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Chapter 1: Introduction 

1.1 From magnet to Single Molecule Magnet (SMM) 

 

Historically, magnetism has been recognised for thousands of years. An account, that is 

probably apocryphal, tells of a shepherd called Magnes in Crete who around 900 B.C discovered 

the naturally occurring magnet lodestone (a form of magnetite, Fe3O4) in a region later named 

Magnesia. Supposedly, while he was walking over a deposit, the lodestone pulled the nails out of 

his sandals and the metal tip from his staff. This phenomenon was firstly discovered by the 

Greeks and later used by the Chinese to create the floating compass.[1] Later, the understanding of 

the magnetic phenomenon was significantly influenced by many people over many years.[2] In 

1269 Petrus Peregrinus de Maricourt identified that magnets have poles called North and South 

magnetic poles. He noted that opposite poles attracted while similar magnetic poles repelled and 

that also breaking a magnet was not destructive. Years later, in the 16th century, William Gilbert 

created a new synthetic magnetic-iron that lost its magnetic force on heating and regained upon 

cooling. 

In the 19th century, additional key developments occurred and the understanding of the 

phenomenon of magnetism was greatly influenced by pivotal contributions. Hans Christian 

Øersted observed that electricity affected magnets (1819); Michael Faraday invented the 

electromagnet (1823), and the use of magnets enabled the production of low-cost electricity. 

Heinrich Rudolf Hertz (1885) clarified and expanded the electromagnetic theory of light that had 

been put forward by Maxwell. In 1907 French physicist, P. Weiss, developed the theory of 

ferromagnetism based on the assumption that the interaction between magnetic molecules could 

be described empirically considering an internal molecular field. Niels Bohr identified the 

underlying physics from which magnetism results, i.e. the minute spin associated with an 

unpaired electron (1913).[3] Conventional magnetic materials are prepared at high temperatures 

using metallurgical methodologies. These materials are atom-based magnets which means that 

their active spins are located in the atomic orbitals of the constituent metal ions.[4] These classical 

magnets are two- or three-dimensional arrays of inorganic atoms, transition metals and/or 

lanthanide metals, providing spin units.[4,5] Later on further development to design molecule-

based magnets with bulk magnetism led to a new field called Molecular Magnetism.[6] These 

magnetic materials can no longer be synthesised in the metallurgical manner because molecular 
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magnets comprise purely organic and organic/inorganic hybrid materials for which high 

temperature conditions usually inhibit their formation.[6] These magnets are thus prepared using 

conventional organic and inorganic synthetic methodologies. 

Molecular magnetism has been fueled by the discovery of Single Molecule Magnet 

(SMM) behaviour first reported in 1991.[7] It was discovered that the [Mn12O12(O2CMe)16(H2O)4] 

complex (Mn12Ac) first synthesised in 1980[8] exhibits slow relaxation of magnetisation at low 

temperatures and thus represents a molecular approach to nanomagnets. Their special 

characteristics arise from purely molecular properties. These molecules possess a spin ground 

state (S), where S = 0 or ≥ ½ and a uniaxial magnetoanisotropy, where D ˂ 0. The combination of 

these properties can lead to an energy barrier to the thermal relaxation of magnetisation. 

The magnetic bistability arising from this energy barrier indicates potential applications 

for these materials in information storage devices, whereby a single molecule could act as the 

smallest possible unit of magnetic memory. They have many important advantages over 

conventional nanoscale magnetic particles composed of metal, metal alloys and metal oxides 

because of their uniform size, solubility in organic solvents and readily alterable peripheral 

ligands. In order to obtain new SMMs, polynuclear metal compounds which contain interacting 

metal centres held together by bridging units, such as oxygen atoms derived from oxides, 

hydroxide, alkoxide and carboxylates, have been synthesised. Extended networks of magnetically 

coupled SMMs can lead to new magnetic behaviour induced by the intrinsic properties of the 

magnetic units, such as the high-spin state, the Ising-type anisotropy and quantum effects. 

 
1.2 Introduction to magnetic susceptibility 

 
In electromagnetism the magnetic susceptibility (Latin: susceptibilis “receptiveness”) is 

the degree of magnetisation of a material in response to an applied magnetic field. Magnetic 

measurements can give information about the electronic structure and magnetic exchange 

interactions and stereochemistry of transition metal complexes. This section provides a brief 

overview of how magnetic measurements can be applied to this area of inorganic chemistry. 

More detailed accounts are given in standard texts by Carlin,[9] Mabbs and Machin,[10] 

O’Connor,[11] Kahn[12] and Kittel.[13] 

 
1.2.1 Basic theoretical approach of magnetism 
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Movement of an electrical charge (which is the basis of electric currents) generates a 

magnetic field in a material. Magnetism is therefore a characteristic property of all materials that 

contain electrically charged particles and for most purposes can be considered to be entirely of 

electronic origin. In an atom, the magnetic field is due to the coupled spin and orbital magnetic 

moments associated with the motion of electrons. There are three principal origins for the 

magnetic moment of a free atom. First, the spin magnetic moment this is due to the precession of 

the electrons about their own axis. Second, the orbital magnetic moment which is due to the 

motion of electrons around the nucleus and, finally, the change in the orbital moment induced by 

an applied magnetic field. The first two effects give rise to paramagnetic contributions and the 

latter gives a diamagnetic contribution. The magnetisation, M, is defined as the magnetic moment 

per unit volume. The magnetic susceptibility, χ, is the degree to which a material can be 

magnetised in an external magnetic field. The magnetic susceptibility per unit volume is then: 

χ = M/H (cgs)  or  χ = µ0M/H (SI)    Eq. 1.1 

 

where H is the macroscopic magnetic field in Øersted, Gauss or Tesla. It is convenient to refer to 

M/H as the susceptibility without specifying the system units. Susceptibility can be referred with 

respect to volume, unit mass or to a mole of the substance, hence the molar susceptibility is 

written as χM and the magnetic moment per gram is sometime written as σ.[11] 

Generally χ is the algebraic sum of two contributions: 

 

χ = χD + χP       Eq. 1.2 

 

where χD and χP represent the diamagnetic and paramagnetic susceptibilities, respectively. χD is 

negative and χ
P is positive. When χ

D dominates, the sample is called diamagnetic with the 

magnetisation opposite to the applied magnetic field. Similarly, when χP dominates, the sample is 

called paramagnetic with the magnetisation in the direction of the applied magnetic field.[12] 

 
1.3 Types of magnetic behaviour 

 
The origin of magnetism lies in the orbital and spin motion of electrons and the interaction 

of these electrons with one another. The best way to introduce the different kinds of magnetism is 

to describe the response of the susceptibility in an applied magnetic field. The main distinction is 

that in some materials there are no collective interactions of atomic magnetic moments, whereas 
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in others there is very strong magnetic interaction between atomic moments. Therefore the 

magnetic behaviour of a molecular magnetic material can be described on the atomic or ionic 

level, in terms of diamagnetism and paramagnetism.[9,12] 

 

1.3.1 Diamagnetism 

 

Diamagnetism is a fundamental property of matter which is always present, even when it 

is masked by the paramagnetism. It is due to the interaction of the magnetic field with the motion 

of electrons in their orbitals. Diamagnetic susceptibility χ
D is usually independent of the 

temperature and the strength of the applied field. When this is the only response, these substances 

are composed of atoms which have no net magnetic moments because all the orbitals are filled. 

When a magnetic field is applied, a negative magnetisation is produced and the susceptibility is 

negative. 

 
1.3.2 Paramagnetism 

 

Any atom, ion or molecule that has one or more unpaired electrons is paramagnetic and 

possesses a net magnetic moment. These substances are attracted into a magnetic field due to 

partial alignment of the atomic magnetic moments in the direction of the field resulting in 

positive magnetisation and positive magnetic susceptibility. Paramagnets do not retain any 

magnetisation in the absence of an externally applied magnetic field because thermal motion 

causes the spins to become randomly oriented. Thus the total magnetisation will drop to zero 

when the applied field is removed. 

 
1.3.3 Ferromagnetism  

 

Substances which have magnetic interactions between the neighbouring paramagnetic 

centres leading to an increase in the magnetic moment are designated as ferromagnets. In a 

ferromagnet, the individual moments are perfectly aligned parallel to each other below a critical 

temperature, called the Curie temperature. A ferromagnetic substance usually divides into 

domains to minimise its total free energy. A spontaneous magnetisation arises in each domain 

even in the absence of a magnetic field. Saturation of the magnetisation corresponds to the 

complete alignments of all magnetic domains. 
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1.3.4 Antiferromagnetism 

 

Antiferromagnetism is also a consequence of cooperative interactions leading to long-

range order like ferromagnetism. When the magnetic interaction between paramagnetic centres 

lead to an antiparallel alignment of the moments, the substance is referred to as an 

antiferromagnet. There is complete cancellation of the magnetic moments and it does not have 

any spontaneous magnetisation. 

 

1.3.5 Ferrimagnetism 

 

The behaviour of ferrimagnets quailitatively resembles that of ferromagnets because these 

materials also exhibit spontaneous magnetisation. The magnetic moments in ferrimagnets, 

however, tend to align antiparallel to each other, as in case of antiferromagnets, but there is 

incomplete cancellation of the spins. Ferrimagnets differ from ferro- and antiferromagnets in that 

they involve two or more magnetic species possessing different magnitudes of magnetic moment. 

These species may be just two different valance states of the same ion or they may be different 

elements or even a combination of an ion and a free radical. The spontaneous magnetisation is the 

consequence of a lack of cancellation of the magnetic moments. 

 

 

 

 

 

 

       (a)         (b)         (c) 

Fig. 1.1 The alignment of magnetic moments (a) ferromagnets, (b) antiferromagnets and (c) for 

ferrimagnets. 

 
1.4 Determination of magnetic behaviour 

 

It was shown by Pierre Curie that for most paramagnetic substances with isolated sites the 

magnetisation follows a Curie law to a good approximation: 

M = C · H / T      Eq. 1.3 
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where M is the resulting magnetisation, H is the applied field, T is absolute temperature and C is 

Curie constant. Since the magnetic susceptibility is defined as χ = M/H , in this case: 

χ = C/T      Eq. 1.4 

This equation is known as the Curie Law. This law indicates that the susceptibility, χ, of 

paramagnetic materials is inversely proportional to their temperature. Curie’s law is only valid 

under conditions of low magnetisation, since it does not consider the saturation of magnetisation 

that occurs when the atomic dipoles are all aligned in parallel. After everything is aligned, 

increasing the external field will not increase the total magnetisation since there can be no further 

alignment. However such saturation typically requires very strong magnetic fields. Furthermore, 

the law is not valid at very low temperature because the magnetic moments may order. Therefore, 

the susceptibility should be measured with sufficiently low applied fields and the 1/χ versus T 

plots fitted for the higher temperature region with the straight line extrapolated to the low 

temperature region to confirm whether the substance is an isolated paramagnet (intercept at 0 K) 

or coupled and thus with a non-zero intercept and obeying a Curie-Weiss law as explained next. 

 
1.4.1 Curie-Weiss paramagnetism 

 

In some cases where the paramagnetic atoms or ions interact, Curie’s law is no longer 

valid and the magnetic exchange between spin carriers needs to be included in the model. As a 

result, in ferromagnets and antiferromagnets the Curie-Weiss law is applicable, which is: 

 

           Eq. 1.5 

 

where θ is the Weiss constant, and the magnetic susceptibility is: 

χ = C/T-θ     Eq. 1.6 

 
There are three ways to plot the temperature dependence of the magnetic susceptibility which are 

shown in Fig. 1.2 and 1.3. These plots give information about the kind of magnetic interactions 

present in a compound. 
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Fig. 1.2 (a) The plot of χT and (b) the plot of 1/χ as a function of temperature for paramagnetic, 

ferromagnetic, antiferromagnetic and ferrimagnetic materials. 

 

Fig. 1.3 The plot of magnetic susceptibility as a function of temperature for paramagnetic, 

ferromagnetic, antiferromagnetic materials. 

 
Magnetic interactions are typically characterised by their responses to variations in 

temperature and applied magnetic field. Each of these classes of magnetism, described above, has 

a characteristic response to temperature and applied magnetic field which is used to determine the 

type and strength of the magnetic interaction in a molecular material. The most informative plot 

is the thermal variation of the product of the temperature and magnetic susceptibility. The value 

of the Weiss constant, θ, can be obtained directly by plotting 1/χ versus T plot where θ is the 

negative intercept on the temperature axis for antiferromagnetic and ferrimagnetic materials and 

the positive intercept on the temperature axis for ferromagnetic materials (Fig. 1.2). For a true 

paramagnetic material, the Weiss constant is zero and the χT product as a function of temperature 
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is a horizontal line. On the other hand, variations of the χT values in the low temperature range 

exist for antiferromagnets, ferromagnets and ferrimagnets. At high temperatures, the χT product 

varies little or remains unvaried due to the effective paramagnetic behaviour of magnetic 

materials. When the Weiss constant is positive, which indicates the presence of ferromagnetic 

interactions, the χT product displays an upward deviation from the curve on lowering the 

temperature. When the Weiss constant is negative, a decrease in the χT product is observed. This 

indicates the presence of antiferromagnetic interactions; therefore a downward curvature is 

displayed. For ferrimagnetic materials, the χT versus T curve presents a slight downward 

curvature and then an increase in the low temperature range. 

 In ferromagnets, even though electronic exchange forces are very large, thermal energy 

eventually overcomes the exchange and produces a randomising effect. This occurs at a particular 

temperature called the Curie temperature (TC) shown in the χ versus T plot (Fig. 1.3). Above TC 

an ideal ferromagnet becomes a paramagnet that obeys the Curie-Weiss law,[14] but below this 

temperature magnetic susceptibility increases rapidly. An exchange integral, J, is used to define 

the degree of coupling at any temperature and is given in units of cm-1 or K. For ferromagnetic 

coupling J is positive. In an antiferromagnet, above a critical temperature, known as the Néel 

temperature, T , thermal agitation destroys magnetic ordering and a material become a 

paramagnet, but below this temperature, its magnetic susceptibility decreases with decreasing 

temperature. A negative J value indicates antiferromagnetic coupling. Ferrimagnets, like 

ferromagnets, hold spontaneous magnetisation below the Curie temperature and show no 

magnetic order (paramagnetic) above this temperature. 

 
1.5 Single Molecule Magnets (SMMs) 

 

A single molecule magnet (SMM) is a molecule that shows slow relaxation of the 

magnetisation of purely molecular origin. It is a molecule that can be magnetised in a magnetic 

field and that will remain magnetised even after switching off the magnetic field. This is a 

property of the molecule itself. No interaction between the molecules is necessary for this 

phenomenon to occur. This makes SMMs fundamentally different from traditional bulk magnets. 

SMMs can be dissolved in a solvent or put in some other matrix, like a polymer, and will still 

show this property. The prerequisites for such a system are (a) a high-spin ground state (S), (b) a 

high zero-field splitting (due to high magnetic anisotropy) and (c) negligible magnetic interaction 

between molecules. 



 
 

  9  

The combination of these properties can lead to an energy barrier so that at low 

temperatures the system can be trapped at the bottom of one of two high-spin energy wells (Fig. 

1.5). The spin anisotropy manifests itself as an energy barrier that spins must overcome when 

they switch from an “all up” alignment to an “all down” alignment. This barrier (U) is defined as: 

U = S2 |D| 

 

where S is the dimensionless total spin state and D is the zero-field splitting parameter in cm-1 or 

K. The selection rule ∆MS = ± 1 for an allowed spin transition, results in energy barrier U which 

separates the two lowest energy levels of MS = ± S. A positive D value would result in the MS = 0 

level being lowest in energy, such that there is no energy cost for losing direction of the spin i.e. 

in going from MS = +S to MS = -S). This means that for a molecule to behave as an SMM, it 

should have a negative D value. Theoretically the higher the barrier the longer a material remains 

magnetised, and a high barrier is obtained when the molecule contains many unpaired electrons 

and also when its zero-field splitting value is large. An example is the (Mn12-Ac)[8] cluster (Fig. 

1.4) which is composed of a central Mn(IV)4O4 cube surrounded by a ring of 8 Mn(III) units 

connected through bridging oxo ligands. It has a spin state of 10 (involving 20 unpaired 

electrons) and D = -0.05 cm-1 resulting in a barrier of 50 cm-1 (Fig. 1.5). 

 

 

Fig. 1.4 Structure of [Mn12O12(CH3COO)16(H2O)4] ·2CH3COOH ·4H2O.[8] Colour code: blue 

Mn3+, green Mn4+, red oxygen, grey carbon and white hydrogen.  
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Fig. 1.5 Energy diagram showing the relative positions of the zero-field split MS levels of an ST = 

10 system, and the barrier mediating between the MS = + 10 and the MS = – 10 states. 

 

SMM behaviour is characterised by a hysteresis seen when magnetisation is measured in a 

magnetic field sweep: on lowering the magnetic field again after reaching the maximum 

magnetisation, the magnetisation remains at high levels and it requires a reversed field to bring 

magnetisation back to zero (Fig. 1.6). It has been reported that the energy barrier U is slightly 

dependent on Mn12-Ac crystal size/morphology, as well as the magnetisation relaxation times, 

which varies as function of particle size and size distributions.[15] 

 

 

Fig. 1.6 The magnetic hysteresis loops of Mn12-Ac are shown at the indicated temperatures.[16]  

 
The effect of single molecule magnetism is readily probed through ac magnetic 

susceptibility measurements, which provide a direct means of gauging the relaxation rate. Here 

the magnetic susceptibility of a sample is measured using a weak magnetic field that switches 
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direction at a fixed frequency. If the effective barrier to magnetisation relaxation is significant in 

comparison to the thermal energy, then the measured susceptibility referred to as the in-phase or 

real component (χʹ) of the ac susceptibility begins to diminish. Accordingly, the portion of the 

susceptibility that cannot keep up with the switching field, the out-of-phase or imaginary 

component of the ac susceptibility, χʹʹ, increases. When a magnetisation reversal barrier exists, 

then χʹ and χʹʹ are also frequency-dependent. If the net magnetisation relaxes fast enough to keep 

up with the oscillating ac field, then there is no imaginary (out-of-phase) susceptibility (χʹʹ) and 

the real (in-phase) susceptibility (χʹ) is equal to the dc susceptibility (Fig. 1.7). 
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 (c)      (d) 

Fig.1.7 An example of ac susceptibility measurements as a function of temperature at different 

frequencies, and as a function of frequency at different temperatures: (a, c) in-phase and (b, d) 

out-of-phase signals. 
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If just a single relaxation process is operational, then a plot of χ" versus temperature will 

display a peak with a maximum at the temperature where the switching of the magnetic field 

matches the relaxation rate, 1/τ. Furthermore, since 1/τ increases with temperature, this peak 

should shift to higher temperature when the switching frequency is increased. The relaxation time 

for the magnetisation in a single molecule magnet can be expressed by the Arrhenius 

relationship: 

τ = τ0·e
(Ueff/k

BT) 

where the pre-exponental term τ0 can be thought of as the inverse of the relaxation attempt 

frequency. A plot of ln(τ) versus 1/T should be linear, with the slope and intercept permitting 

evaluation of Ueff and τ0 respectively (Fig. 1.8). 
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0.35 0.4 0.45 0.5 0.55 0.6
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Fig. 1.8 An example of τ versus 1/T plot obtained from both temperature and frequency 

dependent ac susceptibility measurements under zero dc field. 

 
 
 It has also been recognised that there can be additional influences on the SMM behaviour 

such as quantum effects[17] or inter-complex magnetic interactions.[18] Indeed at low enough 

temperature, quantum tunnelling of the magnetisation can be experimentally observed as it 

becomes faster than the thermally activated relaxation involving Ueff. When two MS microstates 

on either side of the energy barrier have similar energies, then there is an increased probability of 

quantum tunnelling of the magnetisation (QTM). SMM complexes appear to be unique systems 

for studying fundamental phenomenon such as quantum spin tunnelling and quantum 

interference. These may find uses in future application in molecular electronics. 
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1.6 Synthetic strategies for making polynuclear complexes 

 

Several synthetic routes are being pursued to construct new magnetic materials that, 

ideally, satisfy the criteria for SMMs. In one route, rigid ligands such as cyanide are used as the 

bridging ligands; in the second, serendipitous or self assembly has been used for the construction 

of molecular magnetic materials. 

Complexes that contain cyanide bridges have been constructed by blocking suitable 

coordination sites on metal fragments. An early synthetic success using this approach was the 

formation of a heptanuclear complex made by Verdaguer and Mallah.[19] Significant progress has 

been attained in the construction of metallocyanides using different blocking ligands which 

generated a range of topologies, nuclearities and spin states. Hashimoto[20] and Decurtins[21] 

reported Mn9M6 cages (M = W or Mo) which display fascinating magnetic properties with high-

spin ground states for the molecules. Construction of interesting cages has been pursued with 

some of the metal units having a restricted number of coordination sites and others are 

completely free.[22] 

The second strategy can be termed as self-assembly. A prerequisite for the successful 

application of self-assembly is to accept the impossibility of understanding the influence of all 

factors involved in a reaction on the resulting product. Therefore a wide range of conditions for 

any specific reaction is explored. The substitution pattern of the ligand or ligands, the metal salt, 

the metal:ligand ratio, the crystallisation solvent, the solution concentration and the crystallisation 

temperature may all play a role in the formation of a complex. Although this synthetic approach 

produces unpredictable results, minor variations in the ligands may influence the structure and 

solubility. The use of mixtures of organic ligands can form complexes of higher nuclearities.[23]  

Another approach is to use co-ligands having carboxylate or hydroxyl groups to construct 

large polynuclear clusters. The functional groups can coordinate to more than one metal centre. 

In order to have N-donor atom and O-donor atoms, several coligands such as pivalic acid, 

carboxylic acid and azide were used along with the  -methyldiethanolamine (mdeaH2) ligand. 

Varying the co-ligand by increasing the number of donor groups might lead to the incorporation 

of more metal centres. When alcohol-based solvents (ROH or H2O) were employed, solvolysis 

reactions can occur, forming hydroxyl, alkoxy or oxo bridges. 

Heterometallic complexes can be obtained by using two types of metal ions along with 

co-ligands. The presence of two different metal centres can give rise to interesting magnetic 
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properties and can allow further investigations of the exchange interaction between two different 

metal ions. This can involve using two different transition metals or a combination of transition 

and lanthanide metal ions. The lanthanides behave as hard acids preferring O- rather than N- 

donors, while transition metal ions are borderline acids, having the tendency to coordinate to N-

donors as well as O-donors. Consequently, a typical approach to construct 3d-4f complexes is by 

self assembly of different metal ions with ligands containing both O- and N-donors.  

 
1.7 Introduction to iron chemistry 

 

Iron is a vital constituent of plant and animal life, and is the key component of 

haemoglobin. It is widely distributed in the Earth’s crystal rocks as oxide and oxyhydroxide 

minerals such as haematite, limonite, magnetite, goethite, lepodocrocite, akaganite, carbonate 

siderite and also in sulfur-containing minerals such as iron pyrites. It has great significance in 

geological, environmental, industrial and biological fields. A major feature of Fe(III) chemistry is 

its hydrolysis leading to iron hydroxides such as rust or Fe(OH)3. The most common oxidation 

states of iron are 2+ and 3+, and it forms a variety of coordination complexes. Most of these have 

distorted octahedral geometry.[24] The studies on high-nuclearity iron clusters were motivated by 

the desire to understand biomineralisation processes, such as those in iron-storage protein 

ferritin,[25] and the use of the synthetic analogue approach for the study of iron-containing 

enzymes.[26a]  

Iron-containing coordination clusters are the second largest family of SMMs after 

manganese aggregates. In contrast to Mn12-Ac (which is a mixed-valance SMM), a diamagnetic 

ground state is common for iron complexes, especially with an even number of metals. 

Homovalent cages containing the predominant oxidation state Fe(III) lead to the expected 

dominant antiferromagnetic interactions. A few polynuclear complexes of iron in the oxidation 

state 2+ have also been shown to exhibit slow relaxation of the magnetisation. Five coordinate 

complexes tend to lie between trigonal bipyramidal (D3h) and square based pyramidal (C4v) 

geometries in the latter of which, the axial bond is normally longer. In five coordinate systems, 

such as that represented below (scheme 1), ideal square pyramidal geometry is associated with α 

= β = 180o, for A as the axial ligand β is the greater of the basal angles subtended by BMC in 

scheme 1. For perfectly trigonal bipyramidal geometry, α becomes 120o and BMC the principal 

axis. In the majority of real square pyramidal systems M is displaced out of the BCDE plane 
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towards A, so that these C4v geometries usually have α = β ˂ 180o and can be characterised by the 

value of (β - α), which is 0o for C4v, and 60o for a D3h coordination polyhedron.[26b,c] 

 

CB M

A

D E

β

α
 

Scheme 1. ML5 five coordinate geometry complex. 

 

1.7.1 An octanuclear Fe(III) cluster 

 

The complex cation [Fe8O2(OH)12(tacn)6]
8+ was reported[27] more then a decade before it 

was declared as the first properly identified SMM of iron.[28,29] The structure shows a “butterfly” 

arrangement of a central tetrameric unit linked to four peripheral Fe(III) (S = 5/2) ions by two �3-

O2- hydroxo bridges. The analysis of the temperature dependence of the magnetic susceptibility 

provided evidence for a ground S = 10 state, which can occur if six spins point up and two down. 

It shows slow magnetic relaxation in the Mössbauer spectra at ca. 30 K and magnetic hysteresis 

below 1 K.[28] Steps in the hysteresis curve are observed due to ∆S = ±1 transitions as the applied 

magnetic field is changed and it also has D = -0.19cm-1. 

 

Fig. 1.9 [Fe8O2(OH)12(tacn)6]
8+ (left). Hydrogen atoms are omitted for clarity and tacn = 1,4,7-

triazacyclononane. Magnetic studies (right). 
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1.7.2 [Fe19(metheidi)10(OH)4O6(H2O)12](9O3), the largest nuclearity and spin Fe SMM 

 

[Fe19(metheidi)10(OH)4O6(H2O)12](NO3) belongs to a family of [Fe19
III] clusters whose 

first example was reported in 1992.[30] The first Fe19 was found within a pair of co-crystallised 

Fe17 and Fe19 species. Later it was possible to isolate the Fe19 cluster by using H3metheidi instead 

of H3heidi which simplified the interpretation of the magnetic behaviour.[31]
  

 

       

Fig. 1.10 [Fe19(metheidi)10(OH)4O6(H2O)12](NO3) (left). Hydrogen atoms are omitted for clarity 

and metheidi =  -(1-Hydroxymethylethyl)iminodiacetic acid. Magnetic studies (right): 

Temperature dependence of the product of the magnetic susceptibility with temperature reported 

per mole of Fe19 cluster, measured at 10 kOe down to 60 K (circles) and 500 Oe below 60 K 

(triangles). The inset shows the magnetisation measured at 2.45 (●) and 4.4 K (□). The lines have 

been calculated using S = 33/2, D = -0.04 cm-1 and g = 1.96. 

 

1.7.3 [Fe4(OMe)6(dpm)6], the smallest nuclearity Fe SMM 

 

The tetranuclear Fe(III) cluster [Fe4(OMe)6(dpm)6] is the Fe SMM with the smallest 

nuclearity.[32] The cluster comprises a centred triangle of four Fe(III) ions bridged by six µ2-OMe- 

ligands with the peripheral Fe ions each chelated by two dpm- ligands. An antiferromagnetic 

interaction mediated by methoxide bridges is observed leading to ground state S= 5 and D = -0.2 

cm-1. 
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Fig. 1.11 [Fe4(OMe)6(dpm)6] (left). Hydrogen atoms are omitted for clarity and dpm = 

dipivaloylmethane. Magnetic studies (right). 

 
1.8 Introduction to rare-earth metal chemistry 
 

The lanthanides are unusual in that they are all found together in natural ores. The most 

common ores are Bastnasite and Monazite. In both ores, two general observations can be made 

about relative abundance. The abundance of the even atomic-numbered elements is greater than 

the odd atomic-numbered elements and abundance diminishes with increasing atomic number, 

odd or even. The rare-earth metals are all electropositive with a remarkable uniformity of 

chemical properties. Frequently the only significant difference between two lanthanides is their 

size; the ability to choose a rare-earth metal of a particular size often leads to the possibility to 

“tune” the properties of their compounds. The elements favour the oxidation state Ln(III) with a 

uniformity that is unprecedented in the periodic table. Other properties vary significantly e.g. the 

radii of the Ln3+ ions contract steadily from 116 pm for La3+ to 98 pm for Lu3+. The decrease in 

ionic radius is attributed in part to the increase in Zeff as electrons are added to the 4f subshell, but 

detailed calculations indicate that subtle relativistic effects also make a substantial contribution. 

A Ln3+ ion is a hard Lewis acid, as indicated by its preference for F- and oxygen- containing 

ligands and its occurrence with PO4
3- in minerals. 

The relatively large Ln3+ ions can have high coordination numbers and a variety of 

coordination environments in the solid state which are also observed in solution. The spatially 

buried f electrons have no significant stereochemical influence and consequently ligands adopt 

positions that minimise the ligand-ligand repulsions. The study of the coordination chemistry of 

lanthanide elements is a rapidly growing area of interest because of the potential applications of 

their complexes as magnetic resonance imaging (MRI)[33] contrast agents as catalysts in organic 
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synthesis,[34] as molecular magnetic materials,[35] as luminescent species[36] and as single 

molecule magnets.[37] In contrast to the advances in the synthesis and study of the magnetic 

properties of polynuclear complexes of the d-block metals,[38,39,40] rather little attention has been 

devoted to exploring the systematic synthesis and study of the magnetic properties of Ln(III) 

clusters.[41-50] In the lanthanide series, the inner 4f electron shell is filled from lanthanum to 

lutetium. Lanthanides (Ln) have the advantages that they can have a large number of unpaired f-

electrons and considerable single-ion anisotropy.  

The origin of SMM behaviour in lanthanide containing compounds is, however, more 

complicated than that of most d-block transition metal ions since there is likely to be a significant 

orbital component. The effect of spin-orbit coupling increases as the atomic number increases, 

with the exception of the 4f
7 configuration, which has no first order angular momentum. As a 

result it is useful to synthesise Gd(III) analogues of Ln(III) complexes in order to interpret the 

magnetic properties. The limited magnetic investigations have focussed on Gd(III)-Gd(III) 

coupling because of the relative simplicity as compared to the rest of the Ln(III) ions where both 

orbital and crystal field effects have to be considered in the interpretation of results. In general, 

the complexity of lanthanide systems is based on the characteristics of the magnetic centres and 

the type of structural links between them. The magnetic interactions between paramagnetic 

centres can take place not only through single atoms but also through multi-atomic bridges such 

as those provided by carboxylato and other O–C–O ligands. The latter have been proved to be 

effective for the transmission of magnetic information through a variety of bridging 

conformations e.g. bidentate or tridentate bridging. Usually, when the lanthanide centres are 

functionalised with these kinds of ligands, the resulting structural motifs are complicated; 

however they present potentially interesting magnetic properties.[51,52] According to the literature, 

weak ferromagnetic[53-55] or weak antiferromagnetic [34,45,49,56-58] interactions can be found in 

polynuclear Ln(III) clusters. High-nuclearity clusters of paramagnetic metal ions are of the 

interest in view of the fact that they can exhibit SMM phenomenon.[8] However, little attention 

has been devoted to pure lanthanide systems.[36,39,59] Two examples are provided below. 

 
1.8.1 A mononuclear compound showing SMM or single ion magnetisation behaviour 

 

Ishikawa reported single metal ion lanthanide complexes, functioning as magnets at the 

single molecule level.[60] Ac magnetic susceptibility measurements have been reported for 
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bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions in the sub-kelvin 

temperature range indicating quantum tunnelling of magnetisation in these single-ion SMMs.[59] 

 
Fig.1.12 TBA[(Pc)2Tb0.02Y0.98] (left). Hydrogen atoms are omitted for clarity and Pc = 

phthalocyanine. Magnetic studies (right). 

 
1.8.2 The dysprosium triangles [Dy3(µ3-OH)2L3Cl(H2O)5]Cl5·19H2O 

 

Dysprosium triangles exhibiting a vanishing susceptibility at low temperature were 

investigated. Such behaviour is unprecedented in systems which are comprised of an odd number 

of unpaired electrons. In spite of the almost non-magnetic ground state, features typical of SMM 

behaviour are observed for the thermally populated excited state, suggesting that a resonant 

under-barrier relaxation process is also active. This observation is strongly relevant to molecular 

nanomagnetism because the presence of a large spin ground state appears not to be a necessary 

condition to observe slow relaxation of the magnetisation.[39] 

 

 

  
Fig.1.13 [Dy3(µ3-OH)2L3Cl(H2O)5]Cl5·19H2O (left). Hydrogen atoms are omitted for clarity. 

Magnetic studies (right).  
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1.9 Introduction to 3d-4f (Fe-Ln) complexes 

 
Using a lanthanide element in permanent magnets is hardly a new concept. The first work 

in this area was published in 1935, when Urbaine, et al. reported that gadolinium is 

ferromagnetic.[61] Some of the lanthanides have record magnetic moments, but unfortunately their 

Curie temperatures are at or far below room temperature. In the 1940’s, scientists and engineers 

had access to reasonable quantities of high purity lanthanide elements and have systematically 

studied the many unique properties, not just magnetic, of these elements and their alloys. 

The magnetic properties of the binary lanthanide-iron alloy compounds, including Nd-Fe, 

were examined at about the same time as the lanthanide-cobalt systems, in the 1960's and early 

1970's. However, all the binary lanthanide-iron alloys have at least one of the following 

problems, making them unsuitable as permanent magnets:  

(1) A Curie temperature near or below room temperature,  

(2) Unfavourable anisotropy, usually an easy cone or an easy plane and 

(3) Antiferromagnetic coupling between the lanthanide and the iron magnetic moments, resulting 

in low saturation magnetisation.  

Lanthanide ions have radii that vary between 116 and 98 pm; by comparison, Fe3+ has an 

ionic radius of 64 pm. Thus the volume occupied by a Ln3+ ion is typically 10 times greater than 

that occupied by a 3d-metal ion. Unlike the 3d-metal atoms, which rarely exceed a coordination 

number of 6, compounds of lanthanide ions often have high coordination numbers and a wide 

variety of coordination environments. Contrary to lanthanide-transition metal alloys, SMMs, 

which are molecular superparamagnets, derive their properties from the combination of a large 

ground state spin (S) value and a large and negative magnetoanisotropy (negative zero-field 

splitting parameter, D). In the case of mixed metal 3d-4f systems, the presence of lanthanide ions 

provides both large spin and considerable single-ion anisotropy. As reflected in the large D 

values, these systems could generate SMMs with properties significantly different from those of 

pure transition metal SMMs.[62-66] This combination results in a significant energy barrier to 

magnetisation reversal, and hence slow relaxation of the magnetisation is observed at low 

temperatures. The latter can be detected as (i) frequency-dependent signals in ac susceptibility 

measurements, or as (ii) hysteresis in magnetisation versus applied dc field sweeps.[13,76] There 

are now many homometallic SMMs, most of them Mn species,[77] and new approaches aimed at 

producing heterometallic species have been more recently explored as a route to distinctly 



 
 

  21  

different properties. As a result of such work, some mixed transition metal/lanthanide SMMs 

have recently been reported.[63,64,69] However a goal of this research is also to construct Fe-Ln 

clusters which are valuable new additions to the growing family of mixed 3d-4f clusters. They 

possess a variety of structural motifs and various properties and the anisotropy of the lanthanides 

can be investigated by gauging their effect on Fe3+ using, for example, Mössbauer spectroscopy. 

 
1.9.1 [Fe2Ln2(OH)2(teaH)2(O2CPh)6], A tetranuclear SMM 

 

Examples of Fe-Ln clusters include the tetranuclear mixed 3d-4f complexes containing Fe 

and lanthanides reported by Murugesu et al which display interesting magnetic properties.[70] 

Although the magnetic properties are complicated by the large spin-orbital coupling effects of 

most Ln(III) ions, hysteresis loops in the magnetisation behaviour have established them as an 

additional example of SMMs. 

 

  

 

Fig. 1.14 [Fe2Ho2(OH)2(teaH)2(O2CPh)6] (left). Hydrogen atoms are omitted for clarity and tea = 

triethanolamine. Magnetic studies were carried out for Dy analogue (right).  

 

1.9.2 A binuclear single molecule magnet (SMM) 

 

Another example is a binuclear Fe(III)Dy(III) single molecule magnet reported by 

Yamashita’s group in 2006.[71] Low-temperature magnetisation measurements at fast sweeping 

pulsed field revealed hysteresis loops and step-like magnetisation, indicating quantum tunnelling 

effects. The Arrhenius fit yielded the relaxation barrier ∆ = 8.98 cm-1 and the pre-exponential 

term  τ0 = 7.77 x 10-8 s. 
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Fig. 1.15 Structure of [Fe(bpca)(µ-bpca)Dy(NO3)4] (left). Hydrogen atoms are omitted for  

Clarity and bpca = bis(2-pyridylcarbonylamine). Magnetic studies (right).  

 

1.10 Ligand selection 

 

N-methyldiethanolamine (mdeaH2) has been reported in reaction systems with 3d 

transition metal elements, such as Mn,[72-75] Fe[75-79] and Ni,[79,80] but the intersection of 3d 

transition metal elements and lanthanide is a field of chemical research requiring more attention. 

As a result, the mdeaH2 ligand was selected to investigate 3d transition metal complexes, 3d-4f 

mixed metal clusters and 4f complexes. Coordination complexes containing the mdeaH2 ligand 

along with different co-ligands (e.g. pivalic acid, benzoic acid) will be presented in the 

forthcoming chapters. In Fig 1.16, all the known coordination modes of this ligand are depicted 

and it is obvious that mdeaH2 is a very useful means to build high-nuclearity clusters. 
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Fig. 1.16 Some reported coordination modes of ligand mdeaH2  (mode I,[73-77,79,81,82] mode II,[80] 

mode III,[78,83] mode IV,[72] mode V,[84] mode VI,[73,79,85] mode VII,[85] mode VIII,[85] mode 

IX,[85,86] mode X,[83])  

 
1.11 Co-ligand selection 

 
After the discovery of the SMM phenomenon, various synthetic techniques were applied 

in order to synthesise compounds that would exhibit this behaviour. One of these techniques 

demands careful selection of a metal / ligand / co-ligand system, in which the co-ligand is a 

useful tool to construct high-nuclearity complexes. Carboxylate moieties are one of the most 

studied multibridging groups in inorganic chemistry. They can undergo self-assembly 

complexation reactions with metal ions to produce polynuclear metal compounds in which they 

can assume various coordination modes and can bridge many metal centres. Therefore pivalic 

acid and benzoic acid have been used as co-ligands to obtain novel 4f and 3d-4f metal aggregates. 

Polynuclear metal carboxylates are good candidates for the investigation of magnetic exchange 

coupling interactions between neighbouring metal ions. In Fig.1.17, common coordination modes 

for carboxylate groups are given.  
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Fig. 1.17 Common coordination modes of the carboxylate group. 

 
1.12 Thesis overview 

 

This thesis describes the synthesis of homo- and heterometallic complexes which have 

been crystallographically characterised and magnetically investigated. The research results are 

divided into 2 chapters. Chapter 3 is concerned with the synthesis, characterisation of 

homometallic lanthanide complexes using the mdeaH2 ligand along with different co-ligands (e.g. 

pivalic acid and benzoic acid). The fourth chapter presents the synthesis of heteronuclear Fe-Ln 

clusters by using mdeaH2 and benzoic acid and their magnetic studies.  
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Chapter 2: Research Objectives 

 

Small molecular aggregates of paramagnetic centres have revealed that they can possess 

non-zero ground state spins, hysteresis and tunnelling effects, which lead to them being single 

molecule magnets (SMM). The aim of this research work was to design and synthesise molecule-

based materials and characterise their magnetic behaviour. In order to construct such polynuclear 

complexes, the concept of self-assembly of the paramagnetic metal ions with suitable ligands like 

 -methyldiethanolamine (mdeaH2) was applied. This ligand (mdeaH2) has been used in reaction 

systems with 3d transition metals such as Mn, Fe, and Ni. Based on the resulting structure and 

magnetic properties, further attempts were made to extend the system to explore interesting 

magnetic properties in Fe aggregates. 

Secondly, despite the advanced synthetic methods and magnetic properties of polynuclear 

complexes of the d-block metals, less attention has been devoted to the synthesis of Ln(III) 

clusters. The construction of new 4f-metal clusters by the development of new reaction systems 

with  -methyldiethanolamine (mdeaH2) is one area of research interest. The research focused on 

the formation of lanthanide clusters which exhibit fascinating magnetic properties leading to 

SMM behaviour. 

Finally, in the combination of these two approaches the quest for new SMMs displaying 

high blocking temperatures has focused the interests of synthetic chemists towards development 

of 3d-4f heterometallic systems. For example, polynuclear clusters which combine high-spin 

and/or single-ion anisotropy have been reported with a barrier to reorientation of the spin, ∆eff. 

From the synthetic point of view, the N-substituted diethanolamine and related ligands represent 

useful tools in the synthesis of polynuclear clusters possessing SMM behaviour. Sparked by the 

structural diversity and interesting properties of heterometallic 3d-4f compounds, the research 

was extended to investigate mixed 3d-4f (Fe-Ln) compounds as a means of enhancing anisotropy 

and/or spin state using  -methyldiethanolamine (mdeaH2) as a ligand. 

The synthesis of polynuclear metal clusters is achieved, in principle, by controlling the 

hydrolysis of metal ions either in an aqueous solution or in a mixture of organic solvents in the 

presence of the supporting ligands. A finite aggregate of oxygen-bridged metal ions is thus 

trapped within a shell of organic ligands, rather than proceeding to the formation of an extended 

oxide or hydroxide mineral structure. In order to explain in an appropriate way the magnetic 

interactions in these compounds, crystalline materials are the desirable products because they can 
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be well-characterized by X–ray crystallography. It is well known that the solvent, the 

concentration of the reactants, the temperature at which the reaction takes place, the ratio of the 

reactants and the pH of the final solution affect the final product. Bearing all these in mind, metal 

salts, ligands and co-ligands were carefully selected in order to synthesise high-nuclearity metal 

clusters. 
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Chapter 3: Structure and magnetic properties of lanthanide aggregates 

 

3.1 Introduction 

 
Lanthanide coordination complexes are very interesting from both a theoretical and a 

practical point of view. In the lanthanide series the electrons of 4f sub-shells are practically part 

of the core; therefore the 3+ oxidation state dominates their chemistry. Gradual changes can be 

observed between the elements, which can be attributed to the ionic radius decreasing with the 

atomic number due to lanthanide contraction along the series. The similar chemical properties of 

the lanthanide elements are due to shielded 4f electrons. Electrostatic interactions play an 

important role in complex formation, and the most stable complexes are formed with ligands 

bound via O and N atoms. Lacking geometry constraints imposed by ligand field effects, they 

form complexes with high coordination number, often eight-coordinated with either bicapped 

trigonal-prismatic (BCTP) or dodecahedral (Dod) geometry or nine coordinated with tricapped 

trigonal-prismatic (TCTP) geometry.[89] Recently, studies of a dysprosium triangle system 

displayed a vanishing susceptibility at low temperature, which is unprecedented in systems 

comprising an odd number of unpaired electrons.[37] In spite of the diamagnetic ground state, 

features typical of single molecule magnet (SMM) behaviour were observed for the thermally-

populated excited state, suggesting that a resonant under-barrier relaxation process is also 

active.[37] Inspired from these results, more efforts have been devoted to lanthanide chemistry. 

Here, structure and magnetic studies carried out on three series of complexes are reported. The 

first series comprises dinuclear lanthanide (Ln) compounds containing the early lanthanides (La-

Gd) whereas the second series consists of isostructural tetranuclear Ln(III) complexes containing 

the later lanthanides (Tb-Tm). The third series was obtained by using a different co-ligand, and it 

comprises another set of tetranuclear Ln(III) complexes containing the late lanthanides. These 

series allow the changes in magnetic properties on varying the lanthanide within a series of 

isostructural complexes to be evaluated. 

 
3.2 Structure and magnetic properties of [Ln2(mdeaH2)(piv)6] 

 

As discussed in Chapter 1,  -methyldiethanolamine (mdeaH2) has been used in reaction 

systems with 3d transition metal elements, but surprisingly it has been so far completely ignored 
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in Ln(III) chemistry. A significant degree of control can be exerted over the formation of low-

nuclearity molecular cluster-aggregates by using selected polyfunctional ligands and Ln(III) salts 

in acetonitrile. 

The reactions of Ln(NO3)3·xH2O (Ln = La, Ce, Pr, Nd, Sm) with mdeaH2 and pivalic acid 

(pivH) with a ratio of (1:5:3) in acetonitrile and in the absence of base yielded the dinuclear 

compounds [Ln2(mdeaH2)(piv)6]. The analogous Gd complex was obtained by using a 

Gd(NO3)3·xH2O:mdeaH2:pivH ratio of (1:3:3) in a mixture of CH2Cl2/MeCN (1:1). Using this 

method, the following pivalate-bridged dinuclear clusters have been synthesised: 

 

[La2(mdeaH2)(piv)6] (1) [Ce2(mdeaH2)(piv)6] (2) [Pr2(mdeaH2)(piv)6] (3) 

[Nd2(mdeaH2)(piv)6] (4) [Sm2(mdeaH2)(piv)6] (5) [Gd2(mdeaH2)(piv)6] (6)  

 

3.2.1 Structure of [Ln2(mdeaH2)(piv)6] (1-6) 

 
The structures of 3 and 6 were determined by single-crystal X-ray diffraction. These two 

compounds are isomorphous, crystallising in the monoclinic space group P21/n with Z = 2. X-ray 

powder diffraction indicated that all six compounds in the series were isomorphous (Fig. 3.2). 

Selected bond distances of both compounds are given in Table 3.1 and the structure of 3 is 

discussed in detail here. The crystal structure of 3 showed the formation of the dinuclear complex 

[Pr2(mdeaH2)2(piv)6] (Fig. 3.1). The two halves of the complex are related by a crystallographic 

inversion centre at the midpoint of the Pr---Pr vector. The Pr atoms are each chelated by a 

diethanolamine ligand, in which both oxygens are still protonated (mode IX in Fig. 1.10),[85,86] 

with a Pr(1)-O(1) bond and a Pr(1)-O(2) bond of 2.5714(12) Å and 2.5754(13) Å, respectively. 

The Pr centres are then bridged by two pairs of pivalate ligands. One of these forms a rather 

symmetrical syn-syn bridge: Pr(1)-O(5) = 2.4647(12) and Pr(1)-O(6) = 2.3860(12) Å. The second 

pair of pivalates are best described as chelating semibridging, since in addition to the two typical 

Pr–O bonds, Pr(1)-O(3) = 2.3850(12) and Pr(1)-O(4) = 2.4714(12) Å, there is now a further weak 

Pr–O interaction, with Pr(1)-O(3ʹ) = 2.9047(13) Å and a Pr(1)-O(3ʹ)-Pr(1ʹ) angle of 102.71(4)°. 

The coordination sphere around Pr(1) is completed by a further monodentate pivalate ligand. The 

metal coordination geometry can best be described as a tri-capped trigonal prism. As expected, 

the Pr-O distances to the uncharged diethanolamine oxygens are significantly longer than those to 

the pivalate oxygens, while the Pr-N distance is longer still, reflecting the lower affinity of 

lanthanide cations for nitrogen. The Pr(1)---Pr(1ʹ) distance is 4.1440(2) Å. The structure of 3 is 
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stabilised by hydrogen bonds from the mdeaH2 ligands. The hydroxyl group of O(1) makes an 

intramolecular hydrogen bond to the non-coordinated carboxyl oxygen atom O(8) of the 

monodentate pivalate ligand coordinated to the same Pr centre, while that of O(2) makes an 

intermolecular hydrogen bond to O(8) of the neighbouring molecule at {-x + 1/2, y + 1/2, -z + 

1/2}. Each binuclear complex is thus linked by hydrogen bonds to four other dimers, resulting in 

a 2D supramolecular structure corresponding to layers parallel to {10ī} (Fig. 3.3). 

In the structure of 6, the Gd(1)-O(3ʹ) distance, 3.1434(17) Å, is now too long to relate to 

any significant interaction, and this pivalate can thus also be described as making a simple syn-

syn bridge. Gd(1) is therefore eight-coordinate, consistent with its smaller ionic radius relative to 

Pr(1). The Gd---Gd distance, 4.1952(3) Å, is longer than the Pr---Pr distance in 3, presumably 

reflecting the loss of the weak bridging interaction through O(3ʹ), since the lanthanide contraction 

alone would be expected to result in a slightly shorter Ln---Ln distance in 6 compared to 3. 

 

 

Fig. 3.1 Crystal structure of [Pr2(mdeaH2)2(piv)6] (3). Methyl groups corresponding to the minor 

disorder component of the two pivalate ligands and all H atoms are omitted for clarity. Grey, red, 

blue, and green spheres represent C, O, N and Pr, respectively. 
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Fig. 3.2 X-ray powder diffraction: (a) calculated for 3 based on the single crystal X-ray structure; 

(b) measured for complex 2. 

 

 

Fig. 3.3 The 2D supramolecular structure for 3 showing the hydrogen bonds as red dotted lines. 
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Table 3.1 Selected bond distances (Å) for complexes of compounds 3 and 6. 

Compound 3 (Ln = Pr) 6 (Ln = Gd) 

Ln(1)-N(1) 2.8200(16) 2.724(2) 

Ln(1)-O(1) 2.5714(12) 2.5075(17) 

Ln(1)-O(2) 2.5754(13) 2.5090(17) 

Ln(1)-O(3) 2.3850(12) 2.2799(16) 

Ln(1)-O(3ʹ) 2.9047(13) 3.1434(17) 

Ln(1)-O(4ʹ) 2.471(12) 2.3890(16) 

Ln(1)-O(5) 2.4647(12) 2.3891(16) 

Ln(1)-O(6ʹ) 2.3860(12) 2.3148(16) 

Ln(1)-O(7) 2.4480(13) 2.3708(17) 

Ln(1)---Ln(1ʹ) 4.1440 (2) 4.1952(3) 

 

3.2.2 Magnetic properties of [Ln2(mdeaH2)(piv)6] (Compounds 1-6).  

 
Variable temperature dependence of the magnetic susceptibility was carried out on 

polycrystalline powder samples of 1-6 in the temperature range 1.8-300 K at 1000 Oe. Of this 

series of compounds, La2 (1) is a diamagnetic compound, thus its magnetic susceptibility (χLa2 = 

χdia = 8.8x10-4 cm3 mol-1) was used to correct for the diamagnetic contribution of this system. At 

room temperature, the experimental χT products are all more or less close to the expected 

values[40] as can be seen in Table 3.2. On lowering the temperature, the χT product decreases 

down to 1.8 K for compounds 1-5. For Gd2 (6), it stays constant until 10 K and then slightly 

increases to reach 16.8 cm3 K mol-1 at 1.8 K (Fig. 3.4). The Stark sublevels of the anisotropic Ln 

(Ce, Pr, Nd and Sm) ions are thermally depopulated when the temperature is lowered resulting in 

a decrease of the χT versus T plot.[90] Therefore, even if the χT product decreases with the 

temperature and reaches a minimum value at 1.8 K, it is uncertain whether this behaviour can be 

associated with dominant antiferromagnetic interactions between the two Ln(III) ions within 

complexes 1-5. However, in the case of Gd2 (6), the slight increase of the χT product at low 

temperature indicates at most a weak ferromagnetic interactions. As Gd(III) has essentially no 

orbital contribution, it can be considered as an isotropic S = 7/2 spin. Hence for this compound, 

the magnetic behaviour can be analysed using a simple isotropic Heisenberg Hamiltonian: 

'2 GdGd SJSH −=  
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where J is the exchange interactions in the dimer between the Gd(III) ions as seen in Fig. 3.1. The 

application of the van Vleck equation[96] to the Kambe’s vector coupling scheme[92] allows a 

determination of the low-field analytical expression of the magnetic susceptibility:[46,47,48] 
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This model was able to reproduce the experimental data from 300 K to 1.8 K very well (Fig. 3.5). 

The best set of parameters found are J/kB = 0.005(5) K (ca. 0.0035 cm-1) and g = 2.03(1). The 

sign of the magnetic interaction confirms the two Gd(III) ions in this compound are very weakly 

ferromagnetically coupled or else decoupled. The magnitude of the interaction between the 

Gd(III) centres can be compared with those obtained for similar systems such as 0.015 cm-1 for 

Gd2(PhOCH2COO)6(H2O)3·H2O
[47], 0.039 cm-1 for [Gd(Hcit)(H2O)2·H2O]n, where Hcit3- = 

C(OH)(COO-)(CH2COO-)2
[48] and -0.020 cm-1 for Gd2(ClH2CCOO)6(bipy)2.

[46] 

 

 

 

Fig. 3.4 Temperature dependence of χT product for 1-6 at 1000 Oe. 
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Table 3.2 Comparison of the χT products at room temperature between the expected [93] and the 
experimental values for compounds 1–6. 

Compound χT (cm3 K mol-1) 

theoretical value for each Ln 

ion at room temperature
[98]

 

χT (cm3 K mol-1) 

expected value for Ln2 

compound at room 

temperature 

χT (cm3 K mol-1) 

experimental value for Ln2 

compound at room 

temperature 

Ce2 (2) 0.80 1.60 1.29 

Pr2 (3) 1.60 3.20 2.98 

Nd2 (4) 1.64 3.28 2.93 

Sm2 (5) 0.09 0.18 0.46 

Gd2 (6) 7.875 15.75 16.16 

 

 

Fig. 3.5 Temperature dependence of the χT product for compound Gd2 (6) at 1000 Oe; Inset: the 

fit of the Brillouin function to the M versus H/T data of compound 6. The solid line is the best fit; 

the dots are the experimental data. 

 
The field dependence of the magnetisation at low temperatures shows that the 

magnetisation increases smoothly with the applied dc field without saturation even at 7 T where it 

reaches the value of 1.8, 2.3, 2.6 and 0.4 µB for compounds 2, 3, 4 and 5, respectively. This 

behaviour indicates the presence of magnetic anisotropy and/or the lack of a well-defined ground 

state, suggesting the presence of low-lying excited states that might be populated when a field is 

applied. However, for compound 6, the field dependence of the magnetisation at low 

temperatures shows that the magnetisation rapidly increases with the applied dc field to approach 

a true saturation above 2 T at which it reaches the value of 14.8 µB. This reveals the absence of 
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magnetic anisotropy within this compound. The M versus H/T plots further confirm this result, as 

the data are almost completely superposed on a single master-curve as expected for an isotropic 

system. The fit of the M versus H/T data by the sum of two simple S = 7/2 Brillouin functions 

leads to a good agreement with the experimental data in the range of 1.8-8 K (see Fig. 3.5 inset) 

by fixing g to 2.03, which is the same value as that obtained from the fit of the susceptibility. It is 

worth noting that the fit of the M versus H/T data with a simple ST = 7 Brillouin function does not 

reproduce the experimental data at all, confirming that the two Gd(III) ions are essentially 

uncoupled. 

 
3.3 Structure and magnetic properties of [Ln4(µ3-OΗ)2(mdeaH)2(piv)8] 

 
Our previous studies on the lighter lanthanide series on compounds 1-6 revealed the 

formation in non-aqueous conditions of isostructural lanthanide dimers of general formula 

[Ln2(mdeaH2)2(piv)6]. These lanthanides ions are connected by syn-syn carboxylate bridges and 

this type of bridge mediates vanishingly small magnetic interactions.[94] Synthetic attempts were 

extended to the heavier lanthanide homologues (Tb-Tm). In this case, a 

LnCl3·xH2O:mdeaH2:pivH ratio of (1:5:3) yielded the isostructural [Ln4(µ3-OΗ)2(mdeaH)2(piv)8] 

compounds: 

 

[Tb4(µ3-OΗ)2(mdeaH)2(piv)8] (7)  [Dy4(µ3-OΗ)2(mdeaH)2(piv)8] (8) 

[Ho4(µ3-OΗ)2(mdeaH)2(piv)8] (9)  [Er4(µ3-OΗ)2(mdeaH)2(piv)8] (10) 

[Tm4(µ3-OΗ)2(mdeaH)2(piv)8] (11) 

 
3.3.1 Structure of [Dy4(µ3-OΗ)2(mdeaH)2(piv)8] (8) 

 
X-Ray crystallographic structure determinations were carried out for all five compounds 

and showed a tetranuclear structure [Ln4(µ3-OΗ)2(mdeaH)2(piv)8], where Ln = Tb (7), Dy (8), Ho 

(9), Er (10) and Tm (11). The five compounds crystallise isomorphously in the triclinic space 

group Pī, with Z = 1 All five clusters are thus isostructural, thus only the structure of 8 is 

discussed in detail. The molecular structure of 8 is depicted in Fig. 3.6. It has a 

crystallographically centrosymmetric [DyΙΙΙ
4(µ3-OΗ)2]

10+ “butterfly” core. Although a literature 

survey revealed that this type of core is very common for 3d elements, such as Cr,[95] Mn,[96,97] 



 
 

  35  

and Fe[98,99], such a core for 4f elements is very rare.[101,102] Charge compensation of all clusters 

requires two singly deprotonated  -methyldiethanolamine ligands and eight pivalate anions. 

The topological presentation of the [Dy4
ΙΙΙ (µ3-OΗ)2]

10+ core can be described as a 

“butterfly” structure (Fig. 3.7). The body is formed by Dy(1) and Dy(1ʹ), while Dy(2) and Dy(2ʹ) 

occupy the wing-tips, and the four Dy atoms are exactly coplanar as a result of the 

crystallographic inversion symmetry. The two µ3-OΗˉ ions are displaced above and below the 

Ln4 plane (Table 3.3). The sum of the Ln-O-Ln angles around the µ3-OH- ions is close to the ideal 

value of 328.4° expected for pure sp
3 hybridization. Each µ3-OH- ion makes two short Dy(1ʹ)-

O(1), Dy(2)-O(1) (2.334, 2.378 Å) and one longer Dy(1)–O(1) (2.448 Å) distances. In this way, 

the coordination number around each Dy(III) ion is eight (DyO8 for Dy(1) and DyO7N for 

Dy(2)). A detailed analysis of the molecular geometry[102,103] reveals that Dy(1) has a geometry 

between Dod and BCTP coordination environments (φ angles 2.39° and 11.99°, dihedral angles 

26.11°, 38.84°, 41.46°, 43.08°) and that Dy(2) has a distorted dodecahedral (Dod) coordination 

environment (φ angles 0.23° and 3.03°, dihedral angles 13.66°, 32.39°, 32.42°, 44.52°). 

 

Fig. 3.6 Molecular structure of 8. lavender, red, blue and grey spheres represent Dy, O, N and C, 

respectively. All H atoms are omitted for clarity. 
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The two central Dy(III) ions [Dy(1) and Dy(1ʹ)] are bridged by the two µ3-ΟΗˉ, while a single µ3-

ΟΗˉ ion participates in the coordination sphere of the wing Dy(III) ions, resulting in shorter 

distances in the body-to-wing separation relative to larger central Dy(1)---Dy(1ʹ) separation. The 

wing-to-wing separation is the largest one, as expected, ranging from 6.232(5) to 6.346(1) Å. 

Peripheral ligation is provided by eight pivˉ and two singly deprotonated mdeaHˉ ligands. The 

deprotonated arm of each monodeprotonated mdeaHˉ ligand, forms a bridge, O(2) between Dy(1) 

and Dy(2) with the deprotonated arm, while the protonated arm simply chelating to Dy(1). All 

four body-wingtip edges are bridged by four pivalates possess a µ2 (η1:η1)-bidentate bridging 

mode in a syn-syn configuration. Moreover, Dy(1), Dy(2') and their symmetry related, are 

bridged by a bridging/chelating pivalate (Fig.1.12, mode VIII). Finally, the coordination sphere 

of Dy(1) and Dy(1ʹ) are completed by a chelated pivalate anion. 

 

Table 3.3 Selected distances (Å) and bond angles (°) for the cores of compounds 7–11. 

 7 (Tb) 8 (Dy) 9 (Ho) 10 (Er) 11 (Tm) 

Ln(1)--Ln(1ʹ) 4.069 4.041 4.023 4.003 3.994 

Ln(1)--Ln(2) 3.674 3.651 3.628 3.611 3.601 

Ln(1ʹ)--Ln(2) 3.861 3.832 3.815 3.798 3.798 

O(1)---Ln3 plane 0.873 0.871 0.865 0.866 0.852 

O(1)-Ln(1) 2.460(11) 2.448(4) 2.430(5) 2.427(4) 2.419(5) 

O(1)-Ln(1ʹ) 2.354(10) 2.372(4) 2.366(5) 2.357(4) 2.348(5) 

O(1)-Ln(2) 2.386(11) 2.334(4) 2.323(5) 2.303(4) 2.296(4) 

O(2)-Ln(1) 2.291(11) 2.284(4) 2.270(5) 2.251(4) 2.237(5) 

O(2)-Ln(2) 2.261(11) 2.258(4) 2.257(5) 2.243(4) 2.243(5) 

O(4)-Ln(1) 2.364(10) 2.370(4) 2.350(5) 2.340(4) 2.341(4) 

O(4)-Ln(2) 2.544(11) 2.544(4) 2.530(6) 2.510(5) 2.515(5) 

Ln(1)-O(1)-Ln(2) 101.6(4) 101.74(16) 101.4(2) 101.55(17) 101.69(18) 

Ln(2)-O(1)-Ln(1ʹ) 106.6(4) 106.49(16) 106.8(2) 106.78(17) 107.30(19) 

Ln(1)-O(1)-Ln(1ʹ) 114.2(4) 113.91(17) 114.1(2) 113.57(17) 113.8(2) 

Ln(1)-O(2)-Ln(2) 107.7(5) 106.99(17) 106.6(2) 106.93(18) 106.99(19) 

Ln(2)-O(4)-Ln(1ʹ) 103.7(4) 102.41(16) 102.80(19) 103.02(16) 102.86(18) 
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Fig. 3.7 The structure of the [LnΙΙΙ
4(µ3-OΗ)2]

10+ butterfly core in 8, which lies on an inversion 

center. Dy(1) and Dy(1´) represent “body” sites and Dy(2) and Dy(2´) “wingtip” sites. 

 

 

3.3.2 Magnetic properties of [Ln4(µ3-OΗ)2(mdeaH)2(piv)8] (Ln = Tb, Dy, Ho, Er, Tm).  

 
As discussed earlier, all five tetranuclear compounds 7-11 are isostructural, thereby four 

Ln(III) ions form a planner butterfly core. Variable temperature dc magnetic susceptibility data 

were collected for 7-11 at the temperature range of 300-1.8 K in an applied field of 1000 Oe (Fig. 

3.8). The dc magnetic data are summarised in Table 3.4. Compared with the theoretical values, 

the observed χT products at room temperature are in good agreement with those. Overall, the 

temperature dependences of their magnetic susceptibilities show the same thermal evolution in 

the full temperature range. On decreasing the temperature, the χT product at 1000 Oe steadily 

decreases till 30 K and then rapidly drops down to 1.8 K. The Stark sublevels of the anisotropic 

Ln (Tb, Dy, Ho, Er and Tm) ions are thermally depopulated when the temperature is lowered 

resulting in a decrease of the χT versus T plot.[90,102] Therefore, even if the χT product decreases 

with the temperature and reaches a minimum value at 1.8 K, it is uncertain whether this 

behaviour is associated with dominant antiferromagnetic interactions between the Ln(III) ions 

within the complexes or with the Ln(III) ions themselves.  
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Fig. 3.8 Temperature dependence of the χT products for compounds 7–11 at 1000 Oe. 

 

Table 3.4 Comparison of the dc magnetic data for compounds 7-11. 

Compound  7 

(Tb) 

8 

(Dy) 

9 

(Ho) 

10 

(Er) 

11 

(Tm) 

Ground state term with Ln ion  
7
F6 

6
H15/2

 5
I8 

4
I15/2 

3
H6 

S 3 5/2 2 3/2 1 

L 3 5 6 6 5 

g 3/2 4/3 5/4 6/5 7/6 

C (cm3Kmol-1) for each Ln ion[98] 11.82 14.17 14.07 11.5 7.15 

χT (cm3Kmol-1) expected value for 4 

non-interacting Ln4 at RT 

47.28 56.68 56.28 46.0 28.6 

χT (cm3Kmol-1) experimental value 

for Ln4 at RT 

48.4 57.7 53.7 43.4 28.2 

χT (cm3Kmol-1) experimental value 

for Ln4 at 1.8 K 

18.2 37.6 29.6 18.6 7.1 

magnetisation (µB) observed at 7 T 

and 1.8 K 

22.4 25.6 24.6 21.7 17.9 

 

The field dependence of the magnetisation of compounds 7-11 at low temperatures shows that the 

magnetisation is smoothly increasing with the applied dc field without saturation even at 7 T (Fig. 

3.9-3.13, left). The magnitude of magnetization is given in Table 3.4. This behaviour indicates the 

presence of magnetic anisotropy and/or the lack of a well-defined ground state suggesting the 

presence of low-lying excited states that might be populated when a field is applied. Furthermore, 
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while plotting the M versus H/T at low temperatures for compounds 7-11 (Fig. 3.9-3.13, right), the 

curves are not superposed as expected for an isotropic system further indicating the presence of 

magnetic anisotropy and/or low-lying excited states. In addition, the M vs H data at 1.8 K reveals 

the existence of hysterises effect with a very small coercive field (about 12 Oe).  

  

Fig. 3.9 Field dependence of magnetisation at indicated temperatures for compound 7. 

          

Fig. 3.10 Field dependence of the magnetisation at indicated temperatures for 8. 

  

 

Fig. 3.11 Field dependence of magnetisation at indicated temperatures for compound 9. 
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Fig. 3.12 Field dependence of magnetisation at indicated temperatures for compound 10. 

 

 

Fig. 3.13 Field dependence of magnetisation at indicated temperatures for compound 11. 

Due to the presence of magnetic anisotropy, the magnetisation relaxation was probed 

under zero dc field for all compounds 7-11. Out of them, only compound 8 exhibits slow 

relaxation of its magnetisation. As shown in Fig. 3.14, frequency dependence of both in-phase 

and out-of-phase components was observed in zero dc field below 12 K indicating slow 

relaxation of the magnetisation. The out-of-phase signal possesses a reasonable intensity in 

comparison to the in-phase signal and its maximum is observed at 2.5 K at a frequency of 1500 

Hz. In addition to frequency dependent ac susceptibilities, frequency sweeping ac susceptibilities 

were also measured at different temperatures (Fig. 3.15). Both the shape and frequency 

dependence strongly suggests that this compound is a SMM. Fitting the data to an Arrhenius law 

leads to the characteristic SMM energy gap (∆) of 6.2 K and the pre-exponential factor (τ0) of 

2.45x10-5s (Fig. 3.16). 
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Fig. 3.14 Temperature dependence of the in-phase (left) and out-of-phase (right) components of 

the ac magnetic susceptibility, for 8 under zero dc field. 
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Fig. 3.15 Frequency dependence of the in-phase (left) and the out-of-phase (right) ac 

susceptibility component at different temperature for compound 8 under zero dc field. 

 

 

Fig. 3.16 τ versus 1/T plot for 8 obtained from frequency dependent ac susceptibilities under zero 

dc field. 
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In order to study further this relaxation time and check the quantum tunnelling effect 

above 1.8 K, frequency dependence of the ac susceptibility at 1.8 K was also measured in the 

application of a small dc field (Fig. 3.17). In SMMs with a relaxation partially influenced by 

quantum effects, the application of a small dc field removes the ground state degeneracy and thus 

the possibility of quantum tunnelling in SMMs inducing a slowing down of the magnetisation 

relaxation.[87] In zero field, the characteristic frequency was 240 Hz at 1.8 K. By increasing the 

field, this frequency decreased to 75 Hz around 800 Oe. The small dc field slows down the 

relaxation time as has been observed for some SMMs when quantum tunnelling of the 

magnetisation is suppressed. Therefore, ac susceptibility measurements as a function of 

temperature were carried out again under a dc field of 800 Oe (Fig. 3.18) in order to estimate the 

relaxation time. Fitting the data to an Arrhenius law, the characteristic SMM energy gap, ∆, was 

estimated to be 6.9 K and the pre-exponential factor, τ0, 4.8x10-5s (Fig. 3.19). The slight increase 

of the energy barrier indicates that the quantum tunneling effect in this compound is not very 

pronounced. 

 

Fig. 3.17 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different dc fields for 8. 
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 Fig. 3.18 Frequency dependence of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different temperature for compound 8 under dc field of 800 Oe. 
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Fig. 3.19 τ versus 1/T plot for 8 under 800 Oe dc field obtained from Fig. 3.18. 
 

 

3.4 Structure and magnetic properties of [Ln4(mdea)2(mdeaH)2(PhCO2)6] 

 
The synthetic method for 1-11 was now extended to develop new systems by varying the 

carboxylate ligand. In place of pivalic acid, benzoic acid was now used and this resulted in the 

formation of tetranuclear lanthanide complexes with a non-planar Ln4 core, in contrast to the 

planar cores in 7-11. The reactions of (Ln = Tb, Dy, Ho, Er) with mdeaH2 and benzoic acid 

(PhCO2H) in a LnCl3·xH2O:mdeaH2:PhCO2H ratio of (1:5:1) in acetonitrile yielded the 

tetranuclear compounds: 

 
[Tb4(mdea)2(mdeaH)2(PhCO2)4.5(NO3)1.5] (12) 
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[Dy4(mdea)2(mdeaH)2(PhCO2)6]·4MeCN (13a) 

[Dy4(mdea)2(mdeaH)2(PhCO2)6]·0.3mdeaH2·1.7MeCN·1.4H2O (13b) 

[Dy4(mdea)2(mdeaH)2(PhCO2)6]·3MeCN (13c) 

[Ho4(mdea)2(mdeaH)2(PhCO2)4.5(NO3)1.5] (14) 

[Er4(mdea)2(mdeaH)2(PhCO2)6]·0.3mdeaH2·1.7MeCN·1.4H2O  (15) 

 
The Dy4 compound 13 has been obtained in three distinct crystallographic phases, 13a, 13b and 

13c. It has so far not proved possible to obtain a sample that contains one of the three phases in a 

pure form; only mixtures have been obtained. The factors determining the relative proportions of 

each phase from a given preparation require further investigation. However, 13b appears to be 

the majority phase. The powder diffraction pattern in Figure 3.20 was recorded from the sample 

used for the SQUID measurements. The peaks marked with arrows result from 13b, with some 

weaker peaks from 13a, and only a few very weak peaks that can be assigned to 13c. Moreover, 

the molecular structures of the Dy4 aggregates in each of the phases are closely similar.  

 

 

Fig. 3.20 X-ray powder diffraction: for 13 based on the single crystal X-ray structure. 
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3.4.1 Structure of [Dy4(mdea)2(mdeaH)2(PhCO2)6]·4MeC9 (13a) 

 
X-ray crystallographic structure studies showed that slightly varying the reaction 

condition three different products can be obtained 13a, 13b and 13c. All compounds contain a 

Dy4 core, although peripheral ligation and solvated molecules are slightly different. The Dy4 

aggregate in 13a will be described in detail.  

The molecular structure of 13a is depicted in Fig. 3.21. The compound crystallises in the 

monoclinic P21/n space group. The four Dy(III) ions forming the Dy4 core (Fig. 3.22) are located 

at four vertices of a defect dicubane or else can be described in terms of a non-planar butterfly 

core (in contrast to compounds 7-11). They are bridged by the two deprotonated oxygen atoms 

from the two mdeaH- ligands and the totally deprotonated mdea2- ligands. The four Dy(III) ions 

are non-coplanar with the dihedral angle between the two Dy3 triangles being 39.01(3)°. 

Peripheral ligation is provided by three chelating benzoates, two bidentate syn–syn (η1:η1:µ2) 

benzoates, one monodentate (η1) benzoate, two singly deprotonated mdeaH- ligands and two 

mdea2- ligands. Atoms O(1) and O(3) (µ3-O) of mdeaH- are triply bridging, resulting in the 

following Dy---Dy distances Dy(1)-Dy(2) 3.730 Å, Dy(1)-Dy(3) 3.786 Å, Dy(2)-Dy(3) 3.761 Å, 

Dy(1)-Dy(4) 3.695 Å, Dy(2)-Dy(4) 3.756 Å, respectively. The two Dy3 triangles do not show a 

large isosceles distortion, in spite of the differing bridges along the outer edges. As a result of 

their sp3-hybridisation, O(1) and O(3) are displaced above their respective Dy3 least-squares 

planes (by 1.03, 1.11 Å, respectively). The doubly bridging oxygens of mdea2- complete the 

defect dicubane core, with Dy-O distances 2.189-2.337 Å along with the protonated O atoms of 

the last two mdeaH- ligands, O(2) and O(4), which are singly coordinated to Dy(3) (2.391 Å) and 

to Dy(4) (2.394 Å). One benzoate forms comparable bonds coordinated in syn–syn mode 

(η1:η1:µ2) to Dy(1) and Dy(3) (2.366 Å and 2.336 Å), while bridging Dy–O distances to Dy(4) 

and Dy(2) in the second bidentate (η1:η1:µ2) benzoate are notably different (2.281 Å and 2.371 

Å). Moreover, one benzoate is chelated to each Dy(1), Dy(2) and Dy(3), while the sixth benzoate 

is coordinated to Dy(4) in a monodentate mode providing a Dy-O bond distance of 2.247 Å. 

 Finally, the coordination sphere of the four Dy ions is completed by the four N atoms, 

belonging to the two mdeaH- and to the two mdea2- ligands. Therefore, the two mdeaH- ligands 

adopt the η1:η1:η3:µ3 coordination mode (mode VI, Fig. 1.10) and the other two mdea2- bind with 

the η2:η1:η2:µ3 mode (mode I, Fig. 1.10). In this way, in the distorted dicubane the coordination 

number around Dy(1), Dy(2) and Dy(3) ions is eight [DyO7N] and that of Dy(4) is seven 
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[DyO6N]. A detailed analysis of the molecular geometry for each Dy ion[108,109] reveals that the 

Dy(1) has a geometry described as being intermediate between Dod and square anti-

prismatic(SAP) (φ angles = 6.12° and 25.04°; dihedral angles = 14.39°, 30.73°, 40.21°, 53.58°). 

Dy(2) (φ angles = 2.18° and 16.51°; dihedral angles = 5.58°, 23.93°, 36.84°, 51.92°) and Dy(3) 

(φ angles = 5.23° and 14.17°, dihedral angles = 31.00°, 24.04°, 50.98°, 24.55°) each have 

geometries intermediate between Dod and BCTP. The coordination geometry of Dy(4) can be 

best described as pentagonal-bipyramidal.  

X-ray crystallographic structure studies for other compounds, showed that they consist of 

tetranuclear Ln4 non-planar butterfly core, although peripheral ligation and solvated molecules 

are slightly different comparing to 13a. Compounds 14 and 16 are isomorphous (monoclinic, 

P21/n). In both compounds, one of the chelating ligands is benzoate, one is nitrate, and two are a 

disordered mixture of benzoate (major) and nitrate (minor), with a total nitrate content of 1.5 per 

cluster. Compounds 13b and 15 are also isomorphous (monoclinic P21/n but a different unit cell 

to 12 and 14. 

 

 

Fig. 3.21 Structure of compound 13a. Grey, red, blue and lavender spheres represent C, O, N and 

Dy, respectively. 
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Fig. 3.22 The structure of the Dy4
III core of 13a. 

 

Table 3.5 Unit cell measurements of compounds 12-15. 

Compounds 12 (Tb) 14 (Ho) 13b (Dy) 15 (Er) 

Crystal system monoclinic monoclinic monoclinic monoclinic 

Space group P21/c P21/c P21/n P21/n 

a/Å 19.346(3) 19.0132(8) 18.9483(6) 18.9241(9) 

b/Å 17.419(2) 17.2017(7) 15.4400(5) 15.3619(9) 

c/Å 21.433(3) 21.1723(9) 25.3766(8) 25.3848(8) 

β/º 115.166(3)° 114.54(1) 95.164(1) 98.647(1) 

 

3.4.2 Magnetic properties of [Ln4(mdea)2(mdeaH)2(PhCO2)6-x(9O3)x] (12-15) 

 

As described in the structural part, the cores of the tetranuclear compounds 12–15 are 

isostructural and the four Ln(III) ions now form a non-planar Ln4 core. Overall, the static 

magnetic behaviour of the compounds in this series is very similar. The temperature dependence 

of their magnetic susceptibilities show the same thermal evolution in the range of 1.8-300 K (Fig. 

3.23). The results are summarised in Table 3.6. On decreasing the temperature, the χT products at 

1000 Oe continuously decrease from room temperature till 50 K and then further decrease till 1.8 

K, however, in case of the Er analogue, there is a up-turn around 5 K (33.32 cm3 K mol-1). The 

experimental χT products at room temperature for compound 12-15 are close to the expected 

values for the presence of four non-interacting Ln(III) ions[93] as compared in Table 3.6. The 

Stark sublevels of the anisotropic Ln (Tb, Dy, Ho and Er) ions are thermally depopulated when 

the temperature is lowered, resulting in a decrease of the χT versus T plot.[90,102] Therefore even if 

the χT product decreases with the temperature and reaches a minimum value at 1.8 K, it is 
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uncertain whether this behaviour is associated with dominant antiferromagnetic interactions 

between the Ln(III) ions within the complexes or with the individual Ln(III) ions.  
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Fig. 3.23 Temperature dependence of the χT products for compounds 14–17 at 1000 Oe. 

 

 

 

Table 3.6 Comparison of the dc magnetic data for compounds 12-15. 

Compounds  12 

(Tb) 

13 

(Dy) 

14 

(Ho) 

15 

(Er) 

Ground state term with Ln ion  
7
F6 

6
H15/2 

5
I8 

4
I15/2 

S 3 5/2 2 3/2 

L 3 5 6 6 

g 3/2 4/3 5/4 6/5 

C (cm3Kmol-1) for each Ln ion
[98]

 11.82 14.17 14.07 11.5 

χT (cm3Kmol-1) expected value for 4 non-interacting Ln4 at 

RT 

47.28 56.68 56.28 46.0 

χT (cm3Kmol-1) experimental value for Ln4 at RT 45.99 58.95 57.70 44.95 

χT (cm3Kmol-1) experimental value  for Ln4 at 1.8 K 12.58 18.28 22.05 34.85 

magnetisation (µB) observed at 7 T and 1.8 K or 2 K 19.5 25.4 21.8 21.7 
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The field dependence of the magnetisation at low temperatures shows that the 

magnetisation smoothly increases with the applied dc field without saturation even at 7 T where it 

reaches the values for compound 12-15 given in Table 3.6. This behaviour indicates the presence 

of magnetic anisotropy and/or the lack of a well-defined ground state suggesting the presence of 

low-lying excited states that might be populated when a field is applied. Moreover, while plotting 

the M versus H/T at low temperatures for compounds 12-15 (Fig. 3.24-3.27, right), the non-

superposed curves indicate the presence of magnetic anisotropy and/or low-lying excited states. 
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Fig. 3.24 Field dependence of magnetisation at indicated temperatures for compound 12. 
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Fig. 3.25 Field dependence of magnetisation at indicated temperatures for compound 13. 
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Fig. 3.26 Field dependence of magnetisation at indicated temperatures for compound 14. 
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Fig. 3.27 Field dependence of magnetisation at indicated temperatures for compound 15. 

 

Due to the presence of magnetic anisotropy, the magnetisation relaxation was probed 

using ac susceptibility measurements as a function of the temperature at different frequencies and 

also at different temperatures as a function of the frequency. The out-of-phase component is 

completely absent in compounds 14 and 15, whilst it is present in compounds 12 and 13. In zero-

dc field, both compounds 12 and 13 show a frequency dependent out-of-phase signal indicating 

the presence of slow relaxation of the magnetisation. No maximum of out-of-phase signal could 

be observed in the compound 12 even at 1.8 K (Fig. 3.28) indicating that the block temperature of 

this compound is below 1.8 K and the energy barrier of the slow relaxation is small.  

On the other hand, compound 13 exhibits two maxima of out-of-phase signal observed at 

2.5 K and 10 K at a frequency of 1500 Hz (Fig. 3.29). The observed out-of-phase signals possess 

a reasonable intensity in comparison to the in-phase signal that is also frequency dependent. This 

feature (shape and frequency dependence) strongly suggests this compound is a SMM. The 

double maximum could indicate two distinct relaxation processes, one operating at higher, the 

other at lower temperature. Fitting the frequency sweeping ac susceptibilities as a function of 
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temperature (Fig. 3.30) by an Arrhenius law, the SMM energy gap (∆) and the pre-exponential 

factor (τ0) are deduced as follows: process 1 (> 5 K): ∆1 = 34.5 K, τ0 = 1.86 10-5 s; and process 2 

(< 5 K): ∆2 = 5.4 K, τ0 = 8.1 10-3 s (Fig. 3.31). However, as indicated in the structural part, 

samples of compound 13 form co-crystallised mixtures of the three different species 13a, 13b and 

13c. it is more likely, therefore, that the observed double maximum results from the presence of 

different crystal phases of 13 in the sample, which have different relaxation rates, but it has so far 

proved impossible to associate energy gaps to particular crystal structures. 
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Fig. 3.28 Temperature dependence of the in-phase (left) and out-of-phase (right) components of 

the ac magnetic susceptibility for 12 under zero dc field. 
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Fig. 3.29 Temperature dependence of the in-phase (left) and out-of-phase (right) components of 

the ac susceptibility for 13 under zero dc field. 
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Fig. 3.30 Frequency dependence of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different temperature for compound 13 under zero dc field. 
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Fig. 3.31 τ versus 1/T plot for 13 obtained from frequency dependent ac susceptibility 

measurements under zero dc field. 

 

In addition, the ac susceptibility measurements under a small dc field were also performed 

in order to see if the relaxation would slow down. The relaxation mode is almost unchanged in 

both cases 12 and 13, indicating that the slow relaxation is fixed with the application of small dc 

fields (Fig. 3.31-3.33). However, the second relaxation mode of compound 15 at 7 K is only very 

slightly shifted to higher frequency with the increase of applied dc field (Fig. 3.33). This 

observation shows that the compounds essentially do not have a relaxation influenced by any 

quantum effects. 
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Fig. 3.32 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different dc fields for 12. 
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Fig. 3.33 Frequency dependence at 2 K of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different dc fields for 13. 
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Fig. 3.34 Frequency dependence at 7 K of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at different dc fields for 13. 
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3.5 Conclusion 

 

In this chapter, a series of six dinuclear [Ln2(mdeaH2)(piv)6] (1-6), five tetranuclear 

[Ln4(µ3-OΗ)2(mdeaH)2(piv)8] (7-11) and four tetranuclear [Ln4(mdea)2(mdeaH)2(PhCO2)6] (12-

15) compounds were successfully synthesised, as depicted in Scheme 2, crystallographically 

characterised and magnetically studied. The dinuclear compounds 1-6 and the tetranuclear 

compound 7-11 were derived from the same reaction system, so the structure of the final product 

is presumably a result of the size of the lanthanide cation. For lanthanides with a large radius, 

dinuclear compounds were isolated while for the heavier, smaller, lanthanides seem to disfavour 

the dinuclear core, preferring a tetranuclear core. From a magnetic point of view, the exchange 

coupling between the lanthanides in the dinuclear compounds 1-6 is very weak to the point of 

being virtually non-existent. Thus it would seem that in complexes of this type the syn-syn 

carboxylate bridges do not allow for any significant magnetic interactions between the lanthanide 

centres. Magnetically, compounds 7, 9-11 exhibit antiferromagnetic interactions, and more 

interestingly, the Dy analogue, compound 8, shows SMM behaviour. This finding is in agreement 

with other Dy4 planar systems developed previously in this group.[88] Bearing in mind that such 

tetranuclear Ln cores are potential SMM candidates, the next step to this systematic study was to 

examine the influence of the co-ligand, therefore pivalic acid was replaced by benzoic acid. Four 

tetranuclear compounds [Ln4(mdea)2(mdeaH)2(PhCO2)6] (12-15) were synthesized. The 

tetranuclear cores found in 12-15 are non-planar, with dihedral angles between the two Ln3 

triangles of ca. 40°, in contrast to the planar cores in 7-11. Magnetic studies carried out on these 

compounds revealed that compounds 12 and 13 exhibit slow relaxation of magnetisation and 

show SMM behaviour, whereas in compounds 14 and 15, antiferromagnetic interactions are 

dominant.  

In summary, in this chapter a Ln/mdeaH2/coligand synthetic approach was developed. 

Depending on the radius of the lanthanide cation, dinuclear or tetranuclear units are formed. 

Especially in the tetranuclear series, varying the nature of the co-ligand can result in significant 

changes to the structure of the core, therefore allowing SMM properties to be tuned. It is noted 

that for such 4f systems, hydroxo and alkoxo bridges can mediate weak but significant 

interactions, as was previously shown in this group for a Dy3 triangle,[39] suggesting that future 

synthetic efforts should attempt to incorporate such superexchange pathways. The results 

suggested that one of the main contributions lanthanides can make to magnetic behaviour in 
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molecular systems arises from the possibility of providing significant anisotropy, which is an 

especially desirable feature in the design of new single molecule magnets.  

 

N

OHHO

Ln2(mdeaH2)(piv)6

Ln4(µ3-OH)2(mdeaH)2(piv)8

Ln4(mdea)2(mdeaH)2(PhCO2)6

CH3CN
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Ln = La(1), Ce(2), Pr(3), Nd(4), Sm(5), Gd(6)

Ln = Tb(7), Dy(8), Ho(9), Er(10), Tm(11)

Ln = Tb(12), Dy(13), Ho(14), Er(15)

PivH
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Scheme 2 The synthetic route from Ln(NO3)3·6H2O to compounds 3-8, 9-13 and 14-17. 
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Chapter 4: Structure and magnetic properties of iron-lanthanide aggregates 

 

4.1 Introduction 

 

The discovery of the first single molecule magnet (SMM)[7,8] has animated interest in the 

field of magnetism, due to the fact that SMMs can be magnetised, below certain temperatures, 

with retention of their magnetisation after the magnetic field is switched off. The quest for new 

SMMs displaying high blocking temperatures has focussed the interests of many synthetic 

chemists towards the development of 3d-4f heterometallic systems. Polynuclear clusters which 

combine high spin and/or single-ion anisotropy, such as Cu6Dy3,
[106a] Co2Gd[106b] and 

Mn5Dy4
[106c] have reported a magnitude of the barrier to reorientation of the spin, ∆eff, which 

reaches the value of 25, 28 and 38 K, respectively. From the synthetic point of view,  -

substituted diethanolamine and related ligands represent useful tools in the synthesis of 

polynuclear clusters possessing SMM behaviour.[105c,73,75,78] Sparked by the structural diversity 

and interesting properties of heterometallic 3d-4f compounds, mixed 3d-4f (Fe-Dy) compounds 

have been investigated as a means of enhancing anisotropy and/or spin state using  -

methyldiethanolamine (mdeaH2) as a ligand. Up to now, only two examples of Fe-Dy SMMs 

have been reported.[70a,71] As discussed in Chapter 3, tetranuclear lanthanide compounds 12-15 

consisting of benzoic acid as co-ligand were successfully synthesised and characterised. These 

reaction strategies were modified and a new reaction system involving 3d-4f complexes was 

developed. The research presented within this chapter describes the development of new 

strategies for the synthesis of new Fe-Ln clusters which are valuable additions to the growing 

family of mixed 3d-4f species, possessing unique cores and display interesting magnetic 

properties.  

To facilitate the formation of polynuclear compounds,  -methyldiethanolamine was used 

as a ligand in the new reaction system. Since mdeaH2 contains alcoholic arms, which are good 

metal-bridging groups on deprotonation, it fosters the formation of polynuclear products, as 

discussed in Chapter 1. In addition, since transition metal cations are readily chelated by 

diethanolamine ligands, while oxophilic lanthanide cations show a strong affinity towards hard 

donors such as the oxygen atoms of deprotonated alkoxy groups, this could lead to mixed 3d-4f 

products. 
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4.2 Structure and magnetic properties of decanuclear complexes (16-22) 

 

The reactions of Ln(NO3)3·xH2O (Ln = Gd, Tb, Dy, Ho, Er and Tm) with mdeaH2, 

benzoic acid, FeCl3 and NaN3 in a ratio of (1:5:1:1:3) in acetonitrile yielded the decanuclear 

complexes [Ln3
IIIFe7

III(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4] (16-19). The methanol solvates of 

the Dy(III) and Er(III) complexes could also be obtained by using DyCl3·xH2O or ErCl3·xH2O in 

methanol. A new class of decanuclear compounds [Ln4
IIIFe6

III(µ3-OH)4 

(mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2] (Ln = Ho, Er, Tm) 20-22, is synthesised using 

acetonitrile only as solvent. It is worth mentioning that change of solvent does not affect the 

overall the nuclearity of the isolated crystalline material but it does change the Ln:Fe ratio. 

 
[Gd3

IIIFe7
III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeCN (16) 

[Tb3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeCN (17) 

[Dy3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·7MeOH (18) 

[Er3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeOH (19) 

[Ho4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN (20) 

[Er4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN (21) 

[Tm4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN (22) 

 

4.2.1 Structure of [Dy3
III

Fe7
III

(µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4]·7MeOH (18) 

 

X-Ray crystallographic structure determinations were carried out for all four compounds 

16-19. Crystals of these Fe7Ln3 compounds, whether obtained from MeOH or MeCN, are all 

isomorphous, crystallising in the triclinic space group P-1 with Z = 2. Within the structure, the 

molecular twofold axes are aligned almost exactly perpendicular to the 001 plane. In fact, the 

crystal structure as a whole has quasi-twofold symmetry in this direction, and in consequence all 

the crystals studied showed twinning by a 180° rotation about c*. Because α is very close to 90° 

(typically 90.4-91.2°), the two reciprocal lattices are close to coincident, with very many 

overlapped reflections. Most crystals also show additional twinning, and accurate integration 

proved problematic, even with the Bruker software. One crystal of the methanol solvate of 

Fe7Dy3, 18, was found to be cleanly twinned, and this could be integrated successfully and the 

structure refined to an acceptable standard; this structure will be described in detail below. With 

the other datasets, it was generally only possible to refine the metal atoms anisotropically. 
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However, it is clear that the other Fe7Ln3 compounds are closely isostructural, and their unit cells 

are compared in Table 4.1. 

The central core of 18 is built up from seven FeIII cations each of which is chelated by a 

doubly-deprotonated (mdea)2- ligand, and three DyIII cations. While the molecule has no 

crystallographically-imposed symmetry, an idealised two-fold axis runs through N(1), Fe(1) and 

Dy(1). The structure of the molecule (organic H atoms omitted for clarity) is shown in Figure 4.1. 

Two views of the central core (benzoate and azide ligands omitted) are shown in Figures 4.2.  

The two (µ4-O)2- ligands O(1) and O(2) each bridge between two Fe and two Dy centres, 

either Fe(2) and Dy(2) or Fe(3) and Dy(3), respectively, and Fe(1) and Dy(1). The resulting 

distorted tetrahedral {Fe2Dy2(µ4-O)} units thus share one edge, Fe(1)···Dy(1). Within each 

tetrahedron, the Fe-O-Fe angles (144.1(4) and 143.5(4)°) are much larger than the Fe-O-Dy 

(99.1(3)-101.9(3)°) and Dy-O-Dy (106.1(2), 106.6(3)°) angles. The two Dy···Dy edges are each 

further bridged by a hydroxo ligand, which both form (µ3-OH)- bridges to a further Fe centre, 

with O(3) and O(4) bridging either Dy(1), Dy(2) and Fe(4), or Dy(2), Dy(3) and Fe(5), 

respectively. These hydroxo bridges are more regular than the oxo bridges; the angles around 

O(3) and O(4) are all in the range 103.0(3)-111.5(3)°. The final two triple-bridges are provided 

by alkoxo oxygens from two (mdea)2- ligands: O(13) bridges Fe(5), Dy(3) and Fe(7), while O(11) 

bridges Fe(4), Dy(2) and Fe(6). The angles around O(11) and O(13) are rather smaller (95.4(3)-

101.6(3)°) than those for the (µ3-OH)- bridges. The remaining twelve (mdea)2- oxygens each form 

a (µ-OR) bridge between the iron which their respective ligand chelates chelate and one other 

metal centre, forming ten Fe···Dy and two Fe···Fe bridges. The twelve Fe-O-Dy or Fe-O-Fe 

angles are rather consistent, with all in the range 101.7(3)-109.9(3)°. The four benzoate ligands 

form syn,syn bridges, each between an iron and a dysprosium centre. 

The coordination sphere of each iron except Fe(1) is completed by a terminal azido 

ligand, resulting in a more or less distorted cis-N2O4 octahedral environment. Fe(1) has a five-

coordinate NO4 environment, in which the two alkoxo oxygens O(5) and O(6) occupy the axial 

sites of what is best described as a trigonal bipyramidal geometry. The Fe-O, Fe-N(azide) and Fe-

N(imino) distances are in the ranges 1.880(7)-2.143(7) Å, 1.971(9)- 2.080(9) Å and 2.199(10)-

2.240(10) Å, respectively. The three Dy centres are each eight-coordinate, with approximate 

square-antiprismatic geometries, and Dy-O bond lengths in the range 2.258(8)-2.532(7) Å.  
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Fig. 4.1 Structure of [Dy3
IIIFe7

III(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4] in 18. Hydrogen  atoms 

are omitted for clarity. Grey, red, blue, green and lavender spheres represent C, O, N, Fe and Dy, 

respectively. 

 

Fig. 4.2 Structure of the [Dy3
IIIFeI

7
II(µ4-O)2(µ3-OH)2]

24+ core in the cluster of 18. 
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Table 4.1 Unit cell measurements of compound 16-19. 

 a b c αααα    ββββ    γγγγ    V 

(16) Fe7Gd3 

(MeCN) 

14.3513(14) 17.0941(16) 21.1210(19) 90.891(2) 93.705(2) 97.509(2) 5124.8(8) 

(16a) Fe7Gd3 

(MeOH) 

14.444(2) 17.383(3) 21.268(3) 91.229(3) 93.576(3) 98.440(3) 5269(2) 

(17) Fe7Tb3 

(MeCN) 

14.366(2) 17.178(2) 21.209(3) 90.572(3) 93.727(3) 97.761(3) 5173.7(13) 

(18) Fe7Dy3 

(MeOH) 

14.2482(17) 17.446(2) 21.224(2) 90.430(2) 92.445(2) 98.504(2) 5212.4(11) 

(19) Fe7Er3 

(MeOH) 

14.182(3) 17.133(3) 21.078(4) 91.204(3) 92.860(3) 97.969(3) 5063.7(16) 

 
4.2.2 Magnetic properties of [Ln3

III
Fe7

III
(µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4] (Ln = Gd, 

Tb, Dy, Er) (compounds 16-19) 

 
Due to the high anisotropy of compound 18, this compound was dispersed in Apiezon 

grease during the magnetic measurements. Thus the dc susceptibility of 18 was only measured 

below 250 K. The temperature dependence of the magnetic susceptibilities of all compounds 16-

19 show similar thermal evolution in the range of 1.8-300 K (Fig. 4.3). The magnetic data are 

summarized in Table 4.2. The χT product values at room temperature are in low comparison to 

the expected value for seven Fe(III) ions (S = 5/2, g = 2, C = 4.375 cm3 K mol-1) and three Ln(III) 

ions. 
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Fig. 4.3 Temperature dependence of the χT products for compounds 16–19 at 1000 Oe. 
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On decreasing the temperature, the χT product at 1000 Oe continuously decreases to reach a 

minimum value at 1.8 K. As Gd(III) is an isotropic ion without orbital contributions, the 

interactions among the spin carriers in 16 are antiferromagnetic.  However, in the case of 

compounds 16, 17 and 19, the thermal decrease of the χT product might also originate, at least 

partially, from the depopulation of the Stark sublevels of the anisotropic Tb, Dy and Er ions.[90] 

Therefore, the decrease of the χT products might also be responsible for the thermal decrease of 

the χT product. 

  The field dependence of the magnetisation of compounds 16-19 at low temperatures show 

that the magnetisation smoothly increases with the applied dc field. In all cases there is no clear 

saturation, even at 7 T at which it reaches the values given in Table 4.2, suggesting the presence 

of magnetic anisotropy and/or the population of low-lying excited states. Moreover, while 

plotting the M versus H/T at low temperatures for compounds 16-19 in Figures 4.4, 4.5, 4.6a and  

4.8(right). The curves are not superimposed on a single master curve further indicating the 

presence of magnetic anisotropy and/or low-lying excited states. 
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Fig. 4.4 Field dependence of magnetisation at indicated temperatures for compound 16. 
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Fig. 4.5 Field dependence of magnetisation at indicated temperatures for compound 17. 

 

Table 4.2 Comparison of dc magnetic data for compounds 16-19. 

Compound 16 

(Gd) 

17 

(Tb) 

18 

(Dy) 

19 

(Er) 

Ground state term of Ln ion 
8
S7/2 

7
F6 

6
H15/2

 4
I15/2 

S 7/2 2 5/2 3/2 

L 0 3 5 6 

g 2 3/2 4/3 6/5 

C (cm3Kmol-1) for each Ln ion
[98]

 7.87 11.82 14.17 11.5 

χT (cm3Kmol-1) expected value for Ln3Fe7 at RT 54.25 66.08 73.13 65.12 

χT (cm3Kmol-1) experimental value for Ln3Fe7 at RT 45.8 55.4 71.6 53.3 

χT (cm3Kmol-1) experimental value for Ln3Fe7 at 1.8 K 14.8 12.8 15.4 21.9 

magnetisation (µB) observed at 7T and 1.8 K or 2 K 28.1 19.6 30.1 22.5 

 
For compound 18, the magnetisation at low field is increasing rapidly in agreement with a 

non-zero ground state for complex 18, (Fig. 4.6) and it reaches a pseudo-saturation at about 8 µB 

around 1 T. Then a second step is observed, as is clearly seen in the plot of dM/dH versus H (Fig. 

4.7) which displays a maximum (i.e. a characteristic field that corresponds to an inflexion point 

on the M versus H plot) at 16300 Oe. This behaviour is typically seen when the magnetic field 

overcomes antiferromagnetic interactions and the spins align with the applied field. In other 

words, low lying excited states are progressively populated with the increase of external field. As 

the spin ground state is difficult to determine in dysprosium-based compounds, it is also difficult 

to evaluate the magnitude of the magnetic interactions and the spins involved in the feature 

observed at 16300 Oe. It is worth mentioning that the M versus H data reveal the existence of 
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hysteresis (i.e. slow relaxation of the magnetisation) at 1.8 K with a very small coercive field 

(few Oe). 
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Fig. 4.6 (a) Field dependence of magnetisation at indicated temperatures for compound 18 (left). 

(b) Hysteresis measurements of compound 18 at 1.8 K with a sweeping rate of 0.002 T/s. (right). 
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Fig. 4.7 Plot of dM/dH versus H for compound 18. 
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Fig. 4.8 Field dependence of magnetisation at indicated temperatures for compound 19. 
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In the case of the Er(III) analogue 19, there is a relatively rapid increase of the 

magnetisation below 1 T to reach a magnitude of 14.8 µB and a slope centred on ~2.8 T (Fig. 4.9) 

and then a smooth increase above 3 T without saturation. The shape of the magnetisation curves 

suggest that low-lying excited states are progressively populated with the increase of the external 

field. 
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Fig. 4.9 Plot of dM/dH versus H for compound 19. 

 

Due to the presence of anisotropy in those compounds (Fig. 4.4-4.8), the ac susceptibility 

measurements were carried out in zero dc field. There is no out-of-phase signal shown above 1.8 

K for compounds 16 and 19, while an out-of-phase component was present in both compounds 

17 and 18.  

In the Tb case (17), an out-of-phase signal is detected (about 15% of the in-phase signal) 

clearly below 3 K indicating slow relaxation of the magnetisation (Fig. 4.10). Both in-phase and 

out-of-phase signals are frequency dependent, suggesting that this compound exhibits slow 

relaxation and is a SMM. In addition, the ac susceptibility measurements under a small dc field 

were also performed in order to see whether relaxation would slow down (Fig. 4.11). The 

relaxation mode is almost unchanged indicating that the slow relaxation is fixed under a small dc 

field. This observation shows that if this compound is a SMM, it does not have a relaxation 

influenced by quantum effects at 1.8 K and above.  
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Fig. 4.10 Temperature dependence of the in-phase (left) and out-of-phase (right) components of 

the ac magnetic susceptibility for 17 under zero dc field. 
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Fig. 4.11 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase (right) ac 

susceptibility component at different dc fields for 17. 

The magnetic relaxation of 18 has been probed using ac susceptibility measurements as a 

function of the temperature at different frequencies and also at different temperatures as a 

function of the frequency. Clearly this compound exhibits slow relaxation of its magnetisation. In 

zero-dc field (Fig. 4.12,4.13), a strong frequency dependent in-phase and out-of-phase signal are 

observed below 7 K indicating slow relaxation of the magnetisation. The maximum of the out-of-

phase signal was observed at 4.4 K at a frequency of 1500 Hz. This feature (shape and frequency 

dependence) strongly suggests that this compound might be a SMM. After extracting the 

characteristic relaxation time (τ) of the system from both data sets, τ was found to follow an 

Arrhenius law with the characteristic SMM energy gap, ∆, estimated at 30.9 K and the pre-

exponential factor (slow relaxation time), τ0 at 1.3 10-7 s (Fig. 4.14). 
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Fig. 4.12 Temperature dependence of the in-phase (left) and out-of-phase (right) component of 

the ac magnetic susceptibility for 18 under zero dc field. 

 

Fig. 4.13 Frequency dependence of the in-phase (left) and out-of-phase (right) ac susceptibility 

component at different temperatures for 18 under zero dc field. 
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Fig. 4.14 τ versus 1/T plot for 18 obtained from both temperature- and frequency-dependent ac 

susceptibility measurements under zero dc field. 
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A small dc field was applied to see whether relaxation would slow down due to the 

possible presence of a quantum relaxation pathway. The relaxation mode is indeed almost 

unchanged (i.e. the slow relaxation is fixed) under a small dc field (Fig. 4.15). This observation 

shows that the relaxation mechanism of this SMM, at least above 1.8 K, is not influenced by 

quantum effects. 

 

  

Fig. 4.15 Frequency dependence of the in-phase (left) and the out-of-phase (right) ac 

susceptibility components at 3.8 K at different dc fields for 18. 

 
Micro-SQUID measurements were done on single crystal oriented in the easy magnetic direction. 

These data confirm the presence of slow relaxation of the magnetization, as hysteresis is clearly 

seen below 2 K at 0.035 T/s (Fig. 4.16). The coercive field is strongly temperature dependent, 

increasing with decreasing temperature and increasing with increasing field sweep rate as 

expected for the superparamagnetic-like behavior observed for SMM systems. Below 0.5 K, the 

width of the hysteresis loop becomes temperature-independent (about 2 T at 0.035 T/s) indicating 

the presence of a quantum regime where the relaxation of the magnetization occurs by quantum 

tunneling. It is worth mentioning that steps are also visible on the M versus H data that are 

probably the signature of resonant quantum tunneling relaxation often found for SMM 

complexes. In order to obtain a more quantitative assessment of the magnetization relaxation 

dynamics, the time-dependence of the dc magnetization decay was studied (Fig. 4.17).  The 

resulting dc relaxation rate together with the ac data were used to construct an Arrhenius plot 

(Fig. 4.18) leading to an effective energy barrier Ueff of 33.4 K and relaxation time τ of 6.6 x 10-8 

s. 
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Fig. 4.16 Magnetization (M) versus applied dc field (H) hysteresis loops for single crystals of 18 

at the indicated temperatures and a fixed sweep rate of 0.035 T/s. The magnetization is 

normalized to its saturation value Ms. 

 
 
 

 

Figure 4.17. Magnetization (M) vs time decay plots in zero dc field for a single crystal of 18. The 

The magnetization is normalized to its saturation value Ms. 
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Figure 4.18. Arrhenius plot of the relaxation time (τ) versus 1/T for a single crystal of 18 using 

data obtained from ac susceptibility and the dc magnetization decay measurements of Fig. 4.17. 

The dashed line is the fit of data in the thermally activated region to the Arrhenius equation; see 

the text for the fit parameters. 

 
4.2.3 Structure of [Tm4

III
Fe6

III
(µ3-OH)4(mdea)6(mdeaH)2(93)8(PhCO2)4(OH2)2]·4MeC9 (22) 

 

The Fe6Ln4 aggregates 20-22 crystallise in the orthorhombic space group Pca21, with Z = 

4. The molecular structure as a whole has no crystallographic symmetry, but possesses idealised 

C2 symmetry. The structure of the Fe6Tm4 compound 22 will be discussed in detail. The 

structures of the analogous Fe6Ho4 and Fe6Er4 complexes could only refined with the metal atoms 

anisotropic. It is possible that in fact their true crystal symmetry is slightly lower than 

orthorhombic, resulting in unresolved pseudo-merohedral twinning. However, attempts to refine 

the structures in monoclinic space groups as twins proved unsuccessful because of high 

correlation between metal atom parameters. Nonetheless, the three compounds are closely 

isostructural, and at least quasi-isomorphous, as can be seen from comparison of the unit cells 

(Table 4.3). 

The crystal structure of 22 contains a decanuclear [Tm4Fe6(µ3-

OH)4(mdea)6(mdeaH)2(N3)8(PhCO2)4(H2O)2] moiety (Fig. 4.19) and solvating MeCN molecules; 

the latter will not be further discussed. The structural core is shown in Fig. 4.20. Four of the Fe 

centres, Fe(1) – Fe(4), are chelated by doubly-deprotonated (mdea)2- ligands, of which the 

oxygens each form a bridge to a Tm centre. Fe(5) and Fe(6) are each chelated by a mono-

deprotonated (mdeaH)- ligand, of which the deprotonated oxygens bridge to Tm centres while the 
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protonated –OH oxygens coordinate to their respective Fe centres without bridging. Tm(3) and 

Tm(4) are also chelated by (mdea)2- ligands, which each bridge to a Tm and an Fe, in contrast to 

the Fe7Ln3 structures, in which the diethanolamine ligands only chelated Fe centres. Fe(1), Fe(2), 

Tm(1) and Tm(2) together form a central “butterfly” moiety, in which the (µ3-OH)- ligands O(1) 

and O(2) each bridge a FeTm2 triangle. Each of the four Fe··Tm edges is also bridged by an 

alkoxo oxygen from one of the (mdea)2- ligands chelating Fe(1) or Fe(2). Two opposite Fe··Tm 

edges are also bridged by syn, syn-(µ-benzoate) ligands. Each of Tm(1) and Tm(2) is also linked 

by a (µ3-OH)- ligand, O(3) or O(4), respectively, to further Fe and Tm centres.  

 

Fig. 4.19 Molecular structure of [Fe6
IIITm4

III(µ3-OH)4(mdea)6(mdeaH)2(µ-benzoate)4(N3)8 

(OH2)2]. Organic H atoms and minor disorder components omitted for clarity; intramolecular 

hydrogen-bonds are shown as dotted lines. 

 

The edges of these Tm2Fe triangles are each bridged by a deprotonated akoxo oxygen. The two 

“outer” Thuliums, Tm(3) and Tm(4), are then linked by a pair of alkoxo bridges to Fe(5) and 

Fe(6), respectively, completing the core structure. The core can also be thought of as a chain of 

four thuliums, to which the irons are attached by (µ3-OH)- and alkoxo bridges. Since the Tm··Tm 

distances are all similar (3.751-3.867 Å), the two Tm··Tm··Tm angles are 108.6 and 109.0°, and 
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the Tm(3)-Tm(1)-Tm(2)-Tm(4) torsional angle is 67.5°, the geometry of the Tm4 chain could be 

considered as resembling that of the gauche conformation of the butane molecule. The octahedral 

coordination environments of the Fe centres are completed by one azide ligand (Fe(1) and Fe(2)), 

an azide and an aquo ligand (Fe(3) and Fe(4)) or two azides (Fe(5) and Fe(6)). The octa-

coordination of Tm(3) and Tm(4) is each completed by a chelating benzoate ligand, giving a 

geometry intermediate between square-antiprismatic and dodecahedral, while the geometries 

about Tm(1) and Tm(2) approximate more closely to square-antiprismatic. In contrast to the 

Fe7Ln3 structures, the molecular structures of the Fe6Ln4 species are supported by several 

hydrogen bonds, involving the (µ3-OH)- and aquo ligands, and the two protonated (mdeaH)- 

oxygens. 

 

Fig. 4.20 Two views of the structure of the core of [Fe6
IIITm4

III (µ3-OH)4(mdea)6(mdeaH)2(µ-

benzoate)4(N3)8(OH2)2]. Azide and benzoate ligands, and C-H hydrogen atoms, omitted for 

clarity. 
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Table 4.3 Unit cell measurements of compound 20-22. 

 a b c V 

(20)Fe6Ho4  30.3556(15) 21.2322(19) 17.3104(9) 11151.0(10) 

(21)Fe6Er4  30.333(2) 21.2834(12) 17.2716(12) 11150.3(15) 

(22)Fe6Tm4  30.2863(11) 21.2097(8) 17.1584(6) 11021.9(7) 

 
 
 
4.2.4 Magnetic properties of [Ln4

III
Fe6

III
(µ3OH)4(mdea)6(mdeaH)2(93)8(PhCO2)4(H2O)2] 

·4MeC9 (Ln = Er, Ho, Tm) (20-22) 

 

The temperature dependences of the magnetic susceptibilities of compounds 20-22  

were measured on powder samples of compounds in the temperature range 1.8-300 K under an 

applied dc magnetic field of 1000 Oe  (Fig. 4.21).  

 

 

Fig. 4.21 Temperature dependence of the χT product at indicated applied magnetic fields for 20-

22. 

At room temperature the experimental χT values are in good agreement with the expected 

theoretical values of six uncoupled Fe(III) and four Ln(III) values for the compounds given in 

Table 4.4. On decreasing the temperature, the χT product at 1 T continuously decreases from 

room temperature till 1.8 K. The Stark sublevels of the anisotropic Ln (Ho, Er, and Tm) ions are 

thermally depopulated when the temperature is lowered resulting in a decrease of the χT versus T 

plot.[90,102] However, the zero-field splitting (ZFS) of the Fe(III) ions might also be responsible 
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for the thermal decrease of the χT product. Since the magnetically active electrons of Ln(III) ions 

are deeply buried because of the shielding of the filled 5s and 5p orbitals, the magnetic exchange 

between the Ln(III) ions and Fe(III) is very weak.[12] 

The nature of magnetic exchange between the Ln(III) ions or between Ln(III) and Fe(III) 

ions is difficult to conclude due to the sudden decrease of the χT value which is mostly 

dominated by the depopulation of Stark levels at low temperature. The shape of the χT versus T 

curve of 20 at 1000 Oe, (Fig. 4.21) looks similar to that of ferrimagnetic materials. When the 

applied field is not too high (1000 Oe), a local minimum and maximum are observed at low 

temperature in the χT versus T plot. At higher field (10000 Oe), the stronger Zeeman perturbation 

simply leads to a rapid decrease in χT. For all the three complexes, χT plot decreases to lower 

value at low temperature except 20 for which χT starts rising from minimum value of 67.30 cm3 

K mol-1 at 4.90 K to the maximum value of 71.82 cm3 K mol-1 at 2.5 K and finally falls to 69.94 

cm3 K mol-1 at 1.8 K.  

The low-temperature field dependence of the magnetisation was studied at different temperatures. 

In all the cases magnetisation values of compounds 20, 21 and 22 (Fig. 4.22, 4.23 and 4.24) 

smoothly increase to the corresponding values given in Table 4.4. The magnetisation does not 

saturate, which is common for Ln(III) ions due their orbital contribution. This lack of saturation 

suggests the presence of magnetic anisotropy and/or the population of low-lying excited states.[90] 

For complex 20, the magnetisation value at 2 K rapidly increases to 16 µΒ at 0.4 T and then slows 

down in the range of 0.8 T to 1.4 T. After that, it again smoothly increases with increasing dc 

field (Fig. 4.22, inset).  

 

 

         

Fig. 4.22. Field dependence of magnetisation at indicated temperatures for 20. 
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Fig. 4.23. Field dependence of magnetisation at indicated temperatures for compound 21. 

 

The step-like feature slowly vanishes at higher temperatures. This step-like behaviour is most 

probably because of field-induced spin population of the next low-lying excited states.[12]  

Moreover, the M in  µB versus H/T plots at low temperatures (Fig. 4.22, 4.23 and 4.24, right) of 

20, 21 and 22 are not at all superimposed on a single master-curve, further indicating the 

presence of magnetic anisotropy and/or low-lying excited states.[90,93] 

 

          

Fig. 4.24. Field dependence of magnetisation at indicated temperatures for 22. 

 
The frequency dependences of the ac susceptibilities were measured for all the three 

complexes (20, 21 and 22). Only complex 20 shows slow magnetic relaxation below 3 K in the 

frequency range of 0.5-1500 Hz. On increasing frequency, the out-of-phase susceptibility 

increases to higher values without going through any sort of maxima while the in-phase 

susceptibility increases very slowly with decreasing ac frequency (Fig. 4.25), indicating that the 

compound could be a SMM. 
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 Fig. 4.25. Temperature dependence of the in-phase (left) and out-of-phase (right) components of 

the ac magnetic susceptibility, for 20 under zero dc field. 

 

Table 4.4 Comparison of the magnetic data for compounds 20-22. 

Compound  20 

(Ho) 

21 

(Er) 

22 

(Tm) 

Ground state term of Ln ion  4I15/2 
5I8 

3H6 

S 3/2 2 1 

L 6 6 5 

g 6/5 5/4 7/6 

C (cm3Kmol-1) for each Ln ion
[98]

 14.07 11.5 7.15 

χT (cm3Kmol-1) expected value for Ln4Fe6 at RT 82.45 72.13 54.77 

χT (cm3Kmol-1) experimental value for Ln4Fe6 at RT 83.31  67.62 52.77 

χT (cm3Kmol-1) experimental value for Ln4Fe6 (1T) at 1.8 K 17.82  24.63 12.70 

magnetisation (µB) observed at 7 T and 2 K 45.30 49.98 38.20 

 

4.3 Structure and magnetic properties [Er
III

Fe4
III

(µ3-O)(mdea)3(mdeaH)(O2CPh)2(93)4] 

2.5·MeC9 (23) 

A pentanuclear compound [ErFe4
III(µ3-O)(mdea)3(mdeaH)(O2CPh)2(N3)4] was obtained 

by using  -methyldiethanolamine ligand,ErCl3·xH2O, benzoic acid, FeCl3 and NaN3 in a ratio of 

(1:1:1:2:2) in acetonitrile.  

4.3.1 Structure of [Er
III

Fe4
III

(µ4-O)(mdea)3(mdeaH)(O2CPh)2(93)4]·2.5MeC9 (23) 

Complex 23 crystallises in the monoclinic space group P21 with Z = 4; there are therefore 

two independent (but nonetheless closely isostructural) molecules in the asymmetric unit. One 
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molecule of the pentanuclear compound [ErIIIFe4
III(µ3-O)(mdea)3(mdeaH)(O2CPh)2(N3)4] is 

depicted in Fig. 4.26. The structure contains a [ErIIIFe4
III)]11+ core (Fig.4.27) and. charge 

consideration requires four deprotonated  -methyldiethanolamine ligands, two benzoate ligands 

and four azide ligands. Er(1), Fe(1), Fe(2) and Fe(3) are bridged by one (µ4-O)2- ligand, O(1), 

while a µ3-alkoxo oxygen atom O(5) bridges Er(1), Fe(3) and Fe(4). Peripheral ligation is 

provided by two benzoate and four mdea2
¯ ligands. One benzoate group bridges Fe(1) and Fe(2) 

and the second bridges Er(1) and Fe(2) in a syn-syn binding modes. The three (mdea)2
¯ ions each 

chelate Fe(III) centres, Fe(1), Fe(3) and Fe(4), with their deprotonated O atoms forming either 

triple- (O(5)) or double-bridges. The (mdeaH)- ligand chelates Er(1), with its deprotonated 

oxygen bridging to Fe(2) but its protonated –OH coordinating to Er(1) without bridging. One 

azide ligand coordinates in a terminal fashion to each of the Fe(III) ions, completing their 

coordination spheres. The coordination number around Er(1) is eight, with a geometry 

intermediate between Dod and BCTP. The four Fe(III) ions each have octahedral environments: 

[fac-FeO3N3] for Fe(1), [FeO5N] for Fe(2), which unusually is not chelated by a diethanolamine 

ligand, and [cis-FeO4N2] for Fe(3) and Fe(4). 

 

Fig. 4.26 The molecular structure of [ErIIIFe4
III(µ3-O)(mdea)3(mdeaH)(O2CPh)2(N3)4]· 

2.5MeCN (23). Hydrogen atoms are omitted for clarity. Grey, red, dark blue, green and pale blue 

spheres represent C, O, N, Fe and Er, respectively. 
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Fig. 4.27 Structure of the core of [[Fe4
IIIErIII(µ4-O)(mdea)3(mdeaH)(µ-benzoate)2(N3)4]. Azide 

and benzoate ligands, and C-H hydrogen atoms, omitted for clarity. 

 

Table 4.5 Selected bond lengths (A°) of compound 23. 
Er1—O1 2.404(2) Fe2—O6 1.979(2) 

Er1—O4 2.270(3) Fe2—O1 2.102(2) 

Er1—O5 2.490(2) Fe3—O1 1.934(2) 

Er1—O8 2.233(2) Fe3—O5 2.117(2) 

Er1—O9 2.298(2) Fe3—O6 2.012(2) 

Fe1—O1 1.920(2) Fe3—O7 1.962(2) 

Fe1—O4 1.990(2) Fe4—O5 2.042(2) 

Fe1—O3 2.081(2) Fe4—O7 1.989(2) 

Fe2—O3 1.968(2) Fe4—O8 1.958(2) 

 

4.3.2 Magnetic properties of [Er
III

Fe4
III

(µ3-O)(mdea)3(mdeaH)(O2CPh)2(93)4]·2.5MeC9 (23)  

 
Variable temperature dc magnetic susceptibility data were collected for compound 23 

(Fig. 4.28) in the temperature range 300-1.8 K in an applied field of 1000 Oe. At room 

temperature, the χT product value is 27.60 cm3 K mol-1 which is in agreement with the expected 

value for four Fe(III) ions (S = 5/2, g = 2, C = 4.375 cm3 K mol-1) and one Er(III) ion (S = 3/2, L 

= 6, g = 6/5, 4I15/2, C = 11.5 cm3 K mol-1)[93]. On decreasing the temperature, the χT product at 

1000 Oe continuously decreases to reach 11.97 cm3 K mol-1 at 1.8 K indicating the presence of 

antiferromagnetic interactions within the complexes. However, the thermal depopulation of the 
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Stark sublevels of the anisotropic Er ion[90] might be also responsible for the thermal decrease of 

the χT product. Therefore if the χT product decreases with the temperature it is not possible to be 

sure that this behavior is associated with dominant antiferromagnetic interactions within the 

complexes. 
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Fig. 4.28 Temperature dependence of χT product for compound 23. 

 
 The field dependence of the magnetisation at low temperature of compound 23 show that 

the magnetisation smoothly increases with the applied dc field. In this case, there is no clear 

saturation even at 7 T at which it reaches the value of 10.5 µB for 23, suggesting the presence of 

magnetic anisotropy and/or the population of low-lying excited states. Moreover, while plotting 

the M versus H/T at low temperatures (Fig.4.29) the curves are not all superimposed on a single 

master-curve, further indicating the presence of magnetic anisotropy and/or low-lying excited 

states. The magnetisation show a small kink centred at ~2.6 T and then a smooth increase without 

saturation (Fig. 4.30). The shape of magnetisation curves further suggests that low-lying excited 

states are progressively populated with the increase of external field. In addition, the ac 

susceptibility of 23 in zero dc field shows a complete absence of out-of-phase component above 

1.8 K 
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Fig. 4.29 Field dependence of magnetization at indicated temperatures for compound 23.  
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Fig. 4.30 Plot of dM/dH versus H for compound 23. 
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4.4 Conclusion 

 

In this chapter a new group of mixed 3d-4f (Fe-Ln) decanuclear clusters has been 

synthesised from the reactions of Fe(III), benzoic acid, NaN3 and mdeaH2, using acetonitrile or 

simply by methanolysis (scheme 3). Two different series of decanuclear compounds were 

synthesised and structurally and magnetically characterised. The first includes four compounds of 

general formula [LnIII
3FeIII

7(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·6MeCN (16-19). The second 

contains three compounds with the formula [Ln4
IIIFe6

III(µ3-

OH)4(mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2] 4MeCN. Both series were derived from the same 

reaction system. In the case of lanthanides with large radius, decanuclear compounds containing 

three lanthanide and seven iron ions were obtained. In the case of lighter lanthanide, decanuclear 

compounds consisting of six iron and four lanthanide ions were obtained. By changing the metal 

ions to ligand ratio, a new pentanuclear compound 23 was obtained. This finding may suggest 

that there is a correlation between the pentanuclear and the decanuclear compounds. A more 

carefully study of all the crystal structures concludes in possible reaction mechanism which can 

be considered as follow:  

 

                           +Ln/-Fe            +Ln/-Fe 

2 LnFe4     →     Ln2Fe8     →     Ln3Fe7     →     Ln4Fe6 

 

From the magnetic point of view, the first series has some compounds that exhibit 

antiferromagnetic interactions (16,17) whereas others exhibit slow relaxation of magnetisation 

and might be good candidates for SMMs. In the second series, antiferromagnetic interactions 

were found dominant in compounds 20, 21 and 22. However compound 23 shows slow relaxation 

of magnetisation and might be a SMM. Compound 23 exhibits dominant antiferromagnet 

interactions. These products represent new additions to what is still a small, but growing, family 

of such mixed-metal species. While the magnetic properties are complicated by the large spin–

orbit coupling effects of most Ln(III) ions, making the quantitative elucidation of the magnitude 

of the exchange parameters and their resulting ground state description difficult, hysteresis loop 

determinations have established that additional examples of SMMs have been discovered. 

However, lanthanide-containing SMMs still suffer from the disadvantage of fast quantum 

tunnelling of magnetisation (QTM) rates. This represents a diminution of the effective barrier for 
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magnetisation relaxation, and thus the temperature below which the relaxation is blocked and 

below which the complex will function as a SMM is lowered. Nevertheless, the use of 

lanthanides to modulate the magnetic properties of transition metal SMMs is still an interesting 

area that promises much new science as it matures.  

In conclusion, in this chapter a Ln/Fe/MdeaH2/Benzoate system was developed. 

Depending on the solvent, Ln3Fe7 or Ln4Fe6 clusters can be obtained. Some of them show SMM 

behaviour, therefore SMM properties can be tuned upon the solvent selection.  

 

 

 

N

OHHO

[Ln3
IIIFe7

III(µ3-O)2(µ3-OH)2(mdea)7(N3)6(PhCO2)4] . x solvent

[Ln4
IIIFe6

III(µ3-OH)4(mdea)6(mdeaH)2(N3)8(PhCO2)4(H2O)2] . 4CH3CN

[ErIIIFe4
III(µ3-O)4(mdea)3(mdeaH)(N3)4(PhCO2)2] . 2.5CH3CN

MeOH/MeCN

MeCN

MeCN

Ln = Gd (16), Tb (17), Dy (18), Er (19)

Ln = Ho (20), Er (21), Tm (22)

 

Scheme 3 The synthetic route of compounds 16-19, 20-22 and 23. 
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Chapter 5: Summary 

 

This research has produced compounds exhibiting a wide range of structural motifs and 

interesting magnetic properties. The results are divided into two parts, each of which illustrates 

one kind of cluster aggregate. In Chapter 3, 4f aggregates are discussed, whereas Chapter 4 

highlights 3d-4f (Fe-Ln) heterometallic clusters. 

In Chapter 3, a series of six dinuclear [Ln2(mdeaH2)(piv)6] 1-6, five tetranuclear [Ln4(µ3-

OΗ)2(mdeaH)2(piv)8] 7-11 and four tetranuclear [Ln4(mdea)2(mdeaH)2(PhCO2)6] 12-15 

compounds were successfully synthesised, crystallographically characterised and magnetically 

studied. The dinuclear compounds 1-6 and the tetranuclear compound 7-11 derived from the 

same reaction system containing mdeaH2, pivalic acid and Ln(III) ions, but from the structural 

point of view the final product is influenced by the size of the lanthanide centre. For lanthanides 

with a large radius, dinuclear compounds were isolated while for the heavier lanthanides 

tetranuclear compounds are obtained. Each binuclear complex 1-6 is linked by hydrogen bonds to 

four other dimers, resulting in a 2D supramolecular structure. Tetranuclear compounds 7-11 are 

isostructural having a “butterfly” core. On varying co-ligands, for example, by using benzoic 

acid, a series of four isostructural tetranuclear [Ln4(mdea)2(mdeaH)2(PhCO2)6] (12-15) 

possessing a crystallographically different core is obtained. They are more distorted compared to 

compounds 7-11. 

From the magnetic point of view, compounds 2-5 exhibit weak antiferromagnetic 

interactions. The field dependence at low temperature for 2-5 indicate the presence of magnetic 

anisotropy and or the lack of a well-defined ground state suggesting the presence of low-lying 

excited states that might be populated when a field is applied. In contrast, compound 6 displays 

weak ferromagnetic interactions. As Gd(III) has essentially no orbital contribution, it can be 

considered as an isotropic S = 7/2 spin. For dinuclear compounds 1-6 the exchange coupling 

between the lanthanides is very weak to the point of being virtually non-existent. Thus it would 

seem that in complexes of this type, the syn-syn carboxylate bridges do not allow for any 

significant magnetic interactions between the lanthanide centres. As for the tetranuclear 

compounds (7, 9, 10 and 11) coupling between the Ln centres is antiferromagnetic, while for 

compound 8, the field dependence at low temperature indicated the presence of anisotropy. The 

M versus H data reveal at 1.8 K the existence of hysteresis with a very small coercive field (about 
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12 Oe). In zero dc field, frequency dependent in-phase and out-of-phase signals were observed 

below 12 K indicating slow relaxation of the magnetisation. The out-of-phase signals were 

observed at 2.5 K and 1500 Hz. The out-of-phase signal possesses a reasonable intensity in 

comparison to the in-phase signal. The shape and frequency dependence strongly suggests that it 

is a SMM. Fitting the data to an Arrhenius law, the characteristic SMM energy barrier, ∆, was 

estimated to be 6.2 K and the pre-exponential factor, τ0, 2.45x10-5 s. 

Magnetic studies carried out on compounds 12-15 revealed that compounds 12 and 13 

exhibit slow relaxation of magnetisation and show SMM behaviour. In zero dc field, both 

compounds show frequency dependent in-phase and out-of-phase signals below 12 K indicating 

slow relaxation of the magnetisation. In the case of compound 12 there is no out-of-phase signal 

observed even at 1.8 K, which indicates that the blocking temperature of this compound is below 

1.8 K. Compound 13 exhibits two maxima in the out-of-phase susceptibility observed at 2.5 K 

and 10 K at a frequency of 1500 Hz therefore the energy barrier of the slow relaxation is small. 

Fitting the frequency sweeping ac susceptibilities as a function of temperature to the Arrhenius 

law, the SMM energy barrier (∆) and the pre-exponential factor are deduced as follows: process 1 

(> 5 K): ∆1 = 34.5 K, τ0 = 1.86 10-5 s; and process 2 (< 5 K): ∆2 = 5.4 K, τ0 = 8.1 10-3 s. 

However, in compounds 14 and 15, antiferromagntic interactions are dominant. It is noted that 

for 4f systems, hydroxide bridges can mediate weak but significant magnetic interactions, as 

previously found to be the case for a Dy3 triangle, suggesting that future synthetic efforts should 

attempt to incorporate such superexchange pathways. The results suggest that one of the main 

contributions lanthanides make to magnetic behaviour in molecular systems arises from the 

possibility of providing significant anisotropy, which is an especially desirable feature in the 

design of new single molecule magnets.  

In Chapter 4 a new group of mixed 3d-4f (Fe-Ln) decanuclear clusters has been 

synthesised from the reactions of Fe(III), benzoic acid, NaN3 and mdeaH2, using acetonitrile or 

simply through solvolysis in methanol. Two different series of decanuclear compounds were 

synthesised and structurally and magnetically characterised. The first includes four compounds of 

general formula [Ln3
IIIFe7

III(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]6·MeCN (16-19). The second 

series contain three compounds with the formula 

[Ln4Fe6(µ3OH)4(mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]. Both series were derived from the same 

reaction system. In the case of lanthanides with a large radius, decanuclear compounds containing 

three lanthanide and seven iron ions were obtained. In the case of lighter lanthanides, decanuclear 
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compounds consisting of six iron and four lanthanide ions were obtained. By changing the metal-

ion-to-ligand ratio, a new pentanuclear compound 23 was also obtained.  

From the magnetic point of view, the first series of compounds exhibit antiferromagnetic 

interactions (16, 17) whereas others exhibit slow relaxation of magnetisation and might be good 

candidates for SMMs (17, 18). The ac susceptibility measurements were carried out in zero dc 

field. Both in-phase and out-of-phase signals are frequency dependent, suggesting that these 

compounds exhibit slow relaxation and might be SMMs. For compound 18, after extracting the 

characteristic relaxation time (τ) of the system from both data sets, τ was found to follow the 

Arrhenius law with the characteristic SMM energy barrier, ∆, estimated to be 30.9 K, which is 

the highest energy barrier in Fe-Ln complexes and the pre-exponential factor (τ0 ) is 1.3 10-7 s. In 

the second series, antiferromagnetic interactions were found dominant in compounds 20, 21 and 

22. However compound 21 shows slow relaxation of magnetisation and might be a SMM. 

Compound 23 consists of the pentanuclear compound [ErIIIFe4
III(µ3-

O)(mdea)3(mdeaH)(O2CPh)2(N3)4] which exhibits dominant antiferromagnetic interactions. 

These products represent new additions to what is still a very small family of such mixed-metal 

species. While the magnetic properties are complicated by the large spin-orbit coupling effects of 

most Ln(III) ions, making the quantitative elucidation of the exchange parameters and their 

resulting ground state description difficult, hysteresis loop determinations have established that 

additional examples of SMMs have been discovered. However, lanthanide-containing SMMs still 

suffer from the disadvantage of fast quantum tunneling of magnetisation (QTM) rates. This 

represents a diminution of the effective barrier for magnetisation relaxation, and thus the 

temperature below which the relaxation is blocked and below which the complex will function as 

a SMM is lowered.  

Finally, the synthesis of polynuclear metal clusters has been achieved, in principle, by 

controlling the hydrolysis of the metal ion either in an aqueous solution or in a mixture of organic 

solvents in the coexistence of the supported ligands. A finite aggregate of oxygen-bridged metal 

ions is thus trapped within a shell of organic ligands, rather than proceeding to the formation of 

an extended oxide or hydroxide mineral structure. In order to explain in an appropriate way the 

magnetic interactions in these compounds, crystalline materials are the desirable products which 

can be characterised well by X-ray crystallography. It is well known that the solvent, the 

concentration of the reactants, the temperature at which the reaction takes place, the ratio of the 

reactants and the pH of the final solution affect the final product. In order to synthesise high-
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nuclearity metal clusters. a metal to ligand and co-ligand ratio in the system should be carefully 

selected. 
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Chapter 6: Experimental 

 

The reagents used throughout this research were bought from commercial suppliers and were 

used without further purification. 

 
6.1 Preparation of inorganic materials 

 

6.1.1 Preparation of [La2(mdeaH2)(Piv)6] (1) 

 

A solution of  -methyldiethanolamine (0.148 g, 1.25 mmol) in CH3CN (20 ml) was added 

dropwise over 20 minutes to a stirred solution of La(NO3)3.6H2O (0.108g, 0.25 mmol) and 

pivalic acid (0.076 g, 0.75 mmol) in CH3CN (20 ml). The mixture was heated under reflux for 1 

hour, after which it was cooled at room temperature and then allowed to stand undisturbed in a 

sealed vial. Colourless cubic crystals of (3) suitable for X-ray crystallography were obtained 

overnight. The crystals of (3) were maintained in mother liquor for X-ray crystallography or 

collected by filtration, washed with CH3CN and dried; Yield; 50% Anal. Calcd. (found) for (3) 

C40H80N2O16La2 : C, 42.78 (42.66) ; H, 7.18 (6.83); N, 2.49 (2.71)%. IR (KBr): ν (cm-1) = 3425 

(w), 2957 (m), 2925 (w), 2865 (w), 2030 (w) 1606 (vs), 1533 (s), 1484 (s), 1458 (w), 1421 (s), 

1372 (w), 1360 (m), 1228 (s), 1135 (w), 1083 (m), 1028 (w), 974 (w), 941 (w), 894 (m), 803 (w), 

785 (m), 602 (m), 543 (m). 

 
6.1.2 Preparation of [Ce2(mdeaH2)(Piv)6] (2) 

 

This compound was prepared following the preceding procedure using Ce(NO3)3.6H2O (0.110 g, 

0.25 mmol). Yield; 53% Anal. Calcd. (found) for (2) C40H80N2O16Ce2 : C, 42.69 (40.02) ; H, 7.11 

(6.56); N, 2.49 (2.24)%. IR (KBr): ν (cm-1) = 3413 (w), 2954 (m), 2924 (w), 2900 (w), 2865 (w), 

2825 (w), 1609 (vs), 1531 (s), 1484 (s), 1458 (m), 1417 (s), 1372 (m), 1360 (m), 1329 (w), 1294 

(w), 1254 (w),1229 (s) 1137 (w), 1083 (s),1063 (w) 1052 (w), 1029 (m), 975 (m), 941 (w), 903 

(w), 890 (m), 864 (w), 803 (w), 785 (m), 769 (w), 596 (m), 563 (w), 543 (m). 

 
6.1.3 Preparation of [Pr2(mdeaH2)(Piv)6] (3) 

 

This compound was prepared following the preceding procedure using Pr(NO3)3·6H2O (0.108g, 

0.25 mmol). Yield; 54%. Anal. Calcd. (found) for (5) C40H80N2O16Pr2 : C, 42.59 (42.66) ; H, 7.09 
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(6.86); N, 2.48 (2.66)%. IR (KBr): ν (cm-1) = 3429 (w), 2954 (m), 2924 (w), 2902 (w), 2866 (w), 

2824 (w), 1613 (vs), 1531 (s), 1484 (s), 1458 (m), 1416 (s), 1372 (m), 1360 (m), 1327 (m), 1293 

(m), 1230 (s), 1151 (w), 1137 (w), 1084 (s), 1052 (w), 1029 (m), 975 (m), 941 (w), 903 (w), 890 

(m), 864 (w), 803 (w), 785 (m), 770 (w), 596 (m), 564 (w), 543 (m). 

 
6.1.4 Preparation of [9d2(mdeaH2)(Piv)6] (4) 

 
This compound was prepared following the preceding procedure using Nd(NO3)3·6H2O (0.112g, 

0.25 mmol). Yield; 40% Anal. Calcd. (found) for (3) C40H80N2O16Nd2 : C, 42.38 (42.41) ; H, 7.06 

(6.91); N, 2.47 (2.65)%. IR (KBr): ν (cm-1) = 3429 (w), 2954 (m), 2924 (w), 2901 (w), 2865 (w), 

2827 (w) 2065 (w), 1615 (vs), 1583 (w), 1532 (s), 1484 (s), 1426 (m), 1417 (m), 1389 (w), 1372 

(m), 1360 (m), 1325 (w), 1293 (w), 1267 (w), 1151 (w), 1137 (w), 1084 (s), 1052 (w), 1028 (m), 

975 (m), 941 (w), 903 (w), 891 (s), 866 (m), 802 (w), 785 (s), 770 (w), 596 (s), 565 (w), 544 (m). 

 
6.1.5 Preparation of [Sm2(mdeaH2)(Piv)6] (5) 

 

This compound was prepared following the preceding procedure using Sm(NO3)3.6H2O (0.108g, 

0.25 mmol). Yield; 45% Anal. Calcd. (found) for (7) C40H80N2O16Sm2 : C, 41.93 (41.35) ; H, 

6.98 (6.84); N, 2.44 (2.59)%. IR (KBr): ν (cm-1) = 3411 (w), 2956 (m), 2924 (w), 2901 (w), 2865 

(w), 2828 (w), 1625 (vs),1582 (w), 1531 (s), 1484 (s), 1458 (m), 1420 (s),1389 (w), 1373 (m), 

1360 (m), 1322 (w), 1292 (w),1267 (w) 1230 (vs), 1152 (w), 1137 (m), 1084 (vs), 1052 (w), 1029 

(m), 975 (m), 941 (w), 903 (w), 892 (s), 867 (m), 801 (w), 785 (s), 770 (w), 596 (s), 567 (m), 546 

(m), 459 (w), 445 (m). 

 
6.1.6 Preparation of [Gd2(mdeaH2)(Piv)6] (6) 

 

A solution of  -methyldiethanolamine (0.089 g, 0.75 mmol) in CH2Cl2 (20 ml) was added 

dropwise over 20 minutes to a stirred solution of Gd(NO3)3.6H2O (0.113 g, 0.25 mmol) and 

pivalic acid (0.076 g, 0.75 mmol) in CH3CN (20 ml). The mixture was heated under reflux for 1 

hour, after which it was cooled at room temperature. Colourless cubic crystals of (8) suitable for 

X-ray crystallography were obtained after three days. The crystals of (8) were maintained in 

mother liquor for X-ray crystallography or collected by filtration, washed with CH3CN and dried; 

Yield: 30% Anal. Calcd. (found) for (8) C40H80N2O16Gd2 : C, 41.39 (41.25) ; H, 6.89 (6.66); N, 

2.41(2.51) %. IR (KBr): ν (cm-1) = 3420 (w), 2957 (m), 2924 (w), 2901 (w), 2865 (w), 2830 (w), 
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1630 (vs), 1534 (s), 1484 (s), 1459 (m), 1421 (s), 1373 (m), 1360 (m), 1318 (m), 1290 (m), 1229 

(s), 1152 (w), 1137 (w), 1085 (s), 1052 (w), 1028 (m), 976 (m), 942 (w), 894 (s), 868 (m), 786 

(s), 771 (w), 597 (s), 569 (w), 548 (w). 

 
6.1.7 Preparation of [Tb4

III
(µ3-OΗ)2(mdeaH)2(piv)8] (7) 

 
A solution of  -methyldiethanolamine (0.089 g, 0.5 mmol) in MeCN (15 ml) was added 

dropwise over 20 minutes to a stirred solution of Tb(NO3)3.6H2O (0.114 g, 0.25 mmol) and 

pivilic acid (0.101 g, 1.00 mmol) in MeCN (15 ml). The mixture was heated under reflux for 1 

hour, after which it was cooled at room temperature and then allowed to stand undisturbed in a 

sealed vial. Colourless needles of 9 suitable for X-ray crystallography were obtained after 3 days. 

The crystals of 9 were maintained in mother liquor for X-ray crystallography or collected by 

filtration, washed with MeCN and dried; yield 45% Anal. Calcd. (found) for C50H98N2O22Tb4 : C, 

34.98 (35.07); H, 5.71 (5.82); N, 1.63 (1.35)%. IR (KBr): ν (cm-1) = 3414 (w), 2959 (s), 2926 

(w), 2867 (w), 2812 (w), 1566 (vs), 1513 (w), 1485 (s), 1459 (m), 1423 (s), 1375 (m), 1360 (m), 

1321 (w), 1228 (s), 1137 (w), 1085 (s), 1046 (w), 1030 (w), 995 (w), 971 (w), 937 (w), 896 (s), 

808 (m), 792 (m), 774 (w),658(w), 607 (m), 561 (w), 464 (w). 

 
6.1.8 Preparation of [Dy4(µ3-OΗ)2(mdeaH)2(piv)8] (8) 

 
This compound was prepared following the preceding procedure using DyCl3·xH2O (0.068 

g).Yield; 46% Anal. Calcd. (found) for (2) C50H98N2O22Dy4: C, 34.69 (31.13); H, 5.66 (4.88); N, 

1.61(1.83) IR (KBr): (cm-1) ν = 3423 (w), 2960 (s), 2927 (w), 2867 (w), 1566 (vs), 1514 (m), 

1485 (s), 1423 (s), 1376 (m), 1361 (m), 1320 (w), 1327 (m), 1228 (s), 1151 (w), 1137 (w), 1086 

(w), 1077 (w), 1046 (w), 971 (w), 938 (w), 897 (m), 808 (m), 792 (m), 776 (w), 608 (m), 559 

(w), 468(w). 

 
6.1.9 Preparation of [Ho4(µ3-OΗ)2(mdeaH)2(piv)8] (9) 

 
This compound was prepared following the preceding procedure using HoCl3·xH2O (0.098 g) 

Yield; 45% Anal. Calcd (found) for C50H98N2O22Ho4 : C, 34.50 (34.13); H, 5.63 (4.75); N, 1.61 

(1.85)%. IR (KBr): ν (cm-1) = 3434 (m), 2960 (s), 2926 (w), 2866 (w), 1567 (vs), 1544 (w), 1485 

(s), 1459 (m), 1426 (s), 1376 (m), 1360 (m), 1319 (w), 1229 (s), 1137 (w), 1088 (s), 1046 (w), 

971 (w), 937 (w), 898 (s), 809 (m), 792 (m), 658(w), 608 (m), 562 (w), 468 (w). 
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6.1.10 Preparation of [Er4(µ3-OΗ)2(mdeaH)2(piv)8] (10) 

 
This compound was prepared following the preceding procedure using ErCl3·xH2O (0.068 g). 

Yield; 35% Anal. Calcd. (found) for C50H98N2O22Er4 : C, 34.31 (34.87); H, 5.60 (5.81); N, 1.60 

(1.34)%. IR (KBr): ν (cm-1) = 3427 (m), 2960 (s), 2923 (w), 2865 (w), 1568 (vs), 1516 (m), 1485 

(s), 1460 (w), 1422 (s), 1376 (m), 1360 (m), 1318 (w), 1229 (s), 1137 (w), 1089 (s), 1046 (w), 

971 (w), 937 (w), 898 (s), 809 (m), 792 (m), 608 (m), 562 (w), 470 (w).  

 
6.1.11 Preparation of [Tm4(µ3-OΗ)2(mdeaH)2(piv)8] (11) 

 
This compound was prepared following the preceding procedure using TmCl3·6H2O (0.068 g, 

0.25 mmol). Yield; 45% Anal. Calcd. (found) for C50H98N2O22Tm4 : C, 34.18 (34.14); H, 5.58 

(5.38); N, 1.59 (1.82)%. IR (KBr): ν (cm-1) = 3412 (m), 2960 (s), 2926 (w), 2866 (w), 1570 (vs), 

1546 (w),1518(w) 1485 (s), 1459 (m), 1432 (s), 1376 (m), 1360 (m), 1318 (w), 1229 (s), 1137 

(w), 1089 (s), 1064(w),1046 (w), 971 (w), 938 (w), 899 (s), 810 (m), 792 (m), 683(w), 608 (m), 

563 (w), 472 (w). 

 
6.1.12 Preparation of [Tb4(mdea)2(mdeaH)2(PhCO2)4.5(9O3)1.5] (12) 

 

A solution of  -methyldiethanolamine (0.148 g, 1.25 mmol) in MeCN (20 ml) was added 

dropwise over 20 minutes to a stirred solution of Tb(NO3)3.6H2O (0.114 g, 0.25 mmol) and 

benzoic acid (0.030 g, 0.25 mmol) in MeCN (20 ml). The resulting mixture was stirred at room 

temperature for more 30 minutes, after which it was filtered and allowed to stand undisturbed in a 

sealed vial. Colourless needles of (12) were obtained after 3 days. The crystals of (12) were 

washed with MeCN and dried. Yield; 45% Anal. Calcd. (found) for C51.5H72.5N5.5O23.5Tb4 

(corresponds to crystallographic formula + 2H2O) C, 34.74 (34.53); H, 4.10 (4.00); N, 4.33 

(4.35)% IR (KBr): (cm-1) ν = 3421 (w), 2857 (s), 1601 (vs), 1560 (vs), 1494 (m), 1423 (s), 1461 

(w), 1415 (s), 1290 (m), 1203 (w), 1175 (w), 1080 (s), 1034 (m), 1003 (w), 976 (m), 909 (w), 893 

(m), 816 (w), 719 (s), 686 (m), 672 (w), 565 (m), 435(w). 

 

6.1.13 Preparation of [Dy4(mdea)2(mdeaH)2(PhCO2)6]·solv (13) 

 

This compound was prepared following the preceding procedure using DyCl3·xH2O (0.070 g). 

Yield; 47% Anal. Calcd. (found) for (13) C66H92N6O25Dy4 (corresponds to 
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[Dy4(mdea)2(mdeaH)2(PhCO2)6]·2MeCN·5H2O): C, 39.25 (39.11); H, 4.59 (4.36); N, 4.16 

(4.36)%. IR (KBr): (cm-1) ν = 3423 (w), 2960 (s), 2927 (w), 2867 (w), 1566 (vs), 1514 (m), 1485 

(s), 1423 (s), 1376 (m), 1361 (m), 1320 (w), 1327 (m), 1228 (s), 1151 (w), 1137 (w), 1086 (w), 

1077 (w), 1046 (w), 971 (w), 938 (w), 897 (m), 808 (m), 792 (m), 776 (w), 608 (m), 559 (w), 

468(w). 

 

6.1.14 Preparation of [Ho4(mdea)2(mdeaH)2(PhCO2)4.5(9O3)1.5] (14) 

 

This compound was prepared following the preceding procedure using ErCl3·xH2O (0.067 g). 

Yield; 40%. Anal. Calcd. (found) for (14) C51.5H70.5N5.5O22.5Ho4: C, 34.63 (34.52); H, 3.98 

(4.17); N, 4.31 (4.73)% IR (KBr): (cm-1) ν = 3374 (w), 3065(w), 2858 (s), 1602 (vs), 1562 (s), 

1494 (m), 1415 (s), 1289 (s), 1203 (w), 1175 (m), 1138 (w), 1081 (s), 1034 (m), 1003 (m), 976 

(m), 910 (w), 894 (m), 855 (m), 720 (s), 687(m), 673 (m), 568 (w). 

 
6.1.15 Preparation of [Er4(mdea)2(mdeaH)2(PhCO2)6]·0.3(mdeaH2)·1.7MeC9·1.4H2O (15) 

 

This compound was prepared following the preceding procedure using ErCl3·xH2O (0.067 g). 

Yield; 35%. Anal. Calcd. (found) for (15) C63.5H88.3N4.3O24.8Er4 (corresponds to 

[Er4(mdea)2(mdeaH)2(PhCO2)6]·0.3(mdeaH2)·4.2H2O): C, 38.56 (38.37); H, 4.50 (4.55); N, 3.05 

(2.97)% IR (KBr): (cm-1) ν = 3421 (w), 3065(w), 2851 (s), 1598 (vs), 1543 (s), 1493 (m), 1416 

(s), 1313 (w), 1204 (w), 1174 (m), 1139 (w), 1086 (s), 1068 (w), 1048 (w), 1024 (w), 1003 (m), 

977 (m), 911 (w), 894 (m), 856 (m), 719 (s), 686(m), 673 (m), 568 (w). 

 
6.1.16 Preparation of [Gd3Fe7(µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4]·5MeC9 (16) 

 

A solution of  -methyldiethanolamine (0.148 g, 1.25 mmol) in MeCN (20 ml) was added dropwise 

over 20 minutes to a stirred solution of Gd(NO3).6H2O (0.113 g, 0.25 mmol), benzoic acid (0.030 

g, 0.25mmol), FeCl3 (0.040 g, 0.25 mmol) and NaN3 (0.051 g,0.75 mmol) in MeCN (20 ml). The 

mixture was heated under reflux for 1 hour, after which it was cooled to room temperature and then 

allowed to stand undisturbed in sealed vial. Orange needles of (16) suitable for X-ray 

crystallography were obtained after 15 days. The crystals of (16) were maintained in mother liquor 

for X-ray crystallography or collected by filtration, washed with MeCN and dried. Yield; 40%. 

Anal. Calcd. (found) for C63H105Gd3Fe7N25O29 (corresponds to [Gd3Fe7(µ4-O)2(µ3-

OH)2(N3)6(mdea)7(PhCO2)4]·3H2O) C, 29.80 (29.91); H, 4.18 (3.92); N, 13.79 (13.79)%. IR (KBr): 
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ν (cm-1) = 3424 (w), 2856 (w), 2059 (vs), 1625 (m), 1597 (m), 1547 (m), 1447 (w), 1399 (m), 1084 

(s), 1026 (w), 1000 (w), 998 (m), 721 (m), 650(w), 577 (w), 490 (w). 

 

6.1.17 Preparation of [Tb3Fe7(µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4]·5MeC9 (17) 

 

This compound was prepared following the preceding procedure using Tb(NO3)3·6H2O (0.114g, 

0.25mmol). Yield; 45% Anal. Calcd. (found) for C67H105Tb3Fe7N27O26 (corresponds to [Tb3Fe7(µ4-

O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·2MeCN)  C, 31.28 (31.63); H, 4.11 (3.81); N, 14.70 (14.35)%. 

IR (KBr): ν (cm-1) = 3421 (w), 2861 (m), 2059 (vs), 1593 (s), 1546 (vs), 1458 (w), 1400 (s), 1332 

(w), 1287(w), 1261 (w), 1144 (w), 1086 (s), 1026 (m), 999 (m), 897 (m), 721 (s), 654(w), 578 (m), 

491 (w) 

6.1.18 Preparation of [Dy3Fe7(µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4]·2H2O·7MeOH (18) 

 

This compound was prepared following the preceding procedure using DyCl3·xH2O (0.070 g) and 

methanol as a solvent. Yield; 40%. Anal. Calcd. (found) for C63H103Dy3Fe7N25O28 (corresponds to 

[Dy3Fe7(µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·2H2O) C, 29.82 (29.97); H, 4.09 (4.02); N, 13.80 

(13.79)%. IR (KBr): ν (cm-1) = 3421 (w), 2926 (w), 2058 (vs), 1594 (w), 1548 (m), 1400 (s), 1259 

(w), 1088 (m), 1026 (w), 1000 (w), 997 (w), 720 (m), 655(w), 578 (w), 488 (w). 

 

6.1.19 Preparation of [Er3
III

Fe7
III

 (µ4-O)2(µ3-OH)2(93)6(mdea)7(PhCO2)4]·5MeOH (19) 

 

The compound was prepared following by preceeding procedure using ErCl3·xH2O (0.067 g). 

Yield; 44%. Anal. Calcd. (found) for C71H135Er3Fe7N25O38 (corresponds to [Er3Fe7(µ4-O)2(µ3-

OH)2(N3)6(mdea)7(PhCO2)4]·8MeOH·4H2O)  C, 30.82 (29.73); H, 4.65 (3.83); N, 12.84 (11.95)%. 

IR (KBr): ν (cm-1) = 3438 (w), 2921 (w), 2856 (w), 2059 (vs), 1593 (m), 1548 (s), 1455 (w), 1400 

(m), 1287 (w), 1087 (m), 1026 (w), 1000 (w), 897(m),721 (m), 659(w), 579 (w), 493 (w). 

 
6.1.20 Preparation of [Ho4Fe6(µ3-OH)4 (mdea)6(mdeaH)2(93)8(PhCO2)4(OH2)2]·4MeC9  (20) 

 
A solution of  -methyldiethanolamine (0.148 g, 1.25 mmol) in MeCN (20 ml) was added drop 

wise over 20 minutes to a stirred solution of HoCl3·xH2O (0.067 g), benzoic acid (0.030 g, 0.25 

mmol), FeCl3 (0.040 g, 0.25 mmol) and NaN3 (0.051g,0.75 mmol) in MeCN (20 ml). The 

mixture was heated under reflux for 2 hours, after which it was cooled to room temperature and 

then allowed to stand undisturbed in a sealed vial. Orange needles of (22) suitable for X-ray 
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crystallography were obtained after 15 days. The crystals of (22) were maintained in mother 

liquor for X-ray crystallography or collected by filtration, washed with MeCN and dried. Yield; 

45%. Anal. Calcd. (found) for C76H116Fe6Ho4N36O30 C, 30.31 (29.95); H, 3.88 (4.23); N, 16.75 

(15.69)%. IR (KBr): ν (cm-1) = 3425 (w), 2862 (w), 2066 (vs), 1620(w), 1597 (s), 1557 (s), 1493 

(w), 1446 (w), 1391 (s), 1337 (w), 1144 (w), 1084 (s), 1025 (m), 997 (m), 899 (m), 721 (m), 

675(w), 579 (w), 510 (w), 464 (w). 

 
6.1.21 Preparation of [Er4Fe6(µ3-OH)4 (mdea)6(mdeaH)2(93)8(PhCO2)4(OH2)2]·4MeC9 (21) 

 

This compound was prepared following the preceding procedure using ErCl3·xH2O (0.067 g). 

Yield; 43%. Anal. Calcd. (found) for C72H110Er4Fe6N34O30 (corresponds to [Er4Fe6(µ3-OH)4 

(mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·2MeCN)  C, 29.45 (29.26); H, 3.78 (3.12); N, 16.22 

(16.55)%. IR (KBr): ν (cm-1) = 3441 (w), 2858 (w), 2066 (vs), 1597 (s), 1557 (s), 1492 (w), 1446 

(w), 1391 (s), 1286 (w), 1142 (w), 1085 (s), 1025 (w), 997 (m), 899 (m), 721 (m), 675(w), 578 (w), 

510 (w), 464 (w). 

 
6.1.22 Preparation of [Tm4Fe6(µ3-OH)4 (mdea)6(mdeaH)2(93)8(PhCO2)4(OH2)2]·4MeC9  (22) 

 

This compound was prepared following the preceding procedure using TmCl3·6H2O (0.067 g, 0.25 

mmol). Yield; 45%. Anal. Calcd. (found) for C72H110Tm4Fe6N34O30 (corresponds to [Tm4Fe6(µ3-

OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·2MeCN)    C, 29.39 (29.67); H, 3.77 (4.15); N, 

16.18 (15.71)%. IR (KBr): ν (cm-1) = 3441 (w), 2858 (w), 2066 (vs), 1597 (s), 1557 (s), 1492 (w), 

1446 (w), 1391 (s), 1286 (w), 1142 (w), 1085 (s), 1025 (w), 997 (m), 899 (m), 721 (m), 675(w), 

578 (w), 510 (w), 464 (w). 

 

6.1.23 Preparation of [ErFe4(µ4-O)(mdea)3(mdeaH)(O2CPh)2(93)4]·2.5MeC9 (23)  

 
A solution of  -methyldiethanolamine (0.030 g, 0.025 mmol) in MeCN (20 ml) was added 

dropwise over 20 minutes to a stirred solution of ErCl3·xH2O (0.067 g), benzoic acid (0.030 g, 0.25 

mmol), FeCl3 (0.080 g 0.5 mmol) and NaN3 (0.034 g, 0.5 mmol) in MeCN (20 ml). The mixture 

was heated under reflux for 2 hours, after which it was cooled to room temperature and then 

allowed to stand undisturbed in a sealed vial. Orange needles of (26) suitable for X-ray 

crystallography were obtained after 15 days. The crystals of (26) were maintained in mother liquor 
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for X-ray crystallography or collected by filtration, washed with MeCN and dried. Yield; 45% 

C38H65N18O15ErFe4 (corresponds to [ErFe4(µ4-O)(mdea)3(mdeaH)(O2CPh)2(N3)4]·2MeCN 

·2H2O) C, 32.49 (32.91); H, 4.66 (4.75); N, 17.95 (17.43)%. IR (KBr): ν (cm-1) = 3443 (w), 2858 

(w), 2059 (vs), 1594 (s), 1548 (s), 1491 (w), 1447 (w), 1400 (s), 1288 (w), 1261 (w), 1083 (s), 

1026 (w), 1000 (m), 898 (m), 721 (m), 660(w), 579 (w), 493 (w), 464 (w). 
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Chapter 7: Methods of characterization 

 

7.1: FT-IR spectroscopy 

 

Infra-red characterization were performed using a Perkin Elmer Sperctrum One spectrometer in 

the region 400cm-1 to 4000 cm-1in transmission mode using 8 scans to resolution of 4 cm-1. 

Spectra were obtained to provide a fingerprint of the sample. The sample was prepared by mixing 

the sample with KBr in a ca. 1:50 ratio. A disc of the sample, 1 cm in diameter, was obtained by 

applying 10 tones under vaccum. 

 

7.2: Elemental analysis 

 

The amounts of carbon, hydrogen and nitrogen in most samples were quantitatively analyzed 

using an Elementar Vario El analyzer. 

 

7.3: X-ray powder differation 

 

The purity of crystalline samples was checked using a STOE Stadi P X-ray powder 

diffractometer having a position sensitive detector and a germanium monochromator. 

Measurement were performed at room temperature using Mo-Kαʹ radiation (λ = 1.78897 Å). The 

diffractometer was calibrated using silicon. The data was processed using the software program 

WinXPow[112]. Samples were finely ground and fixed between two plastic sheets with 

grease(Lithylen®). 

 

7.4: X-ray crystallography 

 

Single crystal structural characterizations have been performed using Bruker SMART Apex CCD 

and Stoe IPDS II area detector diffractometer. All data sets were measured using graphite 

monochromated Mo-Kαʹ radiation[113]. Structures were solved using direct methods, followed by 

full-matrix least-squares refinements against Fₒ2 using the SHELXTL software package[113]. The 

equations for the R-factor and goodness of fit S used in the structure refinement are: 

wR2 = {Σ [w (Fₒ2-Fc
2)2] / Σ [w (Fₒ2)2 
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S = {Σ [w (Fₒ2-Fc
2)2] / (n-p)}1/2 

 

R1 = {Σ ||Fₒ|-|Fc||} / {Σ |Fₒ|} 

Where Fₒ and Fc are the observed and calculated structure factors for each reflection, while n and 

p are the number of unique reflections (omitting systematic absences) and the total number of 

parameters, respectively. The weighting factor, w, is defined as: 

w
-1 = {σ2(Fₒ2) + (αP)2 + bP} 

where P is; 

max(Fₒ2, 0) + 2 Fc
2 / 3 

wR2 is the function minimized during the refinement process, and all reflections (except those 

having large negative value or that have been flagged manually using OMIT as ‘bad reflection”) 

were used in refinement, and for the calculation of S. 

 
7.5: Magnetic measurements 

 

magnetic susecptibility measurements were obtained using a Quantum Design MPMS-XL 

SQUID susceptometer with an external magnetic field of 7 T. The measurements were performed 

on polycrystalline samples. The magnetic data was corrected for the diamagnetic compound due 

to the sample holder. The diamagnetic contribution for the sample was calculated using Pascal’s 

constants[114]. 

 

 

 

 

 

 

 

 

 

 



 
 

  96  

Chapter 8: Crystallographic data 

 

The crystal data of structures reported in this thesis are presented here. More detailed information 

can be found in the files on the accompanying CD. 

 

Table 8.01 Crystallographic measurements 

 
Compounds 3 6 

Formula C40H80N2O16Pr2 C40H80N2O16Gd2 

Molar mass g/mol 1126.88 1159.56 

Crystal system monoclinic monoclinic 

Space group P21/n P21/n 

a/Å 12.2691(5) 12.1407(5) 

b/Å 13.4328(6) 13.5137(5) 

c/Å 15.5525(7) 15.4281(6) 

α/º 90 90 

β/º 96.366 (1) 96.708 (1) 

γ/º 90 90 

V/ Å3 2547.53 (19) 2513.90(17) 

Z 2 2 

T/K 100 100 

F(000) 1160 1180 

ρcalcd (g/cm3) 1.469 1.532 

µ(Mo-Kα)/mm-1 1.952 2.679 

Diffractometer Bruker SMART 

Apex 

Bruker SMART 

Apex 

Data measured 20962 17054 

unique reflections 5846 5689 

Rint 0.0194 0.0262 

Data with [I>2σ(I)] 5036 4299 

parameters/restraints 304/62 304/68 

wR2 (all data) 0.0542 0.0573 

R1 [I>2σ(I)] 0.0207 0.0235 

GOF on F2 1.071 1.014 

largest residuals (e Å–3) +1.10/- 0.47 +1.16/- 0.55 
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Table 8.01 Crystallographic measurements (continued) 
 
 
Compounds 7 8 9 10 11 

Formula C50H98N2O22Tb4 C50H98Dy4N2O22 C50H98Ho4N2O22 C50H98Er4N2O22 C50H98N2O22Tm4 

Molar mass g/mol 1715.01 1734.38 1739.03 1748.34 1755.02 

Crystal system triclinic triclinic triclinic triclinic triclinic 

Space group P-1 P-1 P-1 P-1 P-1 

Colour colourless block colourless block colourless block colourless block colourless block 

a/Å 11.690(2) 11.6333(6) 11.5997(9) 11.5786(6) 11.5849(13) 

b/Å 12.590(3) 12.5247(7) 12.4766(10) 12.4649(7) 12.4410(14) 

c/Å 12.785(4) 12.7437(7) 12.7131(10) 12.7065(7) 12.6697(15) 

α/º 109.679(19) 109.759(1) 109.529(1) 109.510(1) 108.982(2) 

β/º 98.642(19) 98.639(1) 98.669(1) 98.647(1) 98.675(2) 

γ/º 102.994(17) 102.900(1) 102.859(1) 102.853(1) 102.897(2) 

V/ Å3 1673.2(7) 1651.0(3) 1639.0(2) 1634.14(15) 1633.20(3) 

Z 1 1 1 1 1 

T/K 150 100 100 100 100 

F(000) 848 852 856 860 864 

ρcalcd (g/cm3) 1.702 1.739 1.7613 1.7765 1.7843 

µ(Mo-Kα)/mm-1 4.243 4.542 4.84 5.152 5.449 

Diffractometer Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART 

Apex 

Data measured 9504 13701 11391 11442 11085 

unique reflections 5913 7209 6537 7106 6917 

Rint 0.0890 0.0275 0.0339 0.0282 0.0347 

Data with [I>2σ(I)] 3005 5848 4724 5660 5097 

parameters/restraints 349/87 349/87 361/90 379/92 358/3 

wR2 (all data) 0.1488 0.1024 0.1129 0.1034 0.0996 

R1 [I>2σ(I)] 0.0693 0.0426 0.0483 0.0430 0.0409 

GOF on F2 0.959 1.057 1.014 1.025 1.009 

largest residuals (e Å-3) +0.97/-1.95 +2.71/-0.82 +1.60/-0.95 +2.51/-0.86 +2.15/-0.94 
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Table 8.01 Crystallographic measurements (continued) 
 
 

Compounds            13a            13b            13c            14 

Formula C74H88Dy4N8O20 C68.9H90.8Dy4N7O22 C68H85Dy4N7O20 C51.5H68.5Ho4N5.5O21.5 

Molar mass g/mol 2019.09 2019.09 2019.09 1768.03 

Crystal system monoclinic monoclinic monoclinic monoclinic 

Space group P21/n  P21/n  P21/c  P21/c 

Colour colourless block colourless block colourless block colourless block 

a/Å 15.2067(11) 18.9483(6) 18.5279(15) 19.0132(8) 

b/Å 29.4721(16) 15.4400(5) 20.4829(17) 17.2017(7) 

c/Å 19.6601(13) 25.3766(8) 21.2615(18) 21.1723(9) 

α/º 90 90 90 90 

β/º 107.091(5) 95.164(1) 108.582(1) 114.54(1) 

γ/º 90 90 90 90 

V/ Å3 8422.0(9) 7394.1(4) 7666.8(11) 6299.11(5) 

Z 4 4 4 4 

T/K 150 100 100 100 

F(000) 4048 3973 3864 3424 

ρcalcd (g/cm3) 1.624 1.814 1.707 1.865 

µ(Mo-Kα)/mm-1 3.577 4.074 3.925 5.045 

Diffractometer Stoe IPDS II Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART 

Apex 

Data measured 53847 54193 50713 41371 

unique reflections 17813 16108 31862 13222 

Rint 0.0914 0.0312 0.0579 0.0434 

Data with [I>2σ(I)] 12486 14480 22778 10368 

parameters/restraints 817/2 817/2 847/45 752/33 

wR2 (all data) 0.2901 0.0762 0.1631 0.0951 

R1 [I>2σ(I)] 0.1079 0.0330 0.0616 0.0437 

GOF on F2 1.533 1.085 1.071 1.067 

largest residuals (e Å–3) +2.20/-2.44 +1.70/-0.76 +2.38/-1.29 +1.94/-1.47 
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Table 8.01 Crystallographic measurements (continued) 
 
 

Compounds         15 18 22 23 

Formula C68.90H90.80Er4N7O22 C70H131Dy3Fe7N25O35 C76H116Tm4Fe6N36O30 C39H62.50N18.50O13ErFe4 

Molar mass g/mol 2038.13  2761.45 3024.87 1389.23 

Crystal system monoclinic triclinic Orthorhombic triclinic  

Space group P21/n  P-1 Pca21 P-1 

Colour colourless block Orange red Orange red Orange red 

a/Å 18.9241(9) 14.2482(17) 30.2863(11) 10.9935(8) 

b/Å 15.3619(9) 17.446(2) 21.2097(8) 27.9038(20) 

c/Å 25.3848(8) 21.224(2) 17.1584(6) 17.9521(13) 

α/º 109.510(1) 90.430(2) 90 90 

β/º 98.647(1) 92.445(2) 90 97.601(1) 

γ/º 102.853(1) 98.504(2) 90 90 

V/ Å3 7347.41(9) 5212.4(11) 11021.9(7) 5458.6(7) 

Z 4 2 4 4 

T/K 100 100 100 100 

F(000) 4005 2772 5984 2808 

ρcalcd (g/cm3) 1.842 1.759 1.823 1.690 

µ(Mo-Kα)/mm-1 4.600 3.152 4.034 3.615 

Diffractometer Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART 

Apex 

Bruker SMART Apex 

Data measured 50604 44477 70705 41620 

unique reflections 16703 24716 22489 24096 

Rint 0.0627 0.0389 0.0378 0.0305 

Data with [I>2σ(I)] 13091 19922 19775 23066 

parameters/restraints 841/5 1213/7 1451/121 1342/9 

wR2 (all data) 0.1013 0.1753 0.0754 0.0633 

R1 [I>2σ(I)] 0.0430 0.0551 0.0316 0.0249 

GOF on F2 1.038 1.071 1.020 0.994 

largest residuals (e Å–

3) 

+1.88/-2.14 +2.891/-1.56 +1.29/-0.73 +0.90/-0.59 
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Appendix A: List of inorganic compounds 

 

1 [La2
III(mdeaH2)(piv)6] 

2 [Ce2
III(mdeaH2)(piv)6] 

3 [Pr2
III(mdeaH2)(piv)6] 

4 [Nd2
III(mdeaH2)(piv)6] 

5 [Sm2
III(mdeaH2)(piv)6] 

6 [Gd2
III(mdeaH2)(piv)6] 

7 [Tb4
III(µ3-OΗ)2(mdeaH)2(piv)8]  

8 [Dy4
III(µ3-OΗ)2(mdeaH)2(piv)8]  

9 [Ho4
III(µ3-OΗ)2(mdeaH)2(piv)8] 

10 [Er4
III(µ3-OΗ)2(mdeaH)2(piv)8] 

11 [Tm4
III(µ3-OΗ)2(mdeaH)2(piv)8] 

12 [Tb4
III(mdea)2(mdeaH)2(PhCO2)4.5(NO3)1.5]  

13a [Dy4
III(mdea)2(mdeaH)2(PhCO2)6]·4MeCN (13a) 

13b  [Dy4
III(mdea)2(mdeaH)2(PhCO2)6]·0.3mdeaH2·1.7MeCN·1.4H2O  

13c  [Dy4
III(mdea)2(mdeaH)2(PhCO2)6]·3MeCN  

14 [Ho4
III(mdea)2(mdeaH)2(PhCO2)4.5(NO3)1.5]  

15 [Er4
III(mdea)2(mdeaH)2(PhCO2)6]·0.3mdeaH2·1.7MeCN·1.4H2O   

16 [Gd3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeCN  

17  [Tb3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeCN  

18  [Dy3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·7MeOH  

19  [Er3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4]·5MeOH  

20  [Ho4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN  

21  [Er4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN  

22  [Tm4
IIIFe6

III(µ3-OH)4 (mdea)6(mdeaH)2(N3)8(PhCO2)4(OH2)2]·4MeCN  

23 [ErIIIFe4
III(µ3-O)(Mdea)3(MdeaH)(O2CPh)2(N3)4] 

 

Appendix B:List of organic compounds 

 
 -methyldiethanolamine 
Pivalic acid 
Benzoic acid 
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Appendix C: List of abbreviations 
 

mdeaH2     -methyldiethanolamine 

pivH     Pivalic acid 

PhCO2H    Benzoic acid 

Me     Methyl 

MeOH     Methanol 

MeCN     Acetonitrile 

mg     milligram 

ml     milliliter 

mmol     millimole 

IR     infrared 

SQUID    super-conducting quantum interference device 

ac     alternating current 

dc     direct current 

D     zero-field splitting parameter 

K     Kelvin 

Oe     Øersted 

H     magnetic field 

Hz     Hertz 

M     magnetisation 

T     temperature 

T     tesla 

HS     high spin 

Tc     critical temperature 

h     hour 

χ     molar magnetic susceptibility 

χ’     in-phase magnetic susceptibility 

χ”     out-of-phase magnetic susceptibility 

µB     bohr magneton 

Ueff     effective energy barrier 

cm3     cubic centrimeters 
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SMM     Single Molecule Magnet 

Ln     Lanthanide 
 

 

Appendix D: List of figures 

 

Fig. 1.1 The alignment of magnetic moments (a) ferromagnets, 

 (b) antiferromagnets and (c) for ferrimagnets.                 5 

Fig. 1.2  (a) The plot of χT and (b) the plot of 1/χ as a function of  

Temperature for paramagnetic, ferromagnetic, antiferromagnetic and  

ferrimagnetic materials.                    7 

Fig. 1.3 The plot of magnetic susceptibility as a function of temperature for  

paramagnetic, ferromagnetic, antiferromagnetic materials.                7 

Fig. 1.4 Structure of [Mn12O12(CH3COO)16(H2O)4] ·2CH3COOH ·4H2O.[8]  

Colour code: blue Mn3+, green Mn4+ red oxygen, grey carbon and  

white hydrogen.                     9 

Fig. 1.5  Energy diagram showing the relative positions of the zero-field split  

MS levels of an ST = 10 system, and the barrier mediating between  

the MS = + 10 and the MS = – 10 states                10 

Fig. 1.6 The magnetic hysteresis loops of Mn12-Ac are shown at the indicated 

 temperatures.[16]                   10 

Fig.1.7  An example of ac susceptibility measurements as a function of  

temperature at different frequencies, and as a function of  

frequency at different temperatures (a, c) in-phase and (b, d)  

out-of-phase signals.                   11 

Fig. 1.8 An example of τ versus 1/T plot obtained from both temperature  

and frequency dependent ac susceptibility measurements under 

zero dc field.                    12 

Fig. 1.9 [Fe8O2(OH)12(tacn)6]
8+ (left). Hydrogen atoms are omitted for clarity  

and tacn = 1,4,7-triazacyclononane. Magnetic studies (right).             15 

Fig. 1.10 [Fe19(metheidi)10(OH)4O6(H2O)12](NO3) (left). Hydrogen atoms  

are omitted for clarity and metheidi =  -(1-Hydroxymethylethyl) 

iminodiacetic acid. Magnetic studies (right)                16 
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Fig. 1.11 [Fe4(OMe)6(dpm)6] (left). Hydrogen atoms are omitted for clarity  

and dpm = dipivaloylmethane. Magnetic studies (right).              17 

Fig.1.12 TBA[(Pc)2Tb0.02Y0.98] (left). Hydrogen atoms are omitted for clarity  

and Pc = phthalocyanine. Magnetic studies (right).               19 

Fig.1.13 [Dy3(µ3-OH)2L3Cl(H2O)5]Cl5·19H2O (left). Hydrogen atoms are omitted  

for clarity. Magnetic studies (right).                           19 

Fig. 1.14 [Fe2Ho2(OH)2(teaH)2(O2CPh)6] (left). Hydrogen atoms are omitted  

for clarity  and tea = triethanolamine. Magnetic studies were carried 

 out for Dy analogue (right).                  21 

Fig. 1.15 Structure of [Fe(bpca)(µ-bpca)Dy(NO3)4] (left). Hydrogen atoms  

are omitted for clarity and bpca = bis(2-pyridylcarbonylamine). 

 Magnetic studies (right).                  22 

Fig. 1.16 Coordination modes of ligand mdeaH2  (mode I[81–85, 87, 90, 91], mode II[88],  

mode III[86, 92], mode IV[80], mode V[93], mode VI[81, 87, 89], mode VII[89],  

 mode VIII[89] mode IX[89, 94], mode X[92])                 23 

Fig. 1.17 Common coordination modes of the carboxylate group.              24 

Fig. 3.1 Crystal structure of [Pr2(mdeaH2)2(piv)6] (3). Methyl groups corresponding 

 to the minor disorder component of the two pivalate ligands and all H  

atoms are omitted for clarity. Grey, red, blue, and green spheres  

represent C,  O, N and Pr, respectively.                                                   29 

Fig. 3.2 X-ray powder diffraction: (a) calculated for 3 based on the single crystal 

X-ray structure; (b) measured for complex 2.               30 

Fig. 3.3 The 2D supramolecular structure for 3 showing the hydrogen bonds in  

 red dotted lines.                   30 

Fig. 3.4 Temperature dependence of χT product for 1–6 at 1000 Oe.             32 

Fig. 3.5 Temperature dependence of the χT product for compound (Gd2) 6 at  

1000 Oe; Inset: the fit of the Brillouin function to the M versus H/T  

data of compound 6. The red solid line is the best fit; the dots are the  

experimental data                   33 

Fig. 3.6 Molecular structure of 8. lavender, red, blue and grey spheres represent  

Dy, O, N and C, respectively. All H atoms are omitted for clarity.              35 

Fig. 3.7 The structure of the [LnΙΙΙ
4(µ3-OΗ)2]

10+ butterfly core in 8, which lies  
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on an inversion center. Dy(1) and Dy(1´) represent “body” sites and Dy(2) 

and Dy(2´) “wingtip” sites.                  37 

Fig. 3.8 Temperature dependence of the χT products for compounds  

7–11 at 1000 Oe.                   38 

Fig. 3.9 Field dependence of magnetisation at indicated temperatures  

for compound 7.                   39 

Fig. 3.10 Field dependence of the magnetisation at indicated temperatures for 8.            39 

Fig. 3.11 Field dependence of magnetisation at indicated temperatures for 

 compound 9.                       39 

Fig. 3.12 Field dependence of magnetisation at indicated temperatures for 

 compound 10.                    40 

Fig. 3.13 Field dependence of magnetisation at indicated temperatures for  

compound 11.                    40 

Fig. 3.14 Temperature dependence of the in-phase (left) and out-of-phase  

(right) components of the ac magnetic susceptibility, for 8 under  

zero dc field.                      41 

Fig. 3.15 Frequency dependence of the in-phase (left) and the out-of-phase (right)  

ac susceptibility component at different temperature for compound 8 under 

 zero dc field.                    41 

Fig. 3.16  τ versus 1/T plot for 8 obtained from frequency dependent ac  

susceptibilities under zero dc field.                  41 

Fig. 3.17 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase 

 (right) ac susceptibility components at different dc fields for 8.             42 

Fig. 3.18 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase  

(right) ac susceptibility components at different dc fields for 8.             43 

Fig. 3.19 τ versus 1/T plot for 8 under 800 Oe dc field obtained from Fig. 3.18.            43 

Fig. 3.20 X-ray powder diffraction: for 13 based on the single crystal 

 X-ray structure.                          44 

Fig. 3.21 Structure of compound 13a. Grey, red, blue and lavender spheres represent  

C, O, N and Dy, respectively.                 46 

Fig. 3.22 The structure of the Dy4
III core of 13a.                47 

Fig. 3.23 Temperature dependence of the χT products for compounds  
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14–17 at 1000 Oe.                     48 

Fig. 3.24 Field dependence of magnetisation at indicated temperatures 

 for compound 12.                    49 

Fig. 3.25 Field dependence of magnetisation at indicated temperatures 

 for compound 13.                     49 

Fig. 3.26 Field dependence of magnetisation at indicated temperatures  

for compound 14.                   50 

Fig. 3.27 Field dependence of magnetisation at indicated temperatures 

 for compound 15.                     50 

Fig. 3.28 Temperature dependence of the in-phase (left) and out-of-phase (right)  

components of the ac magnetic susceptibility for 12 under zero dc field.            51 

Fig. 3.29 Temperature dependence of the in-phase (left) and out-of-phase (right)  

components of the ac susceptibility for 13 under zero dc field.components  

of the ac magnetic susceptibility under zero dc field for 15.             51 

Fig. 3.30 Frequency dependence of the in-phase (left) and the out-of-phase (right)  

ac susceptibility components at different temperature for compound 13 under 

 zero dc field.                    52 

Fig. 3.31 τ versus 1/T plot for 13 obtained from frequency dependent ac  

susceptibility measurements under zero dc field.               52 

Fig.3.32 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase  

(right) ac susceptibility components at different dc fields for 12.             53 

Fig.3.33 Frequency dependence at 2 K of the in-phase (left) and the out-of-phase  

(right) ac susceptibility components at different dc fields for 13.             53 

Fig.3.34 Frequency dependence at 7 K of the in-phase (left) and the out-of-phase  

(right) ac susceptibility components at different dc fields for 13.             53 

Fig. 4.1 Structure of [Dy3
IIIFe7

III (µ4-O)2(µ3-OH)2(N3)6(mdea)7(PhCO2)4] in 18.  

Hydrogen atoms are omitted for clarity. Grey, red, blue, green and lavender  

spheres represent C, O, N, Fe and Dy, respectively.               59 

Fig. 4.2 Structure of the [Dy3
IIIFeI

7
II(µ4-O)2(µ3-OH)2]

24+ core in the cluster of 18.            59 

Fig. 4.3 Temperature dependence of the χT products for compounds  

16–19 at 1000 Oe.                    60 

Fig. 4.4 Field dependence of magnetisation at indicated temperatures 
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 for compound 16.                    61 

Fig. 4.5 Field dependence of magnetisation at indicated temperatures 

 for compound 17.                     62 

Fig. 4.6 (a) Field dependence of magnetisation at indicated temperatures for  

compound 18 (left). (b) Hysteresis measurements of compound 18 at 1.8 K  

with a sweeping rate of 0.002 T/s. (right).                63 

Fig. 4.7 Plot of dM/dH versus H for compound 18..                63 

Fig. 4.8 Field dependence of magnetisation at indicated temperatures  

for compound 19.                    63 

Fig. 4.9 Plot of dM/dH versus H for compound 19.                64 

Fig. 4.10 Temperature dependence of the in-phase (left) and out-of-phase  

(right) components of the ac magnetic susceptibility for 17 under zero  

dc field.                    65 

Fig. 4.11 Frequency dependence at 1.8 K of the in-phase (left) and the out-of-phase  

(right) ac susceptibility component at different dc fields for 17.             65 

Fig. 4.12 Temperature dependence of the in-phase (left) and out-of-phase (right)  

component of the ac magnetic susceptibility for 18 under zero dc field.            66 

Fig. 4.13 Frequency dependence of the in-phase (left) and out-of-phase (right)  

ac susceptibility component at different temperatures for 18 under  

zero dc field.                                                                                                            66 

Fig. 4.14 τ versus 1/T plot for 18 obtained from both temperature- and frequency- 

dependent ac susceptibility measurements under zero dc field.             66 

Fig. 4.15 Frequency dependence of the in-phase (left) and the out-of-phase (right) ac 
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