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Dynamic interaction between a moving vehicle
and an infinite structure excited by irregularities —
Fourier transforms solution

J. Bitzenbauer, J. Dinkel

199
Summary A new approach to calculate the dynamic interaction between a moving vehicle and
an infinite structure is presented. Its main characteristics are: use of Fourier transformed
domains (leading to a very general formulation of the problem), correct consideration of the
motion of all components of the model; consideration of all kinds of mutual dynamic inter-
actions between the vehicle and the track, and the possibility to include a layered half-space for
the subgrade, instead of the elastic Winkler foundation used here. Examples of a single axle and
a bogie model passing an irregular track illustrate characteristic effects.

Keywords Track Dynamics, Dynamic Interaction, Rail, Irregularity, Slab-track System

1

Introduction

In this paper, we examine the dynamic behaviour of coupled infinite and continuous linear
elastic beams in dynamic interaction with several moving linear multi-degree-of-freedom
(MDOF) systems. Both cases of mutual dynamic interaction between the different contact
points will be considered: the interaction via coupled degrees-of-freedom (DOF) of the moving
structure, and the interaction via the substructure. All equations are held very general; in fact,
the basic equations describe only an arbitrary number of moving contact points, regardless of
the structures above or below.

The general formulation is motivated by the practical problem of a railway vehicle moving at
constant speed on a track and being excited by given vertical imperfections such as flat wheels,
rail irregularities and rail roughness. The resulting deflections of track and subgrade can be
split into effects due to the moving dead load of the train and effects due to excitation caused by
given vertical imperfections. The solution for the moving dead load is rather simple, whereas
the semi-analytical solution of the interaction problem due to irregularities is the main issue of
this paper.

This problem has already been treated by several authors. The first one to consider a moving
load on an elastic track, was Timoshenko, [1, 2]; historically, papers [3-5] should be men-
tioned, too. A recent overview of vehicle-track dynamics is presented in [6]. Quite often the
elasticity of the track is neglected, like in [7-11], or the vehicle is regarded to be at standstill. In
this case, the roughness profile is pulled through the wheelset and the track to excite the
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system, [12]. In [13], the problem is solved in the moving coordinate system, but the vehicle is
partly fixed in vertical direction. Paper [14] presented a solution based on the approach given
in [15] for a periodically supported rail modelled as a Timoshenko beam with a sinusoidal
irregularity profile. This solution leads to a set of Fourier series for the vertical and angular
displacements of the rail and the vertical displacements of the components of the vehicle. The
coupling via the vehicle is not taken into account. The earliest approach to the dynamic
interaction problem between vehicle and track which takes the speed of the vehicle and the
elasticity of the track into account was presented in [16]. This semi-analytical approach for a
continuous track model leads to a rather complicated expression for the receptance of the track
in the frequency and Laplace domains. The receptance has to be evaluated using contour
integration. Using this receptance and the receptance of a single wheelset, the contact force can
be calculated.

In comparison to the semi-analytical solution strategies, different numerical models and
methods have been developed by several authors who solve the problem correctly, e.g. [17-20].
For the dynamic interaction problem of a truck on a bridge, numerical techniques exist that could
be adopted for the problem at hand of which only [21] and [22] should be mentioned here.
Fryba’s monographs [23, 24] focus on analytical solutions and extensively treat the subjects of
moving loads and of vehicles on bridges. Moving oscillating loads are the subject of [25, 26].

The presented approach is a semi-analytical one which solves the problem in a correct
manner, regarding the rail irregularities to be at a standstill and the railway vehicle to be in
motion, [27]. Here, a continuous track model is used, representing a slab-track system better
than a ballasted track, [28]. This approach leads to a closed form of the solution in Fourier
domain different from the approaches [14] and [16]. The single expression clearly shows the
influence of speed. The expression itself can be computed easily, and the inverse transforms
can be performed numerically. In addition, the coupling via the vehicle will be derived using a
bogie model.

Of course, a continuous model is a simplification of the track model appearing in reality, but,
in consequence, closed-form analytical solutions using transformed domains are possible. With
a continuous support, the pinned-pinned mode with a resonance frequency of around 1000 Hz
cannot be taken into account. An advantage of the continuous model is the possibility to
replace the Winkler foundation representing the subsoil with frequency- and wave number-
dependent stiffness values of a three-dimensional layered half-space. The solution strategy
presented can also be applied in this case.

As an example, a slab-track system described by two continuous layers of beams on elastic
foundation (according to Fig. 1) is used, considering bending, shear, mass inertia and rota-
tional inertia.

2

Basic equations of the track in original domain

In order to derive the differential equation describing an infinite and continuous beam on
elastic foundation (taking into account bending, shear, mass inertia, rotational inertia and

their interactions), an infinitesimal element and the corresponding forces, according to Fig. 2,
are regarded. Symbols M, Q and p denote the bending moment, the shear force and the load;
w, wg and wq - the resulting deflection and its contributions due to bending and shear; k and
¢ denote the stiffness coefficient and the damping coefficient of the elastic foundation,
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Fig. 1. One-dimensional track models with vehicle. Slab track system (a) and ballasted track (b)
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respectively; p, E and GAq are the mass density, Young’s modulus and the shear stiffness, A
is the area of the cross section, and I stands for the second moment of area. Symbols

(') = 0/0t and (') = 0/0x denote the partial differentiations with respect to time and
longitudinal direction. Using equations describing equilibrium, kinematics and linear elastic
and homogeneous material law

—Q(x,t) + pAw(x,t) + cw(x, t) + kw(x, t) = p(x,t) , (1)
Qx,t) = M'(x,t) + pIwp(x, 1) , (2)
w(x, t) = wp(x, t) + wo(x, 1) (3)
M(x,t) = —EIwp(x,1) , (4)
Q(x,t) = GAqw(x, 1) (5)

the following differential equation holds:

. .. EI . pl ..
EW" (x,t) — pIw" (x,t) + pA 1) ——w'(x,t) + —— t
W (58) = I (1,0) + A [ (2,1) = W (5.) 4 G
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w'(x,t) + P w(x, t)
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+c|w(x,t) — ~ Gag Gaq

ey 2] e

GAq
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"(x,t) + ——p(x, 1) . (6)
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3
Basic equations in the Fourier-transformed domain

3.1

Equations for the track

The equations for two coupled beams (see Fig. 1) follow from (6) by regarding the forces acting
on the intermediate elastic foundation as the load on the lower beam. The resulting differential
equations are transformed into the frequency (w) and the wave-number domain (k)

[kiEIl — KRr1 + (—Cl)szl + i(DCp + kp)(l + KQ1 + KQR])]WI (kx, CO)
— [(iwep + kp) (1 + Kqu + Kqr1) W2 (kx, ©)
= [l + kq + Kqr]p(ks, ®) (7)

[kiEIz — Kp2 + (—G)ZpAz + ia)(cs + Cp) + ks + kp)(l + KqQ2 + KQRZ)]WZ(kx, (,())
— [(iCOCP + kp)(l + K@ + KQRz)]Wl(kx, CO) =0 . (8)
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Herein, the indices 1 and 2 denote the upper and the lower beam (the rail and the concrete slab)
and the indices “p” and “s” stand for pads and subgrade. Additional layers can be integrated
easily, without changing the solution strategy presented in the next sections. The equation for
one beam is just Eq. (7) without the w,-term.

In the above expressions, the influences of shear (Q), rotational inertia (R) and the mutual
action between shear and rotational inertia (QR) are represented via the factors

, Php

Kaqi2 = k2 Phyz .
GAQ1/2

*GAqip

©)

Kri/2 = kiwzﬂll/za KQrij2 = —@W

Using (8), the following relation between w; (ky, ) and w;(ky, ) holds:
Wz(kx,a)) = le(kwi) ’ (10)
with

_ (iwcp + kp) (1 + Kz + Kor)
KEL, — kpy + (—?pA; +io(cs + ¢p) + ks + kp) (1 + K2 + Kor2)

K

In the transformed domain, the relations between the load p(k,, ) and the deflections
wy(ky, w) and wy(ky, @) are

plks, @)

_ plks, @)
" Dy(ky, )’ D, (kv. ) (12)

w1 (kx7 C()) Dz(k (U) 9

wa(ky, ) =

using the transformed differential operators

D (k w)—m—w2A+(iwc +kp)(1 — k) (13)
1{(Ax, _1+KQ1+KQR1 pAaL 1 p ’

D (ky,
Dz(kx,w):¥ : (14)

The first advantage of this approach is the simple description of the shear, the rotation and the
interaction between shear and rotation in the transformed domain. If wanted, these influences
can be neglected by setting the corresponding x-terms in Eqs. (9) equal to zero.

The second advantage of the description in the transformed domain is the possibility to
include a layered half-space as a model for the subgrade. This leads to the frequency- and
wave-number-dependent spring and damper coefficients, instead of constant parameters for
the elastic support. In this case, k; and ¢, are replaced in Eq. (8) by the half-space stiff-
nesses kg (ky, ) = k& (ky, ») + ikl;(ky, ®), derived from the fundamental solution in the
transformed domain of the half-space under harmonic loading. These stiffnesses describe
the properties of the layered half-space in a correct manner. The concept was developed
and presented in [29], and is extensively examined in [30]. A similar formulation can be
found in [31].

3.2
Equations for the vehicle

3.2.1

MDOF systems with one contact point

For nonbranched structures, like the one with three DOF shown in Fig. 3a, the relation in the
frequency domain between vertical wheel displacement w,,(w) and normal force N(w) is

N(w) = ku(@)wy(®) (15)

wherein k,(w) can be gained using the impedance relations
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k(w) = —o’m, | (16)
1 2

ks(w) =T —o'm , (17)

ke(o) + iwcy+k,

1 2

k(@) = —————— — w’m, . (18)
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In (16) to (18), mc, my and m, denote the mass of the car body, the bogie and the wheelset,
while stiffness and damping coefficients of the primary and secondary spring and damper
elements are denoted by k;/, and ¢, /,, respectively.

3.2.2

MDOF systems with several contact points

Equations for a bogie model with five DOF and two contact points with the corresponding
normal forces Nj/, (see Fig. 3b) are taken from [17] in a slightly modified manner, and
transformed into frequency domain

K(o)w(w) = p(o) , (19)

which can be written in detail as

—?m+iwc, +k; —iwc; —k; 0 0 0
—*my, +io(2¢; + ;) + 2k + k, 0 —iwe; — kg —iwe; —ky
—*ly +2d? (e, +ky) iwdc; + dk, —iwdc; — dk,
sym —w*my, +ioe +k, 0

—w?my, +iwe, +ky

we(w)
wh(w)
P ()

0
0
(U) 0

(20)
Wyt (o) Ni(w)
( (

Ww2 (1)) N, (U)

Here, ¢, (w) and Iy denote rotation and rotational inertia of the bogie, all other symbols are
according to the previous section.

4

Solution for the moving dead load

A detailed description of the solution for the vertical displacements of the track for one and for
four moving dead loads and its effects without any influences of shear and rotation can be
found in [26]. In our context, we regard the more general case of n moving dead loads G. The
first load is placed at the origin in the x-domain, the i-th load stands at x; = —I;

px,t) =G d(x—vt+1), plke,)=21G) e"™5(w+ vky) . (21)
i=1

i=1
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After using (12) and performing the Inverse Fourier Transform, the deflections become

+oo

G n e'(vat+l,‘)kx dk
= . - 22
Wi 1) 27?2 / Dy jy(ky, 0 = —vky) (22)

-1 -

Due to the moving dead load, no displacements occur in the vehicle since the vertical position
of each wheelset is constant while moving.

5

Vertical displacements and contact restrictions

In the previous section, the elastic and dynamic behaviour of the moving railway vehicle did
not matter. This is no longer the fact in the case when imperfections cause a dynamic exci-
tation. In general, imperfections are the differences between the ideal and the real position of
the rail or between the ideal and the real form of the wheels. In this paper, only vertical
imperfections will be considered.

In this context, a simplified approach for semi-analytical solutions of exciting the train-track
system is to regard train and track to be at a standstill and to pull through the irregularities
against the moving direction of the train. But, in reality, the track and, therefore, rail irregu-
larities and rail roughness are in fixed position and the train is moving. In case of flat wheels,
the out-of-rounds are passing the fixed track. The aim of our approach is to consider the real
state of motion of all components (compare Fig. 4).

Assuming a permanent point contact between the rail and all wheelsets at the moving
contact points, the contact restriction

wyw(t) = Aw(t) + wi(x = vt t) (23)

can be given. In (23), wy, and w; are the vertical displacements of the wheelset and the rail at the
moving contact points and Aw(t) = Aw(x/v) is the given irregularity.

6

One moving contact point

The solution strategy and the basic solution will be shown for one moving contact point with a
simple nonbranched structure above, since the transfer to branched structures with several
moving contact points can be done easily. The equation

plx,t) = —o(x — vt)N(t) , (24)
and its Fourier-transformed counterpart

plky, ) = =0(w + vky) * N(w) = —N(w + vky) = —ky (@ + vk )wy (o + vky) (25)
describes the normal force between vehicle and track as a load moving at speed v on the
substructure; herein () denotes a convolution. Equation (15) is used to express the normal

force in an alternative manner. Using (25) and (12), the deflection of the rail in the transformed
domain is

N(t)

k3

a b c Wy, Wy oW

Fig. 4. Problem (a), common approach to the problem (b), presented approach (c)
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Wl( X7w) Dl(kx,ﬂ)) Dl(kx,a)> ( )
The contact restriction (23) can be written as

1 +00
F/ / w1 (ke, 0)e™" €@t dk, dw = wy(t) — Aw(t) | (27)
s

using the inverse transform at x = vt. Multiplying both sides of Eq. (27) with e ¥, and per-
forming an integration from —oo to 0o (actually a new Fourier Transform into a frequency
domain Q), we get after rearranging

+0oo +oo
1 .
= / / i (ke ) / 1+ e MO0k 4l ke doo = w (Q) — AW(Q) . (28)

The inner integral corresponds to a Fourier Transform of the constant function 1 into a domain
using the transformation kernel Q — w — vk,. The transform leads to

1 +00
- / 7 Z (e, )3(Q — o — vky)dke doo = wa(Q) — AW(Q) . (29)

Considering the properties of the Dirac distribution and relation (26) with the argument
w=Q — vk,

Wil =0 vk) = - Dl(liwgz)zwvgvz(?)vkx) ’ (30)
we get
ke Qwa(Q) [ dk
w Ww ”
B / Dyl = Q vk, (@) AwE) (31)

where k,,(Q) and w,,(Q) can be put outside the integral, for they no longer depend on k, but
rather on Q. Solving the equation leads to the unknown transformed vertical wheel displace-
ment

B 2nAw(Q)
() = Q@) (32)
with
+00
dk,
HRy) = / D (ky, 0 = Q — vky) 7 3)

and, using (26), we get the unknown transformed vertical displacement of the rail. The term
o(Q, v) defines the receptance (as a complex quantity) of the rail in the moving coordinate
system.

One, respectively, two Inverse Fourier Transforms (to be performed numerically) lead to the
vertical displacements of the wheel and rail in the original domain. The complete vertical
displacements can be obtained by superposition with the vertical displacements due to the
moving dead load.

205




206

7

Several moving contact points

In this section, we extend the method to an arbitrary number of contact points which can also
be coupled via the vehicle. With this approach, the dynamic interaction takes place via the track
and the vehicle itself. It is sufficient to regard one vehicle because the solution for more vehicles
is given implicitly. In general, the vehicle has n DOF, m of which are in contact with the rail. At
these m contact points, we have m contact forces N;(Q) withi =1,...,m. Therearer = n — m
DOF not in contact with the rail. In the following, the indices denote the dimensions of the
matrices and vectors. The equation

Ko@) = | T | (39

describes the behaviour of the n DOF of the moving vehicle in dependence of the m contact
forces. Herein, K,,»,(Q) is the stiffness matrix coupling the n DOF with each other. The vector
w,,(Q) contains all displacements of the vehicle, N,,(Q) contains the contact forces and 0,
denotes a zero vector of dimension r. The contact forces are unknown, but the linear equations
(34) can be reduced to linear equations

K (Wi (Q) = Nun(Q) & K, () ' Nin(Q) = wi(Q) (35)

mxm

in which only the DOF belonging to contact points occur. Besides (35), we have m additional
equations resulting from fulfilling the m contact restrictions

wi(x = vt —Ii,t) = wyi(t) — Aw(t — 1;/v) Vi=1,....,m , (36)
which by means of

> e IN(Q)

X7Q = - )
w ks, Q) Dy (ks 0 = Q — vky) (37)
can be transformed to
Q Ly Q T elkx(h=1h) dk *@A Q

Ww,i( ) + E = 1\’]( ) / Dl (kx; w=Q— ka) xTe W( ) ) (38)
Finally, (35) and (38) together lead to
[K:anrn(Qy1 + Amxm(Q)}Nm(Q) = b, (Q)AW(Q) , (39)
using
A:(Q) = 2 T etk dk, Vij=1 4

l]( )—g/Dl(kx,CO:Q—ka) X Lj=14....m, (0)
bi(Q)=e v Vi=1,....m . (41)

5 ()" describes the vehicle. By
solving the linear system (40) for several frequencies, the normal forces in the transformed
domain can be obtained. The use of (37) leads to the transformed deflections of the track.

If one either wants to avoid the inversion of K, , (Q) or prefers to calculate w,,(Q) rather
than N,,(Q), the following equation holds:

Herein, the matrix A, (Q) describes the track and K*

Lxm + Amsxm(Q)K s (Q) Wi (Q) = by (Q)AW(Q) (42)

with the unit matrix I,,.,.
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Examples

In Fig. 5, the amplitudes of the complex receptances for different velocities and different
damping parameters are shown. Parameters according to Table 1 were used for calculation of
the left hand side figure. In the graphs, Fig. 5b—c, the damping of the intermediate layer is
increased by a factor 10 and 100, respectively. The first peak can be assigned to a resonance
effect of the lower beam (plate), and the second one belongs to the upper beam (rail). It can
easily be seen that in some low frequency ranges the receptance does depend on the velocity.
Significant differences only occur at resonance frequencies and in the case of supercritical
damping (Fig. 5¢) in the low frequency range. Some aspects of Egs. (12) and (13) should be
looked at in more detail here. Note that the most simplified model, a simply supported beam,
can be discussed by setting all x-terms equal to zero. The effect of speed in Eqgs. (12) and (13)

EIK: — p(Q — vk,)* — ic(Q — vk,) + k
(EIK: — u(Q — vky)* + k)* + 2(Q — vky)*

w(ky, Q) = p(ky, Q) (43)

does not lead to deflections with unbounded growth. In the particular solution, a positive sign
of the terms describing damping (vk, > Q) does not affect the amplitudes but only the phases.
In the homogeneous solution (which is not needed here), no term depending on the velocity
exists. For the case Q = 0 (i.e. moving dead load), two different types of behaviour can be
regarded: for low damping, in the subcritical range 0 < v < v with increasing speed the
deflections must increase, too, since the denominator of (43) becomes smaller, whereas for
sufficiently high damping and increasing speed the deflections must decrease. This tendency is
very similar for low frequencies, whereas for Q > vk, the influence of speed becomes negli-
gible, in general, since then due to the quadratic expressions in the denominator the vzkfc terms
become small in comparison with the Q* terms.

8008 T T T 4508 T T 36-08

35008 |

25008

3008

25008 j

4008 - 15008 £\ 4 4

Receptance {mVN]
Receptance [m/N]

Receptance fm/N]

3008 [
1008

5e-09 4
Se-09 | 4

4 s0 100 150 200 0 50 100 150 200 Q B 100 150 200
a Frequency {Hz) b Froquency [Hz] C Frequency [Hz]

Fig. 5. Amplitude of receptance of the upper beam of a system of two coupled beams. Variation of
damping and velocity versus frequency. (a) low damping (parameters according to Table 1), (b) medium
damping (factor 10), (c) high damping (factor 100)

Table 1. Parameters of the slab track system (half)

E 2.10 - 10'! N/m? E, 3.00 - 10'° N/m?
GAq 2.62 - 10° N GAg 729 - 10° N

01 7800 kg/m® P, 2400 kg/m’

A 7.69 - 107> m? A, 0.70 m?

I 3.05- 107> m* L 9.33 - 107> m*
kp 3.3 - 10’ N/m® ks 6.6 - 10" N/m*
¢ 5.0 - 10°> N s/m? Cs 3.0 - 10* N s/m?
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t = £0.125 s; deflections of the rail at
x =vtand at x =0 (c)



Some serious limitations of the underground model used here should be mentioned: the use
of a winkler foundation instead of the half-space, and the unrealistic assumption of frequency-
proportional viscous damping. It can be seen that a change in the damping parameters of the
intermediate layer changes the behaviour of the system strongly. Of course, this holds similarly
for changing the damping parameters or even the whole mechanical model of the subsoil.
Indeed, calculations of the second author, using a half-space model with hysteretic damping,
indicate that, in reality, the first peak does not exist in the way shown here, and that there is
also less dependence on velocity.

The second example (Fig. 6) shows a single three DOF model (parameters according to
Table 2) moving at a speed of v = 80 m/s and being excited by the rail irregularity given in
Fig. 6a. Figure 6b shows the responses of the wheelset and rail at the moving contact point
x = vt. As track and subgrade in the low frequency range are, generally, much stiffer than the
vehicle, the deflections of the rail are quite small. At t = £0.125 s, the wheel reaches the
beginning (the end, respectively) of the irregularity and one can observe that the contact
restriction is fulfilled. Regarding the deflections of the rail at the moving contact point and the
ones at the fixed point x = 0 (Fig. 6c), the identity of the deflections at the moment the train
passes the fixed point is obvious.

Table 2. Parameters of the three-DOF vehicle (1/8 of a wagon)

5
My 880 kg ki 9.72 - 10° N/m
4
my 745 kg c 1.2 - 10* N s/m
5
me 5075 kg k, 3.52 - 10° N/m
4
(%) 1.0 - 10* N s/m
-0.0001 f- : —— so0e "ot contact pomt
2nd contact point —------
4000
-8e-05 |- N 3000
2000
-6e-05 |- i 1000
5
=
E % o
_4e-05 b N = 1000
~2000
-2e-05 [~ - -3000
~4000
° L A . R 5000 . . . . R . A R
-0.01 -0.005 o 0.005 0.01 -0.02 o 0.02 0.04 0.06 0.08 0.1 o.12 Q.14
a tis] b tesi
-0.00015 T T T -0.00012 T T T T
wheelset, 1st contact point wheelset, 2nd contact point
rail, 15t contact point ---—-—- rail, 2nd contact point —------
fail at x = 0 -----on- rail af Q eeeeas
-0.0001
-0.0001 -8e-05
-6e-05
-Se-05 -4e-05
E =
= = -2e-05
0 I~
° :
2e-05
4e-05
5e-05
6e-05
(I) 0.2)2 0.04 0.2)5 0,.08 0.1 (.) ().;)2 0.2)4 0.‘06 0.08 0.1 0.12
c trs) d sl

Fig. 7. Given rail irregularity, cosine form (a); dynamic normal forces at the contact points (b); vertical
displacements of wheelset and rail at first (c) and second (d) contact point
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Table 3. Parameters of the five-DOF bogie (1/4 of a wagon)

My 880 kg k 9.72 - 10° N/m
my 1490 kg € 1.2 - 10* N s/m
me 10150 kg k; 7.04 - 10° N/m
Iy 1600 kg m* o 2.0 - 10* N s/m
d 2.50 m

The third example (Fig. 7) shows the results for a single bogie model with five DOF
(parameters according to Table 3) being excited by the same cosine form rail irregularity. The
speed again is v = 80 m/s, the distance between the wheelsets of the bogie is 2.50 m. In this
example, much higher frequencies than in the previous one are excited. Therefore, the stiffness
of the vehicle increases and, subsequently, there is a notable interaction between the wheelsets.
This can easily be seen when regarding the normal forces (Fig. 7b); although the second
wheelset reaches the beginning of the imperfection at t = +0.01875s, there occur nonzero
dynamic normal forces before that time. Of course, the main part of the mutual interaction
between the wheelsets of one bogie is the interaction through the bogie. Normal forces below
zero do not indicate a take off since the moving dead load is much higher than the dynamic
normal forces. The graphs Fig. 7c-d show again the fulfillment of the contact restrictions, the
deflections at the fixed point and the mutual interaction between the wheelsets.

9
Conclusion

A new semi-analytical approach for the calculation of the dynamic interaction between vehicle
and track for a continuous model leading to a closed-form solution in the Fourier domain has
been presented. The developed method considers the influence of the state of motion of all
components of the model. In practice, the mutual interaction between the wheelsets via track
and subgrade increases for higher frequencies. This aspect is included in the solution, too. It
should be mentioned that, for higher frequencies, a contact spring between wheelset and rail
should be included, see e.g. [16]. In order to calculate other subgrade models, only the dif-
ferential operator needs to be changed. Worth mentioning is the possibility to include a half-
space instead of the Winkler foundation used here, as shown in [30].

Our intention was to propose a new approach to the calculation of the dynamic interaction
problem between a moving vehicle and a substructure and to show that under certain cir-
cumstances the receptance might depend on the velocity, too. A next step in the development
could consist of taking the discrete support of the sleepers into account. It should be inves-
tigated if the solution techniques in [9, 13, 14, 25] can be simplified when using the current
results.
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