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Abstract 
In this thesis, we consider the problem of optimal pricing for selling multiple perishable 

products over a finite horizon of time under demand uncertainty and substitution. We 

suppose that the demand for a particular product in a store is the result of the consumers’ 

arrival process and the consumers’ choice behavior. We assume that the consumers arrive 

at the store according to a Poisson process with a gamma distributed rate and use the 

multinomial logit model to describe the consumers’ choice behavior. We develop a 

periodic review of the pricing policy by which the firm, who sells a fixed amount of 

multiple perishable products, improves its total expected revenues. We consider two cases: 

First, we suppose that the firm knows the parameters of the gamma distribution of the 

consumers’ arrival rate at the store and study how the optimal prices of the products 

change depending on the remaining time until the end of the selling season as well as the 

inventory levels of the products. In this case, our numerical study shows that (1) at a given 

inventory levels of the products, the optimal prices may decrease or increase as the time for 

selling them gets shorter (This result is different from that in the single-product case where 

the optimal price of the product is non-increasing as time progresses.), and (2) at a given 

time, the optimal price of each product increases as its inventory level decreases. We also 

present the simple path of the optimal prices to show how the optimal price patterns would 

be when both the inventory levels of the products and the remaining time to the end of the 

selling season vary. Second, we suppose that the firm does not know the parameters of the 

consumers’ arrival rate distribution and examine the performance of our optimal pricing 

policy. For this case, we provide a Bayesian learning approach to capture uncertainty 

associated with the consumers’ arrival rate at the store by using observation data from the 

early periods to estimate the parameters and forecast the future arrivals at the store, and we 

use the multinomial logit model under some specified assumptions to capture uncertainty 

associated with the consumers’ choice behavior. We examine both the single- and the 

multi-update cases and present some numerical experiments to show how favorable the 

performance of our demand learning approach is, especially in comparison to those 

approaches that use other techniques to forecast future arrivals at the store such as moving 

average and exponential smoothing methods, that are widely used in revenue management 

applications. 
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Chapter 1                                                                                           Motivation & Overview 

Motivation and Overview 
Pricing is a critical issue in marketing activities because: (1) price creates a first impression 

for the consumers, (2) price is the most flexible marketing mix instrument, (3) price is an 

important marketing mix instrument that generates revenues, and (4) setting the right price 

for products is one of the most important marketing decisions which managers face. As 

setting the price for a product, one needs to take into account several internal and external 

aspects such as the marketing mix, the overall marketing strategy, costs, consumers’ 

preferences, and market conditions.  

The problem of setting the right price for a particular product becomes even more 

difficult for the case of selling perishable products such as apparel and seasonal goods 

because of high demand uncertainty and supply inflexibility. Demand uncertainty refers to 

the lack of information about how the product will be attractive to the consumers in the 

market. In the context of selling perishable products, the inventory decisions (ordering) 

often have to be made in advance while demand for the product is not yet realized. 

Furthermore, there are many cases where the firm does not have any opportunity of 

replenishment over the selling season, because the lead times of replenishment are 

relatively longer than the selling season. These problems are considered as supply 

inflexibility. In practice, the firms who are selling perishable products often face 

substantial losses due to the mismatch between demand and supply. For example, M&S 

lost ₤150 million due to failures in matching supply with demand in 1998-99 (Christopher 

and Towill, 2002). In such cases, pricing decisions play an important role in managing 

demand, i.e., balancing demand and inventory, as well as improving revenues.  

Revenue management applications have successfully been used in many industries 

such as airline, hotel, and retailing where the firms sell perishable products under demand 

uncertainty and supply inflexibility. Revenue management (RM) is concerned with 

demand uncertainty and mainly focuses on resolving it (e.g., Talluri and van Ryzin, 2004). 

For example, revenue management aims at helping the firm to predict how demand for a 

product will react to changes of price over time. The most familiar example probably 

comes from the airline industry, where the tickets for the same flight may be sold at many 

different fares throughout the booking horizon depending on product restrictions as well as 

the remaining time until departure and the number of unsold seats. During the last decades, 
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the use of such strategies has been taken over from transportation industry to other areas 

and is increasingly important in retailing, telecommunications, entertainment, financial 

services, health care, and manufacturing, etc. (see Chiang et al., 2007). 

Dynamic pricing (DP) is perhaps the best well-known application of revenue 

management by which firms are able to manage demand for the available inventory of 

products by changing prices over time in order to maximize the total expected revenues. In 

the last few decades, there has been a growing literature on dynamic pricing that considers 

the problem of selling a fixed amount of perishable products over a finite horizon of time. 

This growing interest is influenced by three main aspects: (1) the increased availability of 

demand data, (2) the ease of changing prices, and (3) the availability of decision-support 

tools to analyze demand data (e.g., Elmaghraby and Keskinocak, 2003). 

In the dynamic pricing context, it is assumed that demand for a perishable product is 

price-sensitive while consumer’s valuations change over time, and pricing decisions play 

as the most important role in managing demand and consequently improving revenues. 

Consider a firm who owns a fixed amount of a single perishable product. At the beginning 

of the selling season, he faces two main questions with respect to his price decisions: 

1. At which price should the product be sold, i.e., the determination of the initial 

price? 

2. How should the price change over time? 

While setting high prices yields larger expected revenues but may result in high numbers 

of unsold units, low prices lead to the smaller expected revenues and the higher risk of 

stockout situation before the end of the selling season. Hence, the seller should attempt to 

dynamically balance the expected current and future revenues by setting different prices 

over time.  

In terms of literature, there are two types of dynamic pricing models: (1) deterministic 

demand models and (2) stochastic demand models. While deterministic demand models 

assume that the seller has perfect information about demand process (e.g., Gallego and van 

Ryzin, 1994, Smith and Achabal, 1998), stochastic demand models consider some 

uncertainty in association with demand process (e.g., Gallego and van Ryzin, 1994, Zhao 

and Zhang, 2000). Most of the existing research consider the single perishable product case 

under Markovian assumptions with respect to the demand process in which consumers 

arrive at a store according to a Poisson process with rate λ . An arriving consumer will 
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purchase one unit of the product if the posted price is not greater than his reservation price. 

As the common result in the revenue management literature, Gallego and van Ryzin (1994) 

have shown, for the problem of selling a fixed amount of a single perishable product over a 

finite horizon of time: 

1. At a given point in time, the optimal price decreases as the inventory level of the 

product increases. 

2. For a given inventory of the product, the optimal price increases if there is more 

time to sell inventory. 

3. More amount of inventory leads to higher expected revenues. 

4. More time left to the end of the selling season leads to a higher expected revenue. 

Under Markovian assumptions the determination of optimal prices requires the solution of 

the Hamilton-Jacobi-Bellman equation that is in general a complex differential equation 

for which closed-form solutions are reported only for the case of exponential demand rate 

(e.g., Kincaid and Darling, 1963, Gallego and van Ryzin, 1994). Furthermore, because of 

the memoryless property of Markovian processes such as the Poisson process, the 

knowledge of the number of arriving consumers up to time t , i.e., [0,t], provides nothing 

about the consumers’ arrivals in the future, i.e., (t,T] where T is the length of the selling 

season, thus, demand learning is not possible.  

Demand learning is an effective approach to improve revenue by resolving demand 

uncertainty and providing a better demand forecasting. In a few last years, we have 

witnessed a growing interest in considering demand learning for the problem of selling a 

single perishable product where the demand for a product is assumed to be the result of the 

consumers’ arrivals and choice behavior. For instance, Aviv and Pazgal (2005b) assumed 

that the consumers arrive at the store according to a Poisson process with a rate that 

depends on general market conditions rather than on the product’s price and that an 

arriving consumer purchases one unit of the product if the posted price is not greater than 

his reservation price, i.e., the maximum price that he is willing to pay for the product. This 

approach enables the seller to learn about demand patterns during the selling season and 

improve his total expected revenues. Still, the authors assumed that the seller observes only 

completed sales, so that arrivals of the consumers which may provide information about 

market conditions are not considered if such consumers do not purchase at all.  
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In contrast to the single perishable product case, the problem of determining an 

optimal pricing policy for multiple perishable products has received considerably less 

attention in the revenue management literature (e.g., Elmaghraby and Keskinocak, 2003, 

Bitran and Caldentey, 2003). While, in the single perishable product case, it is assumed 

that demand for the product depends on price and the seller determines the optimal price 

policy based on the remaining time until the end of the selling season and inventory level 

of the product. In the multiple perishable products case, the demand for a particular 

product not only depends on its own price, but also on prices of all other products. Hence, 

the seller has to take into consideration both the inventory level of the interest product and 

the inventory levels of all other products as well as the time until the end of the selling 

season to determine the optimal prices. In fact, in the multiple perishable products case, the 

demand for a particular product should be modeled as a choice problem facing a set of 

(substitutable) products determining the right prices for the products will be quite more 

complicated than the case of pricing a single perishable product. 

In this thesis, we are going to provide an optimal pricing policy to optimize the 

revenue of selling a given inventory of multiple perishable products under demand 

uncertainty and substitution. We assume that the demand for each product can be 

modeled with the help of two elements: (1) the consumers’ arrival rate and (2) the 

consumers’ choice behavior.  

In terms of the consumers’ arrival rate, we assume that the consumers arrive at the 

store according to a Poisson process ( ],0[, tN ∈ττ ) with a gamma distributed rate λ that 

depends on the regular purchase patterns rather than on the prices of the products. Under 

this assumption we provide a Bayesian learning approach to capture the demand 

uncertainty associated with the consumers’ arrival rate. We divide the selling season into T 

equal periods where T does not depend on the consumers’ arrival rate and use the number 

of arriving consumers at the store during the t first periods to estimate the parameters of the 

gamma distribution and compute the probability distribution function of the consumers’ 

arrivals in the next periods t+1,…,T.  

In terms of the consumers’ choice behavior, we assume that each arriving consumer 

chooses his favorite product based on the multinomial logit model that is used to capture 

the demand uncertainty associated with the consumers’ choice behavior. In our demand 
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learning model, we provide an optimal pricing policy based on products’ qualities, prices, 

and inventory levels as well as the remaining time to the end of the selling season.  

The structure of this thesis is as follows: Chapter 2 deals with pricing decisions and 

revenue optimization. In this chapter, we address the importance of pricing decisions in 

managing demand and optimizing revenue for selling perishable products over a short 

period of time. Then, we review pricing models in the literature on revenue management. 

After a short introduction to static pricing models, we consider the problem of selling a 

fixed amount of a perishable product over a finite horizon of time for both deterministic 

and stochastic demand models in dynamic pricing applications. At the end of this chapter, 

we also present a review of related works and highlight the main results. Chapter 3 

addresses demand uncertainty as one of the most important problems faced by managers to 

achieve success in business, especially for those firms who are selling perishable products 

over a finite horizon of time. Demand forecasting and demand learning are in the centre of 

our focus in this chapter. We consider the consumers’ arrival process and point out some 

forecasting methods that are widely used in revenue management applications. We also 

discuss our Bayesian learning approach by which the firm learns about the consumers’ 

arrival rate from the observed demand data in the earlier periods. Chapter 4 is devoted to 

the consumers’ choice behavior as the second element of demand learning model. The 

reservation price and the multinomial choice models will be discussed in this chapter. The 

reservation price model is widely used in the problem of selling a single perishable 

product, while the multinomial choice model is preferred in solving the problem of selling 

multiple perishable products. In chapter 5 we provide an optimal pricing policy to manage 

demand of selling multiple perishable products under demand uncertainty and substitution 

based on products’ qualities, prices, and inventory levels as well as the remaining time to 

the end of the selling season. The overall aim of our optimal pricing policy is to maximize 

the expected revenues gathered from a given inventory levels of the products over a finite 

selling horizon. We will also present a review of the literature on the problem of selling 

multiple perishable products. A numerical study will be provided in chapter 6. In this 

chapter, we will consider several cases and present some numerical experiments to 

illustrate how our optimal pricing policy works and show the optimal price patterns with 

respect to the remaining time and the available inventory of the products. Then, we will 

consider the determination of an optimal pricing policy by using our demand learning 
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model for both the single- and the multi-update cases and compare the performance of the 

Bayesian learning approach to the other demand learning approaches. At the end of this 

chapter, we will also point out some selected extensions of our demand learning model that 

address some real situations in the market. Finally, in chapter 7, we conclude our work 

with a summary of our main results and future directions. 
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Chapter 2                                                                            Pricing & Revenue Optimization 

2.1 Introduction 
In this chapter, we look at the role of pricing decisions for the success of marketing 

activities, especially in the case of managing demand for selling perishable products over a 

short period of time in order to maximize revenues.  

As was already mentioned in the motivation part of chapter 1, price is of fundamental 

importance as: (1) Price creates a first impression for consumers with respect to the 

underlying product. Often times consumers’ perceptions of a product are formed as soon as 

they learn the price.  It is important for firms to know if consumers are likely to make the 

decision to buy a product when all they know is its price.  If so, pricing may become the 

most important of all marketing activities if it can be shown that consumers tend to avoid 

learning more about the product than the price; (2) Price is the most flexible marketing mix 

instrument. Unlike product and distribution decisions, which can take months or years to 

change, price can be adapted very rapidly.  The flexibility of pricing decisions is 

particularly important in times when the firm seeks to quickly stimulate demand or respond 

to changing market conditions; (3) Price is an important marketing mix variable that 

generates revenues; all others, i.e., product, promotion, and distribution, involve 

expenditures of funds (e.g., Rao, 1984); (4) Setting the right price for products is one of the 

most important marketing decisions which managers face (e.g., Monroe and Cox, 2001). 

Prices set too low may mean that the firm will miss additional profits that could be earned 

if the consumers are willing to spend more to acquire the product.  Additionally, attempts 

to raise an initially low priced product to a higher price may meet by consumer resistance 

when people feel that the firm is attempting to take advantage of their consumers.  Prices 

set too high can also impact revenue as it prevents interested consumers from purchasing 

the product.  Setting the right price level often requires considerable market knowledge 

and, especially with new products, testing of different pricing options.  

From a firm point of view, profits are determined by the difference between revenues 

and costs; Revenues that a firm obtains from selling a product are determined by 

multiplying price per unit sold by the number of units sold. On the side of consumers, 

prices influence what and how much of each product to buy. Thus, pricing decisions affect 

both firms’ profits (revenues) and the consumers’ purchase behavior (e.g., Monroe, 1990). 
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According to studies, pricing is one of the fastest and the most effective ways for a 

firm to maximize its profit (e.g., Marn et al., 2003). For example, Marn and Rosiello 

(1992) compared the profit implications of a 1 percent improvement in different control 

variables and showed that based on 2,263 companies’ average economics in Compustat1 

aggregate data, the leverage of improved pricing is high in comparison to other control 

variables, e.g., the profit implications of 1% increase in unit sales volume- assuming no 

decrease in price- yields a 3.3% increase in profit while 1% improvement in price without 

changing the unit sales volume would improve the company’s profit by 11.1%. That is, 

improvements in price have three to four times the effect on profitability as proportional 

increases in sales volume. Another study produced by A.T. Kearney (2000) also showed 

that improvements in profit associated with changes in four main control variables as price, 

sales volume, variable and fixed costs, have similar relationships as those reported by Mc 

Kinsey (1992), see table 2.1. 

 

1% Change in 

Control Variables 

Improvement of Profit

(McKinsey, 1992) 

Improvement of Profit 

 (A.T. Kearney, 2000) 
 

Price↑ 11.1% 8.2% 

Variable Costs↓ 7.8% 5.1% 

Sales Volume↑ 3.3% 3.0% 

Fixed Costs↓ 2.3% 2.0% 

 

 

 

 

Although pricing is the strongest determinant of revenues/profits in marketing 

activities, setting the right price for the right consumer at the right time is one of the most 

complex and challenging decisions that managers have to face in order to improve sales 

profitability. 

                                                 
1 Standard & Poor’s Compustat data has delivered high-quality, standardized fundamental market data to 
investment professionals around the world (www.compustatresources.com). 

Table 2.1 Profit improvement per 1% change in control variables. 

Sources: McKinsey (1992), A.T. Kearney (2000) studies; Phillips (2005). 
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In practice, when determining pricing strategies and setting the right prices for 

products, one needs to take into account several internal and external aspects such as 

marketing mix, marketing strategy, production costs, consumers’ preferences, elasticity of 

demand, and market conditions. For instance, while the cost-driven pricing strategy 

considers the cost of producing and selling activities, the value-driven pricing strategy uses 

consumer’s willingness to pay, i.e., the maximum value that a consumer accepts to pay for 

a product (see § 4.2 for more details). Market-driven pricing is another pricing strategy in 

which the price is determined by competitive conditions in the market. Readers, who are 

interested in pricing decisions and pricing strategies, are referred to Nagle and Hogan 

(2006) and Armstrong and Kotler (2007) for comprehensive reviews. 

In the context of pricing decisions, pricing is considered as a process by which revenue 

is optimized by maximizing the number of buyers (demand) together with a minimum 

reduction in price, or maximizing price together with a minimal loss of buyers (e.g., 

Joseph, 2007). In other words, the goal of pricing optimization is to improve the total 

revenues of a business by determining the optimal prices based on the relationship between 

demand and price.  

In the past few years, price optimization applications such as every-day-low-price 

(EDLP) pricing (e.g., Sin et al., 2007), promotional pricing (e.g., Kwong, 2003, Aydin and 

Ziya, 2008), and markdown pricing (e.g., Lazear, 1986, Pashigian, 1988, Pashigan and 

Bowen, 1991, Federgruen and Heching, 1997, Kwon et al., 2008) are increasingly used by 

retailers and consumer products companies. Many firms, especially in apparel and seasonal 

goods, are also using price optimization software within such offers as SAP, Oracle, 

PROS, etc. in order to improve revenues. Advanced Market Research (AMR) has 

estimated that the price management applications market was about $348 million in 2007 

and will grow to approximately $1.1 billion in 2010. 

Revenue management- also known as yield management (YM) - has gained attention 

recently as one of the most successful application areas of operations research. Revenue 

management refers to the strategies and tactics used to manage the allocation of selling 

capacity to different demand classes over time in order to maximize revenues (e.g., 

Phillips, 2005). Revenue management can also be considered as the art of maximizing 

revenues generated from a limited capacity of a product over a finite horizon of time by 

selling each product to the right consumer at the right time for the right price (e.g., Pak and 

 11
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Piersma, 2003). More broadly, revenue management is concerned with demand-

management decisions and the methodology and systems required making them (e.g., 

Talluri and Ryzin, 2004).  

In terms of history, revenue management could be traced back to the seventies of the 

last century when the U.S. Civil Aviation Board (CAB) loosened control of airline prices 

(e.g., Belobaba, 1987, McGill and van Ryzin, 1999). Nowadays, revenue management 

applications have become crucial with respect to business success in many other industries 

such as hotel (e.g., Bitran and Mondschein, 1995), car rental agency (e.g., Geraghty and 

Johnson, 1997), and retailing (e.g., Elmaghraby and Keskinocak, 2003) where firms sell 

perishable products to the price-sensitive consumers in the market. For a comprehensive 

review of recent developments of revenue management in different industries, the 

interested readers are referred to Chiang et al. (2007) and the references therein (see also 

Talluri and Ryzin, 2004, chapter 10). Experiences show that revenue management makes it 

possible to yield 3% to 7% increasing of revenues and consequently 50% to 100% 

increasing of profit2 (e.g., Cross, 1997) which is a significant effect on the profitability of 

operations. For instance, according to Economagic (www.economagic.com), the US retail 

sales in 2007 were estimated to be more than $46 trillion. That is, the application of 

revenue management could result in more than $1.3 trillion potential increasing in 

revenues. 

Perishable products such as apparel, holiday merchandise, events’ tickets, hotel rooms, 

etc. have three major characteristics: 

1. There is a well defined finite selling horizon; 

2. Consumer valuations change over time; 

3. The marginal cost of selling one more item is little.  

Coupling these characteristics of the perishable products with supply side limitations 

creates a big challenge for manager to make the right price decisions for the products 

because: 

1. Demand uncertainty is high due to uniqueness of the products and time varying 

valuations of the consumers. 

                                                 
2 Profit = Revenue – Cost. 

http://www.economagic.com/
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2. Replenishment lead-times are relatively long in comparison to the length of the 

selling horizon which limits replenishment of the inventory during the selling 

season.  

3. At the end of the selling season the salvage value (price) will be very low. 

In revenue management applications, setting the price for a product depends on the product 

itself, the consumer’s valuation (willingness to pay), and the time of purchase, see Figure 

2.1.  

 
 

 

In this perspective, revenue management could be considered as a form of price 

discrimination. Thus, price discrimination is the topic in pricing strategies that we are 

going to discuss next. 

 

2.2 Price Discrimination 
Price discrimination is a pricing strategy in which different prices are charged to different 

consumers or segments for the same product. The aim of price discrimination is to extract 

as much consumer surplus3 as possible without loss of consumers. There are three types of 

price discrimination: 

                                                 
3 Consumer surplus refers to the consumer’s benefit by purchasing a product for a price that is less than he 
would be willing to pay. In fact, the individual consumer surplus is the difference between the maximum 
price which a consumer would be willing to pay (or reservation price) for the amount that he buys and the 
actual price. 

** Product 

Time 

Consumer′s Valuation 
(Willingness-to-pay) 

i 
t 

v 

Figure 2.1 Different aspects affecting price decisions. 

http://en.wikipedia.org/wiki/Reservation_price
http://en.wikipedia.org/wiki/Price
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2.2.1 First Degree of Price Discrimination 

With respect to first degree price discrimination, price for a product varies by consumer. It 

is applied when the seller knows the maximum willingness to pay of each consumer in the 

market. In fact, the seller charges each consumer the maximum price that he is willing to 

pay. To illustrate how the seller gains more revenues/profits by applying first degree price 

discrimination we consider the following example. Suppose that demand for a particular 

product is a linear function of price p as ppd 420)( −= . Then the revenue function is 

. Considering unit (order) costs of c, the profit function will be 

. Then 

)()( ppdpr =

)()( cppB −= )( pd

cpcppcpcppB 20)420(4)(4)(20)( 2 −−−−=−−−=  

and 

.20484)(420)( ++−=−−−= cppcppB
dp
d

 

By considering , the optimal price with respect to the maximum profit is given by 1=c

.308240)( =⇒=−⇒= pppB
dp
d  

That is,  is the price at which profit is maximized, 3=p 16)3( =B , and . At this 

price,  units will be sold, see Figure 2.2 on the left. But, revenue can achieve the 

value , i.e., 25% more than in the single-price case, if we use four different prices, 

 and first serve those two consumers who are willing to pay the (highest) 

price of , then those two consumers with restriction price of  and so on. 

Then, if such a price strategy is possible, the seller initially sets the price at  and 

sells 2 units to those consumers, whose reservation price is equal or greater than 

24)3( =r

4=p

=p

8)3( =

30(.) =

5.3 ,4 ,5

4=p

d

r

 ,.4

.

}3{=P

5

5.4

5.4=p , 

and gains  and 9) =5.4(r 7)5.4( =B . Then, he lowers the price to  and sells 2 more 

units more to those consumers, whose reservation price is equal or greater than  and 

gains again 

4

p

=p

4=

8)4(2 =×  units of revenue and 6)14(2 =−×  units of profit, and so on. As it 

shown in Figure 2.2 on the right, profit from selling eight units will be 22, i.e., 37.5% more 

than that in the single-price case. Therefore, the revenue/profit obtained from selling 

product sequentially at different prices is significantly greater than when the seller uses a 

uniform price. 
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Intuitively, if the seller uses prices with smaller differences, he will even gain more 

revenue/profit, of course, depending on the costs and the demand function. As the number 

of different price values tends to infinity, we will have perfect first-degree price 

discrimination in which each consumer pays his reservation price (according to his 

willingness-to-pay) for the product. In our example, if the seller is able to use perfect first-

degree price discrimination, )5,1(∈p , his total revenue tends to 48)15(16
2
1

=+× . 

Although it is difficult to find perfect price discrimination in real situations, we can point 

out bargaining in the used-product-markets and the negotiation price in B2B where the 

seller can find customers’ willingness to pay as examples. 

 

2.2.2 Second Degree of Price Discrimination 

With respect to second degree price discrimination, price varies according to different 

purchase behavior. It is applied when the seller is not able to distinguish the different types 

of consumers and uses consumer preference information. Indeed, consumers are grouped 

into different types (segments) through their purchase behavior. In apparel and high-tech 

industries, for example, firms, who are usually uncertain about how much the consumers 

are willing to pay for the product, set a high initial price to capture revenues from the high-

valuation consumers, who are willing to pay higher for the product, and mark it down 

before the end of the selling season to capture revenues from the low-valuation consumers, 

who are willing to pay lower for the product in order to clear inventory, i.e., the firm uses 

Figure 2.2 First degree of price discrimination. 

Revenue

Consumers’
Surplus
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markdown pricing as a segmentation mechanism. In fact, the firms suppose that there are, 

for example, two main types of consumers in the market, the high-valuation consumers, 

who prefer to purchase the product earlier by paying higher than the low-valuation 

consumers, who are willing to wait for markdowns. However, the firms do not know 

whether an arriving consumer is a high- or low-valuation consumer, so that they set 

different prices at different times, i.e., using a time-based price discrimination. Each 

consumer shows to which segment, the high-valuation or the low-valuation, he belongs to 

in a self-selection mechanism. There are also some other types of second degree price 

discrimination such as quantity-based and channel-based price strategies where firms use 

other variants of second degree price discrimination. In quantity-based price 

discrimination, consumers pay different prices based on the amount of product that they 

buy while in channel-based price discrimination different prices are charged to the 

consumers who buy product from different sale channels such as Internet, TV-Shop, etc.  

 

2.2.3 Third Degree of Price Discrimination 

With respect to third degree price discrimination, price varies according to consumer 

segments. In contrast to second degree price discrimination, in this case, the firm is able to 

divide consumers into several segments and set different prices based on the segments. 

Different prices associated with the location of the stores and demographic variables, e.g., 

discounts for students, could be considered as third degree price discrimination examples. 

In such cases, the firm determines the price for each segment according to its demand 

function. Figure 2.3 shows an example of third degree price discrimination.  
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d 1 (p)=48-12p

d (p)=36-6p2

d (p)=24-3p3

Figure 2.3 Third degree of price discrimination. 
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In this example, a firm sells a particular product to a market medeled by three segments. 

Each segment is characterized by a specified demand function. As shown in Figure 2.3, the 

firm charges different prices for the segments in such a way that revenues is maximized, 

i.e., he sets the price at which price elasticity of demand4 is equal to 1−=pε . Optimal 

prices, sales and revenues with respect to each segment are provided in table 2.2.  

 

Segment Demand Function Price Sales Revenue 

1 d 1 (p)=48-12p 2 24 48 

2 d 2 (p)=36-6p 3 18 54 

3 d (p)=24-3p 3 4 12 48 

    Sum = 150 

 

 

2.3 Pricing Models in Revenue Management 
In this section, we review pricing models that are used the revenue management literature 

on the problem of selling a single perishable product over a finite horizon of time. There 

are two types of pricing policies that are widely used in revenue management applications 

(e.g., Elmaghraby and Keskinocak, 2003):  

1. Posted-price policy in which products are sold at take-it-leave-it prices determined 

by the seller; 

2. Price-discovery policy in which prices are determined via a bidding process such as 

auctions.  

In this work, we will focus on the posted-price policy and its applications in pricing and 

revenue optimization and we refer the interested readers to Klemperer (2004) for an 

excellent study on both the theory and practice in auctions.  

The posted-price policy itself has two forms, static and dynamic pricing models. While 

in static pricing models the seller sets a fixed price for the product over a relatively long-

                                                 
4 Price elasticity of demand is defined as the measure of responsiveness in the quantity demanded for a 
commodity as a result of change in price of the same commodity. It is a measure of how consumers react to a 
change in price 

Table 2.2 Third degree of price discrimination. 
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term period, in dynamic pricing models the seller dynamically changes the price over time 

based on factors such as time of sale, demand information, and the inventory level.  

In what follows we look at static and dynamic pricing models in the revenue 

management literature. We begin with static pricing models by introducing the newsvendor 

problem. Then, we describe dynamic pricing models as our main subject and address the 

problem of selling perishable product over a finite horizon of time under both deterministic 

and stochastic demand assumptions. Finally, we present a review of pricing models in the 

revenue management literature and highlight main results. 

 

2.3.1 Static Pricing Models 

Static pricing models are appropriate for the products having the following characteristics: 

1. Short selling period. 

2. High costs of changing price.  

3. Legal regulations that force the price to be fixed. 

The newsvendor5 problem is perhaps the best known static (single-period) pricing model. 

In the newsvendor formulation, a decision maker, who faces an uncertain price-dependent 

demand for the product, decides how much of the product to stock for a single selling 

period before demand can be observed (e.g., Porteus, 1990). The problem is particularly 

important for products with significant demand uncertainty and large overstock and 

stockout costs. Considering random demand D with the cumulative distribution function 

F(.), unit order costs c, selling price p, and salvage value per unit υ , the optimal inventory 

level , will be as follows:  *q

).(

or              

 )(

1*

*

υ

υ

−
−

=

−
−

=≤

−

p
cpFq

p
cpqDP

 

The proof is provided in appendix B. 

In the literature, there are also studies that used the newsvendor framework to analyze 

the problem of determining the optimal price based on the demand function and inventory 

                                                 
5 The newsvendor (or newsboy) model is a mathematical model in operations management and applied 
economics used to determine optimal inventory levels. 

2.1.a

2.1.b

http://en.wikipedia.org/wiki/Operations_management
http://en.wikipedia.org/wiki/Applied_economics
http://en.wikipedia.org/wiki/Applied_economics
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Inventory
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for a single period. For example, Petruzzi and Dada (1999) examined both the additive and 

the multiplicative demand cases and presented an optimal pricing policy with inventory 

consideration. In the additive case, demand is assumed to be a continuous random variable 

of the form: 
2.2ωω += )(),( pdpD  

where ω  is a zero-mean random variable that does not depend on the price. The authors 

considered (a>0, b>0) in the additive case and showed that the optimal price 

in the stochastic demand case , is not greater than the optimal price in the deterministic 

demand case , i.e., . 

bpapd −=)(

det*
adp *p

st
adp*

det*
adpst

ad ≤

In the multiplicative case, demand is assumed to be a continuous random variable of 

the form:     
2.3)(),( pdpD ωω =  

where ω  is a non-negative random variable with mean one that does not depend on the 

price. In the multiplicative demand case, the authors considered (a>0, b>0) 

and showed that the optimal price in the stochastic demand case , is not smaller than 

the optimal price in the deterministic demand case , i.e., . 

bappd −=)(
st

mup*

det*
mup≥det*

mup *st
mup

 

2.3.2 Dynamic Pricing Models 

Dynamic pricing models are concerned with how demand responses to price changes over 

time with respect to consumers’ preferences and market conditions. In terms of 

applications, dynamic pricing models are particularly useful for those industries having: 

1. High start-up costs; 

2. Perishable capacity; 

3. Short selling horizon;  

4. A demand that is stochastic and price-sensitive. 

 

Pricing policies that take into account dynamic pricing are today the key elements of 

success in business, because price is one of the most effective marketing mix variables by 

which managers can manipulate demand for the product over time. In recent years, the 

rapid developments of information technology (IT), the Internet, and e-commerce have had 
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strong influences on the development of dynamic pricing policies in different industries. 

As Elmaghraby and Keskinocak (2003) state, there are three main aspects that contribute to 

the growing attention to apply dynamic pricing policies in practice: 

1. The increased availability of demand data.  

2. The ease of changing prices due to new technologies. 

3. The availability of decision-support tools for analyzing demand data. 

 

In practice, a variety of mathematical models has been used in computing optimal 

prices over time. Narahari et al. (2005) provided a list of five categories of models that are 

used in dynamic pricing: 

1. Inventory-based models: These are models where pricing decisions are primarily 

based on the inventory levels. 

2. Data-driven models: These models use statistical or similar techniques for utilizing 

the available data of consumers’ preferences and buying patterns to compute the 

optimal dynamic prices. 

3. Game theory models: In a multi-seller scenario, the sellers may compete for the 

same pool of consumers and this induces a dynamic pricing game among the 

sellers. Game theoretic models lead to interesting ways of computing optimal 

dynamic prices in such situations. 

4. Machine learning models: An e-business market provides a rich playground for 

online learning by buyers and sellers. The sellers can potentially learn buyer 

preferences and buying patterns and use algorithms to dynamically price their 

offerings in order to maximize revenues or profits. 

5. Simulation models: It is well known that simulation can always be used in any 

decision making problem. A simulation model for dynamic pricing may use any of 

the four models stated above or use a prototype system or any other way of 

mimicking the dynamics of the system. 

 

In terms of modeling dynamic pricing applications, there are some key assumptions 

that determine which type of model should be used (e.g., Talluri and Ryzin 2004.) 

1. Deterministic vs. stochastic demand: It depends on whether the seller has perfect 

information about demand or whether there is uncertainty about it. 
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2. Myopic- vs. strategic-consumers: The myopic-consumer models assume that a 

consumer makes a purchase once the posted price is below his valuation 

(willingness-to-pay) without considering future path of prices. But, the strategic-

consumer models suppose that the consumers in the market take into account future 

path of prices when making purchase decisions (Aviv and Pazgal, 2008). Although 

the strategic-consumer model is more realistic, the myopic-consumer model is 

more tractable and widely used. 

3. Monopoly, oligopoly, and perfect competition: Under assumption of perfect 

competition a firm can not influence the market price, thus, dynamic pricing will be 

not applicable. In the non-perfect competition cases, the assumption of oligopoly 

competition seems to be more realistic than the monopoly case. But, because of the 

complexity of the analysis and the difficulty of collecting competitors’ data, 

monopoly models are more commonly used in dynamic pricing models. 

4. Dependent vs. independent demand over time: Dependence or independence of 

demand is concerned with whether or not future demand for the product is affected 

by observed demand. The demand for a particular product is dependent on many 

aspects, e.g.: (i) the product is durable, (ii) the size of market population or the 

firm’s fraction is very small, or (iii) consumers’ knowledge about the product and 

consumers’ willingness-to-pay for the product play important roles in making 

decisions. 

5. Replenishment vs. no replenishment of inventory: Whether or not inventory 

replenishment is possible during the planned horizon affects whether as a seller 

needs to make the inventory decisions up front, before the selling season starts, or 

whether he will have access to additional units during the selling season. 

 

In the next two sections, we will study deterministic and stochastic demand models in 

revenue management applications. As the basic problem of dynamic pricing in revenue 

management, we consider that a seller, who owns a fixed amount of a perishable product, 

aims to maximize his total revenues by selling inventory to a price-sensitive market over a 

finite horizon of time [0,T]. We assume that the consumers in the market are myopic, the 

seller is a monopolist, and there is not any opportunity to replenish inventory during the 

sales season. This situation arises in many industries such as apparel and retailing where 
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the seller has to order in advance and replenishment usually is not possible because the 

lengths of lead-times are relatively larger than the selling season. Therefore, demand for 

the product will be a function of time and price6.  

 

2.3.2.1 Deterministic Demand Models 

Deterministic models assume that the seller has perfect information about the demand 

process. Although this assumption is not suitable for applications where demand is hardly 

predictable at the beginning of the selling season, e.g., for new products and seasonal 

goods, deterministic models are widely used in practice because (i) deterministic models 

are easy to analyze, and (ii) they provide an upper bound with respect to the expected 

revenues of stochastic demand models as a good first-order approximation (e.g., Gallego 

and van Ryzin 1994, 1997).  

We consider a retailer who wants to sell a fixed amount of a seasonal product  over 

the time interval [0,T] divided into T periods.  Let  and  denote, respectively, the 

price and the demand rate in period t=1,…,T. We assume that demand for the product in 

each period can be described by a regular demand function that is characterized by the 

following properties: 

0q

tp )( tpd

 

Assumption 2.1 Regular Demand Function: 

1. The demand function is continuously differentiable on pΩ . 

2. The demand function is strictly decreasing, 0)()(
<=

∂
∂

tp
t

t pd
p
pd , on pΩ .  

3. The demand function is bounded above and below: ∞<≤ )(0 tpd , ptp Ω∈∀ . 

4. The demand tends to zero for sufficiently high prices, 0)( . inf =
Ω∈ tp

pd
pt

5. The revenue function )()( ttt pdppr =  is finite for all ptp Ω∈  and has a finite 

maximizing price pp Ω∈0 . 

                                                 
6 There are some studies which assume that the availability of inventory also affects demand for the product. 
According to Soysal (2007) when inventory is limited, a consumer can not wait for a sale without taking into 
account the stockout risk. The author showed that although a diminishing of the availability of the product 
has a negative effect on the total quantity sold, it can improve sellers’ profit. 
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Under this assumption the demand function is continuous, decreasing, bounded and tends 

to zero for sufficiently high prices. In this setting, the revenue management problem can be 

written as follows: 

.0                       
0)(                   

)(          ..

)(max

1
0

1
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≥

≤

=

∑

∑

=

=

t

t
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2.4

Let )()( t
t

pr
p

pJ
∂
∂

=  be the marginal revenue such that: 

 Assumption 2.2 Monotonic Marginal Revenue: The marginal revenue )( t
t

pr
p∂
∂  is 

strictly decreasing in price. 

This assumption guarantees that the revenue function  is a concave function of the 

price that guarantees that the first-order conditions are sufficient for determining an 

optimal price (e.g., Talluri and van Ryzin, 2004). With 

)( tpr

)()()( ttt pdlppH −=  as the 

corresponding Hamiltonian function where  is the Lagrangian multiplier on the 

inventory constraint  and  the optimal price is given by 
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∑
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t
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pdlp −= , 2.5

where  is the partial derivation of  with respect to the optimal price and the 

Lagrange multiplier l  can be considered as the marginal opportunity cost of inventory. In  

this setting, the price elasticity of demand with respect to the optimal price 

)( *
tp pd )( *

tpd
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ε  is given by 
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From (2.5)  

**

* 1
)(
)(

tt

tp

plpd
pd

−
= . 2.7

 

 23



 
 
 
Chapter 2                                                                            Pricing & Revenue Optimization 

 24

Therefore 
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If , i.e., the inventory constraint is not active, then the optimal policy is equal to 0=l
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On the other hand, if the inventory constraint is active, i.e., , then the 

optimal policy is equal or greater than 
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a lower bound on the optimal policy in deterministic demand models.  

In the special case of time-homogeneous demand, i.e., )()( pdpd t = , a fixed-price 

solution can be optimal over the selling season (e.g., Gallego and van Ryzin, 1994). In this 

case, the optimal fixed-price will either be the price at which inventory will be sold out 

exactly at the end of the horizon that is called the inventory clearing price or the price at 

which revenue would be maximized that is called the revenue maximizing price.  

Let  denotes the revenue maximizing price. According to the assumptions of 2.1 

and 2.2 at this price the marginal revenue is equal to zero, i.e., 

0p

0)()( 0
0

0 =
∂
∂

= pr
p

pJ , and 

the price elasticity 10 −=
p

ε , then 
)(
)(

0

0
0

pd
pdp

p

−= . Let p  to be the inventory clearing price, 

i.e., p  is chosen in such a way that 
T
qpd 0)( = . Then  

},max{ 0* ppp = . 

In what follows we present an example to illustrate the fixed-price case. Suppose that 

the demand function for the product is as ppd 420)( −= , then we have , 2420)( pppr −=

ppr
p

pJ 820)()( −=
∂
∂

= , , and , see Figure 2.4. Keeping the length 5.20 =p 10)( 0 =pd
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of the selling season T constant when )( 00 pd
T
q

< , i.e., )()( 0pdpd < , then 0pp > . Thus 

the optimal fixed-price will be equal to p , i.e., pp =* . In this case, the optimal revenue 

increases as the initial inventory increases (until )( 00 pd
T
q

= ). On the other hand, when 

)( 00 pd
T
q

≥ , )()( 0pdpd ≥ , then 0pp ≤ . Thus the optimal fixed-price is equal to , i.e., 

. Therefore in this case, the optimal price and the optimal revenue will remain 

constant as the initial inventory increases.  

0p

0* pp =

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gallego and van Ryzin (1994) argued that the fixed-price heuristic of deterministic 

models for the entire of the horizon },max{ 0* ppp =  will be asymptotically optimal in 

two limiting cases: (1) The number of items is large and there is enough time to sell them; 

and (2) There is the potential for a large number of sales at the revenue maximizing price. 

The quality of the deterministic approximation in this case also depends on the coefficient 

Figure 2.4 Revenue and marginal revenue curves for the case of the 
linear-demand function as ppd 420)( −= . 
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of variation μσ /.. =vc

epd = 30)(

 rather than the variance  itself. For instance, if the length of the 

selling season increases, we should expect that the variance of the cumulative demand will 

also increase but the coefficient of variation will probably decrease. Similarly, products 

facing a high volume demand are likely to have a small coefficient of variation (e.g., Bitran 

and Caldentey, 2003).As a result, for the case of time-homogeneous demand the optimal 

price will be: 

2σ

1. Non-increasing in the initial inventory;  

2. Non-decreasing in the length of the selling horizon. 

To show how the optimal price and the optimal revenue change with respect to the initial 

inventory and the length of the selling season, we consider a deterministic log-linear 

demand case  as an example. p−
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Figure 2.5.a shows- keeping constant the length of the selling season, in this example T=5 

weeks- that the optimal revenue is non-decreasing as the initial inventory increases while 

the optimal price is non-increasing as the initial inventory increases. Moreover, there is an 

optimal inventory level, in this example , that maximizes the optimal revenue and 

above this threshold, additional units of inventory do not change both the optimal price and 

55* =q

Figure 2.5 Optimal price & optimal revenue for the deterministic (log-linear) 

demand case with rate d . pep −= 30)(

55 9 
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the optimal revenue. According to Figure 2.5.b, in contrast, if the initial inventory remains 

unchanged, in this example , the optimal revenue is strictly increasing in the 

length of the selling season while the optimal price is non-decreasing. There is also a 

threshold with respect to the length of horizon, in this example , such that the 

optimal price increases by increasing the length of horizon to a value larger than the 

threshold. 

1000 =q

9≅thresholdT

)( tt pP

 

2.3.2.2 Stochastic Demand Models 

Dynamic pricing with stochastic demand are more complex to compute in comparison with 

deterministic demand cases. Stochastic models are clearly used more appropriately to 

describe real situations where the paths of demand and inventory are unpredictable over 

time and managers are forced to react dynamically to the market by adjusting prices as 

uncertainty reveals itself. In terms of literature, there are two types of stochastic demand 

models:  

1. Continuous-time models;  

2. Discrete-time models. 

 

2.3.2.2.1 Continuous time models: In the case of continuous time models, Kincaid and 

Darling (1963) addressed the general issue of how to dynamically price a perishable 

product where the demand for the product follows a Poisson process with rate  and 

each arriving consumer at time t has a reservation price for the product that is a random 

variable with the distribution function for not buying 

)( tpd

)( tpF = <ν  where tν  is the 

reservation price in period t. The authors considered two cases: In the first case, the seller 

does not post prices, but receives offers from potential incoming buyers, which he either 

accepts or rejects. It is assumed that each arriving consumer offers his reservation price, 

i.e., consumers do not act as strategic players; In the second case, the seller posts the price 

at  and each arriving consumer purchases the product only if his reservation price is not 

less than . Then, the demand process in the second case will be Poisson with rate 

 where  is the number of arriving consumers at time t and 

tp

)( tp

tp

1(tA ))( tpFD −= tA
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)(1 tpF−  is the fraction of the arriving consumers, who are willing to pay  or more for 

the product.  

tp

Considering the available inventory at time t to be , the optimality conditions for the 

value function  as follows: 

tq

)( tt qV

))]((}]),([min{[max)( 10 ttttttptt pDqVqpDEpEqV
t

−+= +≥
. 2.12

The optimal expected revenue gathered from time t to the end of the selling season by 

selling the available inventory and the optimal price can be determined for both cases, and 

closed-form solutions are reported for the special case . As price is 

determined, the optimality condition (Hamilton-Jacobi-Bellman equation) is given by (e.g., 

Bitran and Caldentey, 2003) 

tp
t epF −−=1)(
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where  is the expected marginal revenue of the  unit of 

inventory at time t ( the opportunity cost of selling a unit of inventory at time t when the 

available inventory is ). According to this condition, it is easy to see that the optimal 

price satisfies 

)1()()( −−= tttttt qVqVq

tq

)( tt qVp

ΔV th
tq

Δ≥ . Under some restrictions on  and its density function 

, the first-order condition characterizes the optimal price as follows: 
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Thus, the problem of computing an optimal price strategy reduces to the computation of 

the opportunity cost .  )( tqVΔ

Similar to Kincadic and Darling (1963), Gallego and van Ryzin (1994) proved that the 

value function  is strictly increasing and strictly concave in both the remaining time 

until the end of the selling season, i.e., T-t, as well as the inventory level . Furthermore, 

they showed that the optimal price  is increasing in the remaining time and decreasing 

in inventory level. That is: 

)( tt qV

tq

*
, tqtp

1. At a given point in time, the optimal price decreases as inventory increases;  
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2. For a given level of inventory, the optimal price increases if there is more time to 

sell. 

As an important limitation, Kincadic and Darling (1963) discussed there are no exact 

closed-form solutions for the optimal price strategy in equation (2.13) for the other demand 

functions in which the consumers’ reservation price is not exponentially distributed. To 

avoid this limitation, some studies considered the discrete time models that we will discuss 

next. 

 

2.3.2.2.2 Discrete time models: In the case of discrete time models, the length of the 

selling season is assumed to be divided into T periods such that there is only one consumer 

per period who is willing to pay tν  for the product in period t. The reservation price in 

period t assumed to be a random variable with distribution )()( ννν ≤= tt PF . Therefore, if 

the seller sets the price at  in period t, he will sell exactly one unit of the product if tp

tt p>ν , with probability . Let  be the optimal expected revenues of the 

available inventory  at the beginning of period t, t=1,…,T,  the 

(average) demand rate, and 

)t

p

(1 p

)tp

F−

(r

)( tt qV

)tp

tq )( tpF−1)( tpd =

(td=  the revenue function, so that the problem can 

be formulated as follows (e.g., Talluri and van Ryzin, 2004): 
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where  and . Under assumption of monotonic marginal revenue, the 

necessary and sufficient conditions for the optimal rate  are . 

0)(1 =+ tT qV 0)0( =tV

)( *
tpd )())(( 1

*
ttt qVpdJ +Δ=

 

Proposition 2.1 

If assumption 2.2 holds, then the expected marginal value of inventory  is 

decreasing in t and  (e.g., Talluri and van Ryzin, 2004). That is: 

)(1 tt qV +Δ

tq

1. )()(1 tttt qVqV Δ≤Δ + ;  

2. )()1( tttt qVqV Δ≤+Δ . 
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Therefore, the higher marginal values correspond to the lower optimal demand rates and 

hence the optimal higher prices. In fact, )()(1 tttt qVqV Δ≤Δ +  states that the expected 

marginal value of inventory is greater as there are more time until the end of the selling 

season and )()1( tttt qVqV Δ≤+Δ  states that the expected marginal value of inventory 

increases as decreasing inventory.  

To illustrate how the optimal price changes in stochastic demand models, we provide a 

numerical example. According to Gallego and van Ryzin (1994) the optimal solution for 

, when there are  units of the product at the beginning of the given 

period t, t=1,…,T, will be as follows:    

0  , )( >= − aaepd p
tq

1)1()()(* +−−= tttttt qVqVqp  

where , the optimal expected revenues generated over (t,T], is given by )( tt qV

eapd
i

tpdqV t

q

i

i
ttt

t

/)(,)
!

1))((ln()( 0

0

0 == ∑
=

7. 

Suppose that the entire of the selling season is divided into T=50 periods and the seller 

has  units of the product at time zero. The seller updates the price at the start of 

each period based on the remaining time and the inventory on hand. Figure 2.6 shows a 

sample path of the optimal price when the demand function has the form  

Note that the x-axis in Figure 2.6 represents the number of the passed periods. As shown in 

Figure 2.6 after setting the initial price at time zero, the optimal price decreases as the time 

progresses without any sale and jumps up after each sale. Moreover, the slope at which the 

price decreases over time tends to increase as the selling horizon gets shorter.  

200 =q

pepd −=100)( .

In our example where , the initial inventory pepd −=100)( 200 =q , and T=18, then, 

the revenue maximizing price and the inventory clearing price are given by  

                                                 
7 Under the assumption of , the revenue maximizing price is given by 0  , )( >= − aaepd p
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Then,  
eaaepd t /)( 10 == − . 

8 For the single fixed price, we consider the entire of the selling season as one period. 
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10)1(100100)()( 0 =→=
∂
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∂
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p
rpeppdpr pp  

61.120100)( 0 =→=→= − peqpd p . 

Therefore, the optimal fixed-price will be 61.1},max{ 0* == ppp , see Figure 2.6. 
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Figure 2.6 A sample path of the optimal price and the optimal fixed-price of a 

stochastic demand )),(,( ttpdtD ξ  where . 20,100)( 0 == − qepd tp
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In practice, implementing and controlling the optimal prices conduced from discrete 

time models is difficult (e.g., Bitran and Mondschein, 1997). As an alternative, the single 

fixed-price policy for whole of the selling season could be used if the firm has a large 

number of units to sell. The fixed-price model is simple and easy to implement and control. 

Hence, even if price changes are possible, managers often choose to use the fixed-price 

policy instead of the continuous time policies.  

In what follows we review some other studies that considered some special cases of 

the problem of pricing a single perishable product over a finite horizon of time and 

highlight the main results. There are some studies in the revenue management literature 

that focused on the time of changing the price during the selling season. Feng and Gallego 

(1995) studied the problem of selling a given inventory over a finite horizon where there is 

a unique price change during the sales season and the seller has is to decide the optimal 

timing of changing the price. They showed that it is optimal to decrease (respectively 

increase) the initial price as soon as the remaining time falls below (respectively above) a 
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time threshold that depends on the number of the remaining units. Feng and Xiao (2000) 

presented the problem of pricing the same product at different levels. They improved the 

model considered in Feng and Gallego (1995) and showed that the optimal policy is 

monotone. 

Zhao and Zheng (2000) studied a dynamic pricing model for selling a given stock of a 

perishable product over a finite time horizon. In this setting, consumers arrive according to 

a non-homogeneous Poisson process. The author assumed that consumers’ reservation 

price distribution changes over time, derived an optimality condition equivalent to (2.13), 

and showed that the value function  is concave on both the level of inventory and the 

duration of the selling season. They also showed that at any given time, the optimal price 

decreases with inventory and found a sufficient condition on the reservation price 

distribution that guarantees that the optimal price is non-decreasing on the duration of the 

selling horizon.  

)( tt qV

Bitran and Mondschein (1997) considered a continuous time problem of pricing a 

seasonal product where a seller faces a stochastic arrival of the consumers with different 

valuations of the product. They modeled optimal pricing policies as functions of time and 

inventory and showed that demand uncertainty leads to higher prices, larger discounts, and 

more unsold inventory. The authors also addressed the practical problem of implementing 

continuous time models and pointed out some reasons such as coordinating and 

management costs associated with changing prices and destruction of product’s value to 

explain why the managers prefer to revise their pricing policies periodically instead of 

continuously. They extended the basic model to incorporate periodic reviews where prices 

are allowed to change at discrete time intervals and found that the loss experienced by 

implementing periodic pricing reviews instead of the continuous time pricing policies is 

very small if the seller selects an appropriate number of reviews. 

In the retail chain context, Bitran et al. (1998) extended the single perishable product 

periodic review formulation of Bitran and Mondschein (1997) to the case of a retail chain. 

The authors assumed that a certain amount of a product is sold at different stores and each 

store has its own demand pattern. Under the constraint that at every given time the price 

must be the same at all the locations, the authors derived optimality conditions and a set of 

heuristics for two cases when inventory transfers among stores are allowed and not 
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allowed and proposed a methodology to set prices of seasonal products where the retail 

chain changes prices periodically according to the inventory level as well as the time left to 

the end of the selling season. The authors described the consumers’ arrival process by a 

Poisson distribution with a time dependent arrival rate (non-homogeneous Process) and 

supposed a probability distribution for the consumers’ reservation price to capture the 

heterogeneity of the consumers’ purchasing behavior. The heuristics are constructed using 

a rolling horizon approach, whereby at every decision point the price is computed 

assuming that this is the last time that the price will be revised. Computational experiments 

showed that this type of heuristic performs quite well with an average error of 2%–3%. 

The paper also includes a set of numerical experiments that were conducted using real data 

collected from a retail chain store; see also Federgruen and Heching (2002). 

Smith and Achabal (1998) also studied clearance pricing policies in retail chain. They 

assumed that demand for the product is a function of price, the inventory on-hand, and 

seasonal effects and found that prices should be set higher before the clearance period 

starts, and then reduced more sharply during the clearance period. Mantralla and Rao 

(2001) also considered the problem of optimal ordering and markdown decisions in 

retailing. The authors provided a decision-support system by which retailers are able to 

determine the optimal initial inventory and then markdown pricing decisions. Gupta et al. 

(2006) studied the problem of setting prices for clearing retail inventories of fashion goods, 

presented a discrete time model for both deterministic and stochastic demand, and showed 

that the penalty for choosing the markdown price once and then keeping it unchanged is 

small either when the mean reservation prices do not change over time or when the mean 

of the reservation prices drops significantly after the first period. 
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3.1 Introduction 
Demand forecasting is essential to make decisions of business activities such as production 

(ordering) and marketing (pricing, distribution, etc.). Most of firms cannot simply wait for 

demand to emerge and then react to it. Instead, they must anticipate and plan for future 

demand so that they can react immediately to consumer orders as they occur. For instance, 

in the case of selling perishable products over a finite horizon of time, the firm has to order 

in advance while demand is not yet realized. In addition, the replenishment of inventory 

usually is not possible within the selling period (supply inflexibility) and firms have to 

determine the initial inventory and price according to primary forecasts of demand. In such 

cases, the seller usually sets an initial price for the product according to his belief 

(prediction) about demand for the product and changes it over time based on the realized 

demand, the remaining amount of stocked items, and the time until the end of the selling 

season. The ultimate aim of the seller is to maximize the total revenues of selling inventory 

by setting the right price for the product at the right time. In order to set the right price for 

the product one needs to know how demand reacts to change of prices over time.  

In practice, however, there are many situations where the firm does not have full 

knowledge of the demand patterns when he determines the prices. Moreover, the demand 

patterns may be changing over time in ways that are not necessarily predictable. From the 

firm’s point of view, the more uncertainty associated with future demand, the more 

difficulty to make the effective pricing decisions occurs and the more possibilities to make 

potentially bad decisions as well. Thus, resolving demand uncertainty plays an important 

role for managing demand and the success of the firm’s operations in the market.  

This chapter is devoted to study demand uncertainty as one of the most important 

problems faced by managers when determining the optimal prices for perishable products 

over time. There are several demand forecasting methods used to resolve demand 

uncertainty. We begin with a short introduction to revenue management systems that 

demand forecasting is one of the most important parts of it, and then focus on demand 

forecasting methods that are used commonly in revenue management applications. After 

that, we will consider the consumers’ arrival rate as one of the sources of demand 

uncertainty and provide a Bayesian learning approach to compute the distribution of the 

consumers’ arrivals during the remaining time until the end of the selling season. 
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Additionally, we present a review of demand learning literature and highlight the main 

results. 

As mentioned in the preceding chapter, revenue management is concerned with 

demand-management decisions and the methodology and systems required making them. A 

revenue management system (RMS) is a tool that supports decision making with respect to 

the revenue problems such as pricing decisions, distribution decisions, and promotion 

decisions. As shown in Figure 3.1, a RMS includes four main steps: 

 

1. Data collection: Collecting relevant data about the product such as prices, demand, 

competition, and other factors that affect sales. 

2. Estimation & forecasting: Determining a demand model, estimating the parameters 

of the demand model, and forecasting demand based on these parameters. 

3. Optimization: Finding an optimal set of controls such as prices, allocations, 

markdowns, etc., to maximize expected revenues. 

4. Control: Controlling the sales and inventory. 

  

Demand 
Info.

Product 
Info.

Pricing 
Info.

 
 
 

 
Data Collection 

 
 
 

 
Estimation / Forecasting 

 
 
 

 
Optimization 

 
 
 

 
Control 

 

Figure 3.1 Revenue management systems. 
Source: Talluri and van Ryzin (2004).
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3.2 Demand Forecasting 
Forecasting is the key tool from which all other revenue management subjects originate. 

As forecasts are looking into the unknown future, some level of error between demand 

forecasts and actual demand has to be expected. Thus, the goal of forecasting is to 

minimize the error between the forecast values of demand and the actual demand. A good 

demand forecasting will help a firm to increase its revenues by minimizing the lost sales.  

Since most of the revenue management applications such as dynamic pricing use 

stochastic models of demand, the optimization models require good estimates of the 

probability distribution of future demand or at least parameter estimates for the assumed 

demand distribution. Such estimates can be made in two ways: 

1. Parametric estimation: A specific functional form of demand is assumed and the 

estimates of the parameters of this function have to be calculated. 

2. Nonparametric estimation: Distributions or functions have to be directly estimated 

based on observed data. 

While nonparametric estimations seem to be more general, they have two main flaws (e.g., 

Talluri and van Ryzin, 2004): First, they often require much more information than is 

available in many revenue management applications to obtain reasonable estimates of 

future demand, especially for the case of selling new products or of fashion or seasonal 

goods; Second, they may not provide good estimates of future demand even if they fit the 

observed data well. In contrast to nonparametric estimations, parametric estimations are 

more widely used in RM applications because they are better able to smooth out the noise 

within demand data. Further, they have the advantage of providing estimates of demand 

that extend beyond the range the observed demand data, and are generally more robust to 

errors and noise in data. However, parametric estimations can suffer from specification 

errors, i.e., they assumed that demand distribution is significantly different from the real 

demand distribution (which can be tested).  

In terms of estimation, there are two well-known approaches to find estimators: (1) 

Minimum mean-square error (MSE) and (2) Maximum-likelihood (ML). Minimum mean-

square error estimators which have been mostly studied in the case of linear regression are 

those values of parameters that minimize the sum of squared differences between the 

observed and expected values of the observations. Maximum-likelihood estimators, in 

 37



 
 
 
Chapter 3                                                             Demand Forecasting & Demand Learning 

contrast, are the values of the parameters for which the observed sample is most likely to 

have occurred. 

While estimation is concerned with the problem of finding the parameters of the 

demand model to describe the observed data, forecasting involves predicting future 

demand that is unobserved yet. Demand forecasting is our next topic in this chapter in 

which we review some methods that will be used in this work. 

 

3.3 Forecasting Methods 
There are various forecasting methods which can be divided into two main categories: (1) 

Qualitative methods that are based on opinions and intuition and (2) Quantitative methods 

that use mathematical and historical data to make forecasts. In what follows we briefly 

review some forecasting methods that are mostly used in demand forecasting and refer the 

reader to Makridakis et al. (1998), Talluri and van Ryzin (2004), and Armstrong and Green 

(2005) for a review on forecasting methods.  

 

3.3.1 Qualitative Forecasting Methods 

Qualitative forecasting methods are most appropriate when there is little historical data 

available. In respect to our work, these methods can be used to determine the initial 

inventory, i.e., how many units should be ordered, and the initial price.  

 

3.3.1.1 Unaided Judgment 

It is common practice to ask experts what will happen. This is a good method to use when  

• Experts are unbiased.  

• Large changes are unlikely.  

• Relationships are well understood by experts. 

• Experts possess privileged information. 

• Experts receive accurate and well-summarized feedback about their forecasts.  

 

3.3.1.2 Delphi  

In Delphi forecasting method, the administrator should recruit between five and twenty 

suitable experts and poll them for their forecasts and reasons. The administrator then 
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provides the experts with anonymous summary statistics on the forecasts, and experts’ 

reasons for their forecasts. The process is repeated until there is little change in forecasts 

between rounds – two or three rounds are usually sufficient. The Delphi forecast is the 

median or mode of the experts’ final forecasts.  

 

3.3.1.3 Structured Analogies 

The outcomes of similar situations from the past (analogies) may help a marketer to 

forecast the outcome of a new (target) situation. For example, the introduction of new 

products in the interest market can provide analogies for the outcomes of the subsequent 

release of similar products in other markets. To use the structured analogies method, an 

administrator prepares a description of the target situation and selects experts who have 

knowledge of analogous situations; preferably direct experience. The experts identify and 

describe analogous situations, rate their similarity to the target situation, and match the 

outcomes of their analogies with potential outcomes in the target situation. The 

administrator then derives forecasts from the information the experts provided on their 

most similar analogies.  

 

3.3.1.4 Judgmental Decomposition 

The basic idea behind judgemental decomposition is to divide the forecasting problem into 

parts that are easier to forecast than the whole. A decision maker forecasts the parts 

individually, using methods appropriate to each part. Finally, the parts are combined to 

obtain a forecast.  

 

3.3.1.5 Judgmental Bootstrapping 

Judgmental bootstrapping converts subjective judgments into structured procedures. 

Experts are asked what information they use to make predictions about a class of 

situations. They are then asked to make predictions for diverse cases, which can be real or 

hypothetical. The resulting data are then converted to a model by estimating a regression 

equation relating the judgmental forecasts to the information used by the forecasters. 

Judgemental bootstrapping models are most useful for repetitive complex forecasting 

problems where data on the dependent variable are not available (e.g. demand for a new 

product) or data does not vary sufficiently for the estimation of an econometric model. 
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Judgmental bootstrapping also allows experts to see how they are weighting various 

factors. This knowledge can help to improve judgmental forecasting. Bootstrapping also 

allows for estimating effects of changing key variables when historical data are not 

sufficient to allow for estimates.  

 

3.3.1.6 Expert Systems 

Expert systems are structured representations of the rules experts use to make predictions 

or diagnoses. Expert systems forecasting involves identifying forecasting rules used by 

experts and rules learned from empirical research. One should aim for simplicity and 

completeness in the resulting system, and the system should explain forecasts to users.  

 

3.3.1.7 Conjoint Analysis 

By surveying consumers about their preferences for alternative product designs in a 

structured way, it is possible to infer how different features will influence demand. The 

potential customer is thus forced to make trade-offs among various features by choosing 

one of each pair of offerings in a way that is representative of how they would choose in 

the marketplace. The resulting data can be analysed by regressing respondents’ choices 

against the product features.  

 

3.3.2 Quantitative Forecasting Methods 

In quantitative forecasting methods, historical data is needed and mathematical methods 

are used for forecasting. 

 

3.3.2.1 Time Series Forecasting Methods 

Time series forecasting methods are perhaps the most frequently used class of techniques 

among all the quantitative forecasting methods. They are based on assumption that future 

is an extension of the past. In these methods, historical data is used to predict future 

demand. Among the different time series forecasting methods, we use the special cases of 

moving average forecasting and exponential smoothing forecasting methods as two 

alternatives of our Bayesian forecasting approach to predict the number of arriving 

consumers at the store. These forecasting approaches are widely used in the revenue 

management applications. 

 40



 
 
 
Chapter 3                                                             Demand Forecasting & Demand Learning 

3.3.2.1.1 Moving average methods: In these simple forecasting methods, we assume that 

the values of the forecasts corresponding to the next periods are equal to the average of the 

k last observations. Let T be the number of periods and  be the observed values in 

the periods 1,…,t. The forecast of the next period, i.e., period t+1, is given by 
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As a special case, if k=t the forecasts of the next periods would be simply equal to the 

average of all observations that we are using it in our work. 

 

3.3.2.1.2 Exponential smoothing methods: Exponential smoothing methods are commonly 

used in revenue management practice because they are simple and robust (Talluri and van 

Ryzin, 2004). The simplest version of exponential smoothing methods is defined by a 

single parameter, 10 <<α . Let T be the number of periods and  be the observed 

values in the periods 1,…,t. The forecast of the next period, i.e., period t+1, is given by 
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In exponential smoothing methods, smaller values of α  smooth the forecasts more and 

spread the weights over a longer course, while larger values of α  make the forecasts more 

responsive to the recent observations. Interested readers are referred to Silver and Peterson 

(1985) for a review of moving average and exponential smoothing forecasting methods in 

more details. 

 

3.3.2.2 Bayesian Forecasting Methods 

Bayesian forecasting is a natural product of the Bayesian approach to inference. The 

Bayesian approach in general requires explicit formulation of a model and conditioning on 

known quantities, in order to draw inferences about unknown ones. Bayesian forecasting 

methods use the Bayes formula to merge a prior belief about forecast values with 

 41



 
 
 
Chapter 3                                                             Demand Forecasting & Demand Learning 

information obtained from observed data. The methods are especially useful when there is 

no historical data such as introducing new products, fashion/style and seasonal goods.  

Consider a model with parameter δ . The seller has some initial believes about the 

value of this parameter and collects data to improve this understanding. Under Bayesian 

analysis the seller’s believes about the parameter is represented by a probability 

distribution over all possible values that the parameter can take, where the probability 

represents how likely the seller thinks it is for the parameter to take a particular value. 

Prior to collecting data, the seller’s believes are based on logic, intuition, or past analyses. 

These believes are represented by a density on δ , called the prior distribution and denoted 

)(δf . The seller collects data in order to improve his ideas about the value of  δ . Suppose 

the seller observes a sample as }{ 1 nyyY ,...,= . Based on this sample information, the seller 

changes (updates) his ideas about δ . The updated believes are represented by a new 

density on δ  as )|( Yg δ  called the posterior distribution. This posterior distribution 

depends on Y, since it incorporates the information that is contained in the observed 

sample. The question that arises is how exactly do the seller’s believe about δ  change 

from observing Y? That is, how does the posterior distribution )|( Yg δ  differ from the 

prior distribution )(δf ? There is a precise relationship between the prior and posterior 

distribution, established by Bayes’ rule. Let )|( δnyP  be the probability that  is the nth 

value. The probability of observing the sample outcomes Y is 

ny

∏
=

=
n

k
kyPYL

1

).|()|( δδ  3.4

This is the likelihood function of the observed choices. Note that it is a function of the 

parameters δ . 

Bayes’ rule provides the mechanism by which the seller improves his ideas about δ  

(e.g., Train, 2003). By the rules of conditioning, 

)()|()()|( δδδ fYLYLYg = , 3.5

where L(Y ) is the marginal probability of Y , marginal over δ : 

∫= .)()|()( δδδ dfYLYL  3.6

Both sides of equation (3.6) represent the joint probability of Y and δ , with the 

conditioning in opposite directions. The left-hand side is the probability of Y times the 
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probability of δ  given Y, while the right-hand side is the probability of δ  times the 

probability of Y given δ . Rearranging, we have 

)(
)()|()|(

YL
fYLYg δδδ = . 3.7

This equation is Bayes’ rule applied to the prior and posterior distributions. In general, 

Bayes rule links conditional and unconditional probabilities in any setting and does not 

imply a Bayesian perspective on statistics. Bayesian statistics arises when the 

unconditional probability is the prior distribution and the conditional probability is the 

posterior distribution.  We can express equation (3.7) in a more compact and convenient 

form. The marginal probability of Y, i.e., L(Y), is constant with respect to δ  and, more 

specifically, is the integral of the numerator of (3.7). As such, L(Y) is simply the 

normalizing constant that assures that the posterior distribution integrates to 1, as required 

for any proper density. Using this fact, equation (3.7) can be stated more short by saying 

simply that the posterior distribution is proportional to the prior distribution times the 

likelihood function: 

).()|()|( δδδ fYLYg ∝  3.8

Intuitively, the probability that the seller assigns to a given value for the parameters after 

seeing the sample is the probability that he assigns before seeing the sample times the 

probability (i.e., likelihood) that those parameter values would result in the observed 

choices. 

Regarding to our work, we assume that values, for instance,  

describe a sequence of independent and identically distributed random variables and that 

 has a probability density function 

Tt NNNN ,...,,1 ,...,2

tN )|( δnf  that is a function of an unknown parameter 

δ . The parameter δ  itself is assumed to be a random variable with a probability density 

function )(δg , called the prior distribution. Let )(0 δg  presents our prior distribution and 

 denotes the first observed value. The posterior distribution of 1n δ  is given by 

δδδ

δδ
δ

dnfg

nfg
g

∫
∞=

0
10

10
1

)()(

)()(
)( . 3.9

Then the Bayes estimator  is the expected value of *δ δ  based on the posterior 

distribution: 
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∫
∞

==
0

1
* )( ][ δδδδδ dgE  3.10

The estimator  has several useful theoretical properties. As an important advantage, it 

minimizes the variance of the forecast error. The value  is used in forecasting by setting 

*δ
*δ

][ˆ *δtt NEN = . The readers are referred to West and Harrison (1989) as an excellent 

review of Bayesian learning and forecasting. 

In Bayesian probability theory, a class of the prior probability distributions )(δP  is 

said to be conjugate to a class of likelihood functions )|( δxP  if the resulting posterior 

distributions )|( xP δ  are in the same family as )(δP . That is, the posterior distribution of 

the parameter δ  has the same distribution as the prior. We point out here some pairs of 

conjugate families of prior distributions (see for more details DeGroot and Schervish, 

2002): 

Bernoulli-beta: Let  be 0-1 random variables having a Bernoulli 

distribution with 

tNNN ,...,, 21

δ=)1=( kNP , and δ  has a beta distribution with parameters ( βα , ). 

After observing , tnnn ,...,, 21 δ  has a beta distribution with parameters and ( , 

).  

∑ =

t

k kn
1

+α

∑ =
−+

t

k knt
1

β

Poisson-gamma: Let  have a Poisson distribution with meantNNN ,...,, 21 λ , and λ  

has a gamma distribution with parameters ( βα , ). After observing , tnnn ,...,, 21 λ  has a 

gamma distribution with parameters ( ∑ =

t

k kn
1

+α , t+β ). 

Exponential-gamma: Suppose that  have an exponential distribution with 

rate 

tNNN ,...,, 21

λ , and λ  has a gamma distribution with parameters ( βα , ). After observing 

, tnnn ,1 ,...,2 λ  has a gamma distribution with parameters ( t+α , ∑ = kn
1

+
t

k
β ). 

Normal-inverse gamma: Suppose that  have a normal distribution with 

mean 

tNNN ,...,, 21

μ  and unknown variance , and  has an inverse gamma distribution with 

parameters (

2σ 2σ

βα , ). After observing  ,  has an inverse gamma distribution 

with parameters (

tn,..., 2σnn , 21

2/t+α , ∑ =

t

k
− 2)μ+ 2/1β kn

1
( ). 
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In this work, we suppose that the demand for each product is the result of an arrival 

process and a consumer choice behavior. In the following section, we focus on consumer 

arrival processes. The consumer choice behavior will be discussed in the next chapter. 

 

3.4 Consumer Arrival Process 
In what follows we consider consumer arrival processes. Suppose there is a consumer 

population of size M in the market for the product, where each consumer has probability 

ζ  of arriving at the store during the sales season. Then the number of arriving consumers 

 has a binomial distribution: N

nMn

n
M

nNP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1()( ζζ  3.11

with the expected number of arriving consumers . Supposing 

that we increase M, while keeping the expected number of arriving consumers constant, 

i.e., 

MnNnPNE
M

n

 )(][
1

ζ===∑
=

λζ == MNE  ][ . Thus M/λζ = .  

nMn

M

nMn

MM

MMn
M

n
M

nNP

−

→∞

−

→∞→∞

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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)1(lim)(lim
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Then 
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!

)(lim λλ −

→∞
== e

n
nNP

n

M
 3.12

That is, the number of arriving consumers at the store N has a Poisson distribution with 

parameter λ  where the parameter λ  represents the expected number of the consumers’ 

arrivals. As a result, the Poisson distribution can be used to model the number of arriving 

consumers from a large population of potential consumers.  

We consider the case in which the consumers’ arrivals at the store occur over the time 

interval [0,T], where T is the length of the selling season. We assume that for each 

consumer, his arrival time is generated according to a probability distribution on [0,T], 

independent from any other consumer. We split [0,T] in two intervals [0,t] and (t,T] and 

assume that each consumer determines his arrival time according to a uniform distribution 
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on [0,T]. Under these assumptions every instant in [0,T] is equally likely and then a 

consumer arrival occurs in [0,t] with probability t/T. Let  denotes the number of the 

consumers’ arrivals in [0,t], for 

)(tN

Tt ≤≤0  and TTNE λ=)]([ , thus on average λ consumer 

arrivals occur per time unit (period). That is, N(t) and N(t,T)=N(T)-N(t) have independent 

Poisson distributions with parameters λt and λ(T − t).  Therefore  

)(

!
)())((lim t

n

M
e

n
tntNP λλ −

→∞
==  3.13

and 

))((

!
))(()),((lim tT

n

M
e

n
tTnTtNP −−

∞→

−
== λλ  3.14

 

3.5 Poisson Process 
The Poisson process is a very well-known stochastic process for modeling purposes in 

numerous practical applications, e.g., to model consumer arrival process (e.g., Tijms, 1986, 

Ross, 2002). A Poisson process N is a stochastic process in which arrivals (events) occur 

continuously and independently of one another. More specifically, Poisson processes are 

counting processes.  

 

Definition 3.1 Poisson Random Variable: A random variable N with outcomes 0,1,2,…, 

and mean Λ  is a Poisson random variable if 
!

)(
n

enNP
nΛ

==
Λ−

.  

According to the definition Λ== ][][ NVarNE . That is, variance-to-mean ratio for a 

Poisson random variable is equal to 1. 

 

Definition 3.2 Poisson Process: A Poisson process N with the arrival rate function 

(intensity)λ  is a stochastic process that has the following properties: 

1. N is a counting process- N(0)=0, and for t>0, N(t) is non-decreasing and takes on 

only non-negative integer values; 

2. Increments on non-overlapping time intervals are independent of one another as 

random variables, i.e., any set of increments )()( lll tNtN −+τ  for is 

independent; and 

nl ,...,2,1=
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3. For all and0≥t 0>τ , the increment )()( tNtN −+τ is a Poisson random variable 

with mean . ∫t
dx

 

 

+τ
λ

t
x)(=Λ

Let N(t) be the number of arrivals that occur after time 0 up through and including time 

t>0, N(t) is a random variable for each value of t.  

 

Homogeneous vs. non-homogeneous Poisson process: A homogeneous Poisson process is 

characterized by a rate function λ  such that the number of arrivals over the time interval 

],( τ+tt  follows a Poisson distribution with parameterλτ . That is  

,...1,0            ,
!

)(]))()([( ===−+
−

n
n

entNtNP
nλττ

λτ

 3.15

where )()( tNtN −+τ  is the number of arrivals within the time interval ],( τ+tt . While 

the rate function λ  is constant in homogeneous Poisson process, in the non-homogeneous 

Poisson process it is given by )(tλ . In this case, the expected number of arrivals during the 

time interval ],( τ+tt is 

∫
+

+∈ =
τ

τ λλ
t

tttt dtt
 

 ],( )( . 3.16

 

 

Therefore, the number of arrivals follows a Poisson process that is given by 
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 3.17

Memoryless property of Poisson process: A Poisson process is generally characterized by 

the property of memoryless that means the number of arrivals occurring in any interval of 

time after time t is independent of the number of arrivals occurring before time t.  

0      },{}|{ ≥>=>+> τττ XPtXtXP  3.18

 

Sum of Poisson processes: Suppose that the Poisson processes  with rate 1N 1λ  and  

with rate 

2N

2λ  are independent. Then the counting process N defined by 

 is a Poisson process with rate )()()( 21 ttNtN = N+ λ  given by 

)()()( 21 ttt λλλ += . 3.19
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Parameter estimation: Suppose that we observe the number of arrivals periodically. Given 

a sample of t observation , we interested in estimating the value of the rate tnn ,...,1 λ  of 

the corresponding Poisson process. To calculate the maximum likelihood value of λ , we 

can use the log-likelihood function as follows: 
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3.20

Take the derivative of )(λL  with respect to λ  and equate it to zero: 
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Consider , then N(t)/t is an unbiased estimator of ∑
=

=
t

k
kntN

1
)( λ . We also have 

, with all N(s−1,s) independent and identically distributed. Thus the 

law of large numbers applies, and 

∑=tN )(
=

−
t

s
ssN

1
),1(

λ→ttN /)( .  

To check whether  are likely from a homogeneous Poisson process we can 

calculate the sample variance as follows: 

tnn ,...,1
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1
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k kn n
t

s λ . 3.22

If , then it is well possible that the numbers of arrivals have the same distribution. 

However, it often occurs that  that is called over-dispersion with respect to the 

Poisson process that arises from either the arrivals are not Poisson, or the arrivals are 

Poisson but with different parameters. 

λ̂2 ≈ns

λ̂2 >ns

 

Bayesian inference: In Bayesian inference, the conjugate prior distribution for the rate of 

the Poisson process λ  is assumed to be a gamma distribution with parameters ),( βα . 

Thus  
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0            ,
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Then, given the sample of t observations  and a prior of a gamma distribution with 

parameters 

tnn ,...,1

),( βα , the posterior distribution of the rate λ  will be again a gamma 

distribution with parameters . )t+β,(
1

n
t

k
k+∑

=

α

 

3.6 Literature Review of Demand Learning 
Demand learning is an effective approach to resolve demand uncertainty in which a 

decision maker learns from the observed demand information after the selling season 

unfolds by updating the forecasts of future demand. 

Demand learning models have been studied in both the inventory control and revenue 

management literature to better forecast future demand. The inventory control problem is 

mainly concerned with determining the optimal inventory for the next periods and most of 

the studies in this context use periodic review models in which demand in each period is 

considered to be a random variable that follows a distribution function with an unknown 

parameter. At the beginning of each period, the observed demand data is used to revise the 

unknown parameter of the demand distribution by using Bayes’ rule in order to determine 

the optimal inventory for the coming periods. As more observations become available, 

demand uncertainty is resolved and the parameter of the demand distribution approaches 

its true value (e.g., Scarf, 1959, Murray and Silver, 1966, Azoury, 1985, Popovic, 1987, 

Bradford and Sugrue, 1990, Hill, 1999, Lariviere and Porteus, 1999, Berk et al., 2007). 

Lazear (1986) considered a two-period problem for the situation of selling a product. 

In this model, it is assumed that a firm sells a single unit of the product to a price-sensitive 

market of M consumers. He assumes that each arriving consumer is willing to pay the 

amount v for the product, i.e., v is the consumer’s reservation price. The firm does not 

know v with certainty, but has some prior belief of the density of v. In each period, there 

are two types of consumers, (1) buyers whose reservation price is not less than the posted 

price and who will buy the product and (2) shoppers whose reservation price is less than 

the posted price and who will leave the store empty-handed. Hence, the firm has 

information about the probability that an arriving consumer is a buyer or a shopper. Based 
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on the prior belief of the consumers’ reservation price, the author used a Bayesian 

approach to update the consumers’ reservation price and set the price for the second 

period. The author showed that the price is monotonically decreasing in time. 

Fisher and Raman (1996) documented a dramatic improvement in forecast accuracy 

that can be achieved after having observed initial sales for fashion items. They modeled 

and analyzed the decisions required under Quick Response where firms can quickly react 

to demand by improving of ordering (production) lead times and gave a method for 

estimating the demand probability distributions. Eppen and Iyer (1997) proposed an 

inventory control model in which demand during the first phase of the sales season is 

correlated with the demand during the remainder of the selling season. This correlation is 

due mainly to the uncertainty about the exact parameters of the underlying demand 

process. 

Petruzzi and Dada (2001) considered a two-period model where the firm faces 

uncertain demand which depends on both price and the inventory level. The model is an 

extension of the newsvendor problem by considering price as a decision variable. The 

seller determines (1) how much to buy from a supplier for delivery in the periods 1 and 2 

before the beginning of the season and (2) the price at which the product should be sold. 

After having observed data of the sales in the first period, the seller determines the 

stocking quantity and the selling price for the second period. The authors showed that all 

decisions can be determined uniquely as a function of the first period stocking factor. They 

also found that the cost of learning is a consequence of censored information and shared 

with the consumer in the form of a higher selling price when demand uncertainty is 

additive, see also Dada et al. (2007). 

While most research in inventory control assumes that the price is exogenous and the 

firm decides how much inventory has to be replenished in each time period, there are some 

studies that consider both pricing and inventory decisions (e.g., Subramanian and 

Shoemaker, 1996, Chan et al., 2004). 

Petruzzi and Dada (2002) studied the problem of determining optimal stocking and 

pricing policies over time when a given market parameter of the demand process, though 

fixed, is initially unknown. In this setting, because of the initially unknown market 

parameter, the decision maker begins with a subjective probability distribution associated 

with demand. Learning occurs as the firm monitors the market's response to its decisions 
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and then updates its characterization of the demand function. The authors found that the 

first-period optimal selling price increases with the length of the problem horizon. 

However, for a given problem horizon, prices can rise or fall over time depending on how 

the scale parameter influences demand. 

Bitran and Wadhwa (1996) described a modeling approach for using observed sales 

data to update demand information over time, and showed how this can be applied in an 

optimal dynamic pricing model for seasonal products. They used the demand model 

developed by Bitran and Mondschein (1993). In their methodology the entire sales season 

is divided into T discrete periods and it is assumed that for each period there is a 

reservation price distribution associated with the consumer population. Consumers in each 

period arrive at the store in the form of a Poisson process with an arrival rate that is known 

to the planner, and that is independent of price. Each store arrival rate is drawn randomly 

from the reservation price distribution. Each arriving consumer is assumed to purchase one 

unit of the product if price of the product is not larger than his reservation price. The 

authors showed that a firm who incorporates a demand learning approach will be able to 

correct the price early in the season and improve its revenues. 

Smith and Achabal (1998) considered clearance (markdown) pricing policies for retail 

chains. They assumed that the demand (sales) rate to be a function of price, seasonal 

effects and the remaining units of the product. The authors used a combination of 

regression analysis and subjective inputs in order to estimate the parameters of the model.  

There are also some studies that incorporate both pricing and inventory decisions to 

improve the profit of the operation. Jorgensen et al. (1999) considered a monopolist firm 

that plans its production, inventory, and pricing policy over a fixed and finite horizon. 

They developed a dynamic model of pricing, production and inventory management, 

which allows for learning effects on both the demand and the production side. The author 

assumed that the demand rate at the current period depends on price and the cumulative 

sales in the earlier periods. Burnetas and Smith (2001) examined the combined problem of 

pricing and ordering for a perishable product with an unknown demand distribution and 

censored demand observations resulting from lost sales, faced by a monopolistic retailer. 

TheyFehler! Textmarke nicht definiert. developed an adaptive pricing and ordering 

policy with the asymptotic property that the average realized profit per period converges 

with probability one to the optimal value under complete information on the distribution.  
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In the dynamic pricing literature, most of the studies assume that consumers arrive 

according to a Poisson process with a given rate (e.g., Kincaid and darling, 1963, Gallego 

and van Ryzin, 1994). That is, increments time intervals are independent of one another as 

random variables. Thus, knowing the number of consumers that arrived up to time t, 

provides no information about the number of arriving consumers in the remaining time to 

the end of the sales course. As a result, the problem of optimal pricing is formulated as a 

Markov decision process (e.g., Subramanian et al., 1999, Feng and Gallego, 2000). 

 In the last few years, researchers focused on learning from sales information during 

the selling season. Aviv and Pazgal (2005b) considered a retailer of a fashionable good 

during a short sales season that is uncertain about how successful the product will be in the 

market and studied a problem where the arrival rate of potential consumers at the store is 

constant and independent of the prevailing prices. Each consumer has a reservation price 

for the product and will buy a single unit of the product as long as the price is below his 

reservation price. Consumers are assumed to be heterogeneous in their reservation prices. 

The retailer knows the distribution of the reservation prices in the population, but not their 

values at the individual consumer level. The authors proposed a Bayesian updating model 

that incorporates three types of uncertainty: (1) the uncertainty about the number and 

timing of the consumers’ arrivals to the store, (2) the uncertainty about the reservation 

price of each consumer, which affects the individual purchasing decision, and (3) the 

uncertainty about how successful the product is in the market. In the learning process, the 

authors assumed that the seller observes only completed sales, so that an arrival of 

consumer which may provide information about the market condition is not recorded if the 

consumer did not purchase the product. They showed that (1) the optimal prices tend to be 

higher with higher levels of uncertainty about the market condition, (2) over the sales 

season prices fall down continuously, but jump upwards at the points of sale, and (3) the 

optimal expected revenues increase as a function of the length of the sales season, but in a 

diminishing rate. Similarly, Aviv and Pazgal (2005a) proposed a partially observed 

Markov decision process framework to compute an upper bound on the seller's revenues 

and derive some heuristics to approximate an optimal pricing policy. Xu and Hopp (2005) 

proposed a piecewise linear demand model with unknown parameters and used Bayes 

updating to investigate some properties of the optimal price process. Lobo and Boyd 

(2003) studied the monopolistic problem with uncertain demand and considered a linear 
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demand model with an additive random noise that follows a normal distribution and 

developed approximate solutions to an optimal pricing policy by exploiting convex 

optimization. Bertsimas and Perakis (2006) considered a discrete time model in which 

demand is a linear function of the price with unknown coefficient and studied both the 

monopolistic and oligopolistic cases. Instead of Bayesian learning, the authors used a least 

squares estimation embedded in a dynamic program with incomplete state information. 

Some approximations and heuristics are proposed to reduce the dimensionality of the 

problem. In the infinite horizon setting, Cope (2006) analyzed the problem of dynamic 

pricing through a nonparametric Bayesian demand model; pricing decisions in his model, 

however, are independent of the inventory levels. 

Lin (2005) presented a dynamic pricing model where consumers arrive in accordance 

with a conditional Poisson process, whose rate is not known to the seller in advance. As the 

sale moves forward, the seller uses sales data from the realized demand to fine-tune the 

arrival rate estimation, and then uses the fine-tuned arrival rate estimation to better 

understand the demand curve in the future. Consequently, the seller updates the future 

demand distribution periodically sets the product’s price to maximize the expected total 

revenues. 

Araman and Caldentey (2005) studied the problem faced by a retailer who sells non-

perishable products to a price sensitive market in which the uncertainty in the demand rate 

is modeled by a single parameter to capture the unknown size of the market. The 

distribution of the unknown parameter is updated using Bayesian learning. The authors 

considered two cases. In the first case, the retailer is constrained to sell the entire initial 

stock of the non-perishable product before a different assortment is considered. In the 

second case, the retailer is able to stop selling the non-perishable product at any time to 

switch to a different menu of products. 
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4.1 Introduction 
In the present chapter, we look at the second element of our demand model; the 

consumers’ choice process. In this context, we are particularly interested in the choice 

behavior of a large number of consumers expressed as aggregated demand for a certain 

product among a finite set of products. Since this aggregated demand is itself the result of 

each consumer’s choice behavior in the market, we need a consumer choice model to 

describe demand for the product. In terms of literature, there are two kinds of the consumer 

choice models: (1) Reservation price models where consumer choice behavior only 

depends on the consumer’s reservation price for the product. Reservation price models are 

mostly used in the case of the single perishable product problem (e.g., Lazear, 1986, 

Gallego and van Ryzin, 1994, Aviv and Pazgal, 2005b) and (2) Discrete choice models 

where a consumer facing a finite set of alternatives has to choose one product from the set.  

 

4.2 Reservation Price Models 
As mentioned in chapter 2, price creates a first impression for the consumers and is the 

only marketing mix variable that generates revenues. By definition, price is the amount of 

money that a consumer pays for the product. Reservation price models assume that price is 

the only factor influencing the consumer purchase behaviour and consequently that price 

forms the demand for an individual product.  

Since the term of the reservation price can be confused with the term of the maximum 

price, we introduce the term of a maximum price before going on to discuss reservation 

price models. 

  

Definition 4.1 Maximum Price (Total Economic Value): The maximum price of a 

product is the price of the consumer’s best alternative that is called the reference price 

plus (minus) the value of whatever differentiates the underlying product from the best 

alternative that is called differentiation value 

difref vpp +=max  4.1

where  denotes the maximum price,  denotes the reference price, and  is the 

differentiation value (e.g., Nagle and Holden, 2002). 

maxp refp difv
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In this definition, the reference price for the underlying product is the price of the best 

alternative product from the consumer perspective. The differentiation value is the value of 

any differences between the reference product (the best alternative) and the underlying 

product. Determining the maximum price insists of 4 necessary steps (e.g., Nagle and 

Holden, 2002):  

1. Identifying the cost of the competitive product that the consumer views as the best 

alternative. 

2. Identifying all factors that differentiate the underlying product from the best 

competitive product such as superior performance, additional features, etc. 

3. Determining the value to the consumer of these differentiating factors. The positive 

and negative values associated with the product’s differentiating attributes 

comprise the differentiation value. 

4. Summing the reference price (value) and the differentiation value to determine the 

maximum price. 

 

Definition 4.2 Reservation Price (Willingness-to-Pay): A reservation price is the 

(maximum) price that a consumer is willing to pay for the underlying product.  

 

Reservation price choice models assume that an arriving consumer will purchase one 

unit of the product if his reservation price ν  equals or exceeds the posted price p; 

otherwise, he will not purchase the product. Unlike the maximum price the reservation 

price does not depend on a reference product. The reservation price, indeed, can be 

considered as utility of the product (e.g., Aydin and Ryan, 2000). In reservation price 

models, the reservation price of a consumer determines whether or not he purchases the 

product. If the posted-price is equal to the consumer’s reservation price, the consumer 

gains the same surplus from purchasing and not purchasing the product (e.g., Breidert, 

2005). 

Although, there are many approaches such as analyzing market data, consumer 

surveys, and conjoint analyses for measuring consumers’ reservation prices (see Breidert et 

al., 2006 for a review), the reservation prices of consumers are often unknown to the seller, 

especially in the cases of new products and fashion goods. In the revenue management 

literature, most of the studies assume the reservation prices across the potential consumers 
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to be independent identically distributed variables following a certain distribution such as 

exponential and Weibull distributions and the seller attempts to estimate the parameters of 

the distribution (e.g., Gallego and van Ryzin, 1994, Bitran and Wadhwa, 1996, Gaul and 

Darzian Azizi, 2009). If the reservation prices of the consumers in the market follows a 

distribution with a probability density function (p.d.f.) as )(νf  and the seller sets the price 

at p then an arriving consumer will purchase the product with probability  where )(1 pF−

)(νF  is the cumulative distribution function (c.d.f.). 

For example, if the reservation prices of the consumers in the market follows an 

exponential distribution with a probability density function as: 

0     , );(  ≥= − xexf xθθθ  

where θ>0 is the parameter of the distribution, often called the rate parameter, then the 

cumulative distribution function is given by 

0    ,1);(  ≥−= − xexF xθθ  

That is, if the seller sets the price at p the probability that a consumer purchases the product 

is . xexF  );(1 θθ −=−
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4.3 Discrete Choice Models 
Discrete choice models describe decision makers’ choices among alternatives (e.g., Train, 

2003). A decision maker can be a consumer and the alternatives might represent competing 

products. Discrete choice models are usually used in the case of the multiple perishable 

products problem (e.g., McFadden, 1986, Mahajan and van Ryzin, 2001, Dong et al., 

2008). Consider a consumer facing a finite set of alternatives, S, including m products9, 

i.e., , has to choose one product from the set. In this situation, we are interested in 

how the consumer makes decisions to buy a certain product or leave the store empty-

handed. This is, the basic problem of discrete choice models which is our focus in this 

chapter.  

mS =||

Discrete choice problems have been studied for many years to describe how an 

individual chooses a certain alternative among several alternatives (e.g., Thurstone, 1927, 

Luce, 1959, Manski and McFadden, 1981, McFadden, 1982 and 2001). In the theory of the 

consumer choice behavior, there are two approaches to treat discrete choice problems: 

1. Deterministic approach: In this approach, we assume that each consumer has a 

utility function by which he is able to rank the alternatives in a rational manner and 

chooses either product i, i=1,…,m-1 that is the best in his ranking to buy or decides 

not to buy, i.e., choosing alternative m. 

2. Probabilistic approach: In this approach, we assume that different consumers are 

sensitive to different attributes of the products in different situations that are not 

necessarily known to the seller. Therefore, the seller has to use a probabilistic 

choice model to explain the consumers’ choice behavior.  

 

4.3.1 Constant vs. Random Utility Models 

Suppose that a set of m products  is presented to a population of consumers in the 

market. We are interested in determining the fraction of the population choosing product i, 

i=1,2,…,m. Since there is uncertainty about consumers’ preferences and the consumers’ 

purchase behavior, we use a probabilistic mechanism to capture this phenomenon. The 

S

                                                 
9 Since there is always an option for each consumer to purchase nothing, we consider the mth product as the 
no-purchase option such that the consumer who prefers it leaves the store empty-handed. It can also be 
considered as a product presented by other firms in the market. 
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probabilistic mechanism is used to determine the probability that a consumer in the market 

will choose product i and consequently the fraction of the population choosing product i.  

Let  denote the utility that a consumer in the population has for buying product i, 

. In consumer theory, product i is chosen if and only if  

iU

Si∈ }:max{ SjUU ji ∈= . In 

choice theory, there are two basic models of discrete choice that are used to determine the 

probability of choosing a certain product (e.g., Anderson et al., 1992):  

(1) Constant utility models such as the Luce model and the Tversky model in which 

the decision is stochastic, while the utility of different products is deterministic; 

(2) Random utility models such as the McFadden model and the Thurstone model in 

which the decision rule is deterministic, while the utility is stochastic.  

The constant utility models assume that the utility of the products is constant and known to 

the seller and the choice probabilities for each consumer are functions parameterized by 

the utilities of the products. In these models the consumer does not necessarily choose the 

product that yields the highest utility but he has a probability of choosing each product. 

The consumer is assumed to behave according to the choice probabilities defined by a 

probability distribution function over the set of alternatives that includes the utilities as 

parameters. 

The random (stochastic) utility models, in contrast, assume that the consumer chooses 

the alternative with the highest utility. However, the seller has not perfect knowledge of the 

utility functions of the . Instead the probability of choosing product i, , is equal to 

the probability that the utility of product i, , is greater than or equal to the utilities of all 

products in the choice set. That is 

iU )(iPS

iU

}):max{()( SjUUPiP jiS ∈==  4.4

There is a variety of reasons that makes the random utility models are useful in 

practice. First, the random utility models can represent unobserved taste variations of the 

consumers. Second, they can model unobserved attributes affecting the consumers’ choice. 

Third, they can model the variations of the consumer behavior. Finally, the random utility 

models can capture the unpredictable behavior of the consumers. 

In random utility models, the utility is divided into two additive parts, deterministic 

and random as iii uU ε+=  where  is the representative (systematic) component and iu iε  
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is a mean-zero random (disturbance) component. The representative component could be 

defined as a function of various observable attributes of the product. 

The random utility models can be categorized in two main groups: the binomial 

(binary) and the multinomial choice models. The binomial choice models are used for the 

cases in which there are only two alternatives to choose from and the multinomial choice 

models are used when there are more than two alternatives faced by the consumers in the 

market. In what follows we provide a brief introduction to the binary choice models and 

then focus on the multinomial choice models.  

 

4.3.2 Binary Choice Models 

We consider the case in which there are only two alternatives to choose, i.e., m=2 and 

S={1,2}. This case arises when there is only one product and each consumer in the market 

makes the decision to buy or not to buy it. Then, a consumer will decide to buy one unit of 

the product 1 with the probability )()1( 21 UUPPS ≥= , or leaves the store empty-handed 

with probability ).1(1)1 SPU()2( 2S UPP −=≥=  Considering that 111 ε+= uU  and 

222 ε+= uU , 

)(         
)()1(

2211

21

εε +≥+=
≥=

uuP
UUPPS  

Then, 

)()1( 2112 uuPPS −≤−= εε . 4.5

 

4.3.2.1 Binary Probit  

The probit model is derived under assumption of normal distributed unobserved utility 

components (e.g., Train, 2003). Assume that 1ε  and 2ε  are both normally distributed 

variables with mean zero and variances  and , i.e.,  for i=1,2, then the 

term 

2
1σ

2
2σ ),0(~ 2

iN σiε

12 εεε −=

2
2

2
1 2σσ −+

 is also normally distributed with mean zero but with variance 

 where 12
2 σσ = 12σ  is the covariance of the random components. Hence, the 

probability of choosing the product to buy,  is given by )1(SP

)()1( 2112 uuPPS −≤−= εε  
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Then 

,0      ,
2
1)1( 21

2 

 

)(
2
1

>= ∫
−

∞−

−
σε

πσ
σ
ε

uu

S deP  

or 

)
2

( )1( 21

σ
uuPS

−
Φ= , 4.6

where  denotes the standard normal distribution. This model is called the binary 

probit.  

(.)Φ

 

4.3.2.2 Binary Logit  

Although binary probit is both intuitively reasonable and there is at least some theoretical 

grounds for its assumptions about the distribution of iε , i=1,2, it has the unfortunate 

property of not having a closed form (e.g., Ben-Akiva and Lerman, 1985, Cramer, 1991). 

Instead, we must express the choice probability as an integral. The binary logit that is 

“probitlike” and analytically more convenient satisfies this goal. The binary logit model 

arises from assumption of logistically distributed random variables. That is 

+∞<<∞−>
+

= − εςε ςε    ,0      ,
1

1)(
e

F  4.7

where  ς  is the scale parameter. In this formulation, ε  has a mean zero and variance 2

2

3ς
π  

( ...= 14.3π ), so that the probability of choosing the product to buy,  is given by )1(SP

.)1(
21

1

  

 

uu

u

S ee
eP ςς

ς

+
=  4.8

There are also some other binary choice models such as the linear probability model and 

the arctan probability model which are used to model consumer choice behavior (e.g., Ben-

Akiva and Lerman, 1985). In this work, we are particularly interested to model consumer 

choice behavior in which consumers are facing more than two alternatives. Therefore, we 

will focus on the multinomial logit model in the next section.   
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4.3.3 Multinomial Logit Model 

The multinomial logit (MNL) model is a generalization of the binary logit model to m 

products, . The multinomial logit (MNL) model is the best known utility-based 

probabilistic discrete choice model that has been extensively used in econometric (e.g., 

McFadden, 1980) and marketing (e.g., McFadden, 1986) studies to describe the demand of 

individuals facing discrete choices.  

2>m

The multinomial logit model can be derived by assuming that all random components 

Sii ∈∀,ε  are i.i.d. random variables with a Gumbel distribution. That is 
)()( )(

ηεςηεςςε
−−−−−=

i
i e

i eef  

and 
)(

)(
ηες

ε
−−−=

ie
i eF  

where 0>ς  is a scale parameter and η  is a location parameter. The mean of the Gumbel 

distribution is ςγη /+  where γ  is Euler’s constant (=0.5772…), and the variance is 2

2

6ς
π . 

To compute the probability that a consumer facing a set of alternatives chooses a 

certain alternative, firstly we point out some basic properties of the Gumbel distribution. 

 

4.3.3.1 Gumbel Distribution 

The Gumbel distribution has some useful analytical properties (Ben-Akiva and Lerman, 

1985): 

1. If ε  is Gumbel distributed with parameters ),( ςη , then V+αε , 0,0 >∀>∀ αV  is 

Gumbel distributed with parameters ( αςαη /,V+ ).  

2. If 1ε  and 2ε  are independent Gumbel distributed variables with parameters ),( 1 ςη  

and ),( 2 ςη , then 21  is a logistically distributed variable: * εεε +=

)(
*

*
121

1)(
εηης

ε
−−+

=
e

F . 

3. If 1ε  and 2ε  are independent Gumbel distributed variables with parameters ),( 1 ςη  

and ),( 2 ςη  respectively, then ),max( 21 εε  is Gumbel distributed with parameters 

⎟⎟
⎞ςςη ),2e . 
⎠

⎜⎜
⎝

⎛
+

ς
ln(1 ςη1e
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4. As the most important property, if mεεε ,...,, 21  are m independent Gumbel 

distributed random variables with parameters ),( 1 ςη , ),( 2 ςη ,…, ),( ςηm , 

respectively, then ),...,,max( 21 mεεε  is Gumbel distributed with parameters 

),ln1(
1

ς
ς

ςη∑
=

m

i

ie , i.e., the distribution of the maximum of m independent Gumbel 

random variables with the same scale parameter ς  is also a Gumbel random 

variable.  

 

Using the properties of the Gumbel distribution the multinomial logit model of 

choosing alternative 1 is derived as follows (e.g., Ben-Akiva and Lerman, 1985):  

Let 0=η  for all the random variables.  

]),max([           
),max(           
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Define . From property 4, is Gumbel distributed with parameters )(max
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 is Gumbel distributed with parameters *ε ),0( ς . Since 
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That is, the probability that the consumer chooses a particular alternative depends on the 

utilities of each alternative, , i=1,…,m , and iu ς  that represents the degree of 

heterogeneity in consumer tastes.  
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)(iPS  

iu

The relation of the logit probability to the representative utility is sigmoid, or S-

shaped, as shown in Figure 4.2. This shape has implications for the impact of changes in 

explanatory variables. If the representative utility of an alternative is very low compared 

with other alternatives, a small increase in the utility of this alternative has only a little 

effect on the probability of its being chosen: the other alternatives are still sufficiently 

better so that this small improvement does not help much. Similarly, if one alternative is 

far superior to the others in observed attributes, a further increase in its representative 

utility has little effect on the choice probability. The point at which the increase in 

representative utility has the greatest effect on the probability of being chosen is when the 

probability is close to 0.5, meaning a 50–50 chance for the alternative being chosen. In this 

case, a small improvement tips the balance in consumers’ choices, inducing a large change 

in probability.  

 
 

 

4.3.3.2 Properties of the Multinomial Logit Model 

1. If heterogeneity in consumer tastes is very large, ∞→ς , then the variance of the 

iε , m , tends to zero as well and the MNL model reverts to a deterministic 

model as follows: 

i ,...,1=

⎪⎩

⎪
⎨
⎧ =

= =

∞→ .       0

max           1
)(lim ,...,1

otherwise

uuif
iP

jmji

Sς
 

That is, all the consumers will choose the product with the greatest value of the utilities 

. In this case, if there are k>1 alternatives with maximum utility 

 for the alternatives with maximum utility, and zero for the others. 

jmji uu
,...,2,1

max
=

=

kiPS /1)(lim =
∞→ς

Figure 4.2 Graph of logit choice probability curve. 
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2. If ς  tends to zero, then the variance of the iε , mi ,..,1= , tends to infinity. Thus the 

deterministic part of the utility function iu  has no effect on the consumers’ 

purchase behavior and consumers will choose random among the products (e.g., 

Anderson and de Palma, 1992).  

That is, 

m
iPS

1)(lim
0

=
→ς

. 

Figure 4.3 illustrates the choice probabilities of the (binomial) logit model for different 

values of  ς . 

)1SP (
 

1

1u
2u
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0→ς  
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Figure 4.3 Choice probabilities for the binomial logit 
model, i.e., m=2, for different values of 

∞<<< 210  , ςςς . 
Source: Anderson et al. (1992) 
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∂ ; That is, the purchase probability of a product is a 

monotonically increasing function of the product’s utility. 

4. )()()( jPiP
u

iP
SS

j

S −∝
∂
∂ ; That is, the purchase probability of a product is a 

monotonically decreasing function of the utilities of the other products. 

5. ς/))( ; That is, the own (utility) elasticity is positive and the purchase 

probability of product i decreases as its own utility decreases. 
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6. ς/)( ; That is, the cross (utility) elasticity is negative and the 

purchase probability of product i decreases as the utility of another product 

increases. 

)(
jS

iP
u ujPe S

j
−=

7. If the alternative j , j=1,…,m  is dropped from (respectively added to) the choice 

set, then the increase (respectively decrease) in probability of choosing i, i=1,…,m 

and i≠j, is proportional to the probability when j was (respectively was not) in the 

choice set. That is 

jiandmiiPiP SjS ≠==−     ,...,1     ),()(}{ α  
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8. If the utility of the alternative i, iu , changes to iu , the new choice probability is 
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4.3.3.3 Limitation of the Multinomial Logit Model 

The MNL model has the limitation of the so-called independence from irrelevant 

alternatives (IIA) property: For all , such that and for all and 

, 

AS ⊆ AT ⊆ TS ⊆ Si∈

Sj∈

)(
)(

)(
)(

jP
iP

jP
iP

T

T

S

S = 4.12. 

That is, the ratio of choice properties for alternatives i and j is independent of the choice set 

that contains the alternatives. Therefore, the MNL model should be restricted to choice sets 

containing alternatives that are equally dissimilar.  

Despite this limitation, the MNL models are widely used in researches because of its 

useful properties. In the next chapter, we will use the MNL model as a part of our demand 

model. 
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5.1 Introduction 
In this chapter, we focus on the problem of determining an optimal pricing policy for 

selling a set of multiple perishable products under demand uncertainty and substitution. As 

mentioned, in the case of selling multiple perishable products, the demand for a particular 

product does not only depend on its own price and inventory level but also on the price and 

inventory of the other products that could be considered as a substitution product. 

Furthermore, in the case of perishable products, the demand for each product depends on 

the remaining time until the end of the selling season as well. That is, the demand for a 

particular product depends on: (1) its own price and inventory level, (2) the prices and 

inventory levels of all other products, and (3) the remaining time of the selling season. 

Therefore, determining the right prices for multiple perishable products over a finite 

horizon of time is considerably more complicated than the case of selling a single 

perishable product where demand for the product depends on time and inventory.  

In this work, we consider a firm who presents a set of perishable products, e.g., 

different kinds of a summer T-shirt, different kinds of tickets for a special event, etc. to a 

price-sensitive population of consumers over a finite horizon of time. In such cases, there 

are some factors such as quality, price, and inventory (availability) of the products as well 

as time that affect demand for the products. This situation arises in many industries such as 

apparel and retailing where the firms have to order in advance and then have limited 

control over the quality of the products10. Furthermore, there often is not any opportunity 

of replenishment during the selling season because of the long supply lead-times, i.e., 

supply inflexibility. In practice, the firms have to choose from a set of the available 

products in the market and order a certain amount of them before the selling season starts 

based on some expectations of market conditions by applying a qualitative forecasting 

method. In such cases, price as a decision variable plays a very important role in matching 

demand and supply and consequently improving (optimizing) the total revenues.  

In this thesis, we are going to provide a demand learning approach to determine an 

optimal pricing policy for selling multiple perishable products under demand uncertainty 

and substitution based on the products’ qualities, prices, and inventory as well as the 

remaining time to the end of the selling season. The overall aim of our optimal price policy 
                                                 
10 The firms themselves have to choose from the presented products and then they are not completely able to 
determine the quality of the products which they want to sell. 
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is to maximize the expected revenues obtained from selling a given inventory of the 

products over a finite selling horizon. 

The problem of managing demand and inventory decisions of multiple perishable 

products under demand substitution is considered in both the operations research literature 

on inventory and revenue management (e.g., dynamic pricing) and the economics and 

marketing literature on consumer choice behaviour. 

In the inventory management literature, many papers have studied the problem of 

assortment decisions while prices were not decision variables. For example, van Ryzin and 

Mahajan (1999) considered the retail optimal assortment problem in which a retailer 

decides which subset of the products should be offered and how much inventory of each 

product should be stocked. They assumed that prices are exogenously determined and 

applied the multinomial logit (MNL) model to a stochastic single-period assortment 

planning problem under static demand substitution, i.e., each potential consumer considers 

the subset S of products offered by the retailer and may choose a product to buy or may 

decide not to buy at all. Under static demand substitution they assumed that consumers 

make their choice based only on knowledge of the set S, and have no knowledge of the 

inventory status of the products. If a consumer’s favorite product is unavailable he does not 

undertake a substitute choice and the sale is lost. As a result, demand is independent of the 

availability of the products, though it depends on the initial set of products in the 

assortment. That is, demand substitution for the products is determined only by the initial 

assortment and the predetermined price. As the authors have pointed out, static demand 

substitution is not realistic in practice. However, they studied some retail environment 

where this assumption reasonably approximates certain types of consumer behaviour and 

showed that the optimal assortment consists of a certain number of the most popular 

products.  

Similarly, Smith and Agrawal (2000) studied the problem of multi-product inventory 

management with demand substitution in retailing by considering general random 

substitution patterns within the set of products and a fixed cycle for replenishment with no 

lead time needed for quantity adjustment. An inventory policy specifies both the products 

to be stocked and the initial inventory level for each product. Therefore, the optimal policy 

is determined by maximizing the expected profit per cycle, subject to floor space, 

assortment size, etc.  In terms of consumer demand models, the authors assumed that the 
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demand per cycle can be deduced from the random number of arriving consumers that 

follows a binomial distribution. In this setting, the number of consumers per cycle who 

initially prefer a particular product is negative binomial whose distribution parameters are 

known to the retailer. In terms of demand substitution, the authors assumed that if product i 

from the initial set of the products is unavailable, the consumer who prefers product i may 

choose a second product, say j, as substitute and if product j is unavailable as well, a lost 

sale will be the result. That is, there is only one substitution attempt if the consumer’s first 

choice is not available. The authors developed an inventory management methodology that 

jointly optimizes the stock levels and the choice of the products to stock. 

Mahajan and van Ryzin (2001) developed a solution for the retail optimal assortment 

problem but under dynamic demand substitution in which the inventory availability affects 

demand substitution as well as prices. They considered a single-period inventory model of 

multiple perishable products, where each product has a unit selling price but the prices can 

differ and are again assumed to be exogenously determined. The authors used a model 

formulated as the newsvendor problem where the retailer decides about the initial 

inventory level of each product before demand is realized. They assumed that the 

consumer’s choice is based on a simple utility maximization mechanism in which the 

utility of buying the product represents the consumer surplus and used several choice 

models such as the multinomial logit model, Markovian second choice, universal backup, 

and Lancaster demand. During the sales period, each arriving consumer chooses his 

favorite product from the available products (not the initial assortment) based on a 

stochastic utility maximization criterion. The authors showed that the retailer should stock 

relatively more units of popular products and relatively less units of not so popular 

products.  

Bassok et al. (1999) also studied a single-period multi-product inventory problem 

with downward demand substitution where demand for product i can be satisfied by 

product j for ji ≥ . Here, products are ordered with respect to their prices, i.e., 

. The authors provided a greedy algorithm that solves the allocation problem. 

Kök and Fisher (2007) considered the assortment optimization problem in retailing under 

both static and dynamic substitution. They formulated a general assortment optimization 

problem and solved it by providing methodologies for estimating the parameters of the 

...21 ≥≥ pp
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model for different sets of available data. The authors used an optimization algorithm by 

which the retailer can add products at stores that carry less than the full assortment and 

delete products from stores with full assortment. This study showed that products with 

higher demand and higher margin should be included first in the assortment and should 

receive a larger amount of the overall inventories. 

Unlike the studies above, Aydin and Ryan (2000) examined joint inventory and 

pricing decisions problems in inventory (assortment) management. They considered the 

problem of selecting and pricing a product line in the context of retailing and assumed that 

the consumers’ purchase process consists of two stages: 

1. The consumers’ arrivals at the store.  

2. The consumers’ decision of buying a particular product. 

The authors assumed that the consumers’ arrivals at the store follow a Poisson process 

such that the arrival rate does not depend on the variety offered by the retailer. Moreover, 

they assumed that the reservation price of each consumer for product i can be explained by 

the utility  which is a function of a fixed component, , plus a mean-zero random 

variable 

iU

i

iu

ε  that follows a Gumbel distribution, i.e., iii uU ε+= , and use the MNL model 

to determine the purchase probabilities. In the general case, they considered a retailer, who 

offers a set of products decides how much of each product should be ordered and at what 

price it should be sold.  

Recently, researchers focus on dynamic pricing of substitutable perishable products 

and adjust prices dynamically to affect consumers’ substitution behaviour where 

replenishment is not possible during the selling horizon (e.g., Zhang and Cooper, 2006). 

Bitran et al. (2005) studied the problem of finding an optimal pricing policy to maximize 

the total expected revenues over a finite horizon of time. They assumed that consumers 

arrive at the store according to an exogenous stochastic process and provided asymptotic 

approximations for both the unlimited and limited supply cases. Liu und Milner (2006) 

considered the problem of dynamically pricing multiple items over a finite horizon of time 

under a common pricing constraint. Such cases arise for example in apparel where retailers 

have to set the same price for different size/color of a certain product. The authors 

presented a model of continuous time pricing with stochastic demand. Unlike the 

expectation that prices increase as inventory decreases they showed that a decrease in 
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inventory may also lead to a reduction in price because of differences in the demand rates 

for alternative items.  

According to our knowledge, Dong and Kouvelis (2008) is the latest work that 

considers dynamic pricing and inventory control of substitutable products. The authors 

assume that the consumers’ arrivals at a store follow a Poisson process and divide the 

entire of the selling season into T time periods in such a way that the probability of more 

than one arrival within a period can be ignored (see §2.3.2.2). They use the MNL model to 

describe consumers’ choice behavior and develop a stochastic dynamic programming 

formulation to determine the optimal prices of the products over time. As an interesting 

result, they show that in contrast to the single perishable product case the optimal prices of 

the products may not be decreasing in time. They also show that the optimal dynamic 

pricing converges to the static pricing when inventory of all products are not scare.  

Dividing the entire of the selling season into T time periods such that the probability 

of more than one arrival within a period can be ignored and using a dynamic programming 

formulation to solve the optimality equation of the dynamic pricing problem results in 

exhaustive computational efforts. Moreover, the optimal prices will have to be updated 

after each period, i.e., a huge number of price changes may occur, which would result in 

problems concerning coordinating and managing operations in practice (e.g., Bitran and 

Mondschein, 1997).  

To avoid such problems, we present a periodic pricing policy for the problem of 

selling a set of multiple perishable products over a finite horizon of time in which the 

retailer who aims to maximize his total expected revenues, sets the prices based on 

observation, the inventory levels of the products, and the remaining time to the end of the 

selling season. We divide the entire of the selling season into T equal periods, e.g., days, 

weeks, months, etc. such that T does not depend on the consumers’ arrivals, i.e., more than 

one arrival per period is allowed. In our framework, we assume that the consumers’ 

arrivals at the store follow a Poisson process with rate λ that does not depend on the prices 

and is also unknown to the retailer but follows a gamma distribution. Under this 

assumption we use a Bayesian learning approach that makes it possible to capture demand 

uncertainty associated with the consumers’ arrival rate. We also use the MNL model to 

capture demand uncertainty associated with the consumers’ purchase behavior.  
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In what follows we describe our demand learning model that will be used to 

determine an optimal pricing policy for selling multiple perishable products under demand 

uncertainty and substitution that included a Bayesian learning approach to learn about the 

consumers’ arrival rate and a demand substitution model to describe the consumers’ choice 

behavior. Then, we formulate the optimal pricing problem faced by a retailer who sells a 

limited inventory of  a set of multiple perishable products over a finite horizon of time. 

  

5.2 Model Description 
We consider a retailer who is selling a set of I perishable products, i.e., 

}0{},..,2,1{ ∪= IS 11. The products have to be ordered before the selling season starts and 

there is no possibility to replenish inventory during the selling season. Let  

be the vector of the initial inventory of the products and  the vector of the 

initial price of the products. We divide the entire of the selling season into T equal periods. 

The problem of the retailer is to determine the optimal prices  at the end of 

a given period t by taking into account the remaining inventory   in order to 

maximize the expected total revenues. Figure 5.1 describes this problem. 

),...,( 00
1

0
IqqQ =

)t
Ip

)t
Iq

),...,( 00
1

0
IppP =

,...,( 1
tt pP =

,...,( 1
tt qQ =

 

 

 
                                                 
11 {0} is assumed to be the no-purchase option. In fact, {0} represents a product that is not in the current set 
of products. 
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Figure 5.1 A description of the problem. 
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where 

 : Vector of the initial inventory of the products.  

 : Vector of the initial prices of the products. 

 : Number of arrivals at the store in period t. 

 : Number of arrivals in the t first periods. 

 : Vector of sales in period t, ),...,( 1 Ittt sss = . 

 : Forecast of arrivals in period t+1.  

 : Expected number of arrivals during the periods t+1,…,T.  

 : Vector of the expected sales in periods t+1. 

 : Vector of the available inventory of the products at the end of period t. 

 : Vector of the optimal prices of the products for the next periods t+1,…,T. 

 

In this framework, we assume that the demand for each product is the result of two 

elements: 

1. The consumers’ arrival rate; 

2. The consumers’ choice behavior.  

 

5.2.1. Consumers’ Arrival Rate 

In terms of the consumers’ arrival rate, we assume that the arrival at the store is an 

independent stochastic process that is not influenced by the products’ prices and inventory 

levels. Bitran and Mondschein (1997) argued that the arrival rate of potential consumers to 

a store follows a regular purchasing pattern during the selling season rather than a function 

of individual prices is reasonable in the case of selling seasonal products and operating 

with a strategy of periodic pricing reviews until the products are sold.  

Following Gaul and Darzian Azizi (2009), we assume that consumers arrive at the 

store according to a homogeneous Poisson process. That is, the number of arriving 

consumers at the store during the time interval [0,t], tN , has a Poisson distribution with 

mean tdtNE
t

t λλ == ∫
 

0 
][ . Thus, the conditional probability of observing  consumers 

arriving at the store over the time interval [0,t] is given by 

n

,...2,1,0        ,
!
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n
tenNP
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t
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Suppose that λ  is unknown to the retailer but follows a gamma distribution with a 

prbability function as:   

.0      ,
)(

)(),;(
1

≥
Γ

=
−−

λλλ
λ

a
bbebaf

ab

  5.2

Therefore, the expected number of arriving consumers at the store within the time interval 

[0,t] is baNE t /][ =  and the variance is 2/)( baNVar t = . In practice, using a gamma 

distribution for the rate of consumers’ arrival is preferred to the application of normal and 

exponential distributions (e.g., Burgin, 1975): 

1. It is defined only for non-negative values. 

2. It ranges from a monotonic decreasing function (exponential distribution) through 

unimodal distributions skewed to the right to a normal distribution. 

3. It is mathematically tractable in applications. 

4. Considering the gamma distribution as a prior distribution results consequently in a 

posterior gamma distribution.  

Moreover, the probability distribution function of the total number of arriving consumers 

at the store during an arbitrary time-interval  by using Bayes’ rule is:  ],0[ t

,...2,1,0      ,
)(!
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5.3

where tN  is the number of arriving consumers in the time interval [0,t] and 

 is the gamma function. That is, the probability 

distribution function of observing 

+

∞
−− Ζ∈∀=−=Γ ∫ adxexaa xa ,)!1()(

0

1

tN  arrivals at a store is given by a negative binomial 

distribution with parameters ( a ,
tb

b
+

). As a special case when variance of the consumers’ 

arrivals of the t first periods tends to zero (equivalently, a tends to infinity) by substituting 

μ/ab =  in (5.3), we can see that tN

t

 converges to a Poisson distribution with mean equal 

to λ  (e.g, Lin, 2005). This case is the most frequently used in the literature on revenue 

management (e.g., Bitran and Mondschein, 1997, Bitran et al., 1998). 
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There are many studies on the negative binomial distribution for modeling demand and 

its advantages in the marketing science literature, see for instance Lilien et al. (1992). One 

of the most important advantages of the negative binomial distribution for modeling 

demand is that the variance generally exceeds its mean (e.g., Agrawal and Smith, 1996). 

Therefore, the coefficient of variation will be larger than that on the Poisson distribution 

with the same expected value; in the revenue management literature, as McGill and van 

Ryzin (1999) pointed out, both homogenous and non-homogeneous Poisson processes lead 

to Poisson cumulative arrival distributions whose expected value and variation are equal to 

λ, i.e. , the coefficient of variation is λ/1  that is much lower than what is encountered in 

practice.  

To compute the distribution of arrivals at a store during the time (t,T], we use another 

important advantage of assuming that the consumers’ arrival rate follows a gamma 

distribution; If the number of accurate arrivals at the store from the beginning of the selling 

season up to and including time t , i.e., the t first periods, is equal to ∑
=

=
t

k
kt nn

1
, the 

posterior distribution of the consumers’ arrival rate will be again a gamma distribution 

whose parameters will be ( ) where tTtT ba , tttT naa +=  and tbb ttT += , see §3.3.2.2. That 

is, the posterior probability distribution function of the consumers’ arrival rate to the store 

)(λg  will be as follows: 
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 5.4

Using equation (5.4) the retailer will be able to calculate the probability distribution of the 

number of consumers that will arrive at the store during the time (t,T], i.e., in the periods 

t+1,…,T, according to 
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(where tTN  is the number of consumers who arrive at the store during the remaining 

periods) that follows a negative binomial distribution with parameters ( tt na + ,( +t)/( + 

T)). 

tb tb

 

5.2.2. Consumers’ Choice Behavior 

In terms of the second element of our demand model, we use the multinomial logit model 

to describe the consumers’ choice behavior. The MNL model is a special case of stochastic 

utility model for a statistically homogeneous population. As discussed in chapter 4, the 

MNL model is a discrete choice model in which an arriving consumer facing a set of 

products with corresponding prices chooses at most one unit of a product to buy or decides 

to buy nothing, in order to maximize his utility. We assume that the consumer’s utility 

from purchasing product i is given by iii uU ε+= , where the representative component  

is a deterministic utility value and the random components 

iu

iε ’s are independent identically 

distributed variables from a Gumbel distribution with mean zero and variance 

. That is,  0  ,6/ 22 >ςςπ

. and 0   ),( )(
)()( +∞<<∞−>=

−−−−− εςς
ηεςηες eeexf , 5.6

The probability that an arriving consumer selects product i to buy is given by 

, i.e., the probability that product i has the highest utility among 

the products. 

],max[ SjUUPw jii ∈==

In our demand model, we consider both assortment-based (static) and stockout-based 

(dynamic) demand substitution. The following assumptions are required for our demand 

model:  

A1. Each consumer has a favorite product within the assortment that he will buy if it is 

available (i.e., assortment-based substitution), and if the favorite product is 

unavailable he may choose another product to purchase, or leaves the store empty-

handed (i.e., stockout-based substitution). 

A2. A consumer who prefers product i may choose the second product, say j, if product 

i is not available and if product j is unavailable as well, he leaves the store empty-

handed, i.e., only one substitute attempt is considered (see Smith and Agrawal, 2000). 
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A3. The probability of choosing product i by an arriving consumer as the first choice 

is independent from the number of arrivals, inventory, and time. 

A4. Each consumer will purchase at most one unit of his favorite product. 

 

As discussed in chapter 4, if the iε ’s are i.i.d according to a Gumbel distribution, then the 

choice probabilities are given by 

Si
e

ew
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5.3 Optimal Pricing Policy 
In this section, we formulate an optimal pricing policy for multiple substitutable products. 

We assume that the representative component  is a linear function of quality and price as 

 where  is the quality index of product i, measured in dollars, and  is the 

price of product i. Furthermore, 

iu

iii pzu −= iz ip

00 ε+u  is assumed to be the utility of the no-purchase 

action. For simplicity, we assume that 1=ς , i.e., there is not any heterogeneity in 

consumer tastes, and , i.e., the consumer does not gain any utility when he leaves the 

store empty-handed, then .  

00 =u

0ue 1=

As a reasonable assumption, we suppose that there is a finite predetermined set of 

prices for the products denoted as ),...,,( 21 IPPP=Ρ  where },...,,{ 10 iikiii pppP = , N, in 

which . According to static demand substitution, an arriving consumer 

selects product i with probability  or leaves the store empty-handed with probability  

that are given from  (5.7) as follows: 

∈ik

iikii ppp >>> ...10

iw 0w

.
1

1

.
1

,...,2,1

0

,...,2,1

∑

∑

=

−

=

−

−

+
=

+
=

Ij

pz

Ij

pz

pz

i

jj

jj

ii

e
w

e
ew

 

We consider ∞=0ip  as the null price, as defined in Gallego and van Ryzin (1997), which 

is used to “turn off” demand for product i, i.e., 0)( 0 =∞=ii pw  . In fact, the retailer sets the 

5.7
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price of product i at  once product i runs out of the stock, i.e., setting the price for 

product i at  is equal to the situation that it is not longer available.  

∞=0ip

},...,
iikp

)I

∈ik

)I

∞=0ip

,{ 10 ii pp

,...,, 21 PPP

},...,1 iikp

,...,, 21 zzz

Suppose that after passing period t, t=1,…,T, the retailer wants to set the optimal 

price for the available product i, i=1,…,I from the corresponding predetermined set of 

prices . We define the following notation for our demand model: iP =

T is the length of the selling season, i.e., the number of periods. 

(=Ρ

,{ 0 ii pp

 is the vector of the set of allowable prices which 

, N. iP =

(Z =  is the quality vector of the products in which . Izzz ≥≥≥ ...21

tTN  is the expected number of arrivals during the periods t+1,…,T, i.e., (t,T]. 

)n()( NPng tT ==  is the probability that n consumers arrive at the store during the 

periods t+1,…,T. 
t
iw  is the probability that an arriving consumer after period t choose product i as the 

first choice. 
tw0  is the probability that an arriving consumer after period t leaves the store empty-

handed. 

)( t
ji Xρ  is the probability that an arriving consumer after period t, who prefers 

unavailable product j as the first choice, will switch to product i (stockout-based demand 

substitution with considering the availability of all products). 

)t
I

)

,...,( 1
tt XXX =  is the vector of the availability of the products after period t. 

t
iX  is a binary variable after period t that depends on the availability of product i. 

t
jiρ  is the probability that an arriving consumer after period t, who prefers unavailable 

product j as the first choice, will switch to product i (stockout-based demand substitution 

without considering the availability of all products). 

),...,( 1
t
I

tt qqQ =  is the inventory vector of the products at the end of period t, t=1,…,T. 

,...,( 00
1

0
IqqQ =  is the vector of the initial inventory of the products. 

),...,( 1
t
I

tt pp=Ρ  is the vector of prices of the products for the periods t+1,…,T. 
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),...,( 00
1

0
Ipp=Ρ  is the vector of the initial prices of the products. 

),...,,( **
2

*
1

* t
I

ttt ppp=Ρ  is the vector of the optimal prices of the products for the 

periods t+1,…,T, i.e., (t,T]. 

),,,,( ZXQnD tttt
i Ρ  is the expected demand for product i if n consumers arrive at the 

store during the periods t+1,…,T. 

),,,,( ZXQnR tttt
i Ρ  is the expected revenues gathered from selling the available 

inventory of product i, , at prices described by t
iq tΡ  if n consumers arrive at the store 

during the periods t+1,…,T. 

),,,( ZXQR tttt Ρ  is the total expected revenues gathered from selling the available 

inventory of the products  at prices described by tQ tΡ  during the periods t+1,…,T. 

Based on our assumptions, the demand for product i will be either from the 

consumers who prefer it as the first choice or from the consumers, who prefer an 

unavailable product, say ij ≠ , and choose product i as the second choice. As nNtT =  

consumers arrive at the store during the periods t+1,…,T, the demand for product i is given 

by 

∑
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where , i=1,…,I, is the expected demand for product i from the consumers who select 

product i as the first choice (i.e., the assortment-based substitution) and 

t
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t
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t
j Xnw )()( ρ  is demand for product i from the consumers who prefer unavailable 

product ij ≠  and consider product i as the second choice (i.e., the stockout-based 

substitution12). In (5.10), we define 
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And )( t
ji Xρ  is given by 

                                                 

5.11

12 Note that if an arriving consumer’s first and second choices are not available, then he will leave the store 
empty-handed. 

5.10



 
 
 
Chapter 5                                                                 Pricing of MultiplePerishable Products 

 81

 
Arrivals (n) 

)( t
i

t
i q ρ− () 1i

t Xnw +  

))(1()( ∑
≠

+ −−
ik

t
iki

t
i Xqnw ρ

)()( 2
t

i
t
i

t
i Xqnw ρ+−  

)()( 1
t

ii
t
i

t
i Xqnw −

+− ρ

)()( 1
t

ii
t
i

t
i Xqnw +

+− ρ

)()( t
iI

t
i

t
i Xqnw ρ+−

tnw2

t
i 1−nw

tnwi 1+

t
Inw

tnw0

tnw1

t
inw

∑
≠

−

−

+
=

jr

pzt
r

pzt
it

ji t
rr

t
ii

eX
eXX

1
)(ρ , 

where  is the vector of the availability of the products and for i=1,…,I , 

 is a binary variable defined as follows: 
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If i=1,…,I , then we will have only the assortment-based substitution situation. 

As shown in Figure 5.2, if n consumers arrive at the store during the next periods,  

consumers choose product i as the first choice. If , i.e., the demand for product i is 

greater than its inventory level, then  consumers, whose first choice is product i , 

may switch to another product j with probability 

∀= ,1t
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ij Xρ  or may leave the store empty-

handed with probability.  
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Figure 5.2 A view of demand for the product under substitution. 
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Therefore, the total expected revenues collected from selling the inventory of product i, , 

at price  during the next periods will be as follows: 

t
iq

t
ip

t
i

t
i

tttt
i

tttt
i pqZXQnDZXQnR )),,,,,(min(),,,,( Ρ=Ρ . 5.14

That is, at the end of period t, the expected revenues collected from each product depends 

on the number of arriving consumers, the posted prices and the inventory levels of the 

products as well as the quality vector. Then the optimal expected revenues gathered from 

selling the available inventory of products during the periods t+1,…,T , *tR , is given by 

( )∑ ∑∞
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where  is the set of the optimal prices and for n=0,1,2,… *tΡ
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5.16

5.17

Example 5.1 

To explain how to compute the expected revenues by using (5.8)-(5.17), we provide a 

simple example. Consider a retailer selling three substitutable products, i.e., |S|=4. Let 

Z=(14,12,8) be the quality vector and Q=(20,30,20) denote the available inventory of 

product at the end of period t. We are going to compute the total expected revenues if 

n=100 consumers arrive at the store while the price vector is as P=(15,10.5,7.5). The 

probability that each consumer considers product i, i=1,2,3 as the first choice is given by 

(5.8) and (5.9) (see table 5.1, i=0 denotes the no-buying option). 

i iq  iu  ip  iw  

1 20 14 15 0.05

2 30 12 10.5 0.60

3 20 8 7.5 0.22

0 - 0 0 0.13

    1.00

 
Table 5.1 Inventory, utility, price, and the probability of buying the products.
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We consider two different cases. In the first case, we assume that an arriving consumer, 

who prefers unavailable product j as the first choice, will switch to another product, say 

i j, with considering the availability of all products. Then, the demand for each product is 

given by (5.10) as follows:   

≠
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Table 5.2 provides the probability of switching from unavailable product j to product i≠ j 

in this case, i.e., )(Xjiρ . Then, the demand for each product is given by 

22),,,,(
60),,,,(

6.13),,,,(

3

2

1

=
=
=

ZXQPnD
ZXQPnD
ZXQPnD

 

 

iX i 1 2 3 

1 1 - 0 0 

0 2 0.27 - 0 

0 3 0.27 0 - 

 
 Table 5.2 The probability of stockout-based substitution with 

considering the availability of all products. 
 

And the expected revenues collected from selling the inventory of product i, i=1,…,3 is 

given by (5.14) as follows: 

1505.7)20,22min(),min(),,,,(
3155.10)30,60min(),min(),,,,(

20415)20,6.13min(),min(),,,,(

3333
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===
===
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Therefore, the total expected revenues gathered from selling inventory is given by (5.15)  

 679),,,,(),,,,(
1

==∑ =

I

i i ZXQPnRZXQPnR  
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In the second case, we assume that an arriving consumer, who prefers unavailable 

product j as the first choice, will switch to another product, say i≠ j, without considering 

the availability of all products with the probability denoted as jiρ . To compute jiρ , one 

needs to substitute  and 0=jX 1=iX , }{}3,2,1{ ji −∈  in equation (5.12). That is 

∑
≠

−

−

+
=

jr

pz

pz

ji rr

ii

e
e

1
ρ . 

Table 5.3 provides these probabilities. 

 
i 1 2 3 

1 - 0.63 0.23

2 0.12 - 0.55

3 0.06 0.77 - 

 
 
 
Then, the expected demand for each product is given by 
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In this case, the total expected revenues collected from selling the inventory of product i, 

i=1,…,3 is given by  

1505.7)20,5.38min(),min(),,,,(
3155.10)30,5.61min(),min(),,,,(
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Table 5.3 The probability of stockout-based substitution without 
considering the availability of all products. 
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Therefore, the total expected revenues gathered from inventory is given by 

 5.595),,,,(),,,,(
1

==∑ =

I

i i ZXQPnRZXQPnR  
 

That is 12% less than the total expected revenues in the first case. This simple example 

shows that in the case of the stockout-based substitution with considering the availability 

of all products performs significantly better. 
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In this chapter, we will consider several cases in terms of determining the optimal prices 

and present some numerical experiments to illustrate how our demand leaning approach 

works and highlight its performance. In §6.1, we determine the optimal pricing policy by 

using our approach to show how the optimal prices of the products change dependent on 

the remaining time and the inventory levels. In this case, we ignore learning from the 

earlier periods and suppose that the retailer has perfect information about the parameters of 

the consumers’ arrival rate distribution. In §6.2, we bring demand learning into play to 

determine the optimal prices and compare the performance of our demand learning 

approach to exponential smoothing and m-period moving average approaches. Finally, in 

§6.3 we present some extensions of our demand learning model to address selected 

situations in the market.  

In what follows we consider the problem of setting the optimal prices for the case in 

which a retailer is going to sell three versions of a product differentiated in quality, say the 

high- (H), the medium- (M) and the low-quality (L) versions of a perishable product, i.e., 

I=3. The selling season is divided into T=10 periods, say days. Based on a pre-sale market 

research, the retailer believes that the mean of the consumers’ arrival rate will be 5=μ  per 

period13. Also, the retailer believes that the potential consumers in the market evaluate the 

products with the quality vector denoted by Z=(14,12,8), measured in dollar. Of course, 

one can consider many different specific situations with respect to the number of products 

I, the length of the selling season T, the mean and variance of the consumers’ arrival rate, 

inventory levels, and the quality vector. 

 

6.1 Optimal Pricing Policy (without demand learning) 
In this section, we are particularly interested in studying how our demand learning 

approach works. We assume that the consumers’ arrivals at the store follow a Poisson 

process with rate λ that has a gamma distribution whose parameters (a,b) are known to the 

retailer in advance. That is, we suppose that at the beginning of each period the retailer 

knows the mean μ  and the variance  of the consumers’ arrival rate λ. Then the 

parameters of the corresponding gamma distribution will be given by 

, . 

2σ

22 /σμ=a 2μ=b /σ
                                                 
13 We consider different values of variance for different experiments. 
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6.1.1 Optimal Prices in Time  

First, we study how the optimal prices change with respect to the time left to the end of the 

sales season. As mentioned in chapter 2, in the case of selling a single perishable product, 

the optimal price decreases in the remaining time until the end of the horizon. We will 

examine whether or not this property holds in the multi-product case.  

Consider the following situation: At the beginning of each period the retailer has 21 

units; 4 units of the high-quality version, 10 units of the medium-quality version, and 7 

units of the low-quality version. That is, the inventory levels remain unchanged as time 

passes. In this case, we suppose that the variance of the consumers’ arrival rate tends to 

zero, i.e., the consumers’ arrivals follow a Poisson distribution with . First, we 

consider the single perishable product problem case based on our model in which we 

suppose that there is only one product to sell and each arriving consumer either buys the 

product with probability  or leaves the store empty-handed with probability 

52 ==σμ

buyP buyP−1 . 

Figure 6.1 shows the optimal prices as a function of the remaining time. We can see that as 

discussed in chapter 2, the optimal price is non-decreasing in time. Figure 6.1 on the left 

shows the optimal price as there are just 4 units of the high-quality version, or just 10 units 

of the medium-quality version, or just 7 units of the low-quality version at the beginning of 

each period. But, the figure on the right shows the optimal price when there are 21 units of 

one a particular version. 
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 Figure 6.1 The optimal price as a function of the remaining time for the single perishable 
d t
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Now, we consider the multi-product case. Figure 6.2 shows the optimal prices as a 

function of the remaining time when all three versions of the product, , are 

considered. Interestingly, unlike in the single perishable product case the optimal price 

may even increase in the case of the multiple perishable products as shorting the length of 

horizon. 

)7,10,4(=Q
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 Figure 6.2 The optimal price as a function of the remaining time
for the multiple products case.  

 

Figure 6.2 shows that the optimal price for each product decreases initially as time passes, 

but the optimal prices of the medium-quality version and especially the low-quality version 

increase as there is a shorter time until the end of the selling season. To explain this 

behavior of the optimal prices in the multi-product case, we refer to lemma 5.1 (§ 5.2.2).  

 

Lemma 6.1 

a. The purchase probability of product i increases when its price decreases.  

b. The purchase probability of product i increases when the price for a product ij ≠  

increases.  

The proof is provided in appendix B. 

Lemma 6.1.a states that the purchase probability of a product increases when the product’s 

price decreases. Therefore, the retailer can increase the probability of selling a certain 

product by decreasing its own price if there is enough time to sell inventory. That is, over 

the earlier periods during which the inventory levels of the products remained unchanged, 
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the optimal price of each product decreases as the time to the end of the selling season gets 

shorter. Hence, decreasing price increases the purchase probability of the corresponding 

product. As time passes, in contrast, there will likely be fewer consumers to buy the 

products, therefore the retailer can increase his total expected revenues by selling more 

units of the product whose revenue margin, i.e., price, is greater than others. To do so, the 

retailer should not only decrease price of the high-quality version, but he should also 

increase the price of the other products, i.e., the medium- and the low-quality versions, 

because the purchase probability of a product increases as prices of the other products 

increase (lemma 6.1.b). Moreover, we observe a larger price increasing for the low-quality 

version, i.e., the product with the least revenue margin, in comparison with the medium-

quality version.  

 

6.1.2 Optimal Price in Inventory 

In the next experiment, we will show how the optimal price of each product varies when 

only its own inventory level is changed. We consider the retailer, who determines the 

initial prices of the products according to different inventory levels of the interest product 

as the length of the selling season is T=10. In Figure 6.3, we can see that similar to the 

single perishable product case the optimal price of each product will increase, as its 

inventory decreases and the inventory levels of all other products remains constant. 

For the case of the high-quality version, we suppose that the consumers’ arrival rate 

has 5=μ  with variance  and the inventory levels of the medium- and low-quality 

versions stay unchanged,  and 

12 =Hσ

10=Mq 7=Lq . Figure 6.3.a shows that the optimal price 

for the high-quality version increases as its inventory level decreases. 
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e

(a)
 Figure 6.3.a The optimal price as a function of the inventory level 

(high-quality version).
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For the case of the medium-quality version, we suppose that the consumers’ arrival 

rate has 5=μ  with variance  and the inventory levels of both the high- and low-

quality versions stay unchanged, 

42 =Mσ

4=Hq  and 7=Lq . Figure 6.3.b shows that the optimal 

price for the medium-quality version increases as its inventory level decreases. 
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For the case of the low-quality version, we suppose that the consumers’ arrival rate has 

5=μ  with variance  and the inventory levels of the high- and medium-quality 

versions stay unchanged,  and 

92 =Lσ

=Hq 4 10=Mq . Figure 6.3.c shows that the optimal price 

for the low-quality version increases as its inventory level decreases. 
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6.1.3 Sample Path of the Optimal Prices 

In the next experiment, we consider the effects of both the remaining time and the 

inventory levels of the products on the optimal prices. Figure 6.4 shows a sample path of 

Figure 6.3.c The optimal price as a function of the inventory level 
(low-quality version).

(b)

(c)

Figure 6.3.b The optimal price as a function of the inventory level
(medium-quality version).
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the optimal prices when both the inventory level of the products and the length of time 

horizon change. For this case, we suppose again that the retailer has perfect information of 

the consumers’ arrivals at the store, i.e., the mean of the arrival rate 5=μ  and the variance 

of the consumers’ arrival rate tends to zero. 

This figure shows how the optimal price patterns can be in the m product problem. 

As mentioned in chapter 2, in the case of

ulti-

 selling a single perishable product: (1) the 

optimal price decreases as the time passes that we consider it as time-effect and (2) the 

optimal price increases (decreases) as decreasing (increasing) inventory that we consider it 

as the inventory-effect. In this example, after passing 4 periods the optimal price of the 

high-quality version decreases while its inventory did not change, it agrees with lemma 

5.1.a. But the optimal prices for both of the medium- and the low-quality versions also 

decrease while their inventory levels decreases. That is, the time-effect dominates the 

inventory-effect. 
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In contrast, the optimal price for the medium-quality version goes down, i.e., the time-

effect dominates the inve  dominates the 

tim

 

ntory-effect, and then up, i.e., the inventory-effect

e-effect, during the periods 4th, 3rd and 2nd while the inventory of two other products 

stays constant. Also, the optimal prices increase at the beginning of the last period in 

comparison to the second period that means the inventory-effect is greater than the time 

effect for all product versions. 

Figure 6.4 The sample path of the optimal prices. 
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6.2 Optimal Pricing Policy (with demand learning) 

In this section, we consider the cases in which the retailer uses our optimal pricing policy 

 maximize the expected revenues from selling inventory of the products. At every 

t this is the last time of revising 

rices. As mentioned in § 

5.2.

to

decision point, the retailer updates the prices assuming tha

prices, i.e., a two-period problem. Hereafter, we suppose that the retailer presents only two 

versions of the product14, the high- and the low-quality versions.  

As mentioned in chapter 3, there are many forecasting methods used in revenue 

management applications to make pricing decisions. In the following experiments, we 

apply our demand learning approach to determine the optimal p

1, if the number of accurate arrivals of consumers at the store from the beginning of the 

selling season up through and including time t, i.e., the t earlier periods, is equal to 

∑
=

=
t

k
kt nn

1
, the probability distribution of the consumers’ arrivals at the store that will 

show up at the store during the time-interval (t,T], i.e., the next periods, is given by a 

ial distribution, see equation (5.5). Then, at the beginning of period t+1, the 

arrivals in the next periods follow a gamma distribution with the parameters 22 / tta σμ=  

and 2/ ttb σμ=  where t

negative binom

retailer is able to update the prices under assumption that the number of the consumers’ 

μ  and 2
tσ  are computed from observations during the t first 

periods. 

To show the performance of our Bayesian learning approach (BLA), we conduct a 

simu umber of arrivals at the store during the sales season. 

Then, we

lation to generate the random n

 determine an optimal pricing policy for the products based on time and inventory 

and

so that he 

can determine the best optimal pricing policy and consequently gather the 

optimal prices by assuming that the consumers’ arrival rate at the store during the 
                                                

 compare the total revenues gathered by applying the following approaches: 

 

1. Perfect information approach (PIA): In this approach we assume that the retailer 

knows the real number of arriving consumers during the next periods, 

maximum potential revenues. 

2. Average-rate learning approach (ALA): In this approach the retailer determines the 

 
14 It is just because of reducing the time of simulation. 
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next periods is the average of the consumers’ arrivals during the passed periods 

(see (3.1) ) 

t
nnnN t

t
+++

=+
...ˆ 21

1  

As in our work we assume that every decision point to be the last time at which we revise 

our knowledge about future demand, at the end of period t the forecast for the periods t+1, 

…,T are given by  

1
ˆ)( +−= ttT NtTN

 

3. Exponential-smoothing-rate learning approaches (ELA): In this approach the 

retailer use

1 ,...,2   ,   ˆˆ
++ −== tkt tTkNN

s the exponential smoothing method with different parameters to 

forecast the number of arriving consumers in the next periods by considering 

observations during the earlier periods (see (3.3)) 

∑
−

=
−+ −=

1

0
1 )1(ˆ

t

k
kt

k
t nN αα  

And again, the forecast for the periods t+1, …,T are given by  

1

1 ,...,2   ,   ˆˆ
++ == tkt TkNN

ˆ)( +−=

−

ttT NtTN

t
 

In the followings, we present several numerical examples to show the performance of our 

 

6.2.1 Single-Update Case 

 initial forecasts of the gamma 

istribution parameters, i.e., the distribution of the consumers’ arrivals, the inventory 

 selling season. As the sales season unfolds, the retailer collects 

supposed that the retailer sets the prices after the 3rd period, we will do as follows: 

6.2

Bayesian learning approach in comparison with others. 

First, we consider the single-update case. At time zero, the retailer sets the initial prices 

from the predetermined set of prices based on his

d

levels, and the length of the

sales information periodically to revise the parameters of the consumers’ arrivals 

distribution (see Figure 5.1).  

Figure 6.5 shows the performance of the different learning approaches when the 

retailer updates the prices after passing the 3rd, 5th, or 7th period. For instance, if it is 

6.1
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In each simulation run15, we generate the number of arriving consumers at the store for all 

10 periods according to the parameters of the gamma distribution that are not known to the 

retailer. For this example, we consider the special case in which the mean of the arrival rate 

is  5=μ  and the variance of the arrival rate tends to zero. That is, the number of arriving 

consumers follows a Poisson distribution with mean and variance 52 ==σμ . In this 

2. The available inventory of the pr

timal price

h based on the real data. 

 each approach to the case of the 

 of 5th and 7th 

 under high demand uncertainty, the retailer should effectively response to the 

dem

                                                

experiment, based on the initial prices and the initial inventory, the real number of 

consumers’ arrivals, and our demand distribution we compute:  

1. The revenues gathered in the 3 earlier periods. 

oducts at the end of period 3, 3Q .  

After that, we use different learning approaches to determine the op s for the 

remaining periods. Then, we apply the optimal prices from different approaches to 

compute the expected revenues with respect to each approac

Finally, we compare the total revenues gathered from

perfect information approach. This procedure also is repeated at the end

period. 

Figure 6.5 shows that for all approaches the ratio of the expected revenues improves as 

the retailer uses more demand information. As the most important result, our Bayesian 

learning approach performs better than others, especially when the retailer updates the 

prices in the earlier periods. This is important because in the context of selling perishable 

products

and pattern of the products in the market as soon as possible. As the length of horizon 

gets shorter, the market becomes less sensitive to the prices. According to Soysal (2007) an 

early price update improves revenues significantly more than a late price updates, because 

as time passes the price-sensitivity of the consumers dramatically decreases. Also, the 

figure shows that the ALA relatively performs better than the ELA.  

 

 
15 In this work, we use the statistic software of R to generate data and computations.  
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ow, we take into consideration the effect of the variance of the consumers’ arrival 

rate

the gap between the ALA and the BLA increases with 

incr

 the B ALA 

                                                

N

 on the performance of the BLA and the ALA16. As we expected, Figures 6.6.a-c show 

that the performances of both the ALA and the BLA decrease as the variance of the 

consumers’ arrival rate increases.  

These figures also show that 

easing uncertainty about the consumers’ arrival rate, e.g., for the case in which the 

retailer updates the prices after passing 3 periods the gap between the performances of two 

approaches increases from 0.8% ( 12 =σ ) to 2.8% ( 92 =σ ). But, using more information 

improves the performance of both LA and the and decreases the gap between 

them. 

 
16 Our study shows that the ALA generally performs better than the ELA’s. Then, we go on with the BLA and 
the ALA. 

Figure 6.5 Performance of the single-update case for different learning approaches. 
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Figure 6.6.a Performance of the single-update at the end of 3rd period for 
the BLA and the ALA.  

Figure 6.6.b Performance of the single-update at the end of 5th period for 
the BLA and the ALA.  

Figure 6.6.c Performance of the single-update at the end of 7th period for 
the BLA and the ALA.  
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6.2.2 Multi-Update Case 

In this case, we examine the performances of the BLA and the ALA where there is more 

than one opportunity to refine the prices. The retailer determines the initial prices from an 

allowable price set according to his initial forecasts and the initial inventory, . 

The results from two approaches are compared to the PIA in which the retailer knows the 

real values of the consumers’ arrivals in all periods. We study different levels of 

uncertainty regarding to the consumers’ arrival rate. We also compare the result of the 

single-update in which the retailer updates the prices only one time at the end of the 3rd 

period with the results of the multi-update cases in which the retailer updates the prices at 

the end of the periods 3rd, 4th, 5th, 6th, and 7th. Figure 6.7 shows the result of our simulation: 

)7,10,4(0 =Q

1. Applying the multi-update method improves the performance of both the BLA and 

the ALA. 

2. The gap between the revenues obtained from the multi-update case and the 

revenues obtained from the single-update case increases as the variance of the 

consumers’ arrival rate increases, e.g., from 1.4% ( 12 =σ ) to 2.7% ( 92 =σ ) for 

the ALA and from 0.3% ( 12 =σ ) to 1.7% ( 92 =σ ) for the BLA. 
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 Figure 6.7 Performance of the single- and the multi-update cases for the 
BLA and the ALA.  
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3. In the multi-update case, the gap between the total revenues obtained by the ALA 

and the BLA increases as the variance of the consumers’ arrival rate increases, from 

0.4% ( 12 =σ ) to 2.0% ( 92 =σ ). Similarly, in the single-update case, the gap 

between the revenues obtained by the ALA and the BLA increases as the variance of 

the consumers’ arrival rate increases, from 1.5% ( 12 =σ ) to 3.0% ( 92 =σ ). 

4. As an interesting result, using the BLA in the single-update case yields more 

revenues than using the ALA in the multi-update case. It shows the robustness of 

the Bayesian learning approach. 

 

6.3 Extensions  
In this section, we consider two extensions of our basic demand learning model in order to 

support some selected situations in the market. In the first extension, we relax assumption 

that the consumers’ arrival rate is constant in the whole of the selling season, i.e., non-

homogeneous arrival process, but such that the retailer knows how it changes over the 

time. In the second one, we consider the case in which the retailer is not sure about the 

’s, i.e., the representative component of utility and uses observations to updates them.  iz

 

6.3.1 Non-homogenous Consumers’ Arrival Rate 

An interesting extension to our work is the case of non-homogenous consumers’ arrival 

rate in which the consumers’ arrival rate into the store changes over time. It could be due 

to some unpredictable factors such as weather, especially for apparel and energy 

distributors, and market conditions that may affect overall demand for the products during 

the remaining periods. For instance, consider a retailer who sells different kinds of a 

summer T-shirt. He orders in advance a certain amount of different kinds of the product 

based on some predictions. After passing a few periods of the sales season, say 3-4 weeks, 

the retailer receives new information showing that during the remaining periods weather 

will change and not be as warm as he expected at the beginning of the selling season, i.e., 

the arrival rate will reduce in the next periods in comparison with the earlier periods. Since 

we assume that the consumers’ arrival rate follows a gamma distribution, we can use the 

scaling property of the gamma distribution to response new situation.  
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Lemma 6.2: If X is a random variable that has a gamma distribution with parameters 

(a,b), then Y=kX, k∈R, has a gamma distribution with parameters (a,b/k).  

Suppose that ],0[],( tttTttt k ∈∈ = λλ . If ],0[ ttt ∈λ  has a gamma distribution with parameters (a,b), 

],( Tttt ∈λ will be a gamma-distributed random variable with parameters (a,b/k) because of 

lemma 6.2. That is, the probability distribution of the number of arriving consumers during 

the next periods is given by 
n
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Then, the optimal expected revenues gathered from selling the available inventory of 

products during the periods t+1,…,T , is given by (5.15) 
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6.3.2 Revising the Quality Vector  

In this case, we suppose that the retailer is also interested in revising the quality vector of 

the products during the sales season. Because the retailer collects sales information- the 

number of arriving consumers and the number of each product sold- periodically, if the set 

of the available products remains unchanged during some earlier periods, we will be able 

to compute the quality vector of the products as well. 

Suppose that the retailer wants to update the quality vector as well as the prices after 

passing t period for the first time. Let tn  be the number of arriving consumer during the t 

earlier periods and at the end of the period t all products are still available. Then, for 

product i , i=1,…,I  
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where its  is the amount of product i that are sold during the t earlier periods.  

Defining , then the quality index for product i is given by  ∑
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The proof is provided in appendix B. 
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Chapter 7                                                                           Conclusions & Further Directions 

7.1 Conclusions 
In this thesis, we considered the problem of selling substitutable perishable products over a 

finite horizon of time. We provided a Bayesian learning approach to determine optimal 

pricing policies based on the products’ qualities, prices, and inventory as well as the 

remaining time to the end of the selling season. We assumed that the demand for each 

product at the store is the result of two elements: (1) the consumers’ arrival rate, and (2) 

the consumer choice behavior.  

In terms of the consumers’ arrival rate, we assumed that the consumers arrive at the 

store according to a Poisson process with a gamma distributed rate λ . Under this 

assumption and using Bayes’ rule, the number of arriving consumers during a given time 

interval [0,t], follows a negative binomial distribution whose parameters depend on time t 

and the parameters of the gamma distribution. In our Bayesian learning approach, the 

selling season is divided into T equal time periods and the seller uses demand observations 

of the earlier periods to revise the parameters of the consumers’ arrival rate. Therefore, the 

seller knows the parameters of the distribution based on the number of arriving consumers 

at the end of a given period, t.  

In terms of the consumers’ purchase behavior, we used the multinomial logit model to 

compute the probability that an arriving consumer facing a set of products chooses his 

favorite product to buy. We assumed that the consumer’s utility from purchasing product i 

is given by iii uU ε+= , where the representative component  is a deterministic utility 

value and the random component 

iu

iε  is an independent identically distributed variable from 

a Gumbel distribution with mean zero. We assumed that the deterministic utility  is a 

linear function of quality and price as 

iu

iii pzu −=  where  is the quality index and  is 

the price of product i. We considered both assortment- and stockout-based demand 

substitution and assumed that:  

iz ip

A1. Each consumer has a favorite product within the assortment, i.e., the initial set of 

products, and will buy it if it is available (assortment-based substitution), and if the favorite 

product is unavailable he may choose other products to purchase (stockout-based 

substitution), or leaves the store empty-handed. 

 103



 
 
 
Chapter 7                                                                           Conclusions & Further Directions 

A2. A consumer who prefers product i may choose a second product, say j, as 

substitute if product i is not available, and if product j is unavailable too, he leaves the 

store empty-handed (restriction to only one substitute attempt). 

A3. The probability of product i being chosen by an arriving consumer as the first 

choice is independent from the number of arriving consumers. 

A4. Each consumer will purchase at most one unit of his favorite product. 

In this framework, demand for product i is either through consumers who prefer it as the 

first choice or through the consumers who prefer the unavailable product ij ≠  and choose 

product i as the second favorite product. Therefore, the demand for a particular product 

depends on the number of arriving consumers, the product’s price, inventory, and quality 

index, as well as the prices, inventories, and quality indexes of all other products. Using 

the number of arriving consumers’ distribution and the choice probabilities given by the 

multinomial logit model, we presented an optimal pricing policy by which the seller is able 

to improve his total expected revenues.  

We have done a numerical study to show how our optimal pricing policy works and 

presented its performance. We considered two cases. First, we assumed that the seller 

knows the parameters of the consumers’ arrival rate at the store and studied how the 

optimal prices of the products change with respect to the remaining time to the end of the 

selling season and the available inventory of the products. Our numerical experiment 

showed that (1) at a given inventory level, the optimal price of the products may decrease 

or increase as time progresses which is different from the known single product case, and 

(2) at a given time, the optimal price of each product increases as its inventory level 

decreases. We also presented an example of the simple path of the optimal prices to show 

how the optimal price patterns would be when both the inventory levels and the remaining 

time to the end of the selling season are changed. Second, we considered the cases where 

the seller does not know the parameters of the consumers’ arrival rate but uses demand 

information of the earlier periods to update the parameters of the demand distributions in 

the stores. We studied both the single- and the multi-update cases and computed the total 

expected revenues gathered from our Bayesian learning approach (BLA) and two others; 

(1) The seller uses the average of the number of the consumers’ arrivals in the earlier 

periods to forecast the number of arriving consumers in the next periods (ALA), and (2) the 
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seller uses the exponential smoothing approaches with different parameters to forecast the 

number of arriving consumers in the next periods (ELA). Then, we compared the 

performances each approach by using the real data (deterministic case).  

We showed that for all three forecasting approaches the results (revenues) improve as 

the seller uses more demand information. As the most important result, our Bayesian 

learning approach performs better than two others, especially when the seller updates the 

prices in the earlier periods. In the context of selling perishable products under demand 

uncertainty, the seller should effectively respond to demand pattern in the market as soon 

as possible because the market becomes less sensitive to the price as time passes. Our 

numerical study also showed that the ALA performs relatively better than the ELA 

approach. In other experiment, we examined the effect of increasing the variance of the 

consumers’ arrival rate, i.e., increasing demand uncertainty on the performance of the BLA 

and the ALA. We observed that the performances of both approaches decline as uncertainty 

about the consumers’ arrival rate increases. Moreover, the gap between the performance of 

the ALA and the BLA improves as the variance of the consumers’ arrival rate increases, 

e.g., for the case in which the retailer updates the prices after 3 periods the gap between the 

performances of two approaches improves from 0.8% ( ) to 2.8% ( ). Still, 

using more information improves the performance of both the BLA and the ALA and 

decreases this gap. In our last experiment, we compared the performances of the single- 

and the multi-update and observed: 

12 =σ 92 =σ

 Using the multi-update approach improves the performance of both the BLA and 

the ALA. 

 The gap between the revenues obtained from the multi-update case and the 

revenues obtained from the single-update case increases as the variance of the 

consumers’ arrival rate increases, e.g., from 1.4% ( 12 =σ ) to 2.7% ( 92 =σ ) for 

the ALA and from 0.3% ( 12 =σ ) to 1.7% ( 92 =σ ) for the BLA. 

 In the multi-update case, the gap between the revenues obtained by the ALA and the 

BLA increases as the variance of the consumers’ arrival rate increases, from 0.4% 

( 12 =σ ) to 2.0% ( 92 =σ ).  
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 In the single-update case, the gap between the revenues obtained by the ALA and 

the BLA increases as the variance of the consumers’ arrival rate increases, from 

1.5% ( 12 =σ ) to 3.0% ( 92 =σ ). 

 As an interesting result, using the BLA approach in the single-update case gives 

more revenues than using the ALA in the multi-update case. This shows the 

robustness of the BLA. 

Finally, we considered two extensions to our optimal pricing policy problem in order to 

support some real situations in the market. In the first extension, we relaxed assumption 

that the mean of the consumers’ arrival rate is constant over the selling season and 

modified our demand model by using the scaling property of the gamma distribution. In 

the second extension, we considered the situation where the seller is interested in learning 

about the quality vector as well as the consumers’ arrival rate.  

 

7.2 Further Directions 
In this thesis, we assumed that there is not any opportunity to replenish inventory during 

the selling season. One can relax this assumption and develop an optimal pricing policy 

combined with an optimal ordering policy. That is, at a given time the seller determines 

which level of inventory of the products would be optimal as well as the prices. This case 

could be considered as an extension of our work. 

In this work, we supposed that the quality vector of the products is the same for all 

consumers in the market. One can consider different segments of the consumers in the 

market with different quality vectors as well as different arrival rates.  

Considering several stores (sales channels) is another direction for future research. In 

this case, both the consumers’ arrival rate and the quality vector could be different among 

the stores.  

Finally, we assumed that there is only one substitution attempt if the consumer’s first 

choice is not available. Considering all the possible substitution attempts could be an 

interesting subject for future directions. 
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 Some Useful Distributions 
In this appendix, we consider some useful distributions which are used in our work. First, 

we point out Bernoulli, Poisson, binomial, negative binomial, and exponential 

distributions, and then consider the gamma distribution in more detail. 

 

1. Bernoulli (Alternative) Distribution 

A random variable X on {0,1} has a Bernoulli distribution with parameter  if )1,0(∈p

pXPXP ==−== )0(1)1( . Letting pq −=1 , the probability function of X can be 

written as follows:  
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If X has a Bernoulli distribution with parameter p, then  

pXE =][ , )1()( ppXVar −= . 

 

2. Binomial Distribution 

A binomial random variable X on {0,1,…} with parameters n and p has the following 

probability function: 
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If X has a Binomial distribution with parameters n and p, then  

npXE =][ , 

and  

)1()( pnpXVar −= . 

 

3. Negative Binomial Distribution 

A negative binomial random variable X with parameters r and p has the following 

probability function: 
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If X has a Binomial distribution with parameters n and p, then  

p
prXE )1(][ −

= ,   2
)1()(

p
prXVar −

= . 

 

4. Poisson distribution 

Let X be a random variable with a discrete distribution, and suppose that the values of X 

must be non-negative integers. The Poisson distribution is a discrete distribution on 0Ν . 

For a Poisson distribution N with parameter λ holds: 

λλ −== e
n

nNP
n

!
)( . 

We have λ=][NE  and . λσ =)(2 N

 

5. Exponential Distribution 

It is said that a random variable X has an exponential distribution with parameter θ  

( 0>θ ) if X has a continuous distribution for which the probability distribution function is 

specified as follows: 

⎩
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)|(
x
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xf
xθθ

θ  

If X has an exponential distribution with parameter θ , then  and sesXP  1)( θ−−=≤

,1 ][
 

0 

 

θ
θ θ == ∫

∞ − dtetXE t    .1][ 2θ
=XVar  

As an extremely important property of the exponential distribution, it is the only 

continuous distribution with the memoryless property: 
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The exponential distribution is a special case of the Erlang distribution where the shape 

parameter k=1. 
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6. Erlang Distribution 

If X is a continuous random variable that has an Erlang distribution, the probability 

function will be as follows: 

0    ,0    ,0    ,
)!1(

) ( )(
1 

>>∞<≤
−

=
−−

kx
k

xexf
kx

θθθ θ

 

 

If X has a Erlang distribution with parameters k and θ, then  

θ/][ kXE =  ,  2/][ θkXVar =

The Erlang distribution is a special case of the gamma distribution where the shape 

parameter k is integer. 

 

7. Gamma Distribution 

The sum of k independent exponentially distributed random variables with parameter 

0>θ  has a gamma distribution with parameters ( θ,k ) where k is called the shape 

parameter and θ  is called the scale parameter. If X is a continuous random variable that 

has a gamma distribution, the probability function will be as follows: 

0    ,0    ,0    ,
)(

) ( )(
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>>∞<≤
Γ
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−−

kx
k

xexf
kx

θθθ θ

 

where is  is the gamma function, defined by  or 

.  

)(kΓ

∞ − 

0 

1exk

∫
∞ −−=Γ
 

0 

1)( dxexk xkk θθ

∫ −=Γ )( dxk z

• The mean μ  of the distribution is  

∫
∞

==
0

/)( θμ kdxxxf . 

• The variance 2σ  of the distribution is 

∫
∞

=−=
0

222 /)()( θμσ kdxxfx . 
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• If  k is an integer, then the cumulative density function will be as follows: 
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Figure A.1 Probability density function of the gamma distribution. 

Figure A.2 Cumulative density function of the gamma distribution. 

http://upload.wikimedia.org/wikipedia/commons/f/fc/Gamma_distribution_pdf.png�
http://upload.wikimedia.org/wikipedia/commons/a/a9/Gamma_distribution_cdf.png�
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• If k is an integer, then )!1()( −=Γ kk  

• One of the most important properties of the gamma function is )()1 . ()( kkk Γ−=Γ

• If ),1(~ θgammaX , then X has an exponential distribution with parameter θ . That 

is xe  xf θθ −=)( .

• The chi-square distribution with k degrees of freedom is ).  2,2/(~ kgammaX

• If k is an integer, then the gamma distribution with parameters ),( θk  is called the 

k-Erlang(θ ) distribution. 

• If )2,( , then X has a chi-square distribution with 2k degrees of 

freedoms. 

~ kgammaX

• If  mX  are independent random variables with ),(XX ,...,, 21 θii kX , then  

),...(~( 211 )...2 θmkkgammaX mXX k++++++  

 

Fitting the Gamma Distribution to the Observed Data 

To fit the gamma distribution to the observed data one can use the mean and the variance 

of the observed data as follows: 
22 /σμ=k    ,   . 2/σμθ =

Alternatively, the parameters may be determined using the maximum likelihood (Burgin, 

1975). The maximum likelihood estimates of ),( θk  are given by  

μθ /k= ,   Gkdkdk lnln)(ln)/(ln −=Γ− μ  

where  is the geometric mean of the data. Then k is approximately  n
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 Proof of Eq. (2.1.a) and (2.1.b). 

Let D denote the one period random demand, with mean ][DE=μ  and variance 

. Let c be the unit cost, ][2 DVar=σ cp >  the selling price and cv <  the salvage value. If 

q units are ordered, then  units are sold and  units are 

salvaged. The profit is given by . The expected profit is well 

defined and given by:  

),min( qD

p

)0,)( DDq −

cq−+

max(q −=+

Dq −+ )() υDq,min(

cqDqEDqpEqB −−+= +)(),min()( υ  

Using the fact that  we can write the expected profit as  +−−= )(),min( qDDDq

)()()( qGcpqB −−= μ . 

where . 0)()()()()( ≥−−+−−= ++ qDEcpDqEcqG υ

Let υ−= ch  and cpb −= . It is convenient to think of h the per unit overage cost and of b 

as per unit underage cost. 

The problem of maximizing  can be considered as that of minimizing the 

expected overage and underage cost G(q). 

)(qB

Let . This represents the cost when D is deterministic, 

i.e., 

++ −+−= )()()(det μμ qbqhqG

1)( == μDP . So that μ=q

μ)( cp −=

 minimizes  and , so 

.  

)(det qG 0)(det =μG

μ)(detB

Let , then G(q) can be written as −+ += bxhxxg )( )]([)( DqgEqG −= . Since g is 

convex and convexity is preserved by linear transformations and by the expectation 

operator it follows that G is also convex. By Jensen's inequality . As a 

result, . Thus, the expected profit is lower than it would 

be in the case of deterministic demand.  

)(det q)( GqG ≥

μμ )()(det cp −=)()( det BqBqB ≤≤

If the distribution of D is continuous, we can find an optimal solution by taking the 

derivative of G and setting it to zero. Since we can interchange the derivative and the 

expectation operators, it follows that  

)()( qDhqG −=′ δ  

where  

⎩
⎨
⎧ >

=
. otherwise      0

0 if      1
)(

x
xδ   
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Since )0()( >−=− DqPDqEδ  and )0()( >−=− qDPqDEδ , it follows that  

)0()0()( >−−>−=′ qDbPDqhPqG . 

Setting the derivative to zero reveals that  

vp
cp

hb
bqDPqF

−
−

=
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=≤≡ )()(  

If F is strictly increasing then F has an inverse and there is a unique optimal solution 

given by  

or            
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 Proof of Assumption 2.2 

Under assumption 2.1, we will have 
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Notation 

tA  Number of arrivals in period t. 
)( pB  Profit as a function of price p. 
)(qB  Profit as a function of inventory q. 

c  Unit order cost. 
..vc  Coefficient of variation. 
(.)t

iD  Demand for product i during the periods  t+1,…,T. 

D ,  (.)D Random demand. 
)( pd  Demand rate or function of price p. 
)( *pd  Demand rate at the optimal price .  *p
)( tpd  Demand rate or function of price in period t. tp
)( *

tpd  Demand rate at the optimal price  in period t.  *
tp

)( pd  Demand rate at the inventory clearing price p . 
)( 0pd  Demand rate at the revenue maximizing price . 0p

)(iP
u

S

i
e  Own (utility) elasticity.  

)(iP
u

S

j
e  Cross (utility) elasticity. 

(.)f ,  (.)g Probability density function. 
(.)F  Cumulative distribution function. 
(.)H  The Hamilton function. 

(.)J  Marginal revenue. 
l  Lagrangian multiplier. 
M  Size of consumer population in the market. 
m  Number of options (alternatives). 

)(tN  Number of arrivals in the time interval [0,t]. 
)(TN  Number of arrivals in the time interval [0,T]. 

),( TtN  Number of arrivals in the time interval (t,T]. 
N  Random variable that count the number of arrivals. 

tN  Value of random variable in period t. 

tn  Number of arrivals in period t. Also tth observed value. 

tN̂  Forecast of value for period t. 

tN  Number of arrivals in the time interval [0,t]. 

tTN  Number of arrivals in the time interval (t,T]. 

tn  Number of arrivals during the t earlier periods. 
)( pr  Revenue as a function of price. 
)( *pr  Revenue at the optimal price. 
)( tpr  Revenue as a function of price in period t. 

)( *
tpr  Revenue at the optimal price in period t. 

P Set of allowable prices for the products. 
iP  Set of allowable prices for product i, Ii ,...,1= . 
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0Ρ  Vector of the initial prices of the products. 
tΡ  Vector of prices for the periods t+1,…,T. 
*tΡ  Vector of the optimal prices for the periods t+1,…,T. 

ip0  Null price at which demand for product i will be equal zero. 
*p  Optimal price. 

tp  Price in period t. 
*
tp  Optimal price in period t. 
*
, tqtp  Optimal price in period t as the inventory level is . tq

0p  Revenue maximizing price. 
p  Inventory clearing price. 

det*
mup  Optimal price in the deterministic demand case for the multiplicative 

demand. 
st

mup*  Optimal price in the stochastic demand case for the multiplicative demand. 
det*

adp  Optimal price in the deterministic demand case for the additive demand. 
st

adp*  Optimal price in the stochastic demand case for the additive demand. 

maxp  Maximum price that consumer will pay for the product. 

refp  Reference price. 
tQ  Vector of the available inventory of the products at the end of period t. 
0Q  Vector of the initial inventory of the products. 

0q  Initial inventory. 

tq  Inventory at time t. 
*q  Optimal inventory. 
t
iq  Inventory of product i at the end of period t. 

(.)t
iR  Total expected revenues with respect to product i during the periods 

t+1,…,T. 
(.)tR  Total expected revenues during the periods t+1,…,T. 

S  Set of alternatives.  
its  Number of units of product i sold in the t earlier periods. 

T  Number of periods; Length of the horizon. 
t  Time; index of period. 

iU  Random utility (random variable). 

iu  Representative component of random utility. 
)( tt qV  Value function. 

)( tt qVΔ  Expected marginal revenue of the  unit of inventory in period t. th
tq

difv  Differentiation value. 

iw  Probability that an arriving consumer chooses product i as the first choice. 
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0w  Probability that an arriving consumer leaves the store empty-handed. 

X  Vector of the availability of the products.  

iX  A binary variable depends on the availability of product i.  

Z  Quality vector of the products. 

iε  Mean-zero random component of random utility for product i. 

pε  Price elasticity of demand. 
ζ  Probability that a consumer will arrive at the store during the sales season. 
Λ  Parameter of Poisson distribution. 
λ  Arrival rate. 

)(tλ  Arrival rate function. 
λ̂  The maximum likelihood estimate of λ . 
μ  Mean of the consumers’ arrival rate at he t  store. 
ν  Reservation price. 

tν  Reservation price in period t. 
(.)jiρ  nsumer, who prefers unavailable product j as Probability that an arriving co

the first choice, will switch to product i (stockout-based demand substitution 

with considering the availability of all products). 

jiρ  Probability that an arriving consumer, who prefers unavailable product j as 

the first choice, will switch to product i (stockout-based substitution without 

considering the availability of all products). 

Variance of the customers’ arrival rate. 2σ  
υ  Salvage value per unit. 

tion. (.)Φ  Standard normal distribu

pΩ  Constraint set of prices p in the single-product problem. 
 
 

 

 



 
 
 

Bibliography                        

Agrawal, N., S.A. Smith. Estimating negative binomial demand for retail inventory 
management with unobservable lost sales. Naval Research Logistics, 43(6), 839-861, 
1996. 

Anderson, S.P., A. de Palma. The logit model of product differentiation. Oxford Economic 
Papers, 44, 51-67, 1992. 

Anderson, S.P., A. de Palma, J.F. Thisse. Discrete Choice Theory of Product 
Differentiation. MIT, Cambridge, MA, 1992. 

Araman, V., R. Caldentey. Dynamic pricing for non-perishable products with demand 
learning. Operations Research, 2005 (Submitted). 

Armstrong, J.S., K.C. Green. Demand forecasting: Evidence-based methods. Working 
Paper, 2005.  

Armstrong, G., P. Kotler. Marketing: An Introduction. Prentice Hall, 2007. 

Aviv, Y., A. Pazgal. A partially observed Markov decision process for dynamic pricing. 
Management Science, 51(9), 1400-1416, 2005a.  

Aviv, Y., A. Pazgal. Pricing of short life-cycle products through active learning. Working 
Paper, Washington University, Olin School of Business, 2005b. 

Aviv, Y., A. Pazgal. Optimal pricing of seasonal products in the presence of forward-
looking consumers. Manufacturing & Service Operations Management, 10(3), 339-
359, 2008. 

Aydin, G., J.K. Ryan. Product line selection and pricing under stochastic consumer choice. 
Proceedings of the MSOM Conference, University of Michigan, Ann Arbor, MI,  26-
27, 2000. 

Aydin, G., S. Ziya. Pricing promotional products under up-selling. Manufacturing & 
Service Operations Management, 10, 360-376, 2008. 

Azoury, K.S. Bayes solution to dynamic inventory models under unknown demand 
distribution. Management Science, 31(9), 1150-1160, 1985. 

Bassok, Y., R. Anupinda, R. Akella. Single-period multi-product inventory models with 
substitution. Operations Research, 47, 632-642, 1999. 

Belobaba, P.P. Airline yield management: An overview of seat inventory control. 
Transportation Science, 21, 63-73, 1987. 

Bertsimas, D., G. Perakis. Dynamic pricing: A learning approach. In: Mathematical and 
Computational Models for Congestion Charging, D. Hearn and S. Lawphongpanich 
(eds.), 101, 45-79, Book Series: Applied Optimization, Springer, 2006. 

Ben-Akiva, M., S.R. Lerman. Discrete Choice Analysis: Theory and Application to Travel 
Demand. MIT Press, Cambridge, MA, 1985. 

 118

http://marketing.wharton.upenn.edu/ideas/pdf/Armstrong/DemandForcasting.pdf
http://mansci.pubs.informs.org/


 
 
 

Bibliography                        

Berk, E., Ü. Gürler, R.A. Levine. Bayesian demand updating in the lost sales newsvendor 
problem: A two-moment approximation. European Journal of Operational Research, 
182, 256-281, 2007. 

Bitran, G.R., R. Caldentey. An overview of pricing models for revenue management. 
Manufacturing & Service Operations Management, 5, 203-229, 2003. 

Bitran, G.R., R. Caldentey, S.V. Mondschein. Coordinating clearance markdown sales of 
seasonal products in retail chains. Operations Research, 46, 609-624, 1998. 

Bitran, G.R., R. Caldentey, R. Vial. Pricing policies for perishable products with demand 
substitution. Working Paper, Sloan School of Management, MIT, Boston, 2005. 

Bitran, G.R., S.V. Mondschein. Perishable product pricing: An application to the retail 
industry. M.I.T. Sloan School of Management, Working Paper, 1993. 

Bitran, G.R., S.V. Mondschein. An application of yield management to the hotel industry 
considering multiple stays. Operations Research, 43, 427-443, 1995. 

Bitran, G.R., S.V. Mondschein. Periodic pricing of seasonal products in retailing. 
Management Science, 43, 427-443, 1997. 

Bitran, G.R., H.K. Wadhwa. A methodology for demand learning with an application to 
the optimal pricing of seasonal products. MIT, Sloan School of Management, 
Working Paper, 1996. 

Bradford, J.W., P.K. Sugrue. A Bayesian approach to the two-period style-goods inventory 
problem with single replenishment and heterogeneous Poisson demand. J. 
Operational Research Society, 41, 211-218, 1990. 

Breidert, C. Estimation of willingness-to-pay: theory, measurement application, Ph.D. 
dissertation, 2005. 

Breidert, C., M. Hahsler, T. Reutterer.  A review of methods for measuring willingness-to-
pay, Innovative Marketing, 4, 8-32, 2006. 

Burgin, T.A. The gamma distribution and inventory control. J. Operational Research 
Society, 26, 507-525, 1975. 

Burnetas, A.N., C.E. Smith. Adaptive ordering and pricing for perishable products. 
Operations Research, 48, 436-443, 2001. 

Chan, L.M.A., Z.J.M. Shen, D. Simchi-Levi, J.L. Swann. Coordination of pricing and 
inventory decisions: A survey and classification. In: D. Simchi-Levi, S.D. Wu and 
Z.J.M. Shen (eds.), Handbook of Quantitative Supply Chain Analysis: Modeling in 
the E-business Era. Kluwer, Academic Publisher, Boston. Chapter 14, 335–392, 
2004. 

Chiang, W., J.C.H. Chen, X. Xu. An overview of research on revenue management: 
Current issues and future research. Int. J. Revenue Management, 1(1), 97-128, 2007. 

 119



 
 
 

Bibliography                        

Christopher, M., D.R. Towill. Developing market specific supply chain strategies. The 
International J. Logistics Management, 13, 1-14, 2002. 

Cope, E. Bayesian strategies for dynamic pricing in E-commerce. Naval Research 
Logistics, 54(3), 265–281, 2006. 

Cramer, J.S. The Logit Model: An Introduction for Economists. Chapman and Hall, 1991. 

Cross, R.G. Revenue Management Hard-Core Tactics for Market Domination. NY: 
Broadway Books, 1997. 

Dada, M, N.C. Petruzzi, L.B. Schwarz. A newsvendor's procurement problem with 
unreliable suppliers. Manufacturing & Service Operations Management, 9(1), 9-32, 
2007.  

DeGroot, M.H., M.J. Schervish. Probability and Statistics. Third Edition, Assison-Wesley, 
2002. 

Dong L., P. Kouvelis, Z. Tian. Dynamic pricing and inventory control of substitute 
products. Manufacturing & Service Operations Management, Articles in Advance 1-
23, 2008. 

Elmaghraby, W., P. Keskinocak. Dynamic pricing in the presence of inventory 
considerations: Research review, current practices and future directions. 
Management Science, 49, 1287-1309, 2003. 

Eppen, G.D., A.V. Iyer. Improved fashion buying with Bayesian updates. Operations 
Research, 45, 805-819, 1997. 

Federgruen, A., A. Heching. Combined pricing and inventory control under uncertainty. 
Operations Research, 47(3), 454-475, 1997. 

Federgruen, A., A. Heching. Multi-location combined pricing and inventory control. 
Manufacturing & Service Operations Management, 4(4), 275-295, 2002. 

Feng, Y., G. Gallego. Optimal starting times for end-of-season sales and optimal stopping 
times for promotional fares. Management Science, 41, 1371-1391,1995. 

Feng, Y., G. Gallego. Perishable asset revenue management with Markovian time 
dependent demand intensities. Management Science, 46(7), 941-956, 2000.  

Feng, Y., B. Xiao. Optimal policies of yield management with multiple predetermined 
prices. Management Science, 48, 332-343, 2000. 

Fisher, M., A. Raman. Reducing the cost of demand uncertainty through accurate response 
to early sales. Operations Research, 44(4), 87-99, 1996.  

Gallego, G., G.J. van Ryzin. Optimal dynamic pricing of inventories with stochastic 
demand over finite horizons. Management Science, 40, 999-1020, 1994. 

Gallego, G., G.J. van Ryzin. A multi-product pricing problem and its application to 
network yield management. Operations  Research, 45, 24-41, 1997. 

 120



 
 
 

Bibliography                        

Gaul, W., A. Darzian Azizi. A demand learning data based approach to optimize revenues 
of a retail chain. 11th IFCS, Dresden University of Technology, 2009 (Submitted). 

Geraghty, M.K., E. Johnson. Revenue management saves national car rental. Interfaces, 
27, 107-127, 1997. 

Gupta, W., A.V. Hill, B. Chameeva. A pricing model for clearing end of season retail 
inventory. European J. Operational Research, 170, 518-540, 2006. 

Hill, R.M. Bayesian decision-making in inventory modeling. J. Operational Research 
Society, 41(3), 211-218, 1999. 

Joseph, J.V. Basic of strategic and tactical pricing. Source:marketingprofs.com, 2007. 

Jorgensen, S., P.M. Kort, G. Zaccour. Production, inventory, and pricing under cost and 
demand learning effect. European J. Operational Research, 17, 382-395, 1999. 

Kincaid, W.M., D.A. Darling. An inventory pricing problem. Mathematical Analysis 
Application, 7, 183-208, 1963. 

Klemperer, P. Auctions: Theory and Practice. Princeton University Press, Princeton, US, 
2004. 

Kök, A.G., M.L. Fisher. Demand estimation and assortment optimization under 
substitution: Methodology and Application. Operations Research, 55, 1001-1021, 
2007.  

Kwon, H.D., S.A. Lippman, C.S. Tang. Optimal markdown pricing strategy with demand 
learning. Operations Research, 2008 (Submitted). 

Kwong, L.M.K. Coupons and everyday low prices: Price competition with multiple 
instruments. The Canadian J. Economics, 36(2), 443-462, 2003. 

Lariviere, M.A., E.L. Porteus. Stalking information: Bayesian inventory management with 
unobserved lost sales. Management Science, 45, 346-363, 1999. 

Lazear, E. Retail pricing and clearance sales. The American Economic Review, 76, 14-32, 
1986. 

Lilien, G.R., P. Kotler, K.S. Moorthy. Marketing Models. Prentice Hall, NJ, 1992. 

Lin, K.Y. Dynamic pricing with real-time demand learning, European J. Operational 
Research, 174, 522-538, 2005. 

Liu, B., J. Milner. Multi-item dynamic pricing under a common pricing constraint. 
Working Paper, University of Toronto, 2006. 

Lobo, M.S., S. Boyd. Pricing and learning with uncertain demand. Working Paper, Duke 
University, 2003. 

Luce, R.D. Individual Choice Behavior: A Theoretical Analysis. NY: Wiley, 1959. 

 121



 
 
 

Bibliography                        

Mahajan, S., G.J. van Ryzin. Stocking retail assortments under dynamic consumer 
substitution. Operations Research, 49, 334-51, 2001. 

Makrdakis, S.G, S.C. Wheelright, R.J. Hyndman. Forecasting: Methods and Applications. 
Third Edition. John Wiley & sons, NY,1998. 

Mantralla, M.K., S. Rao. A decision-support system that helps retailers decide order 
quantities and markdowns for fashion goods. Interfaces, 31(3), 146-165, 2001. 

Marn, M.V., E.V. Roeger, C.C. Zawada. The power of pricing. The Online J. McKinsey & 
Co., 2003. 

Marn, M.V., R.L. Rosiello. Managing price, gaining profits. Harvard Business Review, 
Sep.-Oct. 83-93, 1992. 

McFadden, D. Econometric models for probabilistic choice among products. J. Business, 
53, 513-529, 1980. 

McFadden, D. Econometric models for probabilistic choice. In Structural Analysis of 
Discrete Data with Econometric. C.F. Manski and D. McFadden (eds.). MIT Press, 
Cambridge, Mass. 198-272,  1981. 

McFadden, D. Econometric analysis of qualitative response models. Department of 
Economics, MIT, Cambridge, 1982. 

McFadden, D. The choice theory approach to market research. Marketing Science, 5, 275-
297, 1986. 

McFadden, D. Economic choices. American Economic Review, 91, 351–378, 2001. 

McGill, J.I., G.J. van Ryzin. Revenue management: research overview and prospects. 
Transportation Science, 33, 233-256, 1999. 

Monroe, K.B. Pricing: Making Profitable Decisions. McGraw-Hill, NY, 1990. 

Monroe, K.B., J.L. Cox. Pricing practices that endanger profits. Marketing Management, 
10(3), 42-46, 2001.  

Murray, G.R., E.A. Silver. A Bayesian analysis of the style goods inventory problem. 
Management Science, 12, 785-797, 1966. 

Nagle, T.T., R.K. Holden. Strategy and Tactics of Pricing: A Guide to Profitable Decision 
Making, Third Edition. Prentice Hall, 2002. 

Nagle, T.T., J.E. Hogan. The Strategy and Tactics of Pricing: A Guide to Growing More 
Profitability, Fourth Edition. Prentice Hall, 2006. 

Narahari, Y., C.V.L. Raju, K. Ravikumar, S. Shah. Dynamic pricing models for electronic 
business. Sadhana, 30, 231-256, 2005. 

Pak, K., N. Piersma. Airline revenue management: An overview of OR techniques 1982-
2001, Economic Institute Report EI 2002-03, 1-23, 2003. 

 122



 
 
 

Bibliography                        

Pashigian, B.P. Demand uncertainty and sales: A study of fashion and markdown pricing. 
The American Economic Review, 78(5), 936-953, 1988. 

Pashigian, B., B. Bowen. Why are products sold on sale? Explanations of pricing 
regularities. Quartary J. Economics, 106, 1015-1038, 1991. 

Petruzzi, N.C., M. Dada. Pricing and the newsvendor problem: A review with extensions. 
Operations Research, 47, 183-194, 1999. 

Petruzzi, N.C., M. Dada. Information and inventory recourse for a two-market, price-
setting retailer. Manufacturing & Service Operations  Management, 3, 242-263, 
2001. 

Petruzzi, N.C., M. Dada. Dynamic pricing and inventory control with learning. Naval 
Research Logistic, 49, 303-325, 2002. 

Phillips, R. L. Pricing and Revenue Optimization, Stanford University Press, Stanford, 
2005. 

Popovic, J.B. Decision making on stock levels in cases of uncertain demand rate. 
European J. Operational Research, 32, 276-290, 1987. 

Porteus, E.L. Stochastic Inventory Theory. Eds. D.P. Heyman and M.J. Sobel, Handbooks 
in Operations Research and Management Science, 2, Elsivier, North-Holland, 605-
652, 1990. 

Rao, V.R. Pricing research in marketing: The state of the art. J. Business, 57(1, part 2nd), 
39-60, 1984. 

Ross, S.M. Introduction to Probability Models, Ninth Edition. Academic Press, NY, 2002. 

Scarf, H. Bayes solutions of statistical inventory problem. Annuals of Mathematical 
Statistics, 30, 275-290, 1959. 

Silver E.A., R. Peterson. Decision Systems for Inventory Management and Production 
Planning. Wiley, Second Edition, 1985. 

Sin, R.G., R.K. Chellappa, S. Siddarth. Strategic implementation of “Everyday Low Price” 
in electronic markets: A study of airline pricing on the Internet, 2007. (Available at 
SSRN: http://ssrn.com/abstract=989849.) 

Smith, S.A., D.D. Achabal. Clearance pricing and inventory policies for retail chains. 
Management Science, 44, 285-300, 1998. 

Smith, S.A., N. Agrawal. Management of multi-item retail inventory systems with demand 
substitution. Operations Research, 48, 50-64, 2000. 

Soysal, G.P. Demand dynamics in the seasonal goods industry: an empirical approach. 
Northwstern University, Kellogg School of Management, 2007. 

Subrahmanyan, S., R. Shoemaker. Developing optimal pricing and inventory policies for 
retailers who face uncertain demand. Retailing, 72(1), 7-30, 1996. 

 123

http://ssrn.com/abstract=989849


 
 
 

Bibliography                        

 124

Subramanian, J., S. Stidham, C.J. Lautenbacher. Airline yield management with 
overbooking, cancellations, no-shows. Transportations Science, 33(2), 147–167, 
1999. 

Talluri, K.T., G.J. van Ryzin. The Theory and Practice of Revenue Management. Springer 
Science+Business Media, 2004. 

Thurstone, L. A law of comparative judgment. Psychological Review, 34, 275-286, 1927. 

Tijms, H.C. Stochastic Modeling and Analysis: A Computational Approach. John Wiley & 
Sons, 1986. 

Train, E. Discrete Choice Methods with Simulation. Cambridge University Press, 2003. 

Van Ryzin, G.J., S. Mahajan. On the relationship between inventory costs and variety 
benefits in retail assortments. Management Science, 45, 1496-1509, 1999. 

West, M., J. Harrison. Bayesian Forecasting and Dynamic Models. Springer-Verlag, NY, 
1989. 

Xu, X., W. Hopp. A monopolistic and oligopolistic stochastic flow revenue management 
model. Operations Research, 54(6), 108-1109, 2005. 

Zhang, D., W.L. Cooper. Revenue management for parallel flights with consumer-choice 
behavior. Operations Research, 53, 415-431, 2006. 

Zhao, W., Y.S. Zheng. Optimal dynamic pricing for perishable assets with non-
homogeneous demand. Management Science, 46(3), 375-388, 2000. 

 
 


	THESISTitle-Mai26
	THESISChapter1-Mai26
	THESISChapter2-Mai26
	THESISChapter3-Mai26
	THESISChapter4-Mai26
	THESISChapter5-Mai26
	THESISChapter6-Mai26
	THESISChapter7-Mai26
	THESISAppA-Mai26
	THESISAppB-Mai26
	THESISNotation-Mai26
	THESISReferences-Mai26

