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Abstract

Fluid or gas loadings on thin shell or membrane structures under external loadings
(e.g. in oil tanks or gas supported beams) may have a major infuence on the structural
stability behavior. The goal of this approach, which is based on the works of [2], [3]
and [4], is to present some investigation of the influence of such a gas or fluid support
(without actually discretizing the fluid/gas) on the eigenvalues and eigenmodes of the
stiffness matrix of shell or membrane-like structures undergoing large displacements
to allow conclusions concerning stability. For this purpose an efficient algorithm is
derived, which benefits from the dyadic rank updates of the stiffness matrix due to
volume dependence [1], [2] of the fluid/gas loading.

1 Modal Analysis

Depending on the load case the volume dependence of the fluid or gas pressure leads to
several rank updates of the global stiffness matrix K (see [2], [3]). For reasons of simplicity
the special case of a single chamber only loaded with an incompressible fluid will serve as
an example. The global system matrix A then becomes

A = K
︸︷︷︸

stiffness part

+ γtaa
T

︸ ︷︷ ︸

volume coupling part

, (1.1)

This dyadic rank update with the volume coupling vector a and a proportional factor
γt results in a fully occupied part of the system matrix A, which may lead to numerical
difficulties during the modal decomposition process. To bypass the standard procedure for
computing the modal matrix Φ and the eigenvalues χ of an almost fully populated system
matrix A the modal matrix Φ is split up into a modal factor matrix Ξ and the modal
matrix Ψ, which contains all eigenvectors ψi of the uncoupled stiffness matrix K. Thus
Φ can be written as:

Φ = ΨΞ =






| | | |
ψ1 ψ2 ... ψi ... ψn

| | | |











| | | |
ξ1 ξ2 ... ξi ... ξn

| | | |




 (1.2)

Introducing the new matrix

A⋆ = ΨTAΨ = ΨT
(

K + γtaa
T
)

Ψ . (1.3)

and after some rearranging a modified form of the eigenvalue problem AΦ = ΦX can be
given with the columns ξi of the modal factor matrix Ξ and the eigenvalues χi as:

A⋆ξi = χi ξi . (1.4)
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2 NUMERICAL EXAMPLE 2

Substituting (1.3) into (1.4) gives us after some reordering
(

ΨT

[

K + γtaa
T
]

Ψ− χiI
)

ξi = 0 . (1.5)

Using the spectral matrix Λ (with its eigenvalues λi) ofK along with the modified coupling
vector ā = ΨTa yields
(

Λ + γtāā
T − χiI

)

ξi = 0 . (1.6)

1.1 Eigenvalue extraction

For this homogeneous set of equations non-trivial solutions ξi 6= 0 do exist, if the deter-

minant of the coefficient matrix
(

Λ + āāT − χiI
)

vanishes. As the new eigenvalues are

different from the old ones, χi 6= λi, the unknown eigenvalues χi can be extracted as
solutions of the characteristical polynomial p(χ):

p(χ) = 1 + γt

n∑

j=1

āj āj

λj − χ
= 0 , with

(

χi > λi for γt > 0
χi < λi for γt < 0

)

(1.7)

Thus the new eigenvalues χi will increase or decrease depending on the sign of the factor
γt. As already mentioned the polynomial p(χ) is strictly monotone between the poles λj,
therefore an efficient method to localize the zeroes in p(χ) can be found by the bisection
method.

1.2 Computation of Eigenvectors

For the computation of the corresponding eigenvectors equation (1.6) is considered again,
focusing on the column ξi of the modal factor matrix Ξ. To eliminate the implicit form of
ξi it can be normalized by its length, leading to

ξi = −
γt (Λ − χiI)

−1
ā
(

āT · ξi

)

||γt (Λ− χiI)
−1
ā (āT · ξi) ||

= −
(Λ− χiI)

−1
ā

|| (Λ − χiI)
−1
ā ||

(1.8)

as the ith column of Ξ. With the multiplicative split (1.2) the transformed modal matrix
can then be computed.

2 Numerical Example

To show the effect of the fluid support on the stability behavior the development of the
eigenvalues of steel cylinder (r = 20m, h = 40m, r/t = 1000) under axial loading σ
will be monitored (see figures 2.1 and 2.2). Increasing the axial loading σ on the empty
cylinder (a) ends up at an critical buckling load of σmax = 7.1 · 10−5N/mm2. The fluid
filling of cylinder (b) leads to an increase of the eigenvalues (mainly due to hydrostatic
pretensioning) and the subsequent axial laoding leads to a critical buckling load of σmax =
8.3 · 10−5N/mm2, which is about 16% higher than for the empty cylinder. Further on
the volume coupling had only small effects on the eigenvalues of the cylinder because
the deformations in this example are relatively small. Other examples of soft structures
undergoing large deformations showed a clear stiffening due to volume dependence. A
stronger effect of the volume coupling on stiffer structures, as e.g. the steel cylinder, is
expected for a cylinder completely filled with a compressible heavy fluid, which will be
part of further investigations.
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Fig. 2.1: Empty (a) and fluid
filled cylinder (b) under axial
loading σ
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Fig. 2.2: Development of eigenvalues during loading
process
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