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Abstract: This paper describes the conceptual foundations to construct a method 
on Computer Aided Innovation for product development. It begins with a brief re-
cap of the different methodologies and disciplines that build its bases.  Evolution-
ary Design is presented and explained how the first activities in Genetic Algo-
rithms (GAs) helped to produce computer shapes that resembled a creative 
behavior. A description of optimization processes based on Genetic Algorithms is 
presented, and some of the genetic operators are explained as a background of the 
creative operators that are intended to be developed. A summary of some Design 
Optimization Systems is also explained and its use of splined profiles to optimize 
mechanical structures. The approach to multi-objective optimization with Genetic 
Algorithms is analyzed from the point of view of Pareto diagrams. It is discussed 
how the transition from a multi-objective optimization conflict to a solution with 
the aim of an ideal result can be developed means the help of TRIZ (Theory of In-
ventive Problem Solving), complementing the discipline of Evolutionary Design. 
Similarities between Genetic Algorithms and TRIZ regarding ideality and evolu-
tion are identified and presented. Finally, a brief presentation of a case study about 
the design of engine crankshafts is used to explain the concepts and methods de-
ployed. The authors have been working on strategies to optimize the balance of a 
crankshaft using CAD and CAE software, splines, Genetic Algorithms, and tools 
for its integration [1] [2]. 
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1. Introduction 

Computer Aided Innovation builds its bases on software tools used for a large 
number of applications: from modeling activities and optimization tasks, to per-
formance’s simulation of a product. But the addition of new tools is intended to 
extend the support to the creative part of the design process. This support allows 
the designer to improve the performance of their concepts, allowing computers to 
take part on the generation of variants, and on the judgment, by simulation, of 
these variants. Genetic Algorithms, CAD/CAE, Splines and TRIZ are all software 
tools that can nurture the knowledge of designers to generate new solutions, based 
on many separate ideas, suggesting entirely new design concepts. Methods for 
structural and topological optimization, based on evolutionary design, are used to 
obtain optimal geometric solutions. They are evolving to configurations that mi-
nimize the cost of trial and error and perform far beyond the abilities of the most 
skilled designer. Next is presented a brief description of the methods and tools that 
lead to our strategy of Computer Aided Innovation. 

1.1. Evolutionary Design 

A relatively new area of development called Evolutionary Design [3] is being ob-
ject of intensive research. Peter Bentley describes that Evolutionary Design has its 
roots in computer science, design and evolutionary biology. It is a branch of evo-
lutionary computation that extends and combines CAD and analysis software, and 
borrows ideas from natural evolution. Evolutionary Computation to optimize ex-
isting designs (i.e. perform detailed design or parametric design) was the first type 
of evolutionary design to be tackled. A huge variety of different engineering de-
signs have been successfully optimized, using these methods. Although the exact 
approach used by developers of such systems varies, typically practitioners of evo-
lutionary optimization usually begin the process with an existing design, and pa-
rametrize those parts of the design they feel need improvement. Different brands 
of Evolutionary Design derive: Evolutionary Optimization, Creative Evolutionary 
Design and Conceptual Evolutionary Design. Evolutionary Optimization places 
great emphasis upon finding a solution as close to the global optimal as possible 
perhaps more than any other type of evolutionary design. Creative Evolutionary 
Design is concerned with the preliminary stages of the design process. But gener-
ating creative designs could only be possible by going beyond the bounds of a rep-
resentation, and by finding a novel solution which simply could not have been de-
fined by that representation. In Conceptual Evolutionary Design, the relationships 
and arrangements of high-level design concepts are evolved in an attempt to gen-
erate novel preliminary designs. Generative (or conceptual) Evolutionary Designs 
using computers to generate the form of designs rather than a collection of prede-
fined high-level concepts has the advantage of giving greater freedom to the com-
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puter. Typically such systems are free to evolve any form capable of being repre-
sented, and the evolution of such forms may well result in the emergence of im-
plicit design concepts. Genetic Algorithms, an evolutionary computational tool, is 
selected to be integrated as part of our strategy. 

1.2. Genetic Algorithms  

Genetic Algorithms are global optimization techniques that avoid many of the 
shortcomings exhibited by local search techniques on difficult search spaces [4]. A 
GA is an iterative procedure which maintains a constant-size population P(t) of 
candidate solutions. During each iteration step, called a generation, the structures 
in the current population are evaluated, and, on the basis of those evaluations, a 
new population of candidate solutions is formed. The initial population P(O) can 
be chosen heuristically or at random. The structures of the population P(t + 1) are 
chosen from P(t) by a randomized selection procedure that ensures that the ex-
pected number of times a structure is chosen is approximately proportional to that 

other points in the search space, some variation is introduced into the new popula-
tion by means of idealized genetic recombination operators. The most important 
recombination operator is called crossover. Under the crossover operator, two 
structures in the new population exchange portions of their internal representation. 

amount of accumulating knowledge by means of relatively simple selection 
mechanisms. Termination of the GA may be triggered by finding an acceptable 
approximate solution, by fixing the total number of structure evaluations, or some 
other application dependent criterion. In addition, a number of experimental stud-

ent search techniques are more efficient for problems which satisfy tight con-

of random search on more difficult (and more common) problems, such as optimi-
zations involving discontinuous, noisy, high-dimensional, and multimodal objec-
tive functions. 

use of concepts from population genetics to guide the search. However, like other 

rameters and strategies: 
1) Population Size (N): The population size affects both the ultimate perform-

tions, because the population provides an insufficient sample size for most repre-
sentations. 

2) Crossover Rate (C): The crossover rate controls the frequency with which 
the crossover operator is applied. In each new population, C * N structures un-

ies show that GA’s exhibit impressive efficiency in practice. While classical gradi-

straints, GA’s consistently outperform both gradient techniques and various forms 

The power of GA’s derives largely from their ability to exploit efficiently this vast 

The class of GA’s is distinguished from other optimization techniques by the 

classes of algorithms, GA’s differ from one another with respect to several pa-

ance and the efficiency of GA’s. GA’s generally do poorly with very small popula-

structure’s performance relative to the rest of the population. In order to search 
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dergo crossover. The higher the crossover rate, the more quickly new structures 
are introduced into the population. 

3) Mutation Rate (M): Mutation is a secondary search operator which increases 
the variability of the population. After selection, each bit position of each structure 
in the new population undergoes a random change with a probability equal to the 
mutation rate M. 

4) Generation Gap (G): The generation gap controls the percentage of the 
population to be replaced during each generation. That is N * (G) structures of P(t) 
are chosen (at random) to survive intact in P(t + 1). 

5) Scaling Window (W): When maximizing a numerical function f(x) with a 
GA, it is common to define the performance value u(x) of a structure x as u(x) = 
f(x) - fmin, where fmin is the minimum value that f(x) can assume in the given 
search space.  

6) Selection Strategy (S): A good strategy assures that the structure with the 
best performance always survives intact into the next generation. In the absence of 
such a strategy, it is possible for the best structure to disappear, due to sampling 
error, crossover, or mutation. The optimization systems of our interest are de-
scribed in the next section. 

1.3. Design Optimization Systems 

The evolution of Product Development tools has been characterized by different 
trends; the analysis of these trends offers useful hints for the prediction of next 
generation systems. In mechanical design, optimization tasks are used for struc-
tural optimization, which deals with the development of mechanical structures. 
For example, when minimizing the weight of the wing of an airplane or optimiz-
ing the shape of a crankshaft, restrictions have to be included to guarantee the sta-
bility of the structure (ex. stresses or natural frequencies). The objectives of struc-
tural optimization are: minimizing stress or weight; maximizing lifespan, stiffness 
or first natural frequency. Any of those under different constrains as: maximum 
deflection, maximum stress, target weight (volume), target stiffness (displace-
ment) and durability. The choice of design variables ranges from geometrical pa-
rameters, control points of spline functions, position of nodes, shell thickness, 
beam cross-section, angle of fibers from compound materials, etc. As design vari-
able restrictions we can have: upper and lower limit of the design variables (fixa-
tions, limitations), discrete and continuous. Also symmetrical conditions and con-
straints for manufacturing conditions (drilling, casting or forging) are possible. 
Particularly, two kinds of structural optimization are frequently used: Topology 
Optimization and Shape Optimization. 

Topology Optimization consists on determining an optimal material distribu-
tion of a mechanical product.  A basic FE model is created and analyzed in a de-
sign area with given boundary conditions. The aims are commonly to maximize 
stiffness or maximize the natural frequency of a product. The constraints of the 
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design are: the fixations, material volume and maximum displacement allowed. 
The design variables are the material density of the elements, which are counted 
commonly in hundreds of thousands; this means a huge amount of design vari-
ables. The goal is, given a predefined design domain in the 2D/3D space with 
structural boundary conditions and load definitions, to distribute a given mass, 
which is a given percentage of the initial mass in the domain such that a global 
measure takes a minimum (maximum) value. 

Shape Optimization consists of changing the external borders of a mechanical 
component. The aims are: minimizing the stress or the volume or maximizing the 
natural frequency. Constrains to the design are: fixations, restrictions for dis-
placement of component borders. The design variables of the product are, for 
geometric models: length, angle and radii measurements; for FE model: node co-
ordinates. 

Each optimization method uses a strategy to obtain the optimum of the objec-
tive function. The choice of the optimization method and the strategy depends 
mainly on the properties and number of the variables, the objective functions and 
constrains and how these are used in the optimization. Specific criteria for optimi-
zation problems are: the number of variables (often a huge number of them); char-

the external conditions for choosing an optimization method rely on the required 
accuracy (improvement or exact optimum); efficiency of the algorithm; computing 
time and memory space; user friendliness and complexity of the problem formula-
tion. 

In order to further develop the optimization systems it is required to add new 
concepts into the previous paradigms. A new kind of parameterization is inferred 
by taking the characteristics of last optimization methods. In order to obtain a sim-
ilar behavior within a CAD model, the geometry of the product is described in 
terms of Splines.  The “splining” approach extends these features, allowing the in-
troduction of innovative concepts. 

1.4. Design optimization of splines shapes 

A great variety of different engineering designs have been successfully optimized 
using Evolutionary Design, i.e. antennas and aircraft geometries. Although the 
methods used by developers of such systems varies, one of these types of evolu-
tionary design that has potential to be classified as generative or creative is the 
splined shape approach [5]. The splining of the shapes and its control points, codi-
fied to be interpreted by Genetic Algorithms, are the basis for an evolutionary de-
signed shape. Practitioners of evolutionary optimization using splines usually start 
the process with an existing design, and then parameterize the control points of the 
splines that embody those parts of the design they feel need improvement. More-
over, the concept can be extended to reach the whole structure of the product and 

acteristics of the objective function (continuous, discontinuous, linear/quadratic/
arbitrary, etc.); characteristics of restrictions (none, several, etc). Moreover, 
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even the functional structure. The control points are encoded as genes, the alleles 
(values) from which parameters are described, are evolved by an evolutionary 
search algorithm, i.e. Genetic Algorithms. Three main genetic operators act on the 
“genes” of the geometry, as known: selection, crossover and mutation. Crossover 
allows the geometrical characteristics of selected splines (compared from a fitness 
function) be merged in pairs and extend its properties to next generations. The de-
signs are often judged by making an interface of the system to simulation or 
analysis software, which is used to obtain a fitness measure for each design.  

2. Evolutionary Design transition to Computer Aided Innovation 

In the previous section a brief explanation of the methods and tools that conducted 
our research work to the development of our framework on Computer Aided In-
novation was presented. Starting from the Evolutionary Design approach, and par-
ticularly on Genetic Algorithms, the concept of splining applied to the structural 
optimization of products was explained. The last element to be considered is the 
analysis of conflicts during optimization that prevent a design to reach the Ideal 
Solution 

2.1. Multi-objective Optimization and conflicts in product 
development 

Genetic Algorithms, are well suited to searching intractably large, poorly under-
stood problem spaces, but have mostly been used to optimize a single objective. 
They all describe a scalar value to be maximized or minimized. But a careful look 
at many, if not most, of the real-world GA applications reveals that the objective 
functions are really multi-attribute. Many optimization problems have multiple ob-
jectives. Historically, multiple objectives have been combined ad hoc to form a 
scalar objective function, usually through a linear combination (weighted sum) of 
the multiple attributes, or by turning objectives into constraints.  Typically, the 
GA user finds some ad-hoc function of the multiple attributes to yield a scalar fit-
ness function. Often-seen tools for combining multiple attributes are constraints, 
with associated thresholds and penalty functions, and weights for linear combina-
tions of attribute values. A few studies have tried a different approach to multi-
criteria optimization with GAS: using the GAs to find all possible trade-offs 
among the multiple, conflicting objectives. Some authors propose to perform a set 
of mono-objective optimization tasks to reveal conflicts [6]. These solutions 
(trade-offs) are non-dominated, in that there are no other solutions superior in all 
attributes. In attribute space, the set of non-dominated solutions lie on a surface 
known as the Pareto optimal frontier. The goal of a Pareto is to find and maintain 
a representative sampling of solutions on the Pareto front. Hence, the term “opti-
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mize” is referred to find a solution, which would give the values of all the objec-
tive functions an “acceptable trade off” to the designer [7]. Moreover, computer 
geneticists have faced the concept of the ideal [8]. They named it the ideal point. 
The Pareto diagram (used mainly in multi-objective optimization processes) 
shows a boundary that divides the region of feasible solutions from the point 
where the ideal solution lies. When there is a set of optimal solutions lying on a 
line that prevent the functions to reach the “ideal” at the same time, because of 
constraints in the solution space, it becomes an unrealistic goal to reach the ideal 
point. 

 

Ideal point Pareto front 

Alternative ideal 
Direction of solution 

f1(x*) f1(x) 

f2(x*) 

f2(x) 

 

Figure 1. Pareto diagram and the concept of ideal 

 
 
According to traditional TRIZ theory, the reach of an Ideal Final Result is en-

couraged and TRIZ presents tools for identifying technical and physical contradic-

conflict and let the product evolve, according to the “laws of technical evolution” 
[9]. It is a natural convergence direction to merge Evolutionary Design (based on 
laws of biological evolution) with TRIZ (based on laws of technical evolution) in-
side a computer framework aimed to Computer Aided Innovation. 

GAs can extend its paradigm of multi-objective optimization by taking advan-
tage of the inventive principles, letting the operators be not only the basic “muta-

tions underlying in a technological system. TRIZ general solutions (i.e. inventive/
separation principles, Standard Solutions, etc.) are proposed to overcome the 
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tion” and “crossover” but new operators or “agents” capable to modify the way 
the algorithms perform on the CAD geometry [10]. In this way, CAD systems 
could develop new configurations and alternative modifications to the geometry, 
in order to reach the ideal point or the “Ideal Final Result”.  The solution can 
reach a level of detail that derives in the possibility that the designer be inspired 
by these suggestions, selects the most suitable solution and implements it. In other 
words the designer could be presented a set of alternative modifications, defined 
automatically on the base of the selected principles that may be applied based on 
the concept of “Cataclysm Mutations” [11].  Cataclysmic mutations with similar 
pattern are now being studied in Evolutionary Algorithms as tools for finding in-
novations [12][13]. From the TRIZ inventive principles, those that have a geomet-

 

Table 1. Genetic interpretation of TRIZ inventive principles 

TRIZ principles Genetic Interpretation 
Segmentation, combination Divide two genotypes and combine al-

ternate parts (Crossover, simple) 
Asymmetry Break symmetrical genotypes (Cross-

over, simple) 
Merging Join genotypes (Crossover, simple) 
Nesting Place part of a genotype inside another 

(Crossover, nesting) 
Another dimension Create genotypes from different pa-

rameters (Crossover, nesting) 
Homogeneity Turn a genotype homogeneous (Cross-

over, nesting) 
Discarding and recovering Break and rebuild genotypes (Cross-

over, nesting) 
Inversion Turn around a genotype (Inversion, ge-

netic) 
Extraction Extract a gen in a genotype (Mutation) 
Feedback Return fittest genotypes (Selection) 
Copying Take a copy of fittest genotypes (Selec-

tion) 
 
The level of impact from the different operators can vary from a slow and 

steady accumulation of changes (the way an optimization algorithm normally per-
forms), to a sudden disturbance in the nature of the system (or cataclysm). The 
most important effect is creating a jump in the phase transition. More suggestions 
can be enriched by means of guidelines, provided by the inventive principles that 
can be associated to the genetic operators. As result, the algorithm should be ca-
pable of applying the agents according to the conflict that is being faced.  
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2.2. Follow up of crankshaft example 

In an attempt to exemplify the concepts deployed, the development of an engine 
crankshaft is conducted by making automatic changes in the geometry of its coun-
terweights. In order to make geometry modifications to our case study, the geome-
try of the counterweights was transformed from simple lines and arcs to spline 
curves. Splines allow smooth shape changes via the coordinates of its control 
points. That smooth shapes benefit the material fluency during the manufacturing 
process. The variation of these control points results in a balance response of the 
crankshaft. The x and y coordinates of the control points can be parametrically 
manipulated by the Genetic Algorithm. Figure 2 shows how the splines substitute 
the original profile of the crankshaft. It is possible to see how close the spline is to 
the original profile. 

 

  
Counterweight 1    Counterweight 8 

  
Counterweight 2    Counterweight 9 
 

Figure 2. Splinization  approach applied to a Crankshaft; the original profile consists of arc 
and line segments. 

 
The selected Genetic Algorithms that were applied are from the DAKOTA 

toolkit from Sandia Laboratories. It was developed an interface programmed in 
Java language to link the GAs to the CAD geometry. The optimization loop runs 
fully automated so the computer generates shapes in every generation. Some of 
the genetic operators are described next. 
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It was used an initial population size of 50 individuals, because the number of 
genes were 32 (8 in each of the 4 counterweights) and it allows a good representa-
tion of the chromosomes in every generation. A crossover rate of 0.8 was selected, 
that was a number of 40 individuals out of 50 to be crossed over and have a wide 
amount of new shapes. A mutation rate of 0.1 allowed exploring the solution 
space for local optima not possible to find by conventional methods. 

The results from the first attempts show that the imbalances from both sides of 
the crankshaft are in conflict each other. These conflicts are then aimed to be re-
solved by “innovation agents”. Further development of the algorithms  can only be 
achieved by its integration with Innovation methods. The resulting systems are of 
a parametric shape and topology innovative configuration. Some features need to 

to solutions that were not considered before. In order to have a visual impression 
about the way the algorithm is performing, some of the counterweights are pre-
sented in the figure.  
  

  

transparent to let visualize the others, 2 and 8)  

 
The shapes are presenting some notches that are not suitable for forging, but 

the direction of solution is cataclysmic. An open minded designer should be able 
to recognize that the paradigm is challenged and a new concept can be derived. 
This is the intention of these systems, as mentioned at the beginning of the paper, 
presenting to the designer challenging alternatives. Finally, these proposals are so-
lution triggers that inspire him, but they are not substituting its role in selecting the 
most suitable solutions and implement them properly. 
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Figure 3. Representations of the crankshaft’s counterweights (external ones, 1 and 9, are 
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that build the bases for developing a conceptual framework on Computer Aided 

shapes that resembled a creative behavior. Some of the genetic operators are ex-
plained as a background of the creative operators that are intended to be devel-
oped. A summary of some Design Optimization Systems is explained as also its 
use of spline profiles to optimize mechanical structures. The transition from a 
multi-objective optimization conflict to a solution with the aim of an ideal result is 
developed means the help of TRIZ. The innovative operators are analyzed to find 
relation with the genetic operators and turn into a “cataclysmic similar” set of new 
principles. Finally, an example of the development of an engine crankshaft is 
shown, with some preliminary results that may help to embody the complete 
framework of Computer Aided Innovation. Activities to be continued in the future 
are the definition of additional fitness functions not only in CAD but in CAE 
simulation (forging simulation), in order to control “strange” shapes. Also, objec-
tive functions and restrictions are going to be added by the use of forging simula-
tion and stress analysis during geometry variations, resulting on what is pretended 
to be an integration of different systems running totally or partially automatic. 

As a final reflection, it can be said that creativity and innovation can be struc-
tured to an objective methodology, and taken away from the individual’s sub-
conscience. Inventive principles suggest a series of recommendations to change 
the direction in which solutions are searched. These recommendations can be re-
garded as a knowledge database, which can be used to feed the cataclysmic symi-
lar transformation of genotypes during an evolution for optimization, allowing it 
to trespass the barriers of contradictions or constraints.  

Experience and judgment can make a good design. When evaluating a fitness 
function, the genetic algorithms rely only in the last of these two characteristics 
(judgment) based on evaluation and comparison against certain criteria. The first 
one (experience) can be added from the substantial knowledge of designers into 
the genetic algorithms by means of the incorporation of inventive principles as 
cataclysm genetic operators.  

The authors acknowledge the support received from Tecnológico de Monterrey 
through Grant No. CAT043 to carry out the research reported in this paper. 

3. Conclusions 

Innovation. The area of Evolutionary Design is presented and explained how 
the first activities in Genetic Algorithms helped to produce the first computer 

This paper started with a brief recap of the different methodologies and disciplines 
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