic/distributed behavior of the space-time continuous system into
account. The performance of such exploration systems could be significantly improved by
employing the systematic approach proposed in this thesis in order to obtain a precise and a
physically correct estimation of the underlying random field.
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Motion models For aforementioned application scenarios the accurate localization and espe-
cially the tracking of the movable sensor-actuator nodes plays an important role. In general, any
tracking algorithm makes specific assumptions about the motion behavior of the object to be
tracked. By this means, additional background knowledge is exploited to obtain an improved lo-
cation estimate, i.e., some restrictions on the new position estimate are imposed. Depending on
the actual application, there are various mathematical models of motion behaviors. A compre-
hensive survey on different kinematic motion models with emphasizing applications to human
motion tracking can be found in [149]. Employing dynamic motion models can improve the
accuracy of the tracking algorithm in many cases.

Assuming a holonomic motion behavior, i.e., independent motion in all directions, then the dy-
namics of the entire sensor-actuator network consisting ofM individual nodes can be described
by following motion model,[

ηM
k+1

η̇M
k+1

]
=

[
I ∆t · I
0
(
1− ∆t f

m

)
· I

] [
ηM
k

η̇M
k

]
︸ ︷︷ ︸

ak(ηM
k+1

,η̇M
k+1

)

+

[
0
∆t
m

]
(ûMk +wM

k ) , (4.7)

where m denotes the mass of the individual sensor-actuator nodes, ∆t represents the temporal
discretization constant and f is the so-called viscous-friction coefficient. The state of this model
consists of the node location vector ηM

k
∈ R2·M and the velocity vector η̇M

k
∈ R2·M and is driven

by the input vector ûk ∈ R2·M . The employment of the model (4.7) into the augmented system
model (4.1) for tracking movable sensor-actuator nodes is conceptually straightforward.

4.4.5 Simulation Results

In this section, the performance of the SRL method that is based on locally measuring a space-
time continuous physical system is descriptively demonstrated by two simulated case studies ;
based on (a) static/distributed and (b) dynamic/distributed physical systems. As proof of
concept, the spatially distributed measurement system is assumed to consist of one single sensor
node to be localized. This can be regarded as a worst case scenario meaning the localization is
performed only based on the physical system without using additional information from other
nodes or a global positioning system. Here, it is noted that in the case of available additional
information that are possibly obtained from other localization techniques then these information
can be used to further improve the location estimate. Also, the extension to localize more than
one sensor node at once is straightforward.

Example 4.3: Localization exploiting models of static/distributed physical systems
In this example, the space-time continuous system that is exploited for the localization of one single
sensor node is assumed to be static, i.e., time-invariant. In practical implementations, the model
description in terms of the space-time continuous state p(x, y) ∈ R2 could be obtained using the
methods proposed in [47, 110]. Here, the mean and variance is given as

Mean physical system p̂(x, y)/ ◦C =

{
20− 20 sin (1.5x− 1.5) (sin(5y + 5) + 1) x < 1
20 x ≥ 1

Variance physical system C(x, y) = 100K2 ,
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Figure 4.10: Simulation results for the localization of one single sensor node at rsyk based on locally measuring
a static physical system. (a) Visualization of the physical model description in terms of the conditional density
function f(p|y). (b) Resulting probability density function fe(rsyk ) for the estimated node location.

where the space-time continuous mean p̂(·) is visualized in Figure 4.8. A sectional drawing of
the density function f e(p|y) along the y-direction exploited for the localization is depicted in Fig-
ure 4.10 (a). The distributed measurement system to be localized consists of one single node with
following true node location rMtrue := [0.4m, 0.8m]T and sensor variance Cv

k = 0.1K2 of the local
measurement. The goal in this case study is to localize the sensor node in the y-direction using
the SRL approach proposed in this chapter. The resulting high-dimensional nonlinear estimation
problem is performed by means of the Sliced Gaussian Mixture Filter (SGMF) with a total number
of MD = 40 density slices. The localization results are shown in Figure 4.10 (b). It can be clearly
seen that all three possible locations are represented in terms of the probability density function
f e(rsyk ). More important, it does not lead to a degeneration of particular locations, which auto-
matically would result in unjustifiable improvements of the estimated location or even worse to a
tracking of completely wrong locations. �

Example 4.4: Localization exploiting models of dynamic/distributed physical systems
This example is devoted to a demonstration of the SRL method exploiting dynamic/distributed
physical systems; in particular systems governed by the convection-diffusion equation (2.1). The goal
here is to localize the sensor node with initially unknown location (true node location is rsytrue = 0.8m)
using local measurements of the space-time continuous physical system. The model parameters of
the physical system that are exploited for the localization are given in Example 4.1 and the initial
conditions are stated in Example 4.3. The boundary conditions, the assumed convection field, and
the spatially distributed inputs are depicted in Figure 2.4. For visualization purposes, the spatial
distribution of the physical system and its development over time is shown in Figure 4.11. It
is assumed that the measurement system to be localized consists only of one single sensor node
locally measuring the space-time continuous physical system. Furthermore, the sensor node has
only very uncertain knowledge about the initial spatially distributed state of the physical system;
see Figure 4.13 (f). The simulation results are discussed in the following. �

Reconstruction based on incorrect locations As it was already demonstrated in Sec-
tion 2.6.2, the reconstruction process of space-time continuous physical systems requires rather
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Figure 4.11: Simulated case study for the localization based on dynamic physical systems. Numeric solution of
the space-time continuous system (deterministic case) at time step (a) k = 10, (b) k = 20, and (c) k = 40.

precise models, both of the physical system and the measurement system itself. If any as-
sumption about the model parameters (or model structure) is violated, the performance of the
reconstruction can quickly degrade. However, in many cases, the locations of sensor nodes (in
particular randomly deployed or movable nodes) contain some uncertainties or even could be
completely unknown. The degradation leading to poor performance is illustrated in the follow-
ing. For that reason, the reconstruction of the distributed system is performed on the basis of
a Kalman filter with nominal parameters for the sensor location rsymodel, according to

rsymodel ∈ {0.1 , 0.2 , . . . , 1.9} m .

For each assumed node location, a total number of MMC = 200 independent simulation runs
have been performed, resulting in 200 true realizations x̃ik of the physical system. The root
mean square error exk (rmse) and the error variance Crmse

x are approximated by calculating the
average according to (2.34). The mean and standard deviation of rmse exk of the estimated
state vector xk based on deviating node locations is shown in Figure 4.12. It can be easily seen
that the more the assumed node location rsymodel deviates from the true location rsytrue, the more
the performance of the reconstruction result degrades. In addition, obviously the actual spatial
distribution of the physical system influences the resulting errors for deviating node locations.
Roughly speaking, when the temporal process at the deviated node location is similar to the
process at the true location, then obviously a smaller reconstruction error is caused. This
degradation clearly justifies the systematic consideration of location uncertainties during the
reconstruction process; as demonstrated in the remainder of this section.

Simultaneous approach (SRL method) The aforementioned approaches (i.e., SGMF and
MPF) for the passive node localization are compared based on 50 independent simulation runs.
In particular, the accuracy of the estimated location rsyk ∼ f(rsyk ) is investigated. The estima-
tion of the unknown location rsyk is depicted in Figure 4.13 (a) for one specific simulation run.
It can be clearly seen that after a certain transition time the SRL method based on the SGMF
(with 40 slices) offers a nearly exact location estimate. The complete density function f e(rsyk )
for the estimated location evolving over time is depicted in Figure 4.13 (d) for a specific run.
The ambigious distribution of the physical system being observed results in a multimodal den-
sity function for the estimated location rsyk . This undoubtedly explains the higher uncertainty
at the beginning of the simulation. However, by exploiting more and more measurements and

86



4.4. Application 2: Node Localization based on Local Observations

rm
se
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information about the dynamic system, the estimate of the location changes from a multimodal
to a unimodal function. Thus, the estimate becomes more accurate; see Figure 4.13 (a).

The mean êrsyk and variance Crmse
rsy of the root mean square error ersyk (rmse) of the node location

rsyk can be calculated similar to (4.6). The error averaged over time is calculated according to

er
sy

T =
1

Nt − 50

Nt∑
k=50

|rsytrue − r̂
esy
k | ,

where r̂esyk is the mean of the estimated location for the i-th simulation run. The mean and
standard deviation of the rmse ersyk of node location considering all 50 performed simulation
runs is visualized in Figure 4.13 (b). The error ersyT of the location estimate after a certain
transition time (i.e., k > 50) of all 50 simulation runs are depicted in Figure 4.13 (c). From
these two figures, it can be clearly seen that the SGMF-based localization (40 slices) in most
cases results in a more accurate location estimate than in the case of using MPF (200 particles),
although a lower number of density slices are used. This higher accuraciy is basically due to the
systematic approach for finding optimal placements of the density slices in the case of SGMF,
while the slices for the MPF are placed randomly. It is well-known that this randomness
results in a degeneration and impoverishment of certain particles. Even more severe, due to
the multimodal density function for the location estimate at the beginning of the simulation
(see Figure 4.13 (e)), this fact causes the degeneration of entire modes. To visualize this, the
mean from the MPF-based localization is shown in Figure 4.13 (a) for different simulation runs;
two results show where the estimate get stuck in wrong modes. It is obvious that in certain
cases the MPF sticks to the wrong location due to the degeneration of specific modes.

In Figure 4.13 (d), the error (i.e., error mean êxk and variance Crmse
x ) between a reconstruction

process based on incorrect node locations and the proposed simultaneous approach is compared.
The improved accuracy clearly justifies the systematic consideration of uncertainties in the
node location during the state reconstruction. Thanks to the simultaneous property of the
SRL method, not only can the sensor node be accurately localized, but also the estimate of
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the space-time continuous physical system can be further improved. The improvement of the
reconstruction result is obvious by comparing the two plots in Figure 4.13 (f). It is important
to emphasize that the physical system can be reconstructed at the actual measurement point
as well as at non-measurement points. The improved knowledge in the entire area of interest
can be exploited by other sensor nodes to localize themselves.

In this thesis, the localization was restricted to one single sensor node locally measuring the
space-time continuous system. However, the method can be extended to more sensor nodes with
both uncertain location and precisely known location in a straightforward fashion. In addition,
it is believed that using more than one sensor node, the performance of the localization and
reconstruction process can be significantly improved since more information about the physical
system is available, and thus can be exploited for more accurate estimation results. The already
precisely localized sensor nodes, e.g., sensor beacons or base stations, can be used to reconstruct
the physical system and by this means support the localization of individual sensor nodes
deployed between the beacons.

4.5 Application 3: Source and Leakage Localization

In many application scenarios the task consists of localizing a certain source of a space-time
continuous physical system. For example, the detection of disposal sites on the ocean floor [67],
the localization of landmines using chemical sensors [68], the detection of leakages in storage
facilities for radioactive waste [3], or biochemical concentrations [108, 155]. In such scenarios,
sensor networks with their spatially distributed sensing properties offer novel prospects for
accurately localizing sources and leakages.

In order to derive accurate localization results, usually, physical background knowledge in
terms of mathematical models needs to be exploited. Hence, in this research work, a method
for source and leakage localization is proposed that is based on combining the state recon-
struction (Chapter 2) resulting in physically correct estimation results of the physical system
and the efficient non-linear estimator SGMF (Chapter 3). This means, the goal is the recon-
struction of the space-time continuous system state p(r, t) ∼ f(p|r, t) as well as the space-time
continuous input s(r, t) ∼ f(s|r, t) in a simultaneous fashion. This can also be considered as
the model-based reconstruction of spatially distributed system inputs. Here, the identification of
parameters characterizing the dynamic and distributed properties of sources/leakages is called
S imultaneous Reconstruction and Source Localization method (SRSL method)

Density parameters for SRSL method Similar to previous cases, the augmentation of the
high-dimensional state vector xk with the purpose of identifying input parameters ηI

k
leads

to a nonlinear system description. The high-dimensional linear substructure contained in the
resulting augmented system model is systematically exploited by the SGMF, introduced in
Section 4.2. The parameters of the predicted density function (3.11) are given as follows

• For the prediction step the parameters of the resulting predicted density fp(xk+1, η
I
k+1

)

can be derived by
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Figure 4.13: Comparison of the Sliced Gaussian Mixture Filter (SGMF) using 40 slices and the marginalized
particle filter (MPF) using 200 particles for the localization of one single sensor node; true location rsytrue = 0.8m.
(a) Mean/variance of node location rsyk for a specific simulation run. (b) Mean and standard deviation of the
root mean square error er
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is the reconstruction based on deviating node locations and the proposed simultaneous approach. (e) Resulting
density function fe(rsyk ) for estimated node location rsyk over time for specific simulation run. (f) Realization of the
distributed physical system (red dotted) and its estimated mean (blue). The confidence interval of the estimated
physical system (gray shaded area) can be significantly improved thanks to the simultaneous approach.
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Example 4.5: Localization of spatially distributed input
In the following simulated case study, the performance of the proposed method for localizing spatially
distributed sources is demonstrated. The underlying space-time continuous system is assumed to be
modelled by the convection-diffusion equation (2.1) with nominal parameters stated in Example 4.1.
The space-time continuous input strue(x, y) being estimated is assumed to be given by

strue(x, y) = 4·102

(
exp

{
−(q1y − x)2

0.2
− (q1y − y)2

0.2

}
+ exp

{
−(q2x − x)2

0.01
− (q2y − y)2

2

})
(4.8)

where the center of the two sources are q1x = q1y = 0.5m and q2x = q2y = 1.5m. The system
input strue(x, y) is visualized in Figure 4.14 (a)-(b). The boundary conditions and the assumed
convection field are shown in Figure 2.4. The space-time continuous state p(r, t) resulting from the
assumed input is depicted in Figure 4.14 (c) for the deterministic case for visualization purposes
only. The spatially distributed measurement system consists of different number of nodes randomly
deployed in the domain of interest, according to

S ∈ {10 , 20 , . . . , 100} .

The main goal here is to reconstruct the entire space-time continuous input s(r, t) and simulta-
neously reconstruct the initially unknown state p(r, t). In terms of the simultaneous state and
parameter estimation framework (see Section 4.1), there are generally two different approaches, (a)
the direct identification of the input vector uk (results shown in Figure 4.15), and (b) the identifi-
cation of input model parameters ηI

k
characterizing the input vector (results shown in Figure 4.16).

This is explained and demonstrated in more detail in the remainder of this section. �

Direct identification The first approach for the model-based source localization is the esti-
mation of the state vector xk ∈ RNx augmented with their corresponding direct input vector
uk ∈ RNx . This means, the system input necessary for the system model (4.1) is directly
parameterized according to uk(ηIk) = ηI

k
. It is important to emphasize that in this case the
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Figure 4.15: Simulation results for the direct identification approach in order to reconstruct the entire spatially
distributed system input. (a) Resulting mean of input ŝ(x, y) using NS = 100 randomly deployed sensor nodes.
(b) Mean of the root mean square error (rmse) euk and exk of the space-time discrete input vector uk and state
vector xk, respectively. The results are shown for different number of sensor nodes NS ∈ {10, 20, 40, 60, 100}.
Obviously, a high number of nodes is necessary to obtain a sufficiently accurate estimate.

augmented system model (4.1) remains a linear description with following structure[
xk+1

ηI
k+1

]
=

[
Ak Bu

k

0 I

]
·
[
xk
ηI
k

]
+

[
Bb
k (b̂k +wk)
wI
k

]
;

however, obviously the dimension is double the original problem. Hence, the linear Kalman
filter [132] can be used for estimating the augmented system state zk := [(xk)

T, (ηI
k
)T]T, which

contains the state vector and its corresponding input vector; see (2.28) and (2.29).

The reconstructed system input s(x, y) that is obtained after the conversion of the estimated
input vector ηI

k
= uk into the continuous space (similar to (2.30)) is visualized in Figure 4.15 (a).

The root mean square error (rmse) both of the space-time discrete state vector xk and the space-
time discrete input vector uk can be obtained as stated in (2.34). The results are shown in
Figure 4.15 (b). From these figures, it is obvious that a high number of sensor nodes is required
in order to obtain a sufficiently accurate estimate of the system input s(·). Moreover, using a
lower number of nodes causes a low convergence rate.

Identification of the input model The direct identification of the input vector uk results in
a low convergence rate and still requires a high number of sensor nodes. This is mainly caused
by the fact that the correlation between the individual components of the space-time discrete
input vector is too weak, and thus local measurements have only locally restricted influence on
the estimation results. The convergence rate and the accuracy can be significantly improved by
making specific assumptions about the space-time continuous input s(x, y) being reconstructed,
i.e., imposing some restrictions. This can be achieved by exploiting additional physical back-
ground knowledge in terms of a input model. This means, the space-time continuous system
input s(ηI

k
, x, y) does depend on model descriptions, and thus does depend on the so-called

input parameter vector ηI
k
. This vector includes parameters such as intensity or location of

the individual sources or leakages. In this case, the resulting augmented system model (4.1)
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turns out to be nonlinear due to the nonlinear relationship between the system state xk and
the parameter being identified. In a similar way to the SRI-method and the SRL-method, the
linear substructure is exploited using the SGMF; see Chapter 3.

The mathematical model of the space-time discrete input vector uk that is parameterized by
the vector ηI

k
being estimated can be obtained by a spatial decomposition of the space-time

continuous input s(ηI
k
, x, y); see Section 2.3.3. This results in a system input according to

uk

(
ηI
k

)
= ∆tM−1

G s̃
(
ηI
k
, t
)
,

where s̃(·) denotes the system input being integrated over the used shape functions; see (2.10).
This parameterization of the system input uk(ηIk) can be used for the simultaneous reconstruc-
tuction of the state and the localization of spatially distributed sources and leakages.

Depending on the actual application, there are various mathematical models that can be used
for describing the dynamic and distributed properties of the system input. For example, for
modelling point-wise sources Dirac functions could be used and in the case of spatially dis-
tributed sources continuous functions are required, such as exponential functions. Moreover,
the spatially distributed source can be assumed to be stationary or time-variant. In the time-
variant case, the dynamic behavior of the source location needs to be sufficiently described by
a dynamic motion model; similar to (4.7).

Here, we assume to have given a stationary spatially distributed source that can be described
according to (4.8) with imprecisely known location ηIk := q1y in the y-direction. The main goal is
to localize the spatially distributed source in the y-direction and simultaneously reconstruct the
distributed physical system. In Figure 4.16 (a), an example simulation run for the estimation
of the source location derived by the SGMF (using 40 slices) is visualized. It can be clearly
seen that after a certain transition time the SGMF-based source localization method offers a
nearly exact estimation result. The estimation error eqT of the source location q1y averaged
over the simulation time is visualized in Figure 4.16 (b) for all 30 runs. The mean of the
root mean square error (rmse) both of the space-time discrete state vector xk and input vector
uk derived according to (2.34) are depicted in Figure 4.16 (c)-(d). Compared to directly
identifying the input vector uk, the identification based on an appropriate input model results in
an higher convergence rate and in lower reconstruction errors. This is the case for both the state
reconstruction and the input reconstruction. From these results, it is obvious that exploiting
additional background knowledge about the general behavior of the source and using the SGMF-
based identification approach significantly improves the state and input reconstruction.

In this simulated case study, the reconstruction of the space-time continuous system input s(·)
was restricted to a mathematical description that is parameterized by one single parameter;
here, the location in the y-direction. The extension to more parameters is conceptually straight-
forward. Then, spatially distributed sources described by arbitrary functions with an arbitrary
number of input model parameters can be reconstructed. Even the extension to multi-source
localization is possible with the proposed methods for the system conversion and the efficient
state/parameter estimation based on the Sliced Gaussian Mixture Filter (SGMF).

4.6 Summary and Discussion

In this chapter, the methodology for the simultaneous state and parameter estimation of space-
time continuous physical systems was introduced. Basically, the finite-dimensional system
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Figure 4.16: Simulation results for the identification of the input model using NS = 40 randomly deployed
sensor nodes. (a) Mean/variance of the estimated source location q1y for a specific simulation run. The assumed
true location is assumed to be given as q1y

true = 0.5m. (b) Source location rmse ey1
T averaged over time for all runs.

(c) Mean and standard deviation of the root mean square error euk (rmse) of the resulting space-time discrete input
vector uk, and (d) rmse of the estimated state vector xk.

state vector is augmented with the parameters that characterize the dynamic behavior and
distributed properties both of the physical system and the measurement system. Due to the fact
that the spatial decomposition and temporal discretization of space-time continuous physical
systems results in a high-dimensional model, the augmentation leads to a high-dimensional and
nonlinear model. Based on the proposed novel estimator — Sliced Gaussian Mixture Filter —
the linear substructure contained in the finite-dimensional model is exploited. By this means
an overall more efficient parameter estimation process is obtained. The novel prospects were
demonstrated in an exemplary fashion by applying the proposed methodology to the most
common tasks in sensor network applications: (a) the identification of process parameters, (b)
the localization of sensor nodes by locally measuring a space-time continuous physical system,
and (c) the localization of sources and leakages. In particular, the passive localization approach
— S imultaneous Reconstruction and Localization (SRL method) — is not restricted to sensor
network applications but also offers new possibilities for indoor localization techniques. In
such application scenarios, usually, the objects being localized are not able to access a global
positioning system. For example, cell phones can be localized based on locally measuring the
signal strength distribution transmitted by specific base stations.
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CHAPTER 5

Decentralized State Reconstruction
of Space-Time Continuous Systems

This chapter addresses the problem of the decentralized estimation of space-time continuous
systems. The centralized approach for the state reconstruction (as introduced in Chapter 2) is
not scalable for large sensor networks or physical systems that are characterized by a large state
vector. All information has to be transmitted to a powerful central processing node, and thus
requires an extensive amount of communication bandwidth and processing power. Hence, in
order to obtain an efficient estimation process, decentralized processing of the information locally
on each sensor nodes is preferred. The main challenge is that the decentralized approach leads
to stochastic dependencies between the individual estimates that may either be too expensive
to maintain or are simply not available for several reasons. Unfortunately, these dependencies
in terms of joint probability density function are required for fusing local estimates. As a
consequence, the density that describes the joint statistics of all estimates in the network
needs to be reconstructed or an appropriate so-called bounding density needs to be derived.
In this chapter, methods are introduced that allow the decentralized estimation of space-time
continuous systems while systematically considering the imprecisely known dependencies.

In the case of Gaussian probability density functions, stochastic dependencies can be uniquely
described by the classical correlation coefficient. For decentralized estimation, this correla-
tion coefficient between the considered estimates is often assumed to be completely unknown,
although prior knowledge in terms of constraints may be available. The constraints can be
classified into three types: (a) completely unknown correlation, (b) symmetric correlation con-
straints, and (c) asymmetric correlation constraints. Using just the natural bound of the
coefficient leads to quite conservative and usually not sufficient results. The novel estimator —
Covariance Bounds Filter (CBF) — that is introduced in this chapter allows the systematic
consideration of such prior knowledge about the correlation constraints and leads to correct
and consistent estimation results. This estimator is based on a systematic separation of the co-
variance matrix to be bounded into two components. The first component consists of a matrix
with completely unknown cross-correlations, meaning the unknown coefficients may vary in the
entire natural bound. The second component consists of matrices that need to be derived on
the basis of the given correlation constraints.

Based on the Covariance Bounds Filter, a novel framework for the decentralized state recon-
struction of space-time continuous physical systems is proposed. The decentralized approach
consists of three stages shown in Figure 5.1 and briefly described in the following:

1. Conversion of the mathematical model of the physical system being reconstructed from a
space-time continuous form into a discrete system in state-space form (see Section 2.3).
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Figure 5.1: Visualization of the three stages toward a fully decentralized state reconstruction of space-time
continuous systems: (a)⇒(b) Conversion of the mathematical model into a space-time discrete system in state-
space form, (b)⇒(c) decomposition of the system model into subsystems, and decomposition of the probability
density function for the decentralized estimation.

2. Decomposition of the space-time discrete system model into appropriate subsystems in
order to allocate the system description to the spatially distributed sensor nodes.

3. Decomposition of the underlying probability density function and employment of an ap-
propriate decentralized estimator, such as the Covariance Bounds Filter.

The methods for the decentralized reconstruction of space-time continuous systems were pub-
lished at [169, 173]. However, explanations are stated in a considerably extended way and
further simulation results clarify the properties of the proposed methods.

5.1 Related Work

Centralized reconstruction of space-time continuous systems In the case of a centralized
reconstruction approach, as introduced in Chapter 2, the nodes locally collect measurements
and propagate the corresponding information through the network to a central processing node.
At the central node, the information obtained from all sensor nodes are fused at once; see Fig-
ure 5.10 (a). In this case, the physical system can be reconstructed by applying a standard
estimator1 to the entire global state vector and storing the associated correlations between the
individual sensor nodes. However, this approach for the reconstruction requires a powerful
central processing node, and an extensive amount of communication bandwidth. For practical
applications, a decentralized approach for the reconstruction is more efficient, which implies
that the individual substate vectors are maniuplated separately at each reconstruction step.

Decentralized reconstruction approaches For the decentralized reconstruction of space-time
continuous physical systems, the individual sensor nodes solely rely on their local measurements.
Hence, the reconstruction process occurs locally on the sensor nodes without a central processing
node. There are two types of sources of unknown correlations in sensor network applications.
The first type is inherent to the system and caused by partially stochastic dependent noise
sources for different sensor nodes. In other words, there are usually additional external distur-
bances affecting more than one sensor. Even for ideal sensor properties, this already would lead
1 It is refered to Section 2.5 and Section 3.4 for the linear and nonlinear case, respectively.
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to a partially stochastic correlation between the measured states. The decentralized estimation
process itself causes a second source of imprecisely known correlation. The physical quantity
is measured and processed only locally. Then, the individual sensor nodes exchange their lo-
cal estimates in order to improve their estimate. In this case, the estimation results become
automatically stochastically correlated after the first fusion of individual estimates. Applying
the Kalman filter for decentralized problems while ignoring the existing dependencies between
the individual states leads to overoptimistic, even wrong estimation results. The imprecisely
known correlations need to be systematically considered during the reconstruction in order to
get correct and consistent estimation results.

Decentralized Kalman filtering One possibility would be based on a fully-connected topol-
ogy, where every node transmits local information to all other nodes in the network and a
centralized reconstruction is performed on each node [102]. In such cases, the communica-
tion and computational load is high and compared to the centralized approach no significant
reduction is achieved. For that reason, in most cases, it is more beneficial when individual sen-
sor nodes exploit only local estimates and estimates of their corresponding adjacent neighbors
without storing any information about the correlations, as visualized in Figure 5.10 (b).

Channel Filter The channel filter [141] exploits the fact that the mutual information between
any nodes can be uniquely calculated in the case of a tree-connected topology. Only in such
cases does a single path exist between any pair of sensor nodes in the network. Based on this,
the information that is common between all the nodes is maintained, and thus can be removed
in the processing of the estimates. However, there are several limitations with this approach.
The channel filter cannot be applied to arbitrary connection topology, e.g., network topology
containing cycles. This is the main justification for the following robust estimators that can be
applied to any network topology. In addition, for non-Gaussian densities there exists no closed
form solution, and thus computational expensive numerical methods are required [105, 106].

Covariance Intersection and its generalization The main challenge for a fully decentralized
reconstruction (in terms of a Bayesian approach) is that due to the process itself, imprecisely
known correlations between the states are caused, i.e., their joint statistics are simply not
available. In that case, classical filtering techniques like the Kalman filter conveniently assume
uncorrelated joint densities leading automatically to unjustified improvements of estimation
results. For coping with this problem, estimators based on Covariance Intersection [29, 32, 30,
73, 140] were derived. The key idea of this estimator that is robust against imprecisely known
correlations is certainly not new; it was already published in a more general context of robust
estimation of uncertain dynamic systems [130]. The objective is to derive a consistent estimate1
when the respective random variables are linearly combined. The fusion result depends on a
parameter that has to be optimized in order to derive a tight bound. Typically, the objective
function for this optimization is chosen to be the determinant or trace of the resulting covariance
matrix. A closed form solution exists for the trace as the objective function [103]. This estimator
has found wide applications in localization and navigation [7, 13, 153] and in particular in
simultaneous localization and mapping applications [26, 75, 140]. The equivalence to the log-
linear combination of two Gaussian density functions, and thus its relationship to the Chernoff
information is shown in [66]. Given this relationship and using exponential mixture densities, a
generalization to any probability density functions may be possible [71, 70]. However, the only
justification of the generalization on the basis of the Chernoff information to arbitrary density
functions would be the observations stated in [66].
1 The term consistent estimate here means an upper bound in the positive definite sense.
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Covariance Bounds Filter (CBF) More general set-based approaches for robust estimation
can be systematically derived based on so-called Covariance Bounds [54, 55, 53]. It is noted
that the proof of consistent estimation results of all the aforementioned Covariance Intersection
algorithms is restricted to the measurement step, i.e., fusion of random variables. Whereas the
method based on Covariance Bounds allow to cope with unknown correlations, both for the
measurement step and the prediction step, as well as allow the consideration of uncertainties
in the model. In addition, the systematic approach allows to find bounding densities even
with constrained correlations, as introduced within this research work (see Section 5.4). The
applicability to simultaneous localization and mapping, and a demonstration of its improved
performance compared to the Covariance Intersection is demonstrated in [57].

Distributed optimization problem Besides aforementioned Bayesian estimation approaches,
there are other methods tackling the problem of the decentralized estimation of space-time
continuous systems. In [17, 113], the problem of decentralized parameter identification is stated
as a distributed optimization problem minimizing a certain cost function of interest. Although
these algorithms are distributed, they do not provide a recursive characteristic, and thus require
an extensive amount of data. The algorithm introduced in [96] is both decentralized and
recursive. However, it addresses only the estimation of stationary physical systems.

5.2 Conversion and Decomposition of the System Description

Conversion of space-time continuous system The estimation of space-time continuous
systems based on a mathematical model in distributed-parameter form is quite complex. Hence,
in order to cope with this problem, the system model needs to be converted from the distributed-
parameter form into a lumped-parameter form; see Section 2.3. It was shown that based on
these methods, the solution domain Ω can be spatially decomposed resulting in a global state
vector xk that characterizes the state of the physical system. The individual entries xik can be
regarded as so-called software nodes, since they are only necessary for describing the system in
a finite-dimensional state space. Here, it is noted that for any numerical method for solving
partial differential equations (see Section 2.3), the resulting state vector xk can always be
rearranged and separated so that the state at a certain node i can be derived by considering
their respective adjacent nodes only. This means, the propagation of local estimates over space
and time can be conveniently described by a lattice structure as shown in Figure 5.2 (b).

Throughout this chapter, the following system is considered in order to show the key idea and
novelties of the proposed decentralized estimation process for spatially distributed systems.

Example 5.1: Considered space-time continuous physical system
In general, the methods introduced in this chapter can be applied to convection-diffusion equa-
tions (2.1) and to general linear partial differential equations (1.2). For simplicity reasons, we
restrict our attention to the following one-dimensional diffusion equation,

L(p(r, t)) =
∂p(r, t)

∂t
− α(r, t)

∂2p(r, t)

∂r2
− s(r, t) = 0 , (5.1)

where the diffusion coefficient α(r, t) could be both time and space varying; compare (2.1). The
simplest method for the system conversion is the finite-difference method. In order to solve the
partial differential equation (5.1), the derivatives are approximated according to

∂p(r, t)

∂t
≈
pik+1 − pik

∆t
,

∂2p(r, t)

∂r2
≈ p

i+1
k − 2pik + pi−1

k

∆h2
, (5.2)
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Figure 5.2: (a) Each sensor locally collects measurements and propagates local estimates to adjacent nodes. In
a fully decentralized propagation through the network, the correlations between the individual estimates are not
stored. (b) Lattice dynamical system for visualizing the decentralized reconstruction process and for describing
the cause of unknown correlations, e.g., information from Node 1 at point A is counted twice at B1 and B2.
(c) Decomposition of the probability density function. The covariance matrix C̃k is decomposed in the same way as
the system decomposition, where covariances C̃iik are stored and the cross-covariances C̃ijk with i 6= j are neglected.

where ∆t is the sampling time and ∆h the spatial sampling period. The superscript i and the
subscript k in pik denote the value of the physical system at discretization node i and at time step k.
The diffusion coefficient is assumed to be space-time variant, and the individual coefficients αik at
locations i are collected in the vector αk =

[
α1
k , . . . , α

Nx
k

]T
. Then, the conversion results in the

following system matrix Ak ∈ RNx×Nx

Ak =
∆t

∆h2


−2α1

k 1 0 · · · 0
1 −2α2

k 1 · · · 0
... . . . . . . . . . ...
0 · · · 1 −2αNx−1

k 1
0 · · · 0 1 −2αNxk

+ I , (5.3)

where I ∈ RNx×Nx represents the identity matrix. The state of the physical system is characterized
by the global state vector xk =

[
p1
k , . . . , p

Nx
k

]T
. For the conversion of the entire space-time

continuous system, the input function s(r, t) needs to be discretized in the same way as the system
state. This leads to the input vector uk =

[
s1
k , . . . , s

Nx
k

]T
. The input matrix Bk that relates the

system input uk to the corresponding state vector xk is given by a diagonal matrix with the sampling
time ∆t as diagonal entries, according to Bk = diag {∆t , . . . ,∆t}. �

Decomposition of resulting space-time discrete system (linear case) For physical sys-
tems that are spatially distributed over a large area, the dimension of the global state vector xk
may become very large. In the case of a centralized estimation approach, the entire state vector
needs to be communicated and processed at once, and thus yields high communication costs and
high computational load. As a first step toward a decentralized estimation approach, a decom-
position of the space-time discrete system into appropriate subsystems is of major significance.
Basically, the software nodes that are obtained from the conversion process are allocated to
respective hardware nodes (depending on their location), i.e., the system description is mapped
to the sensor network. For the system decomposition, the global state vector xk is decomposed
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Figure 5.3: The decomposition of the system model and the underlying probability density function allows the
continuous scaling between the centralized approach and the decentralized approach. By this means, additional
knowledge about the correlation structure within the network can be exploited. The structure of the decomposed
covariance matrix C̃k strongly depends on the actual application.

into appropriate substate vectors xik, according to

xk =
[(
x1
k

)T
, . . . ,

(
xik
)T

, . . . ,
(
xNCk

)T
]T

,

where the individual substate vectors xik may be allocated to appropriate hardware nodes. The
variable NC denotes the number of substate vectors. The decomposition of the state vector
and the allocation to sensor nodes is depicted in Figure 5.1 (c).

Based on the decomposition of the state vector, the mathematical system model needs to be
decomposed into appropriate subsystems. In the case of linear system/measurement models
(i.e., reconstruction of linear partial differential equations) the i-th substate vector xik and the
i-th measurement vector ŷi

k
are stated as follows,

xik+1 =

NC∑
j=1

Aij
k x

j
k +

NC∑
j=1

Bij
k

(
ûjk +wj

k

)
, ŷi

k
=

NC∑
j=1

Hij
k x

j
k + vik , (5.4)

where Aij
k , Bij

k and Hij
k are the respective submatrices of the global matrices Ak, Bk and

Hk. It is important to emphasize that generally, the decomposition of the space-time discrete
system model into the decomposed system model (5.4) is achieved in an exact fashion, i.e.,
no approximation is required. However, for certain applications it might be more beneficial to
ignore negligible subsystems in (5.4), for instance when certain submatrices Aij

k are (close to)
zero. This certainly could lead to a more efficient estimation process. The decomposition of
nonlinear system models1 is conceptually straightforward.

In the deterministic case, i.e., the uncertainties in the models and in the measurements are not
considered, the decomposed system description (5.4) can be directly used for reconstructing
the space-time continuous system in a decentralized fashion. Hence, the propagation of the
system state can be exactly derived. In the stochastic case, an additional decomposition of the
underlying probability density function is necessary in order to arrive at a fully decentralized
approach. This decomposition is explained in the following section.

1 This would be required for the parameter identification of space-time continuous systems
in a decentralized fashion.
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Figure 5.4: Visualization of the effect of neglecting unknown correlations during the propagation of information
through the network: (a) centralized Kalman filter, (b) decentralized Kalman filter with neglecting correlations,
and (c) Covariance Bounds Filter (CBF).

5.3 Decomposition of Probability Density Functions

This section is devoted to the systematic decomposition of probability density functions. In
order to derive a fully decentralized estimation process, the density function has to be decom-
posed in such a way that it matches the decomposed system equations (5.4). In the centralized
approach, all information about the space-time continuous system and the measurements has
to be collected and processed at a central processing node. In the case of a decentralized
estimation, the individual substate vectors xik are manipulated separately at each processing
step, instead of the entire global vector at once. By this means, it is possible to perform the
state estimation process locally on each hardware node. Moreover, only local estimates need
to be communicated between adjacent nodes, which dramatically reduces communication load.
Before the decentralized state reconstruction is derived, the underlying probability density func-
tion is required to be decomposed. This is described in more detail in the remainder of this
section, both for the (a) Gaussian and (b) non-Gaussian case.

(a) Gaussian density case For a fully decentralized reconstruction of space-time continuous
physical systems, it is beneficial not to store the occurring correlations between the individual
estimates. In the case of Gaussian probability density functions, the cross-covariances C̃ij

k

between the substate vectors xik and xjk with i 6= j are not stored within the sensor network.
Hence, their covariance matrix is characterized by

C̃k = Cov
{
xik,x

j
k

}
=

{
C̃ij
k for i = j

unknown for i 6= j
. (5.5)

This certainly reduces the computational burden, memory resources, and communication ac-
tivities between the individual nodes to a minimum. The structure of the covariance matrix
C̃k of the entire network is depicted in Figure 5.2 (c).

It is noted that the entire covariance matrix C̃k is usually decomposed so that prior information
about the correlation is sufficiently considered, i.e., collected in the submatrices C̃ij

k . This
means, the decomposition of the system into subsystems and the underlying probability density
function allows a continuous scaling between the centralized approach and the decentralized
approach. The structure of the covariance matrix for different degrees of decentralization that
has to be chosen depending on the application is shown in Figure 5.3.
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Figure 5.5: Union of the ellipses corresponding to the joint covariances of two scalar random variables x1
k and x2

k

with imprecisely known correlation. (a) Completely unknown correlation, (b) Symmetric correlation constraints,
and (c) asymmetric constraints for correlation coefficient r.

Example 5.2: Comparison of different reconstruction approaches
The following example is considered to visualize the effect of neglecting unknown correlations during
the decentralized reconstruction of a space-time continuous system. The system description (5.1)
is converted into state-space form consisting of only three nodes for illustration purposes. The
boundary conditions are assumed to be gN = 0 at both ends. Applying the finite differences (5.2)
and considering the boundary conditions leads to a system matrix Ak with a structure that is
similar to (5.3). The initial state vector is assumed to be x̂k = [0 , 0 , 0]T and the true state to be
x̃k = [10 , 10 , 10]T. The estimated state vector xek can be propagated through the system equation
to the next time step by means of the Kalman prediction step,

x̂k+1 = Akx̂
e
k , Cp

k+1 = AkC
e
kA

T
k , with Ak =

∆t

∆h2

−2α1
k 2 0

1 −2α2
k 1

0 2 −2α3
k


where x̂pk+1 and Cp

k+1 denote the predicted mean and covariance matrix, respectively. Furthermore,
it is assumed that at time steps k ∈ {10 , 20 , 30 , 40 , 50} a Kalman filter step is performed.

The simulation results are shown in Figure 5.4. In the case of centralized estimation, the entire
covariance matrix Ce

k is stored and considered in the reconstruction process. Hence, the resulting
estimates can be regarded as a reference solution; shown in Figure 5.4 (a). In the decentralized
approach, the cross-covariances Cij

k with i 6= j are not stored, and thus cannot be considered in the
prediction step. Simply assuming the individual states xik to be uncorrelated leads to over-optimistic
results, as shown in Figure 5.4 (b). It is obvious that due to the unjustified improvement of the
variances, the filter step at k = 10 has almost no influence. In comparison, robust estimators based
on covariance bounds (introduced in Section 5.4) systematically consider the unknown correlations,
and thus provide a consistent and conservative result, see Figure 5.4 (c). �

(b) Non-Gaussian density case In the case of non-Gaussian density functions, the joint
densities f e(xik, x

j
k) are not stored in the network, instead only the marginal densities f e(xik) are

stored on the individual sensor nodes. However, for the processing of the individual estimates,
the joint statistics is required to be known. Hence, the reconstruction of the joint density and
the derivation of so-called bounding densities are necessary. In Chapter 6, the reconstruction of
possible joint densities f e(xik, x

j
k) based on given marginal densities f e(xik) is introduced. These

so-called parameterized joint densities lay the foundation for a decentralized estimation process
for non-Gaussian density functions.
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5.4 The Covariance Bounds Filter (CBF)

In this section, the mathematical constructs for deriving consistent filters that are able to cope
with imprecisely known correlations are derived. In many research works dealing with decen-
tralized estimation, it is usually assumed that the correlations between the considered random
vectors are unconstrained and completely unknown, i.e., the maximum absolute correlation co-
efficient is less than or equal to one (i.e., r ∈ [−1, 1]) [53, 75]. Using just the natural bound of
the correlation coefficient would lead to quite conservative and usually not sufficient estimation
results. For many real world scenarios, additional knowledge about the correlation coefficient
can be exploited to find tighter bounds [55]. In general, it is possible to distinguish three types
of uncertain correlations with increasing complexity:

1. Completely unknown correlation: Here, no additional knowledge is available, and thus
the correlation coefficient can be constrained only by the natural bound r12

k ∈ [−1, 1]. The
following condition is obtained

C12
k

(
C11
k

)−1
C21
k ≤ C22

k . (5.6)

All the off-diagonal matrices C12
k that satisfy this relation are valid in the case of completely

unknown correlation. The union of all valid joint covariance matrices is aligned with the
coördinate axes and leads to a hyper-square, as it can be seen in Figure 5.5 (a).

2. Symmetric correlation constraints: In many cases, the correlation coefficient can be
constrained by a symmetric bound |r12

k | ≤ r12
max ≤ 1. For a given maximum correlation

level r12
max between two random vectors, valid cross covariance matrices are given by

C12
k

(
C11
k

)−1
C21
k ≤ r12

max C22
k . (5.7)

The union of all valid joint covariances that satisfy the relation (5.7) is axes-aligned;
visualized in Figure 5.5 (b) for the scalar case.

3. Asymmetric correlation constraints: In the most general case, the correlation co-
efficient is constrained according to −1 ≤ r12

min ≤ r12
k ≤ r12

max ≤ 1. The asymmetric
case is more difficult to cope with since the resulting set corresponding to all valid joint
covariances is not axis aligned anymore; see Figure 5.5 (c) for the scalar case.

5.4.1 Completely Unknown Correlation

Before the most general case of correlation constraints is considered, the covariance bounds for
completely unknown correlations are discussed. Here, we assume to have given NC random
vectors with expected values and individual covariances

E
{
xik
}

= x̂ik , Cov
{
xik
}

= C̃ii
k ,

where the estimates xik are correlated with completely unknown correlations. For the recon-
struction of space-time continuous systems, the individual state vectors xik contain the local es-
timates of the physical system being reconstructed, e.g., local temperature or humidity values.
The main goal is to find a set of bounding covariance matrices CB

k so that

CB
k ≥ C̃k ,
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Figure 5.6: Visualization of covariance bounds for different correlation constraints, (a) completely unknown
correlation, (b) symmetrically constrained correlation, and (c) asymmetrically constrained correlation.

for all valid joint covariances C̃k. Similar to the proof stated in [55, 130], it can be shown that
given a positive definite symmetric matrix C̃k with completely unknown correlations (5.5), a
“larger” matrix, the so-called covariance bound can be parameterized by

CB
k (κk) = diag

{
1

κ1
k

C̃11
k , . . . ,

1

κNCk
C̃NCNC
k

}
, with 0 < κik < 1 ,

NC∑
i=1

κik = 1 . (5.8)

The individual parameters κik are collected in the vector κk. Similar parameterizations of the
bounds can be found in the case of constrained correlations, i.e., symmetric constraints or
asymmetric constraints ; see Section 5.4.2.

Example 5.3: Two random variables
In this example, the covariance bounds (5.8) are visualized for the special case of two random
variables. The covariances are assumed to be given as C̃11

k = C̃22
k = 1. The set of all valid

covariance matrices C̃k are parameterized by r12
k ∈ [−1, 1], and their corresponding covariance

bounds CB
k are parameterized by κk ∈ (0, 1) as follows

C̃k =

 C̃11
k r12

k

√
C̃11
k C̃

22
k

r12
k

√
C̃11
k C̃

22
k C̃22

k

 , CB
k (κk) =

[
1
κk
C̃11
k 0

0 1
1−κk

C̃22
k

]
.

The ellipses of valid covariance matrices are depicted for some r12
k in Figure 5.5 (a). The covariance

matrix CB
k that bounds the union of all valid matrices can be derived using (5.8) with κ1

k := κk and
κ2
k := 1− κk. Ellipsoids of the covariance bounds are visualized for some κk in Figure 5.6 (a). �

5.4.2 Arbitrary Correlation Constraints

This section is devoted to the generalization of the covariance bounds to the case of NC random
vectors with unknown but arbitrarily constrained correlation. The covariance bounds for sym-
metric correlation constraints is introduced in [55]; however, the proposed method is restricted
to only two random vectors. The method proposed in this research work allows the derivation
of covariance bounds for NC random vectors with arbitrary correlation constraints.
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The key idea is a systematic separation of the covariance matrix C̃k to be bounded into two com-
ponents. The first component consists of a matrix with completely unknown cross-correlations,
which means the unknown coefficients vary in the entire natural bound, i.e., rijk ∈ [−1, 1]. The
second component consists of matrices that are derived on the basis of the individual covariance
matrices and the given cross-correlation constraints of the matrix being bounded. To be more
specific, the matrix C̃k can be represented as follows

C̃k = Uk +

NK∑
i=1

Ki
k , (5.9)

where Uk denotes the matrix with completely unknown cross-correlation and Ki
k are matrices

that need to be derived depending on the given correlation constraints, i.e., symmetric or
asymmetric constraints.

Based on the aforementioned separation principle, the covariance bounds can be obtained by
employing the parameterization introduced in the pevious section. This means, the matrix Uk

is bounded by CB
k according to (5.8). This leads to following general structure of the covariance

bounds for arbitrarily constrained correlations

EB
k (κk) = CB

k (κk) +

NK∑
i=1

Ki
k , with CB

k ≥ Uk .

Here, it is important to note that the individual matrices Ki
k do not necessarily need to represent

covariance matrices, and thus are not required to be positive definite. However, the sum of the
matrices Ki

k need to be positive definite in order to ensure that EB
k is “larger” than C̃k.

Covariance bounds for symmetrically constrained correlation In this section, the covari-
ance bounds EB

k are derived that bound a covariance matrix C̃k with correlations that are
symmetrically constrained. As introduced in the previous section, this can be achieved by find-
ing a proper representation of the matrices Uk and Sk := K1

k parameterized by given values of
the constraints. The following parameterization is proposed

Uij
k =

{
βik C̃ij

k for i = j

C̃ij
k for i 6= j

, Sijk =

{
(1− βik) C̃ij

k for i = j

0 for i 6= j
, (5.10)

where the parameters βik need to be derived in the interval βik ∈ [0, 1] depending on the correla-
tion constraints. This parameter can be regarded as a coefficient scaling between the entries in
the unknown covariance matrix Uk and in the matrix Sk. Roughly speaking, the parameters βik
are responsible for transfering the knowledge about the correlation constraints into the known
matrix Sk, so that the correlations in the matrix Uk can be assumed to be completely unknown,
i.e., vary in the entire interval r ∈ [−1, 1].

In the following, it is shown how the individual parameters βik has to be chosen depending on
given values of the correlation constraints. For keeping the notation simple only two entries of
the matrix C̃k to be bounded are considered. With respect to the proposed matrix separation
(5.9) and its actual parameterization (5.10), the matrix C̃k can be separated according to[

C̃ii
k C̃ij

k

C̃ji
k C̃jj

k

]
=

[
Uii
k Uij

k

Uji
k Ujj

k

]
+

[
Siik Sijk
Sjik Sjjk

]
=

[
βik C̃ii

k Uij
k

Uji
k βjk C̃jj

k

]
+

[
(1− βik) C̃ii

k 0

0 (1− βjk) C̃jj
k

]
. (5.11)
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The aim is to derive the coefficients βik in such way that the correlation in the matrix Uk is
completely unknown, in other words the information about the constraints is moved into the
matrix Sk. This means, valid cross covariance matrices in Uk are characterized by

Uij
k

(
Uii
k

)−1
Uji
k ≤ Ujj

k ,

which means that the correlation are completely unknown. Using the parameterization pro-
posed in (5.10) in terms of the parameter βik eventually yields

C̃ij
k

(
C̃ii
k

)−1

C̃ji
k ≤ βik β

j
k C̃jj

k , with
(
rijmax

)2
= βik β

j
k , (5.12)

where rijmax is the given maximum correlation level between the individual random vectors, as
defined in (5.7). Hence, the parameters βik need to be chosen so that (5.12) holds. In order
to derive sufficient βik that depend on the given maximum correlation level rijmax, the nonlinear
system of equations needs to be solved. This is demonstrated by following two examples.

Example 5.4: Two random variables (symmetric constraints)
In this example, the proposed parameterization of the covariance bounds is applied to the case of
two random vectors x1

k ∈ RN1
x and x2

k ∈ RN1
x . Their joint density is characterized by the covariance

matrix C̃k with a given maximum correlation level r12
max. By assuming β1

k = β2
k = βk and using the

system of equations (5.12), the parameter for the matrix separation (5.11) results in βk = r12
max. By

using (5.8) the covariance bounds EB
k can be derived as follows

EB
k =

κ1
k−r

12
maxκ

1
k+r12

max
κ1
k

C̃11
k 0

0
κ2
k−r

12
maxκ

2
k+r12

max
κ2
k

C̃22
k

 , with κ1
k + κ2

k = 1 ,

where the parameters of the covariance bounds are defined as κ1
k = κk and κ2

k = 1 − κk. In the
following, only the scalar case is shown for simplicity, i.e., covariances are given by C̃11

k = C̃22
k = 1.

In Figure 5.5 (b), the set of all valid covariance matrices are visualized for a given symmetrically
constrained correlation |r12

k | ≤ 0.2. The corresponding covariance bounds EB
k parameterized by κk

are shown in Figure 5.6 (b). It is obvious that in this example bounding densities can be derived
that include the set of all valid densities (gray-shaded area). �

Special case: three random vectors In general, for deriving the parameters βik that char-
acterize the structure of the covariance bounds EB

k , the system of equations (5.12) needs to be
solved. In the following, this is shown for the special case of three random vectors. Assuming
the maximum correlation rijmax to be positive, the system of equations can be stated as

2 log rijmax︸ ︷︷ ︸
=:r̃ijmax

= log βik︸ ︷︷ ︸
=:β̃ik

+ log βjk︸ ︷︷ ︸
=:β̃jk

. (5.13)

The individual correlation levels r̃ijmax and the parameters β̃jk can be rearranged to respective
vectors r̃k and β̃

k
. By using the matrix T that contains zeros and ones according to (5.13)

leads to following linear equations to be solved

T β̃
k

= r̃k , β̃
k

= T−1 r̃k . (5.14)

106



5.4. The Covariance Bounds Filter (CBF)

−1

0

1

−1 0 1−2 2
−2

2

−1

0

1

−1 0 1−2 2
−2

2

−1

0

1

−1 0 1−2 2
−2

2

−1

0

1

−1 0 1−2 2
−2

2

−1

0

1

−1 0 1−2 2
−2

2

−1

0

1

−1 0 1−2 2
−2

2

(a) Union of all valid covariance ellipsoids

(b) Covariance bounds for symmetrically constrained correlation

r12
max = 0.95 r13

max = 0.2 r23
max = 0.6

x1
k x1

k x2
k

x1
k x1

k x2
k

x2
k x3

k x3
k

x2
k x3

k x3
k
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max = 0.95, r13 = 0.2, and r23 = 0.6. (a) Marginal densities of the union of all valid covariance
ellipsoids. (b) Covariance bounds for symmetrically constrained correlation for various parameters κ1 and κ2.

In the case of three random vectors the matrix T is a square matrix, and thus this equation
can be readily solved. This results in the following parameters of the known matrix Kk

β1
k =

r12
maxr

13
max

r23
max

, β2
k =

r12
maxr

23
max

r13
max

, β3
k =

r13
maxr

23
max

r12
max

. (5.15)

It is obvious that there exists only one solution and the result can be easily verified by the
general system of equations (5.12) that must hold. The parameters β1

k , β2
k , and β3

k can be used
to derive the separated covariance matrix according to (5.11). Replacing the matrix Uk with
the covariance bounds (5.8) for completely unknown correlations, the covariance bound EB

k for
symmetrically constrained correlation can be obtained. This result can be extended to NC

random vectors by replacing the inverse matrix T−1 with Moore-Penrose matrix inverse T†.

Example 5.5: Three random variables (symmetric constraints)
This example is devoted to the visualization of the derived covariance bounds in the case of three
random vectors. The parameter for the matrix separation (5.11) can be obtained using (5.15).
Similar to Example 5.4, the covariance bounds EB

k can be derived by equation (5.8), and yields

EB
k =


r12
maxr

13
max+κ1

k(r23
max−r12

maxr
13
max)

r23
maxκ

1
k

C̃11
k 0 0

0
r12
maxr

23
max+κ2

k(r13
max−r12

maxr
23
max)

r13
maxκ

2
k

C̃22
k 0

0 0
r13
maxr

23
max+κ3

k(r12
max−r13

maxr
23
max)

r12
maxκ

3
k

C̃33
k

 ,

with 0 < κik < 1 and κ3
k := 1 − κ1

k − κ2
k. For simplicity reasons only the scalar case is depicted

in this example, although the same parameterization can be used in the vector case. The following
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variances and correlation constraints are used

Known variances C̃11
k = 0.5 , C̃22

k = 1 , C̃33
k = 2 ,

Correlation constraints r12
max = 0.95 , r13

max = 0.2 , r23
max = 0.6

In Figure 5.7 (a), the set of all valid covariance matrices are visualized for a given symmetrically
constrained correlation. The corresponding covariance bounds EB

k parameterized by κ1
k and κ2

k are
shown in Figure 5.7 (b). It is obvious that covariance bounds can be derived that include the set
of all valid matrices that satisfy the given correlation constraints. �

Covariance bounds for asymmetrically constrained correlation In this section, the covari-
ance bounds EB

k are derived that bound a covariance matrix C̃k with asymmetrically constrained
cross-covariances. For simplicity, only the scalar case is considered, the vector case is more in-
volved and beyond the scope of this thesis. The constraints discussed so far result in covariance
bounds that are axis-aligned. In contrast, in the asymmetric case the set of all possible covari-
ance matrices cannot be regarded as axis-aligned anymore, and thus off-diagonal entries in the
covariance bounds are required.

A proper representation can be derived by finding the matrices Uk, Sk := K1
k, and Ak := K2

k

in a similar way to the symmetric case. The following parameterization is proposed

U ij
k =

{
βik C̃

ij
k for i = j

C̃ij
k for i 6= j

, Sijk =

{
(1− βik) C̃

ij
k for i = j

0 for i 6= j
, Aijk =

{
0 for i = j

Aijk for i 6= j
,

(5.16)
where the parameters βik and the off-diagonal entries Aijk in the matrix Ak need to be derived
depending on the given constrained correlations. It is obvious that the entries in Ak can be re-
garded as coefficients that characterize the alignment arising from the asymmetric constraints of
the covariance matrix. Once this alignment is found, the parameters βik transfer the knowledge
about the symmetric constrained correlation into the known matrix Sk. Then the correlations
in the matrix Uk can be assumed to be completely unknown, i.e., its coefficient varies in the
entire range r ∈ [−1, 1].

In the following, it is demonstrated how the parameters βik and Aijk can be derived depending
on given values of the correlation constraints. In order to keep the notation simple only two
entries of the matrix C̃k are considered. With respect to the proposed matrix separation (5.9)
and its parameterization (5.16), the matrix C̃k can be separated according to

[
C̃ii
k C̃ij

k

C̃ji
k C̃jj

k

]
=

[
U ii
k U ij

k

U ji
k U jj

k

]
+

[
Siik 0

0 Sjjk

]
+

[
0 Aijk
Aijk 0

]
=

[
βikC̃

ii
k U ij

k

U ji
k βjkC̃

jj
k

]
+

[
(1− βik)C̃ii

k 0

0 (1− βjk)C̃
jj
k

]
+

[
0 Aijk
Aijk 0

]
. (5.17)

The main goal is to derive the coefficients βik and Aijk in such way that the correlation in the
matrix Uk is completely unknown. Roughly speaking, the information about the asymmetric
constraints is transfered into the matrices Sk and Ak. With respect to the separated matrix
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equation (5.17) the off-diagonal entries can be stated as follows

rijmax

√
C̃ii
k C̃

jj
k︸ ︷︷ ︸

C̃ijk

=

√
βikβ

j
k

√
C̃ii
k C̃

jj
k︸ ︷︷ ︸

U ijk

+Aijk , rijmin

√
C̃ii
k C̃

jj
k = −

√
βikβ

j
k

√
C̃ii
k C̃

jj
k + Aijk ,

where the imprecisely known correlation coefficient rijk in the matrix C̃k were assumed to be
rijk = rijmax and r

ij
k = rijmin, respectively. The substraction and addition of these equations results

in the following equations for deriving the coefficients βijk and Aijk

Aijk =
rijmax + rijmin

2︸ ︷︷ ︸
=: rijavrg

√
C̃ii
k C̃

jj
k ,

(
rijmax − r

ij
min

2

)2

︸ ︷︷ ︸
=: (rijd )2

= βik β
j
k , (5.18)

where rijavrg is the so-called averaged correlation coefficient and rijd denotes the difference corre-
lation coefficient. The equations for Aijk can be readily solved, whereas for the derivation of the
parameters βik the nonlinear system of equations needs to be solved. This was introduced for the
symmetric case in the previous section. The derivation of covariance bounds is demonstrated
by the following two examples, (a) two random variables and (b) three random variables.

Example 5.6: Two random variables (asymmetric constraints)
In this example, the proposed parameterization of the covariance bounds is applied to the case of
two random variables x1

k ∈ R and x2
k ∈ R. Their joint density is characterized by the covariance

matrix C̃k with a minimum and maximum correlation coefficient r12
min and r12

max, respectively. By
using the system of equations (5.18) and by assuming β1

k = β2
k = βk, the parameter for the matrix

separation leads to βk = r12
d . Then, the covariance bounds EB

k can be derived as follows

EB
k =

κ1
k−r

12
d κ1

k+r12
d

κ1
k

C11
k r12

avrg

√
C11
k C

22
k

r12
avrg

√
C11
k C

22
k

κ2
k−r

12
d κ2

k+r12
d

κ2
k

C22
k

 with r12
avrg =

r12
max + r12

min

2
, r12

d =
r12
max − r12

min

2
,

where the parameters of the covariance bounds are defined as κ1
k = κk and κ2

k = 1 − κk. The
covariances are given by C̃11

k = 1.5 and C̃22
k = 1. In Figure 5.5 (c), the set of all valid covariance

matrices are visualized for different asymmetrically constrained correlation. The covariance bounds
EB
k parameterized by κk are shown in Figure 5.8. �
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Figure 5.9: Visualization of covariance bounds for the case of three random scalars with asymmetrically constrained
correlation. (a) Marginal densities of the union of all valid covariance ellipsoids. (b) Covariance bounds for
symmetrically constrained correlation for various parameters κ1 and κ2.

Example 5.7: Three random variables (asymmetric constraints)
This example is devoted to the visualization of the derived covariance bounds for the case of three
random variables. In the case of three random variables, the equation (5.18) for deriving the
coefficients βijk can be solved, similar as described in the symmetric case. This results in following
parameters of the matrix Sk

β1
k =

r12
d r

13
d

r23
d

, β2
k =

r12
d r

23
d

r13
d

, β3
k =

r13
d r

23
d

r12
d

. (5.19)

These equations can be used to obtain the parameters for the matrix separation (5.16). Similar to
Example 5.5 the covariance bounds EB

k can be derived as folows

EB
k =


r12
d r13

d +κ1
k(r23

d −r
12
d r13

d )

r23
d κ1

k
C̃11
k r12

avrg

√
C̃11
k C̃

22
k r13

avrg

√
C̃11
k C̃

33
k

r12
avrg

√
C̃11
k C̃

22
k

r12
d r23

d +κ2
k(r13

d −r
12
d r23

d )

r13
d κ2

k
C̃22
k r23

avrg

√
C̃22
k C̃

33
k

r13
avrg

√
C̃11
k C̃

33
k r23

avrg

√
C̃22
k C̃

33
k

r13
d r23

d +κ3
k(r12

d −r
13
d r23

d )

r12
d κ3

k
C̃33
k

 ,

with 0 < κik < 1 and κ3
k := 1−κ1

k−κ2
k. The averaged correlation rijavrg and the difference correlation

rijd can be obtained by using (5.18). The following variances and correlation constraints are used

Known variances C̃11
k = 0.5 , C̃22

k = 1 , C̃33
k = 2 ,

Correlation constraints 0 ≤ r12
k ≤ 0.6 , 0.5 ≤ r13

k ≤ 0 , 0.8 ≤ r23
k < 1 ,

In Figure 5.9 (a), the set of all valid covariance matrices are visualized for a given symmetrically
constrained correlation. The corresponding covariance bounds EB

k parameterized by κ1
k and κ2

k are
shown in Figure 5.9 (b). �
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5.5. Process of the Decentralized State Reconstruction

5.5 Process of the Decentralized State Reconstruction

In this section the Covariance Bounds Filter (CBF) is employd for the decentralized state
reconstruction of space-time continuous phyiscal systems. By this means, an estimation process
can be derived that is robust against unknown (or imprecisely known) correlations, and thus
yields correct and consistent reconstruction results. The severe effect of simply neglecting
unknown cross-correlations and the resulting over-optimistic, even wrong results were shown in
Example 5.2. The decentralized reconstruction process on the basis of the CBF is visualized
and compared to the centralized approach in Figure 5.10.

The proposed method for the decentralized state reconstruction of space-time continuous phys-
ical systems can be applied to the general decomposed system (5.4). However, we restrict our
attention to a specific structure where the individual estimates xik depend only on estimates of
adjacent nodes (see following example). Such kind of system structure naturally results from
the employment of finite-difference methods to linear partial differential equations (1.2).

Example 5.8: Considered system structure in decomposed form
By applying the finite-difference method, the space-time continuous system (5.1) can always be
decomposed in such a way that the local state vectors xik depend only on the previous state of
adjacent nodes i− 1 and i+ 1 (see Example 5.1). In addition, the measurement matrix Hk can be
assumed to consists only of diagonal entries. In this case, the structure of the general decomposed
system (5.4) reduces to the following

xik+1 =
i+1∑
j=i−1

1≤j≤NC

Aij
k x

j
k + Bii

k

(
ûik +wi

k

)
, ŷi

k
= Hii

k x
i
k + vik , (5.20)

where i is the node being considered, i− 1 is the left neighboring node, and i+ 1 is the right neigh-
boring node. The structure of this special type of decomposed system is visualized in Figure 5.2 (b).

�

In general, there exist both spatial and temporal correlations inherently affecting the space-
time continuous system being observed. These correlations are usually caused by partially
stochastic dependent and spatially distributed noise sources affecting more than one location,
and thus more than one sensor node. In this research work, the individual components of the
global system uncertainty wk and the global measurement uncertainty vk are assumed to be
uncorrelated for simplicity reasons. Thus, the covariance matrices are given by

Cw
k =

{
Cwij
k for i = j

0 for i 6= j
, Cv

k =

{
Cvij
k for i = j

0 for i 6= j
,

which means that no common source term is affecting more than one location and sensor node.
In the case of spatial/temporal correlations affecting the space-time continuous system, an ap-
propriate model is required that describes these correlations. Then, for decentralized processing
the underlying noise terms Cw

k and Cv
k must be decomposed as proposed in Section 5.3 and

illustrated in Figure 5.3. However, in this thesis, only the unknown correlations caused by the
decentralized reconstruction process itself are considered, see (5.5). The extension to the case
of imprecisely known noise terms is conceptually straightforward.
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(a) Centralized approach (b) Decentralized approach
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Figure 5.10: Comparison of different approaches for the reconstruction of space-time continuous physical systems
using a spatially distributed measurement system, such as a sensor network. (a) Centralized approach (as introduced
in Chapter 2), and (b) decentralized approach on the basis of the Covariance Bounds Filter (CBF).

5.5.1 Decentralized prediction step

The purpose of the prediction step that is locally performed on each node is to propagate the
state estimate xik through the system equation (5.20) to the next time step k (see Section 2.5.1
for the linear and Section 3.4.1 for the nonlinear prediction step). Here, in the case of the
decentralized prediction step the processing can be performed on the basis of state estimates
that are received from adjacent nodes. The individual mean values x̂pik are simply derived by
the weighted sum of previous adjacent states and the input state according to

x̂pik =
i+1∑
j=i−1

1≤j≤NC

Aij
k−1 x̂

ej
k−1 + Bii

k−1û
i
k−1 .

It is obvious that the resulting mean does not depend on the cross-correlation between the
individual substates xik, i.e., unknown correlations can be neglected concerning the mean.

The calculation of the covariance matrix C̃pii
k is more involved due to the general dependency

of the predicted covariance matrix on the cross-covariance matrices between the individual
substates xik. In the uncorrelated case when the cross-covariance matrices between the system
state xk and the system input uk are zero matrices, the diagonal entries are given by

C̃pii
k =

i+1∑
j=i−1

1≤j≤NC

Aij
k−1C̃

ejj
k−1

(
Aij
k−1

)T
+

i+1∑
r=i−1

i+1∑
s=i−1
s6=r

Air
k−1C̃

ers
k−1

(
Ais
k−1

)T

︸ ︷︷ ︸
error caused by neglecting cross-correlations

+ Bii
k−1C

wii
k−1

(
Bii
k−1

)T
.

(5.21)
It can be easily seen that by unknown cross-covariance matrices C̃eij

k for i 6= j an error in the
resulting covariance matrices C̃pii

k is caused. This results in an unjustifable improvement of
the state estimate, and thus over-optimistic estimation results. In such cases, the estimator
assumes to be more accurate than it is justified and sticks in a possibly wrong estimate, as it
was shown in Example 5.2. By replacing the unknown covariance matrix C̃e

k in the decentralized
prediction step by the covariance bounds (see Section 5.4) leads to a bound for the predicted
covariance matrix. It is emphasized that the resulting covariance bound Epii

k (κk) for (5.21)
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depends on the parameter vector κk, i.e., the predicted state consists of a parameterized set of
density functions. In the following, the structure of the covariance bounds Epii

k is discussed for
the three cases of correlation constraints.

Completely unkown correlation In the case of completely unknown cross-covariances, i.e.,
the correlation coefficients vary in the entire natural bound rijk ∈ [−1, 1], the following covariance
bounds of the predicted covariance matrix (5.21) can be derived

Epii
k (κk) =

i+1∑
j=i−1

1≤j≤NC

1

κjk
Aij
k−1C̃

ejj
k−1

(
Aij
k−1

)T
+ Bii

k−1C
wii
k−1

(
Bii
k−1

)T
.

The individual parameters κi−1
k , κik, and κ

i+1
k that parameterize the covariance bounds Epii

k (·)
of the predicted covariance matrix C̃pii

k vary in the interval (0, 1) and sum up to one. Similar
parameterizations of the covariance bounds for the predicted covariance matrix (5.21) can be
derived in the case of constrained correlations, described in the following.

Symmetric correlation constraints In the case of symmetric constraints for the correlation
between the substates xik, i.e., the coefficients vary in the interval |rijk | ≤ rijmax ≤ 1, the covari-
ance bounds of the predicted covariance matrix (5.21) is obtained on the basis of the methods
that are proposed in Section 5.4.2. This results in the following covariance bounds for the
decentralized prediction step

Epii
k (κk) =

i+1∑
j=i−1

1≤j≤NC

βjk
κjk

Aij
k−1C̃

ejj
k−1

(
Aij
k−1

)T

︸ ︷︷ ︸
completely unknown correlation

+
i+1∑
j=i−1

1≤j≤NC

(
1− βjk

)
Aij
k−1C̃

ejj
k−1

(
Aij
k−1

)T

︸ ︷︷ ︸
known component depending on constraints

,

where the input is omitted here for brevity reasons. In the case of three substate vectors (i.e.,
own local estimate and estimate of its two adjacent nodes) the following parameters for the
matrix separation can be derived

βi−1
k =

ri−1,i
max r

i−1,i+1
max

ri,i+1
max

, βik =
ri−1,i
max r

i,i+1
max

ri−1,i+1
max

, βi+1
k =

ri−1,i+1
max ri,i+1

max

ri−1,i
max

,

which is similar to the equation given in (5.15). The individual parameters κi−1
k , κik, and κ

i+1
k

of the covariance bounds Epii
k vary in the interval (0, 1) and sum up to one, i.e.,

∑i+1
j=i−1 κ

j
k = 1.

Asymmetric correlation constraints In this section, the covariance bounds are derived
that bound the predicted covariance matrix (5.21) with asymmetrically constrained cross-
correlations, i.e., the correlation may vary in the interval −1 ≤ rijmin ≤ rijk ≤ rijmax ≤ 1. Here,
only the scalar case is considered for simplicity; the vector case is more involved and beyond the
scope of this thesis. By using the methods proposed in Section 5.4.2, the following covariance
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bounds for the predicted covariance matrix (5.21) can be obtained

Epii
k (κk) =

i+1∑
j=i−1

1≤j≤NC

βjk
κjk

(
Aijk−1

)2
C̃ejj
k−1

︸ ︷︷ ︸
completely unknown correlation

+
i+1∑
j=i−1

1≤j≤NC

(
1− βjk

) (
Aijk−1

)2
C̃ejj
k−1 +

i+1∑
r=i−1

i+1∑
s=i−1
s6=r

(
Airk−1

)2
rrsavrg

√
C̃rr
k C̃

ss
k

︸ ︷︷ ︸
known component depending on constraints

,

where the input is omitted here for brevity reasons. In the case of three substates, the following
parameters for the matrix separation can be derived

βi−1
k =

ri−1,i
d ri−1,i+1

d

ri,i+1
d

, βik =
ri−1,i
d ri,i+1

d

ri−1,i+1
d

, βi+1
k =

ri−1,i+1
d ri,i+1

d

ri−1,i
d

,

which is similar to the equation stated in (5.19). The averaged correlation coefficients rrsavrg and
the difference correlation coefficient rrsd can be derived by using (5.18) as follows

rrsavrg =
rrsmax + rrsmin

2
, rrsd =

rrsmax − rrsmin

2
,

for r, s ∈ {i− 1, i, i+ 1} and r 6= s. The individual parameters κi−1
k , κik, and κi+1

k of the
covariance bounds Epii

k vary in the interval (0, 1) and sum up to one, i.e.,
∑i+1

j=i−1 κ
j
k = 1.

5.5.2 Local measurement step

For the purpose of reducing the uncertainty, measurements are locally incorporated that are
related to the state via the measurement equation (5.20). Since it is assumed that there is
no spatial correlation in the considered domain, the local measurement step can be performed
based only on local measurements ŷi

k
, i.e., exhange of measurements between the nodes is

not necessary in that case. Assuming the cross-covariances between substate vectors xik and
measurements to be zero matrices, the local measurement step can be performed according to

x̂eik (κk) = x̂pik + Kk(κk)
(
ŷi
k
−Hii

k x̂
pi
k

)
,

Eeii
k (κk) = Epii

k (κk)−Kk(κk)H
ii
kE

pii
k (κk) ,

where the Kalman gain Kk(κk) is given by

Kk(κk) = Epii
k (κk)(H

ii
k )T

(
Cvii
k + Hii

kE
pii
k (κk)(H

ii
k )T
)−1

.

Due to the dependency of the predicted covariance matrix Epii
k (·) on the parameter κk the

estimated mean x̂eik (·) and covariance matrix Eeii
k (·) results in a set of bounding densities

parameterized by κk.

Selection of optimal bounding density The individual members of the covariance matrix
are an upper bound for the union of all possible matrices with arbitrary correlations. Here, it is
emphasized that the intersection is a bound for this union. In general, it is desired to keep the
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(a) Numeric solution of deterministic case (b) Correlation between individual variances of node 25

Figure 5.11: (a) Numeric solution of the considered space-time continuous physical system. (b) Correlation
coefficient r25,i

k between the individual variances of node 25 with right and left neighboring nodes. It is obvious
that the entire network becomse nearly fully correlated during the reconstruction process. The existing correlations
usually cannot be neglected, and thus need to be systematically considered.

entire set of bounding densities during their further processing. However, the parameter space
describing the members of bounding densities is increasing with every processing step. Hence,
for practical reasons it is necessary to select an optimal parameter κ∗ after a certain number of
processing steps. The κk may be selected in some optimum way, for example by minimizing the
determinant or trace of Eeii

k , see [55, 53, 75]. In this thesis, the optimal parameter is selected
immediately after the prediction step when there are no measurements available. In the case
of a local measurement step, the optimal κ∗ is selected after the measurement step.

5.6 Simulation Results

This section is devoted to demonstrate the performance of the proposed decentralized recon-
struction of space-time continuous systems that is based on the Covariance Bounds Filter.

Example 5.9 In this simulation study, the one-dimensional diffusion equation (5.1) is considered
subject to boundary conditions corresponding to insulation at both ends and characterized by the
diffusion coefficient α(r, t) = 1m2 h−1. The space-time continuous system is discretized by 50
software nodes with a spatial sampling period ∆t = 0.5m and a sampling time ∆t = 0.05 h. There
exists a noisy input in the center of the considered solution domain Ω characterized by

û25
k =

{
100 for 0 ≤ tk < 200

0 for tk ≥ 200
.

The system noise term for the individual discretization nodes is assumed to be Cwii
k = 0.5. The

individual initial states for the estimator are x̂i0 = 20 ◦C, whereas the true initial realization is
assumed to be x̃i0 = 19 ◦C. Furthermore, there is a sensor node at each discretization node with
a measurement noise variance Cvii

k = 3K2. At every time step, randomly chosen nodes perform a
measurement step in order to reconstruct the physical system in a decentralized fashion. �

The numeric solution of the considered space-time continuous physical system is depicted in
Figure 5.11 (a). Due to the propagation of state vectors, the information in the entire network
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(a) Rmse state vector vs. time step (b) Rmse (averaged over time) vs. number nodes
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Figure 5.12: Results of 100 simulation runs of the reconstruction process based on centralized Kalman filter (blue),
decentralized Kalman filter with neglected correlations (red), and Covariance Bounds Filter (green). (a) Root mean
square error (rmse) of the state vector xk. (b) Rmse averaged over time versus number of randomyl chosen sensor
nodes for each processing step.

becomes almost fully correlated during the reconstruction process. In Figure 5.11 (b), the
correlation coefficient r25,i between the state estimate xik at discretization node 25 and all the
neighboring nodes is depicted; only prediction steps are performed without measurement steps.
Hence, this correlation cannot be neglected during the reconstruction process.

In Figure 5.12 (a), the root mean square error (rmse) of the state vector xk for 100 simulation
runs is depicted. At every processing step, ten randomly chosen sensor nodes are performing
a measurement update. The centralized Kalman filter (blue line) stores and consideres the
entire covariance matrix at each step. This means, the estimation esult can be regarded as the
reference solution. In the case of a fully decentralized reconstruction, the correlations between
the individual estimates are not stored, and thus are unknown at each update step. It is
obvious from Figure 5.12 (a) (red line) that neglecting the unknown correlations between the
individual estimates causes over-optimistic and wrong results. This leads to the unjustified
improvement of the estimates of the individual nodes. Therefore, the measurements have a
minor influence on the estimation and reconstruction errors remain. A higher number of sensor
nodes or more accurate measurements would be necessary to solve this problem, as can be seen
in Figure 5.12 (b). The Covariance Bounds Filter (CBF) provides a systematic way to consider
the unknown correlations between the individual estimates during the estimation process. By
this means, it is possible to derive conservative and consistent estimation results with a lower
number of sensor nodes.

5.7 Summary and Discussion

This chapter introduces a novel methodology for the decentralized reconstruction of space-time
continuous physical systems by means of a sensor network. In order to estimate the entire
system state in a decentralized fashion, the system description is converted and decomposed.
This results in a network consisting of software nodes allocated to hardware nodes. For the
efficient reconstruction of physical systems that are distributed over a wide area, local infor-
mation has to be propagated through the sensor network in a fully decentralized fashion. This
automatically causes unknown stochastic correlations between the individual estimates. Since
the joint probability density function with its information about the correlation is required for
fusing local estimates, the joint density needs to be reconstructed or an appropriate so-called
bounding density needs to be derived.
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The proposed estimator — Covariance Bounds Filter (CBF) — allows the systematic con-
sideration of imprecisely known correlation during the estimation process in order to derived
conservative and consistent results. The novelty of this decentralized estimator is the exploita-
tion of prior knowledge about correlation constraints, such as symmetric and asymmetric con-
straints. By this means tighter bounding densities can be obtained compared to simply using
the natural correlation bound. Another novelty is the universal applicability of the proposed
estimator. The method of covariance bounds allow to cope with imprecisely known correlations
not only in the measurement step but also in the prediction step. Moreover, uncertainties
in the model description may be systematically considered by using the proposed covariance
bounds. The CBF is restricted to random vectors that are described by Gaussian probabil-
ity density functions. A prospective way toward the generalization to non-Gaussian densities
is given in Chapter 6; there, parameterizations of joint density functions for given marginal
Gaussian mixture densities are derived.

The Covariance Bounds Filter (CBF) can be applied to a wide variety of applications, such as
the simultaneous localization and map building (SLAM ), similar to [57]. In this chapter, how-
ever, the CBF is applied to the decentralized reconstruction of space-time continuous physical
systems in order to demonstrate its performance. By this means, a decentralized reconstruc-
tion process can be derived that is robust against imprecisely known correlation both in the
decentralized prediction step and the local measurement step. This makes it possible to locally
reconstruct large-area physica systems and exchange local estimates only with adjacent nodes
(without storing information about correlations). For the considered one-dimensional partial
differential equation, the decentralized solution may seem unnecessarily involved. However, the
same principles can easily be extended to the multi-dimensional case.
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CHAPTER 6

Towards Non-Gaussian and Nonlinear
Decentralized Estimation

This chapter is devoted to the challenge of processing random vectors represented by non-
Gaussian densities with imprecisely known stochastic dependencies. This problem mainly oc-
curs in decentralized estimation1 where the stochastic dependencies between the individual
states are not stored. In the previous chapter, a method was proposed for the decentralized
estimation of system states that are characterized by a Gaussian density. The exploitation of
parameterized joint densities with Gaussian mixture marginals are proposed to cope with such
problems. Under structural assumptions these so-called parameterized joint densities contain
all information about the stochastic dependencies between their marginal densities in terms of
a generalized correlation parameter vector ξ . The parameterized joint densities are applied to
the prediction step and the measurement step under imprecisely known stochastic dependencies
leading to a set of possible and valid estimation results. The resulting density functions are
characterized by the parameter vector ξ . Once this structure and the bounds of these param-
eters are known, it may be possible to find bounding densities representing all possible density
functions, i.e., conservative and consistent estimation results. The proposed joint densities
parameterized by the generalized correlation parameter vector are based on [174, 175].

6.1 Parameterized Joint Densities with Gaussian Marginals

This section is devoted to a description of three different types of prospective parameterizations
of joint densities for given Gaussian marginal densities. The first two types mainly serve for
didactic purposes for understanding the problem of imprecisely known stochastic dependencies
between two random variables. The third type, however, may be useful for robust decentralized
linear estimation, and thus is of practical relevance.

Piecewise Gaussian densities with different weighting factors This section consists of a
description for the simplest non-Gaussian joint density with Gaussian marginals. This type
frequently appears in informal discussions on the internet. Basically, a jointly Gaussian density
is “sliced” into different pieces that are raised or lowered, respectively. This simple parameterized
joint density is depicted in Figure 6.1 (a).

1 e.g., space-time continuous physical systems as shown in the previous chapter
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Example 6.1: Gaussian density sliced into four pieces
Given two Gaussian marginal densities fx(x) := N (x̂, Cx) and fy(y) := N (ŷ, Cy), a set of possible
joint densities f(x, y) can be parameterized by

f(x, y) =

{
ξ1 f̃(x, y) for x · y ≥ 0

ξ2 f̃(x, y) for x · y < 0
, (6.1)

where ξ1 = 2(1 − ξ) and ξ2 = 2ξ. The free parameter ξ ∈ [0, 1] can be regarded as a generalized
correlation parameter that specifies the individual member of the set. To assure that the parameter-
ized joint density f(x, y) is a valid joint density for the given marginals fx(x) and fy(y), the density
f̃(x, y) must be defined according to

f̃(x, y) = N (x− x̂, Cx)N (y − ŷ, Cy) .

To prove this, it must be shown that the marginal densities of f(x, y) in (6.1) are represented by
fx(x) = N (x̂, Cx) and fy(y) = N (ŷ, Cy), respectively. The marginal density fx(x) can be derived
by direct integration over y. Assuming x > 0, it follows

fx(x) =

∫ ∞
0

ξ1f̃(x, y)dy +

∫ 0

−∞
ξ2f̃(x, y)dy = 2(1− ξ)

∫ ∞
0

f̃(x, y)dy + 2ξ

∫ 0

−∞
f̃(x, y)dy

= 2

∫ ∞
0

f̃(x, y)dy − 2ξ

∫ ∞
0

f̃(x, y)dy + 2ξ

∫ 0

−∞
f̃(x, y)dy .

Due to the symmetry of the Gaussian density this integral can be simplified, which yields

fx(x) =

∫ ∞
−∞

f̃(x, y)dy = N (x̂, Cx) . (6.2)

Similar calculations for x ≤ 0 justify the choices for ξ1 and ξ2. �

Sum of positive and negative Gaussians A second type of non-Gaussian joint density with
Gaussian marginals could be constructed by the sum of positive and negative jointly Gaussian
densities. The mean values, variances, and weighting coefficients of the individual joint densities
need to be chosen appropriately, i.e., in such way that the joint density is both a valid density
function and the marginals are Gaussian densities. For the sake of simplicity only the case of
three components is considered in the following example.

Example 6.2: Sum of positive/negative Gaussians (three components)
Given two Gaussian marginal densities fx(x) = N (x̂, Cx) and fy(y) = N (ŷ, Cy), the unknown joint
density f(x, y) may be defined by the sum of positive and negative Gaussians according to

f(x, y) = f1(x, y) + f2(x, y)− f3(x, y) ,

where the individual densities f1(·), f2(·), and f3(·) are given by

f1(x, y) = N (x− x̂∗, Cy)N (y − ŷ, Cy)
f2(x, y) = N (x− x̂, Cx)N (y − ŷ∗, Cx)
f3(x, y) = N (x− x̂∗, Cy)N (y − ŷ∗, Cx) ,

To assure that the parameterized joint density f(·) is a valid joint density, the mean values and
variances of the individual joint densities need to be chosen so that f(x, y) ≥ 0 holds. This simple
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case is visualized in Figure 6.1 (b). The marginal density fx(x) can be derived by direct integration
over y according to

fx(x) =

∫
R
f(x, y) dy

= N (x− x̂∗, Cy) +N (x− x̂∗, Cx)−N (x− x̂∗, Cy)
= N (x− x̂∗, Cy)

Similar calculations for the marginal density fy(y) justify the choices for the individual mean values
and variances of the parameterized joint density. It is possible to extend this type to joint densities
with more components, for example with eight components as shown in Figure 6.1 (b). �

Infinite mixture of correlated jointly Gaussian densities In the following, a parameterized
joint density with practical relevance is introduced that is based on the integral of jointly
Gaussian densities with different classical correlation coefficients. The weighting factors of the
individual joint densities need to be chosen in such a way that the marginals are represented
by the given Gaussian marginal densities.

Theorem 6.1 Given two Gaussian marginal densities fx(x) = N (x̂, Cx) and fy(y) = N (ŷ, Cy),
a set of possible joint densities that depends on the generalized correlation function ξ(r) can be
parameterized by

f(x, y) =

∫ 1

−1

ξ(r)N
([
x− x̂
y − ŷ

]
,C(r)

)
dr , (6.3)

where ξ(r) is defined on r ∈ [−1, 1]. The parameterized continuous Gaussian mixture f(x, y) is
a valid normalized density function for

ξ(r) ≥ 0 ,

∫ 1

−1

ξ(r)dr = 1 .

Proof. The results directly follow from the integration of the joint density f(x, y) over y and
x, respectively. Hence, the marginal density fx(x) can be derived by direct integration of the
joint density f(x, y) over y according to

fx(x) =

∫
R

∫ 1

−1

ξ(r)N
([
x− x̂
y − ŷ

]
,C(r)

)
dr dy =

∫ 1

−1

ξ(r)

∫
R

N
([
x− x̂
y − ŷ

]
,C(r)

)
dy dr .

With reference to [109] it can be shown that the solution of the integral does not depend on
the correlation coefficient r at all. Thus, it can easily be obtained

fx(x) =

∫ 1

−1

ξ(r)N (x− x̂, Cx) dr = N (x− x̂, Cx) ,

which justifies the condition
∫ 1

−1
ξ(r)dr = 1. Similar calculations for the marginal density fy(y)

leads to the same condition and eventually concludes the proof. Two examples for this type of
parameterized joint density that are based on mixtures of correlated jointly Gaussian densities
are depicted in Figure 6.1 (c). �

In the following, a rough idea is shown on how this type of parameterized joint density may be
used for the development of a novel estimator for an imprecisely known correlation coefficient.
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Consider two marginal densities fx(x) and fy(y). Assuming that just the mean value r̂ and
variance Cr of their classical correlation coefficient r is known, then a density function ξ(r) for
the correlation coefficient can be defined according to

ξ(r) = cnN (r − r̂, Cr) r ∈ [−1, 1] ,

with normalization constant cn

(cn)−1 =

∫ 1

−1

N (r − r̂, Cr) dr .

The density function ξ(r) depicted in the right column of Figure 6.1 (c), can be regarded as a
generalized correlation function. This means, this function contains all information about the
correlation structure. Using this information, the joint density f(x, y) can be parameterized by

f(x, y) =

∫ 1

−1

cnN (r − r̂, Cr) N (z,C(r)) dr . (6.4)

It is possible to use this parameterized joint density as the predicted joint density fpk (xk, uk)
that is required in order to perform Bayes’ law (3.12). Based on the processing of the param-
eterized joint density, the estimated density f ek+1(xk+1) that depends on the parameters of the
generalized correlation function ξ(r) can then be derived. This idea could lay the foundation
for a novel filtering technique taking into account the imprecisely known classical correlation
coefficient r and gives a parameterization of the estimation result.

6.2 Gaussian Mixture Marginals

So far, parameterized joint densities only with Gaussian marginals were considered. In this
section, these ideas are generalized to the parameterization of joint densities with Gaussian
mixture marginals. Gaussian mixtures consist of the convex sum of weighted Gaussian densities,
similar to (1.3). Due to the fact that Gaussian mixture densities are universal approximators,
they are well-suited for nonlinear estimation problems [56]. Thus, by finding a parameterization
for the imprecisely known joint density with Gaussian mixture marginals, it is possible to
develop a novel filtering technique that could possibly cope with both nonlinear systems and
unknown stochastic dependencies in a systematic manner.

As it was mentioned in the introduction of this chapter, the first challenge of a robust decen-
tralized estimation for Gaussian mixture densities is that the classical correlation coefficient r is
not a sufficient measure for describing stochastic dependencies. Therefore, in this section a so-
called generalized correlation parameter vector ξ for Gaussian mixtures is introduced. Finding
bounding densities that are compatible with all stochastic dependency structures in terms of
ξ, it may be possible to arrive at a robust decentralized estimator for non-Gaussian/nonlinear
systems. For the sake of simplicity, two scalar Gaussian mixture marginals are considered
according to

fx(x) =
m∑
i=1

wx,iN (x− x̂i, Cx,i) , fy(y) =
n∑
i=1

wy,iN (y − ŷi, Cy,i) , (6.5)

where x̂i and ŷi are the individual means, Cx,i and Cy,i are the individual variances, and wx,i
and wy,i are the individual weighting factors, which must be positive and sum to one.

122



6.2. Gaussian Mixture Marginals

x y

f
(x

,y
)

fy(y)

fx(x)

x

y

ξ2 f(x, y) ξ1 f(x, y)

x y

f
(x

,y
)

fy(y)

fx(x)

x

y

ξ2 f(x, y)
ξ1 f(x, y)

x̂∗, ŷ
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Figure 6.1: Visualization of different types of parameterizations of non-Gaussian joint densities with Gaussian
marginals. (a) Piecewise Gaussian density with different weighting factors. The joint density is sliced into several
symmetricly located pieces with different weighting coefficients, while the marginals remain Gaussian densities.
(b) Sum of positive and negative Gaussian densities with three components and eight components. (c) Sum of
correlated Gaussian densities for different correlation function, e.g., ξ(r) = 7

2
r6 and ξ(r) = N (r − r̂, Cr).
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Theorem 6.2 Given two Gaussian mixture marginal densities fx(x) and fy(y), a set of possible
joint densities f(x, y) depending on the weighting factors wij is defined by

f(x, y) =
m∑
i=1

n∑
j=1

wij N
([
x− x̂i
y − ŷj

]
,Cij(rij)

)
. (6.6)

To assure that the parameterized Gaussian mixture f(x, y) is a valid normalized density func-
tion, the weighting factors wij must be positive and sum to one

wij ≥ 0 ,
m∑
i=1

n∑
j=1

wij = 1 . (6.7)

In addition, the weighting factors must satisfy
n∑
j=1

wij = wx,i ,

m∑
i=1

wij = wy,j , (6.8)

to ensure that the parameterized joint density f(x, y) is a valid joint density for the given
marginal density functions fx(x) and fy(y).

Proof. These properties and conditions can be proven by showing that the marginal densities
of f(x, y) are represented by fx(x) and fy(y), given by (6.5). The marginal density fx(x) can
be derived by direct integration over y according to

fx(x) =

∫
R

m∑
i=1

n∑
j=1

wijN
([
x− x̂i
y − ŷj

]
,Cij(rij)

)
dy =

m∑
i=1

n∑
j=1

wij

∫
R

N
([
x− x̂i
y − ŷj

]
,Cij(rij)

)
dy

Refering to [109] it can be shown that the integral solution does not depend on the correlation
coefficient rij at all. Thus,

fx(x) =
m∑
i=1

n∑
j=1

wij N (x− x̂i, Cx,i)

can easily be obtained. Now, it is obvious that for the condition
∑n

j=1 wij = wx,i this leads to
the desired Gaussian mixture marginals

fx(x) =
m∑
i=1

wx,iN (x− x̂i, Cx,i) .

Similar calculations for marginal density function fy(y) leads to the desired condition
∑m

i=1 wij =
wy,j. This concludes the proof. �

For the following calculations it is more convenient to rearrange the weighting factors of the
joint Gaussian mixture density wij from matrix form to vector form according to

w =
[
w11 · · · w1n, w21 · · · w2n, · · · wmn

]T
.

The weighting factors of marginals are given by

wx =
[
wx,1 · · · wx,m

]T
, wy =

[
wy,1 · · · wy,n

]T
.
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Figure 6.2: Visualization of different joint densities with the same Gaussian mixture marginal densities. The
marginal densities consists of two components, fx1(x1) with mean x̂1 = [−2,−3]T, standard deviation σ1 = [2, 1.6]T

and fx2(c2) with mean x̂2 = [−2, 2]T, standard deviation σ2 = [2.1, 1.4]T. (a) uncorrelated case, i.e., ξ = 0, and
(b) correlated case with ξ = 1 and ξ = −1, respectively.

The conditions (6.8) for a valid joint density f(x, y) with marginals fx(x) and fy(y) can be
expressed by a linear equation, which transforms weighting factors of joint density to weighting
factors of marginals. This linear transformation is given by

Tw =

[
wx
wy

]
.

Due to the fact that the matrix T ∈ R(n+m)×nm in general is not a square matrix and does not
have full rank, there exists a null space (kernel) kerT, which is given by

(kerT)w = ξ .

The null space kerT is spanned by the free parameter vector ξ. Thus, for the calculation of
valid weighting factors w the following Lemma is proposed.

Lemma 6.1 The weighting factors w of the joint density f(x, y) can be derived according to

w = T†e

wxwy
ξ

 , Te =

[
T

kerT

]
,

where Te describes a unique transformation of weighting factors for valid joint densities to
weighting factors of given marginal densities. The pseudo-inverse is denoted by T†e. Similar to
the other types of parameterized joint densities the free parameter vector ξ can be regarded as a
kind of generalized correlation parameter for Gaussian mixtures. This parameter vector needs
to be specified in order to define the joint density f(x, y) uniquely.
Example 6.3 In this example possible joint densities f(x, y) for two given Gaussian mixture
marginals fx(x) and fy(y) are considered; see Figure 6.2. The weighting factors for components of
the joint density are obtained by

w11

w12

w21

w22

 =
1

8


3 −1 3 −1 −2
−1 3 3 −1 2
−1 3 −1 3 2

3 −1 −1 3 −2

 ·

wx,1
wx,2
wy,1
wy,2
ξ

 ,
where ξ is the free parameter. Possible joint densities for different parameters are shown in Figure 6.2.

�
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Figure 6.3: Combination of two types of parameterized joint densities with the same marginal densities. (a) Strong
negative correlation (i.e., ξ = −1, α = −1), and (b) strong positive correlation (i.e., ξ = 1, α = 1).

Here, the individual components of the Gaussian mixture are assumed to be uncorrelated,
i.e., rij = 0. That’s why the resulting generalized correlation vector ξ is derived only by
the weighting factors w; and not the correlation coefficients rij. In general, it is possible to
combine all the types of parameterized joint densities introduced in this chapter. The most
relevant combination is applying the mixtures of correlated jointly Gaussian to the individual
components of a Gaussian mixture. For simplicity the previous example is considered and the
generalized correlation function ξij(r) for the ij-th component is assumed to be given by

ξij(r) = δ(r − α) ,

where δ is the Dirac delta distribution and α denotes the classical correlation coefficient. In
Figure 6.3 the parameterized joint density is depicted for different α and ξ. It turns out that
in the case of α = −1 and ξ = −1 the two considered random variables that are described by
Gaussian mixtures, are fully correlated, i.e., similar to the Gaussian case r ⇒ −1.

6.3 Processing of Parameterized Joint Densities

In this section, it is demonstrated how the parameterized joint densities introduced in the
previous section can be possibly used for a novel filtering technique. This is achieved both for
(a) the prediction step and (b) the measurement step.

Prediction step (time update) For the sake of simplicity, a simple discrete-time dynamic
model is considered with the system state xk ∈ R, and the system input uk ∈ R according to

xk+1 = ak(xk,uk) ,

where xk and uk are random variables represented by the density functions fx(xk) and fu(uk),
respectively. In the case of precisely known joint density f ek(xk, uk), the predicted density can
be obtained using the well-known Chapman-Kolmogorov equation [109] (see Section 3.4.1)

fpk+1(xk+1) =

∫
R2

δ (xk+1 − ak(xk, uk)) f ek (xk, uk) dxk duk , (6.9)
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Figure 6.4: Predicted density fpk+1(xk+1) and its cumulative distribution function F pk+1(xk+1) for variation of
the generalized correlation parameter ξ of the prior density fek(xk, uk). (a) αij = −1, ξ = −1 . . . 1. (b) ξ = 1,
αij = −1 . . . 1. (c) Various members of the set of possible predicted densities and their bounding densities, Fl(xk+1)
and Fu(xk+1).

where δ(·) denotes the Dirac delta distribution. However, it is assumed that the state estimate
xk and the system input uk are stochastically dependent with a not precisely known struc-
ture. This means, although the marginal density functions f ex(xk) and f eu(uk) are known, the
joint density function f ek(xk, uk) with all its information about the stochastic dependency is
unknown. As it can be seen in (6.9), the knowledge of the joint density f ek(xk, uk) or at least its
parameterization in terms of a correlation paramter is required for deriving prediction results.

The goal is to find a bounding density for the prediction result fpk+1 of all possible joint densities
f ek(xk, uk) for the given marginal densities. Thus, based on structural assumptions concerning
the stochastic dependency the unknown prior density f ek(xk, uk) can be paramterized by

f ek(xk, uk) =
m∑
i=1

n∑
j=1

wij

∫ 1

−1

ξij(r)N
([

xk − x̂ek,i
uk − ûek,j

]
,Ce

ij(r)

)
dr ,

where ξij(r) and ξ (affecting the calculation of wij are the generalized correlation function
and the generalized correlation parameter vector, respectively. The individual joint covariance
matrices between the i-th component f ex(xk) and j-th component of f eu(uk) are given by

Ce
ij(r) =

[
Cx,i r

√
Cx,iCu,j

r
√
Cx,iCu,j Cu,j

]
,

where r denotes the classical correlation parameter. By means of the parameterized prior
joint density f ek(xk, uk) the resulting predicted density fpk+1(xk+1) can be described in terms
of a generalized correlation parameter ξ and a generalized correlation function ξ(r). This
parameterized density function fpk+1(xk+1) describes a whole set of possible prediction results.
This is clarified in more detail in the following example.

Example 6.4 For the sake of simplicity and brevity only a linear state-space model is considered
according to

xk+1 = Ak xk +Bk uk ,

where the two random variables xk and uk are represented by Gaussian mixtures with two com-
ponents, visualized in Figure 6.2. Although more complex correlation functions ξij(r) for the
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parameterization of the prior density f ek(·) can be chosen, for simplicity this function is given by

ξij(r) = δ(r − αij) ,

where αij denotes a specific classical correlation coefficient. The predicted density fpk+1 for various
generalized correlation parameter vectors ξ and αij is visualized in Figure 6.4. These figures clearly
show that the prediction result fpk+1 strongly depends on the stochastic dependency, however can
be described by a generalized correlation parameter. It is obvious that the parameterized predicted
distribution functions F p

k may be bound by so-called bounding distribution functions Fu(xk+1) (upper
bound) and Fl(xk+1) (lower bound), depicted in Figure 6.4 (c). In addition, it can be said that
once a representation of such bounding densities is found, a filtering technique may be derived that
can cope with nonlinear models and is robust against imprecisely known stochastic dependencies.

�

Filter step (measurement update) In this section, the example mentioned in the intro-
duction (i.e., decentralized self-localization of a sensor network) is taken up. For illustration
purposes, we consider just two sensor nodes and assume that the relative distance measurement
ŷk is related nonlinearly to their positions. The measurement equation is given by

ŷk = hk(xk) + vk ,

where xk =
[
x

(1)
k , x

(2)
k

]T

are the estimated sensor positions and vk represents the measurement

uncertainty. In the case of precisely known joint density fpk (x
(1)
k , x

(2)
k ), the posterior density f ek

can be easily calculated by using Bayes’ formula

f ek(xk) = cek f
L (ŷk − hk(xk)) f

p
k (x

(1)
k , x

(2)
k ) , (6.10)

where cek is a normalization constant. However, the stochastic dependency between the in-
dividual estimated positions is assumed to be imprecisely known. This means, although the
marginal density function fpk (x

(1)
k ) and fpk (x

(2)
k ) are known, their corresponding joint density

fpk (x
(1)
k , x

(2)
k ) with its information about the stochastic dependency is unknown. Unfortunately,

the knowledge of the joint density or at least its parameterization in terms of a correlation
parameter is essential for deriving estimated densities f ek using (6.10).
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Similar to the time update, the imprecisely known joint density fpk (x
(1)
k , x

(2)
k ) can be parame-

terized by a joint density according to

fpk (xk) =
m∑
i=1

n∑
j=1

wij

∫ 1

−1

ξij(r)N

([
x

(1)
k − x̂

e,(1)
k,i

x
(2)
k − x̂

e,(2)
k,i

]
,Cp

ij(r)

)
dr ,

where ξij(r) and ξ (affecting the calculation of wij) are the generalized correlation function and
the generalized correlation vector, respectively. The following example illustrates the results.

Example 6.5 For the sake of simplicity, a linear measurement equation is given as follows

ŷ = x
(1)
k + x

(2)
k + vk ,

where the two random variables x(1)
k and x(2) are represented by Gaussian mixtures with two com-

ponents, visualized in Figure 6.2. The estimated density f ek(x(1)) for various generalized correlation
parameter vectors ξ and αij is depicted in Figure 6.5. These figures clearly show that the estimation
result strongly depends on the stochastic dependency, however can be parameterized in terms of a
generalized correlation parameter ξ and a generalized correlation function ξ(r). It is obvious that
the parameterized estimated distribution function F e

k (x(1)) can be bounded by means of bounding
distribution functions Fu(·) (upper bound) and Fk(·) (lower bound), depicted in Figure 6.5 (c). �

6.4 Summary and Discussion

This chapter focuses on the parameterization of different types of joint densities with both
Gaussian marginals and Gaussian mixture marginals. It is shown that by assuming a specific
stochastic dependency structure, these joint densities contain all information about this depen-
dency in terms of a generalized correlation parameter ξ and/or a generalized correlation function
ξ(r). Unlike the classical correlation coefficient r, the generalized correlation parameter and
function is a sufficient measure for the stochastic dependency between two random variables
represented by Gaussian mixtures.

Depending on these correlation parameters, detailed prediction results and measurement results
are presented. In addition, it is shown that there could exist bounding densities containing all
possible joint densities characterized by the generalized correlation parameter vector ξ and
the generalized correlation function ξ(r). To find such bounding densities representing the
stochastic dependency constraints is left for future research. A possible direction for finding
bound densities can be found in [82]. Once such a bounding density is found, the derivation
of a filtering technique that can cope with nonlinear models and is robust against imprecisely
known stochastic dependencies is possible.
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CHAPTER 7

Conclusion and Future Research

This research work was devoted to the development of efficient probabilistic methods for the
model-based state estimation and parameter identification of space-time continuous systems.
The main applications for the derived methods are the observation, monitoring, and exploration
of dynamic and spatially distributed physical phenomena, such as temperature distributions
or biochemical concentrations. The main goals are the systematic interpolation of space-time
discrete, spatially distributed measurements and the estimation of non-measureable quantities.
The challenge is that the estimation and identification results in a high-dimensional and nonlin-
ear problem to be solved; however, with a linear substructure that can be exploited. Moreover,
for physical systems widely distributed and for measurement systems consisting of a large num-
ber of measurement points, decentralized estimation approaches are required that are scalable.
For coping with these challenges, efficient methods were developed within this research work.

In order to assure smooth, precise, and physically correct estimation results, physical back-
ground knowledge (in terms of a system model) were rigorously exploited. The space-time
continuous physical systems that were considered can be modelled by stochastic partial differ-
ential equations. The description and explanations of the developed methods were restricted to
the convection-diffusion equation for simplicity and brevity reasons; however, the application to
any (linear) partial differential equation is straightforward. Besides the rigorous model-based
approach, the novelties are the systematic consideration and the integrated treatment of un-
certainties. The following uncertainty models are considered, (a) stochastic uncertainties for
system states and unknown model parameters, and (b) set-valued uncertainties for imprecisely
known stochastic dependencies between individual estimates. On the basis of these model de-
scriptions, two different methods were developed for the nonlinear and decentralized estimation
of space-time continuous systems; separately described in the following.

Sliced Gaussian Mixture Filter (SGMF) For the estimation of nonlinear systems ap-
proximation methods are necessary due to its high computational demand and the result-
ing non-parametric density representation. The SGMF exploits linear substructures in mixed
linear/nonlinear systems, and thus is well-suited for the estimation of space-time continuous
systems. In the following, its properties and contributions are shortly stated:

• The estimator is based on a novel general-purpose density representation (the sliced Gaus-
sian mixture) for the decomposition of the estimation problem. The proposed probability
density function consists of a Dirac mixture and a Gaussian mixture in different subspaces.

• The density approximation necessary within the proposed framework is based on mini-
mizing a certain distance measure. The systematic approximation technique (nonrandom,
deterministic) yields close to optimal estimation results.
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• The individual slices of the proposed density representation are jointly considered during
the approximation process. Thus, a kind of interaction between them is enforced in an
almost natural way and leads to better approximation results.

• Thanks to the systematic positioning of the density slices while minimizing a distance
measure, the underlying density function can be usually represented with less parameters.
This results in a lower number of Kalman filter updates that are required.

• Here, for simplicity the density approximation were restricted to the consideration of the
subspace that is represented by the Dirac mixture. However, the systematic approach
introduced in this work allows the consideration of the joint space, i.e., the subspaces
represented by the Dirac mixture and the Gaussian mixture.

The SGMF was applied to the high-dimensional and nonlinear lumped-parameter system model
that results from the conversion of a space-time continuous system. By this means, the state
and the parameters of physical phenomena can be simultaneously estimated in a very efficient
manner. The proposed estimator provides novel prospects not only for the estimation of space-
time continuous systems but also for sensor network applications in general. The performance
was demonstrated using various extensive simulation studies: (a) identification of process pa-
rameters, (b) localization of sensor nodes based on local observations of a space-time continuous
physical system, and (c) localization of spatially distributed sources and leakages. It was shown
that thanks to the simultaneous approach and the SGMF, the network is able to estimate the
entire distributed state of the physical system, identify non-measurable quantities, and would
be able to adapt its algorithms and behavior in an autonomous fashion.

Future directions for the extension of the SGMF could consist in the consideration of the entire
joint density (i.e., both in the direction represented by Dirac mixture and Gaussian mixture
density) for the density approximation. By this means, the accuracy of the approximation
could be further improved and less density slices would be necessary for a precise estimation
result. In addition, the system equation (transition density) as well as the measurement equa-
tion (likelihood) could be exploited for the determination of optimal positions and additionaly
reducing the number of density slices. Moreover, by the direct processing of the individual
density slices, the expensive reapproximation of the density function may be avoided.

Covariance Bounds Filter (CBF) For the estimation of physical systems that are spa-
tially distributed over a wide area, decentralized approaches are required in order to assure
a scalable processing of the information. The main problem is that such approaches leads to
stochastic dependencies, e.g., correlations, between the individual estimates that may either be
too expensive to maintain or are simply not available for several reasons. In the case of Gaus-
sian probability densities, the CBF provides a technique for coping with imprecisely known
correlations. The properties and contributions are shortly stated in the following:

• The CBF is a general-purpose and systematic estimator for processing individual ran-
dom variables with cross-covariances that possesses set-valued uncertainties. This is, for
example, the case of unknown cross-correlations caused by a fully decentralized processing.

• The robust estimator assures conservative and consistent (an upper bound in the positive
definite sense) estimation results when the correlations between the individual estimates
to be processed are imprecisely known.

• For sensor network applications, the CBF is not restricted to certain types of topologies,
e.g., fully-connected or tree-connected topology. Rather can be employd on any kind of
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topology, since the method is not based on tracking stochastic dependencies between each
individual node in the network.

• It allows the systematic consideration of prior knowledge in terms of correlation constraints
(symmetric and asymmetric constraints). By this means tighter bounding densities, and
thus more precise estimation results can be derived.

• The decomposition of the system model into several subsystems and the consideration of
prior knowledge with the CBF provides a continuous scaling between a fully centralized
and a fully decentralized estimation of physical systems distributed over a wide area.

• Unlike other estimators that are robust against unknown correlations, the CBF can be
applied not only to the measurement step, but in particular to the prediction step. This
property is essential for the decentralized reconstruction of space-time continuous systems.

• Since the CBF is based on bounding ellipses (representing covariance matrices), it can be
applied to a wide variety of applications. For example, conservative results can be obtained
for systems with uncertain parameters represented by set-valued uncertainty models.

The CBF can be applied to a wide variety of applications, such as the simultaneous localization
and map building (SLAM). However, in this research work, the novel estimator was applied
to the decentralized state estimation of space-time continuous systems observed by a sensor
network. By this means, a processing can be derived that is robust against imprecisely known
correlations caused by the fully decentralized approach or a common source of uncertainties
affecting more than one sensor node. The individual sensor nodes in the network locally re-
construct widely distributed physical systems and exchange local estimates only with adjacent
nodes, i.e., storing expensive information about correlations is not required.

The CBF is restricted to random variables that are uniquely characterized by covariance ma-
trices, such as Gaussian probability density functions, and cannot be readily extended to non-
Gaussian densities. For example, by applying the CBF directly to the individual components
of a Gaussian mixture density function does not assure consistent, and thus correct estimation
results anymore. As a consequence more involved methods are required for the generalization of
the CBF to arbitrary density functions. The first challenge is to find a method for the parame-
terization of the imprecisely known joint probability density function. The parameterized joint
density proposed in this research work contains all information, under structural assumptions,
about the stochastic dependencies between their marginal densities. A parameterization of all
valid jointly Gaussian mixture densities were derived for given Gaussian mixture marginals;
parameterized by a so-called generalized correlation parameter vector. Future direction for the
application of the proposed parameterized joint densities is the derivation of bounding densities
that sufficiently represent the entire set of valid joint densities, and thus yields conservative
and consistent estimation results. A promising approach would be the derivation of a bounding
density in terms of a dispersive order, which is a stochastic order applicable to arbitrary density
functions. Based on the proposed parameterization of joint densities and an efficient method
for finding bounding densities, the CBF may be generalized to arbitrary probability density
functions, such as Gaussian mixtures.
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The main goal of this research work is the reconstruction and iden-
tification of space-time continuous physical phenomena, such as 
temperature distributions or biochemical concentrations. For the 
observation of such phenomena, spatially distributed measure-
ment systems can be exploited as huge information fields collec-
ting readings over time across a volume of space. Due to several 
constraints of the miniaturized sensor nodes, novel approaches for 
processing locally obtained information are required. In this thesis, 
the focus lies on probabilistic model-based estimation techniques 
allowing the systematic consideration of stochastic uncertainties.

For the estimation of nonlinear systems approximation methods are 
necessary due to its high computational demand and the resulting 
non-parametric density representation. The Sliced Gaussian Mixture 
Filter (SGMF) exploits linear substructures in mixed linear/nonlinear 
systems, and thus is well-suited for the estimation of space-time 
continuous phenomena. In the case of physical phenomena that are 
spatially distributed over a wide area, decentralized approaches are 
required in order to assure a scalable processing of the information. 
The main problem is the imprecisely known stochastic dependencies 
between the individual sensor nodes. The Covariance Bounds Filter 
(CBF) allows the incorporation of additional background knowledge 
and leads to more accurate and consistent estimation results. The 
performance of the developed estimators is demonstrated by means 
of various simulation studies that clearly show the novel prospects.
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