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Introduction

The White Rabbit put on his spectacles. “Where shall I begin,
please your Majesty?” he asked.
“Begin at the beginning,” the King said, very gravely, “and go
on till you come to the end: then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland

0.1 Motivation

The starting point of this thesis is dispersion compensation for ultra-short
laser pulses. Apart from continuous wave lasers that generate a beam of
light with nearly constant intensity and a very narrow bandwidth, there

are lasers that emit a train of short light pulses. Such light pulses have
a broad spectrum and concentrate large amounts of energy in very small

time intervals. For optical frequencies, the shortest achieved pulses are well
below 10 femtoseconds (1 fs = 10−15 s), corresponding to just a few optical

cycles. At a wavelength of 750 nm (near infrared), one optical cycle lasts
2.5 fs. Prominent applications of ultra-fast lasers are medical imaging [59],

the observation of molecular processes on a femtosecond timescale [67] and
the modification of materials with nanometer precision [35]. For an overview
of the physics of ultra-fast lasers see, e.g., [50].

One of the main problems for the generation of pulses in the femtosecond

regime is dispersion: In the air and the various optical components of a laser
the different spectral components of a light pulse travel at different speeds.

This leads to an unwanted spreading of the pulse. The problem gets worse for
shorter pulses because shorter pulses have a broader spectrum. Dispersion
thus needs to be compensated for.

A very precise control of dispersion is possible with a special kind of

mirrors. These mirrors consist of a stack of thin layers of typically two
dielectric (nonconducting) materials with different refractive indices, which

1
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SiO2

substrate
AR
coating

λ1

λ2

Figure 0.1: Structure of a dispersion compensating mirror (DCM). The DCM consists of a
substrate and alternating layers of two dielectric materials, for example SiO2 and TiO2. The
figure shows the structure of a chirped mirror : When the wavelength of an incoming wave is
about twice the optical length of two adjacent layers, the wave is strongly reflected. Thus,
short wavelengths (λ1) are reflected near the top of the layer stack, while long wavelengths
(λ2) penetrate deeper into the mirror. The antireflection coating suppresses interfering
reflections from the mirror surface. It also consists of alternating layers of SiO2 and TiO2,
but the internal structure is not shown. The physical thickness of the complete layer stack
is a few micrometers.

is deposited on some substrate, for example a plate of glass or SiO2, see

Figure 0.1. The stack of thin layers is called an optical interference coating.
Typical layer materials are SiO2 and TiO2 with refractive indices nSiO2

≈ 1.46

and nTiO2
≈ 2.4 for optical frequencies. When a light wave reaches the mirror,

at each layer boundary part of the wave is reflected and part of the wave is

transmitted. The challenging task is now to choose the number of layers and
their thicknesses in such a way that:

(a) The many reflections inside the mirror add up to give constructive inter-
ference so that the structure as a whole is highly reflective for a broad

range of frequencies.

(b) Frequencies that need to be delayed penetrate deeper into the mirror

than other frequencies before they are reflected.

Let us make the mirror design problem a little more precise. From a

mathematical point of view, a dielectric mirror constitutes a causal linear
time-invariant (LTI) system mapping an incoming plane wave uin(z) = eikx

with wavenumber k to the complex conjugate∗ of a reflected wave uref(x) =

R(k)eikx. The (complex-valued) frequency response of this LTI system is
R, and its complex conjugate R is called reflection coefficient. The modu-

∗The reflected wave is uref(x) = R(k)e−ikx. LTI systems map plane waves eikx to multiples of plane
waves, H(k)eikx. The mapping uin 7→ uref is therefore not an LTI system, but the mapping uin 7→ uref is.
Details are in Chapter 2.
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lus |R(k)| describes the amplitude of the reflected wave, and the argument

argR(k) describes the phase shift.
For the mirror design problem one then specifies a frequency interval or

a collection of frequency intervals, which we call I, and a desired complex-
valued reflection coefficient Rdesired on I. The specification is usually not

given with respect to the wavenumber k, but with respect to the angular
frequency ω = c0k. Here, c0 = 299792458 ms−1 is the speed of light in
vacuum. Depending of the purpose of the mirror, certain deviations from the

desired reflection coefficient are allowed. For example, if the mirror is used for
dispersion compensation inside the laser cavity, a reflectivity |R(ω)| ≥ 0.999

may be required over a broad frequency interval which contains the spectrum
of the generated pulse. On the other hand, if the mirror is used for external

pulse compression, higher losses may be tolerable. Moreover, in some cases
it may be desired to have a small frequency interval with high transparency

(e.g., |R(ω)| ≤ 0.05), which can be used for optical pumping. The desired
phase shift is usually given as a polynomial of the form

argR(ω) =

k∑

ν=0

1

ν!
Dν(ω − ω0)

ν.

with center frequency ω0 and dispersion coefficients Dν. Since the shape of

a pulse is invariant under a constant or linear phase shift (see Chapter 1),
there is some freedom in the choice of D0 and D1. In fact, for applications

one usually only specifies the group delay dispersion GDD(ω) = d2

dω2 argR(ω)
and requires that the GDD of the mirror does not oscillate too much around
the desired GDD.

There has been an enormous amount of research on the design of mirrors
with a desired reflection coefficient, for an overview see for example [24, 38,

60]. All design methods involve at some point the minimization of a merit
function which measures how well the reflection coefficient of the mirror

meets the design goal. A commonly used form of the merit function is as
follows [40]. Assume that the structure of a mirror is given by a function n
which describes the refractive index at different positions inside the mirror.

If the mirror is made of a stack of l layers of alternating refractive indices,
the space of feasible n can for example be parametrized by vectors d =

(d1, d2, . . . , dl) containing the layer thicknesses. Denote by Rn the reflection
coefficient of a mirror with the structure given by n. A general form of a
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merit function is then

F (n) =
N∑

j=1

wR(ωj)
∣∣|Rn(ωj)| − |Rdesired(ωj)|

∣∣pR

+

N∑

j=1

wGD(ωj)
∣∣GDn(ωj) −GDdesired(ωj)

∣∣pGD

+

N∑

j=1

wGDD(ωj)
∣∣GDDn(ωj) −GDDdesired(ωj)

∣∣pGDD.

(0.1)

Here, GDn(ω) = d
dω argRn(ω) is the group delay, the meaning of which is

explained in Chapter 1. Moreover, ω1, . . . , ωN are points in the frequency
range of interest I, wR, wGD and wGDD are weight functions, and pR, pGD
and pGDD are positive constants. Each of the three sums therefore has the
form of a discrete weighted p-norm taken to the p-th power. Other forms

of merit functions have been used, involving for example different angles of
incidence or sensitivity with respect to manufacturing inaccuracies [48], but

we shall not be concerned with this.
As a side note, the basic idea of optical interference coatings goes back

to the beginning of the 19th century [38]. The first useful manufacturing
processes were developed in the 1930s, and since then, interference coatings
have been used as optical filters (e.g., edge, bandpass, beam splitters) or

to reduce reflection. However, for these optical elements, the phase shift is
usually not important, so in the merit function one can set wGD = wGDD = 0.

Phase properties only became relevant with the introduction of dispersion
compensating mirrors in 1993 [52, 53].

The problem is now that numerical minimization of the merit function
F has turned out to be extremely hard. Typical dispersion compensating

mirrors consist of around 40 to 100 layers of alternating material, resulting
in an optimization problem in R40 to R100. This may seem small, but the
merit function F is nonconvex and highly nonlinear (both as a function of the

refractive profile n and the layer thicknesses d). Classical local optimization
schemes such as descent methods or the Nelder-Mead simplex method quickly

get stuck in local minima and are virtually useless without a decent starting
design.

There are various methods to find starting designs, some of which can for
example be found in the already cited books [24, 38, 60]. Unfortunately, none
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of the available methods is completely general, and not for every design goal

there is a method that works reliably. For example, for dispersion compen-
sating mirrors, there is exists theory which results in so-called double-chirped

mirrors [40], the structure of which is shown in Figure 0.1. However, the
available theory does not yield any information on how to design a dispersion

compensating mirror with an additional pump window. In this case, there
is no way around using optimization methods.

In order to avoid getting stuck in local minima, global search methods

such as simulated annealing [15] and genetic algorithms [39] have been pro-
posed. However, they have the disadvantage of being painstakingly slow

are not guaranteed to converge to a good solution [27]. The most effective
general optimization procedures (i.e., which can be used without a starting

design) are probably the ones based on a special method called the needle
optimization technique [24]. The needle optimization technique is the basis of

the commercial software OptiLayer [61], which has yielded some impressive
results [48, 62], but also becomes slow when the number of layers is large.

To make matters worse, the efficiency of the optimization methods even

depends on the proper choice of the merit function. For example, in a local
minimum of the merit function, the phase properties of the reflection coeffi-

cient may be close to the design goal, but the reflectivity may be too small
for practical use. In this case, one has to tweak the weight functions and

start another optimization run.

0.2 Goals

The aim of this thesis is not to provide yet another mirror design method
which might only work well in some special cases. Instead, we deal with a

more basic question:

What accuracy can be obtained in principle in the mirror design problem?

The benefit of an answer to this question is obvious. At the moment, it is not

quite clear when one is close to the global minimum of the merit function and
should stop optimization runs. Usually, a lot of trial and error is involved

during the design process, and even if one has obtained a decent solution,
one cannot be sure that there is not a better solution.
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In this thesis we develop a method to provide a rigorous bound on the

minimum of a certain merit function, which can give an indication that one is
close to an optimal solution. The properties of the reflection coefficient that

we use are actually quite general: The complex conjugate of the reflection
coefficient is the frequency response of a causal LTI system with no gain of

energy. Our method can therefore be applied to the frequency response of
any such causal LTI system with no (or limited) gain of energy.

0.3 Overview

The organization of this thesis is as follows. The first two chapters serve as
an introduction and make this thesis more self-contained. In Chapter 1 we
provide some physical background. We derive the Helmholtz equation

u′′(x) + k2n2(x)u(x) = 0 (0.2)

from Maxwell’s equations as a model for the propagation of light in layered
media such as interference coatings. Moreover, we illustrate the behavior

of pulses in dispersive media and explain terms like group delay (GD) and
group delay dispersion (GDD). In Chapter 2 we provide some mathematical
background. We introduce the Hardy spaces Hp(D) on the complex unit disk

and Hp(C+) on the complex upper half-plane. Hardy spaces are spaces of
analytic functions with restrictions on certain Lp-norms. Functions in Hp(D)

and Hp(C+) have boundary values on the unit circle ∂D and the real line R,
respectively, and therefore the spaces Hp(D) and Hp(C+) can be identified

with subspaces of Lp(∂D) and Lp(R), respectively. To us, the fundamental
importance of Hardy spaces lies in the fact that they are the right function
spaces for frequency responses of causal LTI systems.

In Chapter 3 we rigorously define the reflection coefficient from the right
and from the left, R1 and R2, and the transmission coefficient T for the

Helmholtz equation and derive some of their properties. Since we are usually
only interested in the reflective properties from one side, we often simply

write R instead of R2. The properties of the reflection coefficient that are
most important to us in the following chapters are:

(a) Causality: The reflection coefficient lies in the Hardy space H∞(C+).

(b) Symmetry: R(k) = R(−k) for k ∈ R.
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(c) No gain of energy: |R(k)|2 + |T (k)|2 = 1 for k ∈ R. Especially, |R(k)| ≤
1 for k ∈ R.

Properties (b) and (c) are not new and can for example be found in [28], but
although property (a) is not unexpected, we are not aware of any proof in

the literature.
Instead of using such a complicated merit function as in (0.1), we decided

to use the mathematically more accessible Lp-distance, i.e., we consider the
optimization problem for the reflection coefficient

minimize ‖Rn −Rdesired‖Lp(I)

subject to n ∈ L∞
a,b(0, d),

(R-OPTp)

where 1 ≤ p ≤ ∞. Here, I is the frequency interval of interest, Rn is the
reflection coefficient corresponding to n, 0 < a < b, d > 0 and

L∞
a,b(0, d) =

{
f ∈ L∞(R) : f |R\[0,d] = 1, a ≤ f(x) ≤ b for a.a. x ∈ [0, d]

}
.

When a, b and d are chosen correctly, then refractive profiles n ∈ L∞
a,b(0, d)

are (in principle) physically realizable. We prove in Chapter 3 that (R-OPTp)
has a solution, but as we mentioned, in the general case there is no hope of
actually finding a minimizing n or at least finding the minimum of (R-OPTp).

Instead, in Chapters 4 and 5 we derive a bound of the minimum of
(R-OPTp). The idea is to do this by replacing the search space {Rn : n ∈
L∞
a,b(0, d)} by a larger (but not too large) search space with nicer properties.

Taking into account properties (a)–(c) of the reflection coefficient, it seems

reasonable to consider the problem

minimize ‖R −Rdesired‖Lp(I)

subject to R ∈ H∞(C+), |R| ≤ 1, R real symmetric.
(0.3)

However, instead of dealing with (0.3) directly, we consider the optimization

problem
minimize ‖f − ϕ‖Lp(K)

subject to f ∈ E,
|f | ≤ g on ∂D.

(OPTp)

Here, E is either H∞(D) or A(D) = H∞(D) ∩ C(∂D). In the first case we

denote the problem by (H-OPTp), and in the second case we denote it by
(A-OPTp). Further, K ⊂ ∂D is closed with positive measure, g ∈ C(∂D)



8 INTRODUCTION

with g > 0, and ϕ ∈ C(K) such that |ϕ| ≤ g on K. The reason for

considering (H-OPTp) instead of (0.3) is that the Hardy spaces Hp(D) and
Hp(C+) are isometric, but for computations it is more convenient to work

in Hp(D). Also, using the constraint |ϕ| ≤ g instead of |ϕ| ≤ 1 allows more
flexible modelling.

In Chapter 4 we study theoretical properties of (OPTp). We prove ex-
istence and uniqueness for (H-OPTp), and we show that the solution of

(H-OPTp) satisfies a remarkable extremal property. Moreover, we show that
the infimum of (A-OPTp) is equal to the minimum of (H-OPTp). This is im-
portant, because in our numerical computations we only work with smooth

functions. In Chapter 5 we solve (H-OPTp) numerically. We first devise a
general discretization scheme and show convergence of minimum and min-

imizer of the discrete problem to minimum and minimizer of (H-OPTp).
Next, we show how to cast the discretized problem into a form that can

be solved efficiently with modern numerical methods. We finish with some
numerical examples. Especially, we demonstrate that our results can yield

practically relevant information: We consider an example where even after
long optimization runs physicists have not been able to find a refractive pro-
file that meets a certain design goal. We will see that the “virtual” reflection

coefficient that is obtained via solution of (OPTp) just barely satisfies the
requirements. However, because our search space is larger than the space of

realizable reflection coefficients, this is a strong sign that it is not possible
at all to find a refractive profile with the desired properties.
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Chapter 1

Physical Background

Those who like their mathematics self-contained and are not
inspired by its relation to the physical world may proceed at
once to the next chapter.

Nicholas Young, An Introduction to Hilbert Space

In this chapter we provide some physical background for this thesis. First,
we derive the (one-dimensional) Helmholtz equation as a model for the prop-

agation of electromagnetic waves in layered media. Moreover, we introduce
the notion of a pulse. When a pulse travels through a linear and dispersive

medium, its different spectral components travel at different speeds. This
leads to a spreading of the pulse. We illustrate this effect using the example
of a Gaussian pulse.

1.1 The Helmholtz equation

The evolution of electromagnetic fields in matter is governed by a set of
complicated partial differential equations called Maxwell’s equations [9],

∇× E = − ∂

∂t
B,

∇× H = J +
∂

∂t
D,

∇ · D = ̺,

∇ · B = 0.

E and H are called the electric field and the magnetic field, respectively. D

is the electric displacement, and B is the magnetic induction. Furthermore,
J is the electric current density, and ρ is the electric charge density. All

11
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quantities depend on position x = (x, y, z) ∈ R3 and time t ∈ R. Quantities

that are typeset in bold letters are vector-valued (R3), otherwise they are
scalar-valued.

Additionally, some of the fields are related via constitutive laws (or mate-
rial equations), which describe the reaction of the matter that occupies the

domain where the electromagnetic fields live. These relations are more easily
described in the frequency domain. We therefore assume that the fields are
time-harmonic, i.e., that they have the form

E(x, t) = Re(e−iωtE(x)), H(x, t) = Re(e−iωtH(x)),

D(x, t) = Re(e−iωtD(x)), B(x, t) = Re(e−iωtB(x)),

J (x, t) = Re(e−iωtJ(x)), ̺(x, t) = Re(e−iωtρ(x))

(1.1)

for some fixed real ω. It is also common to simply write E(x, t) = e−iωtE(x)
and so on. Then it is silently understood that in order to obtain the actual

fields one has to take the real part. With (1.1) Maxwell’s equations simplify
to

∇× E = iωB,

∇× H = J − iωD,

∇ · D = ρ,

∇ ·B = 0.

If the field strengths are not too large, the reaction of a material to the field

is linear. Moreover, we are only going to work with isotropic materials. We
then have the material equations

D = ǫE,

B = µH.

The function ǫ = ǫ(x, ω) is called (electric) permittivity, and µ = µ(x, ω) is

called (magnetic) permeability. In this thesis, we only consider nonmagnetic
materials, in which case µ ≡ µ0 ≈ 1.2566 × 10−6 Hm−1, the permeability of

free space. Further, J and E are related via

J = σE,

where σ = σ(x, ω) is the conductivity. We are only going to deal with
nonconducting materials, so we can set σ ≡ 0. Finally, there are no external
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incident
wave

homogeneous medium 1,
ǫ constant
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ǫ constant
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ǫ = ǫ(x)

y
z

x

Figure 1.1: Layered medium.

charges involved in our setup, i.e., ρ ≡ 0. Under all these assumptions on
the materials, we end up with

∇× E = iωµ0H, (1.2)

∇× H = −iωǫE, (1.3)

∇ · ǫE = 0, (1.4)

∇ · H = 0. (1.5)

In the case of a layered medium like a dielectric mirror, the above equa-
tions can be simplified further. Let us assume that the medium is homo-

geneous in the y- and z-direction so that if ω is fixed, the permittivity ǫ
depends only on x, see Figure 1.1. For simplicity, we assume that the inci-
dent electromagnetic field propagates in x-direction and is linearly polarized

with the electric field pointing in y-direction and the magnetic field pointing
in z-direction, i.e.,

E(x) = E(x)ey, (1.6)

H(x) = H(x)ez. (1.7)
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One immediately checks that (1.4) and (1.5) are then automatically fulfilled.

Moreover, it follows readily that ∇× E = E ′(x)ez and ∇× H = −H ′(x)ey
such that (1.2) and (1.3) yield

E ′(x) = iωµ0H(x), (1.8)

H ′(x) = iωǫ(x)E(x). (1.9)

Using (1.9) in (1.8), we arrive at

E ′′(x) + ω2µ0ǫ(x)E(x) = 0. (1.10)

We finally rearrange this equation into a more common form. Let n(x) =√
ǫ(x)/ǫ0 be the refractive index of the material at position x. Here, ǫ0 ≈

8.8542 × 10−12 Fm−1 is the permittivity of free space. With c0 = 1/
√
µ0ǫ0,

the speed of light in vacuum, and k = ω/c0, (1.10) transforms into

E ′′(x) + k2n2(x)E(x) = 0, (1.11)

the one-dimensional Helmholtz equation. If we know the refractive profile n
of our layered medium and the angular frequency ω (or k) of the incident

wave as well as some initial conditions, we can then solve the above equation
for E and get original E- and H-fields via (1.8), (1.6) and (1.7), and (1.1).

Layered media like dielectric mirrors are not only used for perpendicularly
incident waves, but also at oblique angles of incidence. In this case one has to
decompose the incident fields into two components, the S-component and the

P-component, see Figure 1.2. The letters S and P come from the German
words senkrecht (perpendicular) and parallel. In the S-polarization case,

the E-field has only a y-component, i.e., it is perpendicular to the plane of
incidence, the xz-plane. In the P-polarization case, the E-field has only x-

and z-components, i.e., it is parallel to the plane of incidence. For both
polarizations one can reduce (1.2)–(1.5) to an equation which also has the

form of the Helmholtz equation. Thus, the mathematical model is the same.
For details see, e.g., [24].

1.2 Pulses

There does not seem to be a precise mathematical definition of a light pulse in
the literature. A pulse is generally taken to mean a function f such that both
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Figure 1.2: Direction of electric and magnetic field in the S-polarization case (left) and
P-polarization case (right).

f and its Fourier transform f̂ are localized in some sense. More concretely,

think of a pulse as a rapidly varying function like a plane wave eiω0x multiplied
by some slowly varying bell-shaped functionm. The rapidly varying function

is called the carrier wave, and m is called the envelope. If m is a Gaussian
function, m(x) = e−bx

2

for some b > 0, then f(x) = m(x)eiω0x = e−bx
2

eiω0x

is called a Gaussian pulse. The Fourier transform of a Gaussian pulse is a
Gaussian function,

f̂(ω) =

∫

R

f(x)e−iωx dx =
(π
b

)1/2

e−
1
4b (ω−ω0)

2

,

so f̂ is again localized. Notice that the shorter the Gaussian pulse is, i.e., the

larger b is, the wider its Fourier transform becomes. This is the consequence
of a more general principle, the uncertainty principle [10, 23]. For a non-zero

function f ∈ L2(R) denote by

µf =
1

‖f‖2
L2(R)

∫

R

x|f(x)|2 dx
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the center and by

σf =

(
1

‖f‖2
L2(R)

∫

R

(x− µf)
2|f(x)|2 dx

)1/2

the root mean square (RMS) width (supposing that the integrals exist).

Theorem 1.1 (Heisenberg’s inequality). Supposing that the above integrals
exist, it must hold true that

σfσf̂ ≥
1

2
.

Equality holds true if and only if f is a shifted and scaled version of a Gaus-

sian pulse, i.e., f(x) = ae−b(x−c)
2

eiω0x for some a ∈ C \ {0}, b > 0 and c,
ω0 ∈ R.

So the shorter a pulse is in the time (or space) domain, the wider it must

be in the frequency domain, and the more narrow it is in the frequency
domain, the longer it must be in the time (or space) domain.

1.3 Dispersion

The speed at which a plane wave propagates in a homogeneous medium de-
pends on the refractive index. Suppose the space is filled with some medium
with refractive index n0. The general solution of the Helmholtz equation

(1.11) is then E(x) = αeikn0x + βe−ikn0x, and for the electric field we have
E(x, t) = E(x)e−iωtey. Let us just look at

ψ(x, t) = E(x)e−iωt = αei(kn0x−ωt) + βei(−kn0x−ωt).

The phase of the first term is constant if kn0x = ωt, i.e., x = ω
kn0
t = c0

n0
t.

So the first term is a plane wave travelling to the right with speed c0/n0.
Similarly, the second term is a plane wave travelling to the left with speed

c0/n0. Since the refractive index of a material depends on the frequency ω,
plane waves of different frequencies propagate at different speeds. This effect
is called dispersion.

We illustrate the effect of dispersion using the example of a Gaussian
pulse that propagates through some medium. We start out with a pulse of

the form
f(x) = e−bx

2

eiω0x. (1.12)
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The pulse can also be written as the superposition of plane waves,

f(x) =

∫

R

1

2π
f̂(ω)eiωx dω.

After the pulse has travelled for some time t0, each plane wave eiωx has
experienced a phase shift φ, the size of which depends on the frequency ω.

The pulse then has the form

ft0(x) =

∫

R

1

2π
f̂(ω)eiωxe−iφ(ω) dω.

Since f̂ is localized about ω0, one usually assumes that φ has a Taylor ex-
pansion around ω0,

φ(ω) =
∞∑

ν=0

1

ν!
φ(ν)(ω0)(ω − ω0)

j. (1.13)

The numbers φ(ν)(ω0) are abbreviated by Dν and are called dispersion coef-
ficients. The broader the pulse is, the stronger it is localized about ω0, and

therefore the earlier we can truncate the above Taylor series and still get a
good approximation of ft0.

Let us assume that the pulse is not too short so that a linear approxi-

mation suffices, i.e., φ(ω) = D0 + D1(ω − ω0) with some D0, D1 ∈ R. A
straightforward calculation then shows that

ft0(x) = ei(ω0(x−D1)−D0)e−b(x−D1)
2

= e−iD0f(x−D1).

This means that the envelope of the pulse has been shifted by D1. Because
φ′(ω0) = D1, the function φ′ is called group delay. The term e−iD0 merely

shifts the carrier wave under the envelope.

If the pulse is relatively short, then f̂ is only weakly localized about ω0

and one needs a higher order approximation of φ. Let us illustrate the

effect of D2 = φ′′(ω0). The function φ′′ is called group delay dispersion
(GDD). Because we already know the effect of D0 and D1, we assume φ(ω) =
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Figure 1.3: GDD causes spreading of the pulse and creates a chirp: Higher frequencies are
found on the right hand side of the pulse, and lower frequencies are found on the left hand
side of the pulse. The parameters were ω0 = 1, b = 0.03 and D2 = 25.

D2(ω − ω0)
2. After the phase shift the pulse (1.12) has the form

ft0(x) =

∫

R

1

2π
f̂(ω)eiωxe−iφ(ω) dω

=

∫

R

1

2(bπ)1/2
e−

1
4b (ω−ω0)

2

eiωxe−iD
2(ω−ω0)

2

dω

=
1√

4D2bi+ 1
exp

(−bx2 − 4D2bω0x+ iω0x

4D2bi+ 1

)

=
1√

4D2bi+ 1
exp

( −bx2

1 + 16D2
2b

2

)
exp

(
iω0x + i

4b2D2

1 + 16D2
2b

2
x2

)
.

(1.14)

The first exponential factor shows that a nonzero GDD causes a spreading of
the pulse, see Figure 1.3. The pulse becomes twice as wide if 1+16D2

2b
2 = 4,

or |D2| =
√

3
4b

. So the shorter a pulse is (i.e., the larger b is), the more sensitive

it is to GDD. Moreover, the quadratic term in the second factor shows that
there is a frequency chirp: The instantaneous frequency ωinst of a pulse f is

defined by ωinst(x) = d
dx arg f(x). For the above pulse ft0 from (1.14) we have

ωinst(x) = ω0 +
8b2D2

1 + 16D2
2b

2
x,

that is, the instantaneous frequency varies linearly in x.

The shorter a pulse is, the later we may truncate the series in (1.13).
The higher order derivatives of φ are called third order dispersion (for φ(3)),
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fourth order dispersion (for φ(4)), and so on. The influence of Dν = φ(ν)(ω0)

is just not as easily described for ν ≥ 3. For the generation of pulses in the
femtosecond regime, it is not uncommon that the phase shift that has to be

compensated for is given as a sixth order polynomial [40], i.e., the dispersion
coefficients up to D6 are taken into account.





Chapter 2

Hardy Spaces, LTI Systems and the
Paley-Wiener Theorem

There seems to be no part of (so-called pure) mathematics that
is not in immediate danger of being applied.

Michiel Hazewinkel, preface to
Complex analytic sets by E. M. Chirka

In this chapter we provide some mathematical background. In the first sec-

tion we introduce the Hardy spaces Hp(D) on the complex unit disk and
Hp(C+) on the complex upper half-plane. Hardy spaces are spaces of an-

alytic functions with certain Lp-norm restrictions. These spaces are well-
known and are used in some areas of both pure and applied mathematics.

Nevertheless, in order to make this thesis more self-contained and for later
reference, we state the definitions of Hardy spaces and some of their very ba-
sic properties. To the interested reader we warmly recommend the excellent

introductory book by Hoffman [32]. An even more basic introduction to
only Hp(D) (but with applications in the spirit of Chapters 4 and 5 of this

thesis) can be found in the book by Young [66]. A more complete account
of Hardy spaces is for example given by Garnett [25].

Hardy spaces are so fundamental for this thesis because they occur in
the context of causal linear time-invariant (LTI) systems, which we briefly

introduce in the second section of this chapter. Causal LTI systems are
characterized by their frequency response H, which has the property that
supp Ĥ◦ ⊂ [0,∞), where H◦(ω) = H(−ω). The relationship to Hardy spaces

is due to the Paley-Wiener Theorem, which gives (in its classical version) the
identification

H2(C+) = {f ∈ L2(R) : supp f̂ ⊂ [0,∞)}.

21
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Such an identification still holds true for Hp(C+) with p 6= 2, which is not

surprising, but we do not know of any reference where this is explicitly stated
and proved. We fill this gap in the last section of this chapter.

2.1 Hardy spaces

There are basically two classical kinds of Hardy spaces, those on the complex
unit disk D = {z ∈ C : |z| < 1}, and those on the complex upper half-plane
C+ = {z ∈ C+ : Im z > 0}. Both kinds of spaces are important for us: We

will see in Chapter 3 that the reflection coefficient for the Helmholtz equation
lies in the Hardy space H∞(C+). However, for computations it is easier to

work in Hp(D). In Chapters 4 and 5 we will therefore use the latter spaces.

2.1.1 Hardy spaces on the disk: Hp(D)

Hardy spaces on the unit disk D = {z ∈ C : |z| < 1} are defined as follows.

Definition 2.1. Let 1 ≤ p ≤ ∞. The Hardy space Hp(D) is

Hp(D) =

{
f : D → C : f is analytic on D, sup

0≤r<1
‖fr‖Lp(−π,π) <∞

}
,

where fr(ϑ) = f(reiϑ).

Although by the above definition functions from Hp(D) a priori live only

on the open unit disk D, one can identify Hp(D) with a subspace of Lp(∂D).
A function from Lp(∂D) gives rise to a function on the unit disk as follows.

Definition 2.2. Let 0 < r < 1. The function

Pr(ϑ) =
1 − r2

1 − 2r cosϑ+ r2

is called Poisson kernel for the disk.

Poisson’s kernel is an approximate identity, i.e., it holds true that

(a) Pr(ϑ) ≥ 0.

(b) 1
2π

∫ π
−π Pr(ϑ) dϑ = 1 for 0 ≤ r < 1.

(c) If 0 < δ < π, then limrր1 supϑ∈[−π,π]\[−δ,δ] |Pr(ϑ)| = 0.
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The next theorem states that by convolving a function from Lp(∂D) with the

Poisson kernel, one obtains a function that is harmonic on the disk D. In
the following, it is convenient to identify Lp(∂D) with Lp(−π, π). Especially,

if ϑ ∈ [−π, π] and f ∈ Lp(∂D), then we also write f(ϑ) instead of f(eiϑ).

Theorem 2.3. Let 1 ≤ p ≤ ∞ and let F ∈ Lp(∂D). Define f on the disk by

f(reiϑ) =
1

2π

∫ π

−π
F (t)Pr(ϑ− t) dt.

Then f is harmonic on D, and we have the following behavior towards the
boundary.

(a) fr → F a.e. as r ր 1. Here again, fr(ϑ) = f(reiϑ).

(b) fr ∈ Lp(−π, π) for every 0 ≤ r < 1, and sup0≤r<1 ‖fr‖Lp(−π,π) < ∞. In

fact, ‖fr‖Lp(−π,π) is a increasing function in r, that is, r1 < r2 implies
‖fr1‖Lp(−π,π) ≤ ‖fr2‖Lp(−π,π).

(c) If 1 ≤ p < ∞, then fr → F in Lp(−π, π) as r ր 1. If p = ∞, then
fr

∗
⇀ F in L∞(−π, π) as r ր 1. If F ∈ C(∂D), then fr → F uniformly

as r ր 1.

We also say that f has boundary values F on the circle. The function f

is called the Poisson integral of F . Notice again carefully that the theorem
only states that f is harmonic on the disk. In order for f to be in a Hardy

space, it must be analytic on the disk. The following theorem states that
functions from Hp(D) have boundary values in Lp(∂D), and that the Poisson
integral of the boundary values is the original function from Hp(D).

Theorem 2.4. Let 1 ≤ p ≤ ∞ and f ∈ Hp(D).

(a) f has boundary values on the circle, i.e., the functions fr(ϑ) = f(eiϑ)
converge a.e. to some function F on the circle.

(b) The function F lies in Lp(∂D), and f is the Poisson integral of its
boundary values, i.e., we have the representation

f(reiϑ) =
1

2π

∫ π

−π
F (t)Pr(ϑ− t) dt.
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(c) Hp(C+) is a Banach space with norm

‖f‖Hp(D) = sup
0<r<1

‖fr‖Lp(−π,π) = ‖f‖Lp(∂D).

Thus, Hp(D) can be identified with the subspace of Lp(∂D) whose Poisson
integrals are not only harmonic, but even analytic on the disk. Notice that

we already used the identification of functions in Hp(D) with their boundary
values in the last part of the theorem, where we wrote ‖f‖Lp(∂D) instead of

‖F‖Lp(∂D).
There is a slightly more concrete characterization of Hp(D) as a subspace

of Lp(∂D).

Theorem 2.5. The characterization

Hp(D) =
{
f ∈ Lp(∂D) : f̂k = 0 for integers k < 0

}

holds true. Here, f̂k =
∫ π
−π f(ϑ)e−ikϑ dϑ, k ∈ Z, are the Fourier coefficients

of f .

This characterization is fairly suggestive. A function f that is analytic on

the unit disk can be written as a power series f(z) =
∑∞

k=0 akz
k. Assume

that f is analytic on the closed disk. Then the series also converges on ∂D,

i.e., f(eiϑ) =
∑∞

k=0 ake
ikϑ for eiϑ ∈ ∂D. The Fourier coefficients of f as a

function on ∂D are just f̂k = ak for integers k ≥ 0 and f̂k = 0 for integers
k < 0. This makes the inclusion “⊂” in the above theorem plausible. On

the other hand, take a function f ∈ Lp(∂D) with f̂k = 0 for integers k < 0.
Then the sequence (f̂k)k∈Z of Fourier coefficients of f is bounded, whence∑∞

k=0 f̂kz
k converges uniformly on compact subsets of D and is therefore

analytic on D. Indeed, the function thus defined on the disk is equal to the

Poisson integral of f . Of course, the whole story is more involved, and the
proof of Theorem 2.5 is not easy, especially for the case p = 1. The interested
reader will find a detailed presentation in [32, Chapters 1–4].

Functions in a Hardy space are uniquely determined by their values on a
set of positive measure [25, Chapter II, Corollary 4.2].

Theorem 2.6. If f ∈ Hp(D), 1 ≤ p ≤ ∞, and f = 0 on a set K ⊂ ∂D of
positive (Lebesgue) measure, then f ≡ 0.

Finally, by A(D) = H∞(D) ∩ C(∂D) we denote the space of functions in
H∞(D) with continuous boundary values. A(D) is called the disk algebra.
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2.1.2 Hardy spaces on the half-plane: Hp(C+)

The second kind of Hardy spaces that we need are those on the complex
upper half-plane C+ = {z ∈ C+ : Im z > 0}.

Definition 2.7. Let 1 ≤ p ≤ ∞. The Hardy space Hp(C+) is

Hp(C+) =

{
f : C

+ → C : f is analytic on C
+, sup

y>0
‖f(· + iy)‖Lp(R) <∞

}
.

The theory for Hp(C+) is very similar to the theory for Hp(D). Functions
defined on R (= ∂C+) give rise to functions on C+ via convolution with
Poisson’s kernel for the upper half-plane.

Definition 2.8. Let y > 0. The function

Py(t) =
y

t2 + y2
, t ∈ R,

is called Poisson kernel for the upper half-plane.

The following two theorems are the analogon to Theorem 2.3.

Theorem 2.9. Let F : R → C be integrable with respect to the measure
1

1+t2 dt. Define f on the complex upper half-plane by

f(x+ iy) =
1

π

∫

R

F (t)Py(x− t) dt, x ∈ R, y > 0. (2.1)

Then f is harmonic on C+, and f(· + iy) → F a.e. as y ց 0.

Just like in the case of the disk we say that f has boundary values F on

the real line, and that f is the Poisson integral of F . Again, the theorem
only states that f is harmonic on C+, not analytic. Notice that the theorem

is especially true for F ∈ Lp(R), 1 ≤ p ≤ ∞. If F ∈ Lp(R), a stronger result
holds true.

Theorem 2.10. Let 1 ≤ p ≤ ∞ and let F ∈ Lp(R). Define f on C+ as in

(2.1).

(a) For each y > 0, the function fy(x) = f(x+ iy) is in Lp(R). The Lp(R)-

norms of fy are bounded for y > 0. In fact, ‖fy‖Lp(R) is a decreasing
function of y for y > 0.
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(b) If 1 ≤ p <∞, then fy → F in Lp(R) as y ց 0. If p = ∞, then fy
∗
⇀ F

in L∞(R) as y ց 0. If F ∈ C(R), then fy → F uniformly as y ց 0.

The following theorem is the analogon to Theorem 2.4. It states that
functions from Hp(C+) have boundary values in Lp(R), and that functions
from Hp(C+) are the Poisson integral of their boundary values.

Theorem 2.11. Let 1 ≤ p ≤ ∞ and f ∈ Hp(C+).

(a) f has boundary values on the real line, i.e., the functions f(· + iy)
converge a.e. to some function F on the real line as y ց 0.

(b) The function F lies in Lp(R), and f is the Poisson integral of its bound-

ary values, i.e., we have the representation

f(x+ iy) =
1

π

∫

R

F (t)Py(x− t) dt, x ∈ R, y > 0.

(c) Hp(C+) is a Banach space with norm

‖f‖Hp(C+) = sup
y>0

‖f(· + iy)‖Lp(R) = ‖f‖Lp(R).

Like in the case of the disk, Hp(C+) is identified with the subspace of

Lp(R) whose Poisson integrals are analytic, and we already used the iden-
tification in part (c) of the theorem, where we wrote ‖f‖Lp(R) instead of

‖F‖Lp(R).
The relation between Hp(D) and Hp(C+) is as follows. The Möbius

transformation w 7→ iw+1
−iw+1 maps C+ conformally to D. Given a function

f ∈ Hp(D), the function g : w 7→ f
(
iw+1
−iw+1

)
is analytic on C+. However, it

may not be true that supy>0 ‖g(· + iy)‖Lp(R) < ∞. In order for g to be in

a Hardy space, an additional decay factor is needed. In fact, we have the
following theorem.

Theorem 2.12. The mapping
{
Tp : Hp(D) −→ Hp(C+)

g 7−→ f, f(w) = 2−1/p(i+ w)−2/pg
(
iw+1
−iw+1

)
.

is an isomorphism. If the norm on Hp(D) is normalized to ‖f‖pHp(D) =∫ π
−π |f(eiϑ)|p dϑ (i.e., the integral is not taken with respect to normalized

Lebesgue measure), then the mapping is even an isometry.
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For us, the importance of the theorem is due to the fact that the Hardy

spaces Hp(C+) occur in our applications. However, it is much easier to do
computations in Hp(D). The isometry can therefore be used to transport

functions from Hp(C+) to Hp(D) and back.
There is a characterization of H2(C+) as a subspace of L2(R) similar to

that of Theorem 2.5. We use the Fourier transform in the version

f̂(t) =

∫

R

f(x)e−itx dx,

so that the inverse Fourier transform is given by

f̃(t) =
1

2π

∫

R

f(x)eitx dx.

Theorem 2.13 (Paley-Wiener). We have the characterization

H2(C+) =
{
f ∈ L2(R) : supp f̂ ⊂ [0,∞)

}
.

The Paley-Wiener theorem is a classical result [25, 32, 36], which has been
generalized in numerous ways [7, 12, 46]. However, we are not aware of any

reference where it is stated or proved in the above form for Hp(C+) and
Lp(R) with general 1 ≤ p ≤ ∞. We fill this gap in the last section of this

chapter.

2.2 LTI systems

Causal LTI systems and the Paley-Wiener theorem are the reason why we

deal with Hardy spaces. By S ′(R) we denote the space of tempered distri-
butions over R. A formal definition of an LTI system is as follows [10].

Definition 2.14. Let X ⊂ S ′(R) be a translation invariant subspace, i.e.,
f ∈ X implies f(· − t) ∈ X for all t ∈ R. A linear time-invariant (LTI)

system is a mapping L : X ⊂ S ′(R) → S ′(R) that is linear, continuous and
time-invariant, i.e., L(f(· − t)) = (Lf)(· − t) for all t ∈ R.

The system is called causal if for all t0 ∈ R it holds that f(t) = 0 for
t < t0 implies Lf(t) = 0 for t < t0.

It is not hard to see that if eiω· ∈ X, then L(eiω·) = H(ω)eiω· for some
H(ω) ∈ C. The function H is called frequency response. Moreover, if δ0 ∈ X
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(Dirac impulse), then h = Lδ0 is called impulse response, and one can show

that
Lf = h ∗ f, (2.2)

where ∗ denotes convolution. We then have H = ĥ, and the system (2.2)

is causal if and only if supph ⊂ [0,∞), or, equivalently, supp Ĥ◦ ⊂ [0,∞),

where H◦(t) = H(−t).
Examples of frequency responses of causal LTI systems that occur in the

context of electromagnetics are the following.

Example 2.15 (Permittivity). Assume that the material that occupies some
space is linear and isotropic. We stated in Chapter 1 that if the E-field is

time-harmonic, i.e., if it has the form

E(x, t) = e−iωtE(x),

then the D-field satisfies

D(x, t) = e−iωtǫ(x, ω)E(x).

Thus, if we fix some x ∈ R3 and write E(x, t) = E(t)u for some u ∈ R3 and
D(x, t) = D(t)u, then the mapping E 7→ D is an LTI system with frequency

response ǫ(x,−·). Because the electric displacement in a medium depends

only on the electric field in the past, the system is causal, i.e., supp ǫ̂(x, ·) ⊂
[0,∞).

Example 2.16 (Reflection coefficient). We consider a situation as described
in Chapter 1, where an electromagnetic field is incident perpendicularly on

a layered medium. We assume that the layered medium is surrounded by air
with refractive index n0 = 1. The incident field is a plane wave coming from

the left, i.e., E(x, t) = Ein(x)e
−iωt

ey with Ein(x) = eikx. The layered medium
gives rise to a reflected field E(x, t) = Eref(x)e

−iωt
ey with Eref(x) = R(k)e−ikx.

The number R(k) is called reflection coefficient (from the left). The reflected

field is also a plane wave, but it travels in the opposite direction.
Then the mapping L : Ein 7→ Eref is an LTI system which maps eik·

to R(k)eik·. Because the system should map a real incident field to a real
reflected field, its impulse response should only take values in R. Therefore,

R(k) = R(−k), i.e., the frequency response of L is R◦. Because the layered
structure cannot reflect a field before an incident field has arrived, the system

is causal, i.e., supp R̂ ⊂ [0,∞).
We make all these statements rigorous in Chapter 3.
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2.3 The Paley-Wiener Theorem

In this section we prove a generalized version of the Paley-Wiener Theorem.

Theorem 2.17 (Paley-Wiener). Let 1 ≤ p ≤ ∞. We have the characteriza-
tion

Hp(C+) =
{
f ∈ Lp(R) : supp f̂ ⊂ [0,∞)

}
.

The theorem follows directly from Propositions 2.19 and 2.20 below. We
begin with a lemma.

Lemma 2.18. H∞(C+) is (sequentially) weak*-closed in L∞(R).

Proof. Let (fn) ⊂ H∞(C+) with fn
∗
⇀ f for some f ∈ L∞(R), i.e.,

∫
R
(fn −

f)ϕ → 0 as n → ∞ for all ϕ ∈ L1(R). We need to show that f ∈ H∞(C+).

To this end we define a function F on the upper half-plane by

F (x+ iy) =
1

π

∫

R

f(t)
y

(x− t)2 + y2
dt

for real x and y > 0. By Theorem 2.10, F is bounded on C+ and has

boundary values f on the real line. In the following, we identify F with f ,
that is, we denote by f the original function in Lp(R) as well as the function

on the upper half-plane defined by the above integral formula. It remains to
show that f is analytic on C+.

We are going to show that fn converges to f uniformly on compact subsets
of C+. So let K ⊂ C+ be compact and fix an arbitrary ǫ > 0. We use

the abbreviation Px,y(t) = y
π((x−t)2+y2). Choose finitely many points zj =

xj + iyj ∈ K such that for every z = x + iy ∈ K there is a j with ‖Px,y −
Pxj ,yj

‖L1(R) <
ǫ

2 supn∈N ‖fn−f‖L∞(R)
. Notice that the supremum on the right hand

side is finite since weakly*-convergent series are bounded. Finally, choose
M > 0 so large that

∣∣∫
R
(fn − f)Pxj ,yj

∣∣ < ǫ
2 for all j and for all n > M . This

is possible since fn
∗
⇀ f .

Now let z = x + iy ∈ K be arbitrary. Pick some j such that ‖Px,y −
Pxj ,yj

‖L1(R) <
ǫ

2 supn∈N ‖fn−f‖L∞(R)
. We have the representation

fn(x+ iy) =
1

π

∫

R

fn(t)
y2

(x− t)2 + y2
dt
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by Theorem 2.11. It follows that for n > M

|f(x+ iy) − fn(x+ iy)| =

∣∣∣∣
∫

R

(f(t) − fn(t))Px,y(t) dt

∣∣∣∣

≤
∣∣∣∣
∫

R

(f(t) − fn(t))
(
Px,y(t) − Pxj ,yj

(t)
)

dt

∣∣∣∣

+

∣∣∣∣
∫

R

(f(t) − fn(t))Pxj ,yj
(t) dt

∣∣∣∣

≤ ‖fn − f‖L∞(R)‖Px,y − Pxj ,yj
‖L1(R) +

ǫ

2

≤ ǫ

2
+
ǫ

2
= ǫ.

Thus, fn converges uniformly to f on compact subsets of C+. Since the fn
are analytic, f is also analytic on C+.

To summarize, we have shown that f is bounded and analytic on the

upper half-plane. This means that f ∈ H∞(C+).

We can now prove one direction of a generalized Paley-Wiener theorem.

Proposition 2.19. Let 1 ≤ p ≤ ∞ and f ∈ Lp(R) with supp f̂ ⊂ [0,∞).
Then f ∈ Hp(C+).

Proof. We begin with the case p = 1. So let f ∈ L1(R) with supp f̂ ⊂ [0,∞).

Define a function F on C+ by

F (z) =
1

2π

∫

R

f̂(ξ)eizξ dξ.

We are going to show that F ∈ H1(C+) and that F has boundary values

f on the real line. Notice two things: First of all, the integral converges
since supp f̂ ⊂ [0,∞) and eizξ decays exponentially as ξ → ∞ for z ∈ C+.

Especially, we can differentiate under the integral sign, whence F is analytic
on C+. Second, on the real line the above formula is formally the well-

known Fourier inversion formula. Therefore, it seems reasonable that F has
boundary values f on the real line. Let us make this rigorous.

For y > 0 write Fy(x) = F (x+ iy). Then

Fy(x) =
1

2π

∫

R

f̂(ξ)H(ξ)e−yξeixξ dξ,
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where H is the Heaviside function. Denoting by g̃ the inverse Fourier trans-

form of a function g,

Fy(x) =
(
ξ 7→ f̂(ξ)H(ξ)e−yξ

)∼
(x) =

(
f ∗
(
ξ 7→ H(ξ)e−yξ

)∼)
(x)

=
1

2π

(
f ∗
(
t 7→ 1

y − it

))
(x) =

1

2π

∫

R

f(s)
1

y − i(x− s)
ds.

On the other hand, with the abbreviation Qy(t) = 1
y+it,

∫

R

f(s)
1

y + i(x− s)
ds = (f ∗Qy)(x) =

(
(f̂)∼ ∗ (Q̂y)

∼
)

(x)

=
(
f̂ Q̂y

)∼
(x) = 0,

since supp f̂ ⊂ [0,∞), while Q̂y(τ) = eyτH(−τ) is supported in (−∞, 0]. It

follows that

Fy(x) =
1

2π

∫

R

f(s)

(
1

y − i(x− s)
+

1

y + i(x− s)

)
ds

=
1

π

∫

R

f(s)
y

(x− s)2 + y2
ds.

This is a good thing. By Theorem 2.10 this implies that supy>0 ‖Fy‖L1(R) <
∞ and that F has boundary values f on the real line. Since F is also analytic

on C+, F ∈ H1(C+). Of course, we identify f with F , i.e., f ∈ H1(C+).
Now consider the case 1 < p ≤ ∞. Let f ∈ Lp(R) with supp f̂ ⊂ [0,∞).

We use approximation and reduce to the cases p = 1 or p = 2. Define

fn(z) = γn(z)f(z),

where

γn(z) = 1 −
( −iz
−iz + 1

)n
.

Since
∣∣1 −

( −iz
−iz+1

)n∣∣ =
∣∣∣ (−iz+1)n−(−iz)n

(−iz+1)n

∣∣∣ = O
(

1
|z|

)
as |z| → ∞, it follows that

γn is in Hp(C+) for every 1 < p ≤ ∞. For 1 < p < ∞, Hölder’s inequality

shows that fn ∈ L1(R):

‖fn‖L1(R) ≤ ‖γn‖Lq(R)‖f‖Lp(R) <∞,

where 1
p + 1

q = 1. For p = ∞ a similar estimate yields fn ∈ L2(R). A
direct calculation moreover shows that supp γ̂n ⊂ [0,∞). This implies that
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f̂n = 1
2π γ̂n ∗ f̂ is also supported in [0,∞). Hence, for p = ∞, fn ∈ H2(C+)

by the classical Paley-Wiener theorem, and for 1 < p <∞, fn ∈ H1(C+) by

what we have already shown. By Theorem 2.11, this implies especially that
in C+ we have the representation

fn(x+ iy) =
1

π

∫

R

fn(t)Py(x− t) dt,

where Py(x) = y
x2+y2 . By Theorem 2.10, the Lp-norms of fn along lines

parallel to R in the upper half-plane C+ are bounded, whence fn ∈ Hp(C+).

It is now easy to check that
∣∣ −iz
−iz+1

∣∣ < 1 for z ∈ C+, so that
∣∣ −iz
−iz+1

∣∣n → 0

pointwise for every fixed z ∈ C+ as n → ∞. Thus, for 1 < p < ∞, fn → f
in Lp(R) by dominated convergence. Since Hp(C+) is a closed subspace of

Lp(R), f ∈ Hp(C+). For p = ∞, we have for any ϕ ∈ L1(R)
∣∣∣∣
∫

R

(f − fn)(z)ϕ(z) dz

∣∣∣∣ =
∣∣∣∣
∫

R

( −iz
−iz + 1

)n
f(z)ϕ(z) dz

∣∣∣∣→ 0 (2.3)

as n → ∞ by dominated convergence. So fn
∗
⇀ f in L∞(R). Since H∞(C+)

is sequentially weak*-closed in L∞(R) by Lemma 2.18, f ∈ H∞(C+).

We now prove the converse of Proposition 2.19.

Proposition 2.20. Let 1 ≤ p ≤ ∞ and f ∈ Hp(C+). Then supp f̂ ⊂ [0,∞).

Proof. For 1 ≤ p ≤ 2, the theorem is well-known. A proof for f ∈ H1(C+)
and f ∈ H2(C+) can for example be found in [32, Chapter 8]. For the general
case, define as in the proof of Proposition 2.19

fn(z) = γn(z)f(z),

where

γn(z) = 1 −
( −iz
−iz + 1

)n
.

As before, Hölder’s inequality yields that fn ∈ H1(C+) for p < ∞ and
fn ∈ H2(C+) for p = ∞. As already mentioned, it is well-known that this

implies supp f̂n ⊂ [0,∞).
Now fix ϕ ∈ S(R), the Schwartz class. Like in (2.3) we get that

∫
R
fnϕ→∫

R
fϕ as n → ∞. This means that fn → f in S ′(R). Since the Fourier

transform is continuous as a map from S ′(R) to S ′(R) and since supp f̂n ⊂
[0,∞), it follows that also supp f̂ ⊂ [0,∞).



Chapter 3

Scattering Theory for the 1D
Helmholtz Equation

A typical example of an inverse problem is the following. Given
the following answer: The Answer to the Great Question of Life,
the Universe and Everything is forty-two, find the question.

from http://www-sop.inria.fr/apics/research.html

In this chapter we study the reflection coefficient and the transmission coef-
ficient for the one-dimensional Helmholtz equation

u′′(x) + k2n2(x)u(x) = 0, (3.1)

which we derived in Chapter 1 as a model for the propagation of electromag-

netic waves in layered media. We assume throughout this chapter that the
layered medium itself is non-dispersive, i.e., that n does not depend on k,

and non-absorbing, i.e., that n is real-valued. This approximation is sufficient
for our theoretical investigations, because the refractive index of materials

that are typically used for optical interference coatings varies only slightly
for optical frequencies. Even in the actual design process the frequency-
dependency of the refractive index of the coating materials is often neglected

until the final optimization step [40].

Throughout most of this chapter we model the situation of a layered

structure that is surrounded by air or vacuum, i.e., n(x) = 1 for x /∈ [0, d]
with some d > 0. Further, only a certain range of refractive indices can be

physically achieved. Therefore, we assume that n|[0,d] ∈ L∞
a,b(0, d) for some

0 < a < b, where

L∞
a,b(0, d) = {f ∈ L∞(0, d) : a ≤ f(x) ≤ b for almost all x ∈ [0, d]} .

33



34 CHAPTER 3. SCATTERING THEORY FOR THE 1D HELMHOLTZ EQUATION

We also write n ∈ L∞
a,b(0, d) when we mean n|[0,d] ∈ L∞

a,b(0, d) and n|R\[0,d] = 1.

We are only concerned with the direct scattering problem, i.e., for a given
refractive profile n, we study the properties of the corresponding reflection

coefficients from the right and from the left, R1 and R2, and the trans-
mission coefficient T . In Section 3.1 we define reflection and transmission

coefficient for the Helmholtz equation and prove some of their basic prop-
erties. In Section 3.2 we show that reflection and transmission coefficient
satisfy a continuity property with respect to the refractive profile. A conti-

nuity property is also used in Section 3.3 to prove Hardy space properties of
reflection and transmission coefficient. As another application of the results

from Section 3.2 we show in Section 3.4 that a certain optimization problem
for the reflection coefficient has a solution. We finish with some remarks on

what is known if the refractive profile n is smooth in Section 3.5.

3.1 The direct scattering problem

The material in this section is rather technical, but our approach in Sections

3.1.1–3.1.3 is quite standard. Analogous considerations for the Schrödinger
equation can for example be found in [18]. The main result of this section
is Theorem 3.5. Parts (a) and (b) of Theorem 3.5 are already in [28]. For

the sake of completeness and because the notation in [28] differs very much
from our notation, we prove those parts anyway. Concerning the rest of the

theorems and formulas in this section, we are not aware of any reference
where they are explicitly stated.

3.1.1 Jost solutions and an integral formulation

In order to define reflection and transmission coefficient for the Helmholtz

equation, we need to consider solutions of (3.1) that represent incident plane
waves. Let u1(x, k) be the solution of (3.1) with initial conditions

{
u1(d, k) = eikd,
u′1(d, k) = ikeikd,

(3.2)

and let u2(x, k) be the solution of (3.1) with initial conditions
{
u2(0, k) = 1,
u′2(0, k) = −ik. (3.3)
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u1 and u2 are called the Jost solutions of (3.1). Obviously, we have u1(x, k) =

eikx for x ≥ d and u2(x, k) = e−ikx for x ≤ 0. As usual, it is easier to obtain
properties of u1 and u2 by considering integral equations that are equivalent

to the above initial value problems. To this end, we define the Faddeev
functions

m1(x, k) = e−ikxu1(x, k),

m2(x, k) = eikxu2(x, k).

Obviously, we have m1(x, k) = 1, x ≥ d, and m2(x, k) = 1, x ≤ 0. One easily
checks that m1 solves





m′′
1(x, k) + 2ikm′

1(x, k) + k2(n2(x) − 1)m1(x, k) = 0,

m1(d, k) = 1,
m′

1(d, k) = 0,

while m2 solves





m′′
2(x, k) − 2ikm′

2(x, k) + k2(n2(x) − 1)m2(x, k) = 0,
m2(0, k) = 1,

m′
2(0, k) = 0.

The derivatives are of course taken with respect to x. Variation of constants
then leads to the equivalent integral equations

m1(x, k) = 1 +

∫ d

x

m1(t, k)
(
(1 − n2(t))Dk(t− x)

)
dt (3.4)

and

m2(x, k) = 1 +

∫ x

0

m2(t, k)
(
(1 − n2(t))Dk(x− t)

)
dt, (3.5)

where

Dk(y) = k
e2iky − 1

2i
.

3.1.2 Estimates for Jost solutions

The following lemma gives a bound on the solution of certain integral equa-
tions of Volterra type.
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Lemma 3.1. Consider the Volterra integral equation

u(x) = g(x) +

∫ x

0

K(x, t)u(t) dt, (3.6)

where g ∈ L∞
loc(R) and there is h ∈ L1

loc(R) such that |K(x, ·)| ≤ h for almost
all x ∈ R. This integral equation has a unique solution u, and for x ≥ 0 we

have the estimate

|u(x)| ≤
(

sup
t∈[0,x]

|g(t)|
)

exp

(∫ x

0

h(t) dt

)
.

Proof. Let Au(x) =
∫ x

0 K(x, t)u(t) dt, and let x0 > 0. Then A is a bounded
linear operator on L∞([0, x0]). It is not hard to show that for j ∈ N

Aju(x) =

∫

0≤x1≤...≤xj≤x
K(x2, x1) . . .K(xj, xj−1)K(x, xj)u(x1) dx1 . . . dxj,

and then

|Aju(x)| ≤
(

sup
t∈[0,x]

|u(t)|
)∫

0≤x1≤...≤xj≤x
h(x1) . . . h(xj) dx1 . . . dxj

=

(
sup
t∈[0,x]

|u(t)|
) (∫ x

0 h(t) dt
)j

j!
.

So there is j ∈ N with ‖Aj‖L(L∞([0,x0])) < 1. It follows that I−A is invertible
and (I−A)−1 =

∑∞
j=0A

j with convergence in L(L∞([0, x0])). In fact, this is
still true if we consider A as an operator on L∞([−x0, x0]). Applying this to

the integral equation (3.6) yields the unique solution

u(x) =
∞∑

j=0

(Ajg)(x), (3.7)

where convergence is locally uniform. Moreover,

|u(x)| ≤
(

sup
t∈[0,x]

|g(t)|
) ∞∑

j=0

(∫ x
0 h(t) dt

)j

j!
=

(
sup
t∈[0,x]

|g(t)|
)

exp

(∫ x

0

h(t) dt

)
.
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We can use Lemma 3.1 to obtain estimates for the solutions of (3.4) and

(3.5). By ṁj , j = 1, 2, we denote the derivative of mj with respect to k.

Theorem 3.2. Equations (3.4) and (3.5) for m1 and m2 are uniquely solv-

able for each k ∈ C. The solutions can be bounded as follows:

(a) For Im k ≥ 0 and x ≤ d

|m1(x, k)| ≤ exp

(
|k|
∫ d

x

|1 − n2(t)| dt
)
.

(b) For Im k ≥ 0 and x ≤ d

|ṁ1(x, k)| ≤
(

(d− x) +
|k|
2

(d− x)2

)(
sup
t∈[x,d]

|1 − n2(t)|
)

· exp

(
2|k|

∫ d

x

|1 − n2(t)| dt
)
.

(c) For Im k ≥ 0 and x ≥ 0

|m2(x, k)| ≤ exp

(
|k|
∫ x

0

|1 − n2(t)| dt
)
.

(d) For Im k ≥ 0 and x ≥ 0

|ṁ2(x, k)|

≤
(
x +

|k|
2
x2

)(
sup
t∈[0,x]

|1 − n2(t)|
)

exp

(
2|k|

∫ x

0

|1 − n2(t)| dt
)
.

Proof. We only prove the estimates for m2. Applying Lemma 3.1 to (3.5)
and using

|Dk(y)| ≤ |k| (3.8)

for Im k ≥ 0 and y ∈ R already yields (c).
To obtain the estimate for ṁ2 we are going to apply Lemma 3.1 to

ṁ2(x, k) =

∫ x

0

ṁ2(t, k)(1− n2(t))Dk(x− t) dt

+

∫ x

0

m2(t, k)(1 − n2(t))Ḋk(x− t) dt.

(3.9)
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The above equation follows from (3.5). First note that

|Ḋk(y)| =

∣∣∣∣
e2iky − 1

2i
+ kye2iky

∣∣∣∣ ≤ 1 + |k|y

for Im k ≥ 0 and y ≥ 0. Together with (c) we get for x ≥ 0
∣∣∣∣
∫ x

0

m2(t, k)(1− n2(t))Ḋk(x− t) dt

∣∣∣∣

≤
∫ x

0

exp

(
|k|
∫ t

0

|1 − n2(s)| ds
)
|1 − n2(t)| (1 + |k|(x− t)) dt

≤
(
x+

|k|
2
x2

)(
sup
t∈[0,x]

|1 − n2(t)|
)

exp

(
|k|
∫ x

0

|1 − n2(t)| dt
)
.

(3.10)

Now (d) follows by applying Lemma 3.1 to (3.9) and using (3.8) and (3.10).
The estimates for m1 can be obtained in the same way.

Remark 3.3. When one inspects the series (3.7) for m1 and m2, one sees
easily that it converges uniformly in k on compact subsets of C. Since the

partial sums themselves are analytic in C, m1(x, ·) and m2(x, ·) are analytic
in C.

Remark 3.4. One easily sees that since n is real-valued, the symmetry rela-
tions (or reality conditions) mj(x,−k) = mj(x, k) and uj(x,−k) = uj(x, k),

j = 1, 2, hold.

3.1.3 Reflection and transmission coefficient R and T

For k ∈ C \ {0} the Jost solutions u2(·, k) and u2(·,−k) are linearly inde-

pendent. This can be seen as follows: The Wronskian W [u2(x, k), u2(x,−k)]
does not depend on x since there appears no first derivative in (3.1) (compare
[65, §15.III and §19]). Since

W [u2(x, k), u2(x,−k)] = u2(x, k)u
′
2(x,−k)− u′2(x, k)u2(x,−k)

= u2(0, k)u
′
2(0,−k) − u′2(0, k)u2(0,−k)

= 2ik 6= 0,

u2(·, k) and u2(·,−k) are linearly independent. Similarly,

W [u1(x, k), u1(x,−k)] = −2ik 6= 0, (3.11)
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whence u1(·, k) and u1(·,−k) are linearly independent. It follows that there

are functions α(k), β(k), γ(k) and δ(k) such that

u2(x, k) = α(k)u1(x, k) + β(k)u1(x,−k), (3.12)

u1(x, k) = γ(k)u2(x, k) + δ(k)u2(x,−k) (3.13)

for k 6= 0. We then define

T1(k) =
1

β(k)
, R1(k) =

α(k)

β(k)
,

T2(k) =
1

δ(k)
, R2(k) =

γ(k)

δ(k)
.

The functions T1 and R1 are called transmission coefficient from the right and
reflection coefficient from the right, respectively, and T2 and R2 are called

transmission coefficient from the left and reflection coefficient from the left,
respectively. The reason for these definitions is as follows. After multiplying

(3.12) and (3.13) by T1(k) and T2(k), respectively, we obtain

T1(k)u2(x, k) = R1(k)u1(x, k) + u1(x,−k), (3.14)

T2(k)u1(x, k) = R2(k)u2(x, k) + u2(x,−k). (3.15)

Let us consider the second equation. Fix some k > 0. Then

u(x) = T2(k)u1(x, k) = R2(k)u2(x, k) + u2(x,−k)

solves the Helmholtz equation (3.1). For x ≤ 0 we have

u(x) = R2(k)u2(x, k) + u2(x,−k) = R2(k)e
−ikx + eikx,

so to the left of the layered medium u is a plane wave travelling to the right

plus a plane wave with complex amplitude R2(k) travelling to the left. For
x ≥ d we have

u(x) = T2(k)u1(x, k) = T2(k)e
ikx,

so to the right of the layered medium u is a plane wave with complex ampli-
tude T2(k) travelling to the right, see Figure 3.1. To sum up, an incoming

plane wave from the left, uin(x) = eikx, gives rise to a transmitted wave
utrans(x) = T2(x)e

ikx and a reflected wave travelling in the opposite direc-

tion, uref(x) = R2(k)e
−ikx. Similar considerations for the second equation

explain the definition of T1 and R1.
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xd

uin(x) = eikx

uref(x) = R2(k)e
−ikx utrans(x) = T2(k)e

ikx

Figure 3.1: When a plane wave uin(x) = eikx is incident on a layered structure, part of it
is reflected (uref(x) = R2(k)e

−ikx) and part of it is transmitted (utrans(x) = T2(k)e
ikx).

In the following it will also turn out useful to rewrite (3.12) and (3.13) in
terms of m1 and m2,

T1(k)m2(x, k) = R1(k)e
2ikxm1(x, k) +m1(x,−k), (3.16)

T2(k)m1(x, k) = R2(k)e
−2ikxm2(x, k) +m2(x,−k). (3.17)

Of course, it is not quite clear yet that the reflection and transmission
coefficients are defined everywhere, since β or δ might have zeros. Also, it

is not clear yet what happens at k = 0. The following theorem sheds some
light on this.

Theorem 3.5. (a) α, β, γ and δ can be extended to functions analytic on

C. Especially, the transmission coefficients T1 = 1
β , T2 = 1

δ have no zeros
in C. R1, R2, T1 and T2 are functions meromorphic on C and holomor-
phic on the closed upper half-plane C+ = {Im z ≥ 0}. Especially, they

are C∞-functions on the real line.

(b) We have the following relations:

(i) For k ∈ C, T (k) := T1(k) = T2(k).

(ii) For k ∈ C, the reality conditions T (k) = T (−k), R1(k) = R1(−k),
R2(k) = R2(−k) hold.

(iii) Conservation of energy: For k ∈ R, |T (k)|2 + |R1(k)|2 = |T (k)|2 +
|R2(k)|2 = 1.
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(c) The following integral representations hold:

R1(k)

T (k)
=

1

2i
k

∫ d

0

e−2ikt(1 − n2(t))m2(t, k) dt,

R2(k)

T (k)
=

1

2i
k

∫ d

0

e2ikt(1 − n2(t))m1(t, k) dt,

1

T (k)
= 1 − 1

2i
k

∫ d

0

(1 − n2(t))m1(t, k) dt

= 1 − 1

2i
k

∫ d

0

(1 − n2(t))m2(t, k) dt.

Analyticity on the complex upper half-plane is also called the causality

condition. The careful reader of Chapter 2 will immediately understand this
notion.

Proof. Since the quantities that we are interested in are the reflection and
transmission coefficients, we write R1(k)

T1(k)
, 1
T1(k)

and so on instead of α(k), β(k)

and so on. We begin with the proof of (b). Observe that

W [u1(x, k), u2(x, k)]
(3.12)
= W [u1(x, k),

R1(k)

T1(k)
u1(x, k) +

1

T1(k)
u1(x,−k)]

=
1

T1(k)
W [u1(x, k), u1(x,−k)]

= −2ik
1

T1(k)
.

(3.18)

On the other hand, using (3.13) instead, we obtain

W [u1(x, k), u2(x, k)] = −2ik
1

T2(k)
. (3.19)

This implies, at least for k ∈ C\{0}, T1(k) = T2(k), i.e., (i). In the following,

we simply write T (k).
Similarly, one can compute

2ik
R1(k)

T (k)
= W [u1(x,−k), u2(x, k)], (3.20)

2ik
R2(k)

T (k)
= W [u1(x, k), u2(x,−k)]. (3.21)
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Furthermore, using (3.18) and Remark 3.4,

1

T (k)
=

1

−2i(−k)
W [u1(x, k), u2(x, k)]

=
1

−2i(−k)
W [u1(x,−k), u2(x,−k)] =

1

T (−k)
.

Using (3.20) or (3.21) instead, we get R1(k) = R1(−k) and R2(k) = R2(−k),
respectively. This is (ii).

By (3.20), (3.21) and Remark 3.4,

R1(k)

T (k)
= −R2(−k)

T (−k) . (3.22)

Plugging (3.12) into (3.13),

u1(x, k) =
R1(k)R2(k)

T (k)2
u1(x, k) +

R2(k)

T (k)2
u1(x,−k)

+
R1(−k)

T (k)T (−k)u1(x,−k) +
1

T (k)T (−k)u1(x, k)

(3.22)
=

−R1(k)R1(−k)
T (k)T (−k) u1(x, k) +

−R1(−k)
T (k)T (−k)u1(x,−k)

+
R1(−k)

T (k)T (−k)u1(x,−k) +
1

T (k)T (−k)u1(x, k)

=
1 −R1(k)R1(−k)
T (k)T (−k) u1(x, k).

Because of (ii) this implies |R1(k)|2 + |T (k)|2 = 1 for k ∈ R \ {0}. The
relation |R2(k)|2 + |T (k)|2 = 1 for k ∈ R \ {0} is derived in the same way.

This finishes the proof of (b).
Let us now prove (c). For x ≤ 0 we have by (3.4) (and since n(x) = 1 for

x ≤ 0)

m1(x, k) = 1 +

∫ d

0

m1(t, k)
(
1 − n2(t)

)
k
e2ik(t−x) − 1

2i
dt

= 1 − k

2i

∫ d

0

m1(t, k)
(
1 − n2(t)

)
dt

+

(
k

2i

∫ d

0

m1(t, k)
(
1 − n2(t)

)
e2ikt dt

)
e−2ikx.
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On the other hand, by (3.17) we have for x ≤ 0

m1(x, k) =
R2(k)

T (k)
e−2ikxm2(x, k) +

1

T (k)
m2(x,−k) =

R2(k)

T (k)
e−2ikx +

1

T (k)
.

Together, it follows that

R2(k)

T (k)
=
k

2i

∫ d

0

m1(t, k)
(
1 − n2(t)

)
e2ikt dt, (3.23)

1

T (k)
= 1 − k

2i

∫ d

0

m1(t, k)
(
1 − n2(t)

)
dt, (3.24)

which are two of the formulas of (c). The other two formulas of (c) are
obtained in the same way by considering the integral equation form2 instead.

We remark that from the integral representations we especially get T (0) =
1 and R1(0) = R2(0) = 0, so the formulas in (b) also hold for k = 0 (which

we had not treated in this proof so far).

It remains to show (a). For example, from the integral representation

(3.24) we see that β(k) = 1
T (k) is analytic in C: By dominated convergence,

1
T (k)

is continuous in C. (Use the bound on m1 from Theorem 3.2). Analytic-

ity then follows with Morera’s theorem. Analyticity of α, γ and δ follows in
the same way. That R1, R2 and T are meromorphic in C is now immediate

from their definitions.

Finally, 1
T (k) has no zeros in C+ = {Im z ≥ 0}. Indeed, because of (iii)

of (b), 1
T (k) ≥ 1 for k ∈ R. Assume to the contrary that 1

T (k) has a zero at

k0 ∈ C+ = {Im z > 0}. Then by (3.12) and by the initial conditions for

u1 and u2, u1(·, k0) and u′1(·, k0) decay exponentially in both directions and
especially lie in L2(R). Since u1 solves the Helmholtz equation (3.1),

0 =

∫ ∞

−∞

(
u′′1(x, k0) + k2

0n
2(x)u1(x, k0)

)
u1(x, k0) dx

= −
∫ ∞

−∞
|u′1(x, k0)|2 dx+ k2

0

∫ ∞

−∞
n2(x)|u1(x, k0)|2 dx.

This implies k2
0 > 0, and hence k0 ∈ R, which is a contradiction. Thus, 1

T (k)

has no zeros in C+, whence T (k) is analytic there. WritingRj(k) = T (k)
Rj(k)
T (k) ,

j = 1, 2, we see that R1 and R2 are also analytic on C+.
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3.1.4 Further estimates

In this subsection we derive bounds on the derivative of the reflection and
transmission coefficient on the real line. These estimates do not only guar-

antee that R1, R2 and T do not behave too wildly and thus justify that in
practice these quantities are only evaluated at a finite number of points, but

they are also an ingredient that is needed when proving solvability of an
optimization problem in Section 3.4.

We write

N1 =

∫ d

0

|1 − n2(t)| dt, N∞ = sup
t∈[0,d]

|1 − n2(t)|.

Theorem 3.6. The following bounds hold (k ∈ R).

(a) For the transmission coefficient T

|T ′(k)| ≤ 1

2
N1

(
e|k|N1 +

(
|k|d+

1

2
|k|2d2

)
N∞e2|k|N1

)
.

(b) For the reflection coefficients Rj, j = 1, 2,

|R′
j(k)| ≤

1

2
N1

(
(1 + 2|k|d+ |k||T ′(k)|)e|k|N1

+
(
|k|d+ (1/2)|k|2d2

)
N∞e2|k|N1

)
.

The exact form of the above bounds is not important. The main point is
that for k in bounded intervals T ′ and R′ can be bounded independently of
k and n ∈ L∞

a,b(0, d).

Proof. We are several times going to use the bounds

sup
x∈[0,d]

|mj(x, k)| ≤ e|k|N1, j = 1, 2, (3.25)

sup
x∈[0,d]

|ṁj(x, k)| ≤
(
d+

1

2
|k|d2

)
N∞e2|k|N1, j = 1, 2, (3.26)

which follow from Theorem 3.2.
By Theorem 3.5(c),

T (k) =
1

1 − F (k)
,
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where

F (k) =
1

2i
k

∫ d

0

(1 − n2(t))m1(t, k) dt.

Hence,

T ′(k) =
F ′(k)

(1 − F (k))2
= T (k)2F ′(k).

By Theorem 3.5, |T (k)| ≤ 1 for k ∈ R, so the above equation implies
|T ′(k)| ≤ |F ′(k)|. Now, using (3.25) and (3.26),

|F ′(k)| ≤ 1

2

∫ d

0

|1 − n2(t)| (|m1(t, k)| + |k||ṁ1(t, k)|) dt

≤ 1

2
N1 sup

t∈[0,d]

(|m1(t, k)| + |k||ṁ1(t, k)|)

≤ 1

2
N1

(
e|k|N1 +

(
|k|d+

1

2
|k|2d2

)
N∞e2|k|N1

)
.

This yields (a).
For the second estimate we use the integral representation from Theo-

rem 3.5(c),
Rj(k) = T (k)Gj(k), j = 1, 2,

where

Gj(k) =
1

2i
k

∫ d

0

e−2ikt(1 − n2(t))mj̃(t, k) dt

and j̃ = 1 for j = 2 and j̃ = 2 for j = 1. We then have to estimate

R′
j(k) = T ′(k)Gj(k) + T (k)G′

j(k).

By (3.25),

|Gj(k)| ≤
1

2
|k|
∫ d

0

|1 − n2(t)||mj̃(t, k)| dt ≤
1

2
|k|N1e

|k|N1.

Furthermore, by (3.25) and (3.26),

|G′
j(k)| ≤

1

2

∫ d

0

|1 − n2(t)|
(
|mj̃(t, k)| + |k|

(
2t|mj̃(t, k)| + |ṁj̃(t, k)|

))
dt

≤ 1

2
N1 sup

t∈[0,d]

(
(1 + 2|k|d)|mj̃(t, k)| + |k||ṁj̃(t, k)|

)

≤ 1

2
N1

(
(1 + 2|k|d)e|k|N1 +

(
|k|d+

1

2
|k|2d2

)
N∞e2|k|N1

)
.
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Together,

|R′
j(k)| ≤

1

2
N1

(
(1 + 2|k|d+ |k||T ′(k)|)e|k|N1

+
(
|k|d+ (1/2)|k|2d2

)
N∞e2|k|N1

)
.

3.2 Continuity of the direct problem

The aim of this section is to show that the reflection and transmission coef-
ficients satisfy a continuity property with respect to the permittivity ǫ = n2

(Corollary 3.12). Before we can prove this property, we need to derive a
somewhat more direct connection between these quantities.

3.2.1 Definition of R and T via an initial value problem

For practical purposes we are going to make the definition of reflection and
transmission coefficients via (3.12) and (3.13) a little more explicit. We only

consider R2 and T , i.e., the reflection and transmission coefficient from the
left.

Evaluating (3.13) at x = 0 and using the initial conditions (3.3),

u1(0, k) = γ(k) + δ(k), (3.27)

u′1(0, k) = −ikγ(k) + ikδ(k). (3.28)

We can solve this for γ and δ to get (k 6= 0)

γ(k) =
1

2

(
u1(0, k) +

1

k
u′1(0, k)i

)
,

δ(k) =
1

2

(
u1(0, k)−

1

k
u′1(0, k)i

)
.

For reflection and transmission coefficient we thus get

R2(k) =
γ(k)

δ(k)
=
u1(0, k) + 1

ku
′
1(0, k)i

u1(0, k)− 1
ku

′
1(0, k)i

, (3.29)

T (k) =
1

δ(k)
=

2

u1(0, k) − 1
ku

′
1(0, k)i

. (3.30)
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The values u1(0, k) and u′1(0, k) can obtained for each k by solving the

Helmholtz equation (3.1) with initial conditions (3.2). In practice, one com-
putes the reflection and transmission coefficient by solving the initial value

problem numerically. If n is a step function, then the solution of the IVP
boils down to the multiplication of certain matrices. The method is therefore

called transfer matrix method [24].

3.2.2 Definition of R and T via a boundary value problem

In the above formulas, the connection between R and T on the one hand and
the refractive profile n on the other hand is still somewhat indirect, since we
have to first solve an initial value problem and then use (3.29) or (3.30). In

the following we are going to derive a slightly more direct relationship.
Let k ∈ C such that T does not have a pole there. Define

u(x, k) = T (k)u1(x, k).

Obviously, u solves the Helmholtz equation (3.1). Using the initial conditions

(3.2) for u1, we see that

iku(d, k)− u′(d, k) = 0.

Using (3.27) and (3.28), we have

iku(0, k) + u′(0, k) = ikT (k)u1(0, k) + T (k)u′1(0, k) = 2ikT (k)δ(k) = 2ik.

Thus, u is a solution of the boundary value problem




u′′(x, k) + k2n2(x)u(x, k) = 0,
iku(d, k)− u′(d, k) = 0,
iku(0, k) + u′(0, k) = 2ik.

(3.31)

Proposition 3.7. Fix n ∈ L∞
a,b(0, d) and let k ∈ C \ {0} such that the

transmission coefficient T corresponding to n does not have a pole there.
Then the boundary value problem (3.31) has the unique solution u(x, k) =

T (k)u1(x, k).

Proof. Write L1(k)u = iku(d)−u′(d) and L2(k)u = iku(0)+u′(0). By (3.11),
u1(·, k) and u1(·,−k) form a fundamental system for the Helmholtz equation.

Now (3.31) is uniquely solvable if and only if (see, e.g, [65, §26.III])

W (k) :=

∣∣∣∣
L1(k)u1(·, k) L1(k)u1(·,−k)
L2(k)u1(·, k) L2(k)u1(·,−k)

∣∣∣∣ 6= 0.
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But

W (k) = (iku1(d, k) − u′1(d, k))︸ ︷︷ ︸
=0

(iku1(0,−k) + u′1(0,−k))

− (iku1(d,−k) − u′1(d,−k)) (iku1(0, k) + u′1(0, k))
(3.13)
= −

(
iku1(d,−k) − u′1(d,−k)

)

·
(
ik (γ(k)u2(0, k) + δ(k)u2(0,−k))

+ (γ(k)u′2(0, k) + δ(k)u′2(0,−k))
)

= −2ike−ikd (ik (γ(k) + δ(k)) + (−ikγ(k) + ikδ(k)))

= 4k2e−ikdδ(k) 6= 0,

since T = 1
δ

does not have a pole at k. The theorem follows since we have

already shown that u(x, k) = T (k)u1(x, k) is a solution.

Now let u be the solution of (3.31). We then have

u(0, k) = T (k)u1(0, k)
(3.15)
= T (k) (R2(k)u2(0, k) + u2(0,−k))

= T (k)(R2(k) + 1),

and

u(d, k) = T (k)u1(d, k) = T (k)eikd,

so reflection and transmission coefficient are obtained from u by

R2(k) = e−ikdu(d, k)(u(0, k)− 1), T (k) = e−ikdu(d, k). (3.32)

3.2.3 A weak formulation

Although it is not so common for ordinary differential equations, we will

derive a weak formulation of problem (3.31). Let u be a solution of (3.31).
For simplicity, in the following we drop the dependence of u on k in our
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notation. Multiplying by ϕ ∈ C∞(0, d),

0 =

∫ d

0

u′′(x)ϕ(x) + k2n2(x)u(x)ϕ(x) dx

= u′(d)ϕ(d)− u′(0)ϕ(0) +

∫ d

0

−u′(x)ϕ′(x) + k2n2(x)u(x)ϕ(x) dx

= ik (u(d)ϕ(d) + u(0)ϕ(0))

+

∫ d

0

k2n2(x)u(x)ϕ(x)− u′(x)ϕ′(x) dx− 2ikϕ(0).

The weak form of (3.31) is then

Find u ∈ H1(0, d) with Bn[u, ϕ] = 2ikϕ(0) for all ϕ ∈ C∞(0, d), (3.33)

where

Bn[u, ϕ] = ik (u(d)ϕ(d) + u(0)ϕ(0)) +

∫ d

0

k2n2(x)u(x)ϕ(x)− u′(x)ϕ′(x) dx.

The careful reader should not confuse the Sobolev space H1(0, d) with the
Hardy spaces Hp(D) and Hp(C+).

Theorem 3.8. Assume that u ∈ H1(0, d) is a solution of (3.33). Then u
has higher regularity, u ∈ W 2,∞(0, d), and u solves the classical boundary
value problem (3.31).

Proof. Let u be a solution of problem (3.33). Then ũ(x) = u(x) − u(0) −
1
d
(u(d) − u(0))x is a weak solution of

{
ũ′′(x) + k2n2(x)ũ(x) = f̃(x),

ũ(0) = ũ(d) = 0,

with f̃(x) = −k2n2(x)
(
u(0) + 1

d(u(d) − u(0))x
)
. By standard regularity the-

ory (see, e.g., [20, Chapter 6.3, Theorem 4]), ũ ∈ H2(0, d). Thus, u ∈
H2(0, d), and as usual one can show that u actually solves the classical
boundary value problem (3.31). Finally, since u′′(x) = −k2n2(x)u(x), we

even have u ∈W 2,∞(0, d).

Remark 3.9. By Theorem 3.8, any weak solution is also a classical solution.

Since we have seen that conversely any classical solution is a weak solution,
problem (3.31) and its weak formulation (3.33) are equivalent. Especially,

we have unique solvability of the weak problem if k ∈ C \ {0} is not a pole of
the transmission coefficient.
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3.2.4 Continuity in the weak* topology of L∞

After these preparations we can prove the promised continuity property. We
are not going to work with the refractive index n, but with the permittivity
ǫ = n2. Denote by Sk the mapping which sends ǫ ∈ L∞

a,b(0, d) to the solution

Skǫ of the boundary value problem (3.33) (or, equivalently, (3.31)) with
n =

√
ǫ and k, i.e.,

B√
ǫ[Skǫ, ϕ] = 2ikϕ(0) for all ϕ ∈ C∞(0, d).

We first show continuity of Sk in the weak* topology of L∞. It is interesting
to compare the following theorem to [19, Theorem 3.1], which claims weak*

continuity of the solution of a similar boundary value problem with respect
to n. However, this is not correct, but weak* continuity with respect to

ǫ = n2 holds true. (For a counterexample see Remark 3.13 below.)

Theorem 3.10. Fix k ∈ R \ {0}. The mapping Sk : L∞
a,b(0, d) → H1(0, d),

ǫ 7→ Skǫ, where Skǫ is the solution of (3.33) with n =
√
ǫ, is (sequentially)

continuous in the weak* topology of L∞ and the weak topology of H1(0, d),
i.e., (ǫj) ⊂ L∞

a,b(0, d) with ǫj
∗
⇀ ǫ implies Skǫj ⇀ Skǫ in H1(0, d).

Proof. Let (ǫj) ⊂ L∞
a,b(0, d) with ǫj

∗
⇀ ǫ, i.e.,

∫ d

0

ǫj(x)ϕ(x) dx→
∫ d

0

ǫ(x)ϕ(x) dx

for all ϕ ∈ L1(0, d).

Step 1 (Find weakly converging subsequence of (Skǫj)): By Theorem 3.5(a)

the transmission coefficient has no pole in k. So by Proposition 3.7, the
solution of (3.33) is given by (Skǫ)(x) = T (k)u1(x, k). We are going to
show that ‖Skǫ‖L∞(0,d) and ‖(Skǫ)′‖L∞(0,d) can be bounded by a constant

independent of ǫ ∈ L∞
a,b(0, d).

Since k ∈ R, we have |T (k)| ≤ 1 by Theorem 3.5(b)(iii). By Theo-

rem 3.2(a) we have for x ∈ [0, d]

|u1(x, k)| = |eikxm1(x, k)| = |m1(x, k)| ≤ e|k|
∫ d

x
|1−n2(t)| dt ≤ e|k|d(b+1),

so ‖Skǫ‖L∞(0,d) ≤ C1 with C1 = e|k|d(b+1) for all ǫ ∈ L∞
a,b(0, d). Further, from
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(3.4) one obtains by differentiation

m′
1(x, k) =

∫ d

x

m1(t, k)(1− n2(t))(−k2e2ik(t−x)) dt

−m1(x, k)(1− n2(x))Dk(0)︸ ︷︷ ︸
=0

=

∫ d

x

m1(t, k)(1− n2(t))(−k2e2ik(t−x)) dt.

So for x ∈ [0, d]
|m′

1(x, k)| ≤ dC1(b+ 1)|k|2,
that is, ‖(Skǫ)′‖L∞(0,d) ≤ C2 with C2 = dC1(b + 1)|k|2 for all ǫ ∈ L∞

a,b(0, d).

This means that the sequence (Skǫj) is bounded in W 1,∞(0, d).
Especially, (Skǫj) is bounded in H1(0, d), so it has a weakly convergent

subsequence (Skǫjl), i.e., Skǫjl ⇀ u in H1(0, d) for some u ∈ H1(0, d).
Step 2 (Show that Skǫ = u): We show that B√

ǫ[Skǫ, ϕ] = B√
ǫ[u, ϕ] for

all ϕ ∈ C∞(0, d). Unique solvability of (3.33) then implies Skǫ = u. First

notice that B√
ǫ[Skǫ, ϕ] = 2ikϕ(0) = B√

ǫjl
[Skǫjl, ϕ] for each jl, so

∣∣B√
ǫ[u, ϕ]− B√

ǫ[Skǫ, ϕ]
∣∣

=
∣∣∣B√

ǫ[u, ϕ] −B√
ǫjl

[Skǫjl, ϕ]
∣∣∣

≤
∣∣∣B√

ǫ[u, ϕ] −B√
ǫjl

[u, ϕ]
∣∣∣+
∣∣∣B√

ǫjl
[u, ϕ]− B√

ǫjl
[Skǫjl, ϕ]

∣∣∣ .

For the first term we have
∣∣∣B√

ǫ[u, ϕ]− B√
ǫjl

[u, ϕ]
∣∣∣ =

∣∣∣∣
∫ d

0

k2 (ǫ(x) − ǫjl(x))u(x)ϕ(x) dx

∣∣∣∣→ 0,

since uϕ ∈ L1(0, d). For the second term we have
∣∣∣B√

ǫjl
[u, ϕ]−B√

ǫjl
[Skǫjl, ϕ]

∣∣∣
= |ik ((Skǫjl − u)(d)ϕ(d) + (Skǫjl − u)(0)ϕ(0))|

+

∣∣∣∣
∫ d

0

k2ǫjl(x)(Skǫjl − u)(x)ϕ(x)− ((Skǫjl)
′ − u′)(x)ϕ′(x) dx

∣∣∣∣
→ 0.

Here, the second summand converges to zero since Skǫjl ⇀ u in H1(0, d), and
the first summand converges to zero since especially Skǫjl → u in C(0, d).
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(This follows from the compact embedding H1(0, d) →֒ C(0, d).) Together, it

follows that
∣∣B√

ǫ[u, ϕ]−B√
ǫ[Skǫ, ϕ]

∣∣ = 0, which is what we wanted to prove
in this step.

Step 3 (Show Skǫj ⇀ Skǫ): It now follows that the whole sequence Skǫj
converges weakly to u in H1(0, d): Indeed, if there were infinitely many

Skǫj outside of an arbitrary (weak H1(0, d)-)neighborhood of u, we could
apply the preceding arguments to find a subsequence of these infinitely many

Skǫj which converges to u, thus producing a contradiction. This proves the
theorem.

Remark 3.11. The reason why we could only prove the theorem for real k

is that we only have the bound |T (k)| ≤ 1 for real k. We will use the same
technique as in this proof to prove Theorem 3.19, but there we will have a

bound for |T (k)|, k ∈ C+.

The following corollary is the culmination of this section and a direct
consequence of the preceding theorem and (3.32).

Corollary 3.12. At each k ∈ R, reflection and transmission coefficient are

(sequentially) weak* continuous functions of ǫ, i.e., if R√
ǫ and T√ǫ denote

the reflection and transmission coefficient (from the left) corresponding to the

permittivity ǫ, then (ǫj) ⊂ L∞
a,b(0, d) with ǫj

∗
⇀ ǫ implies R√

ǫj(k) → R√
ǫ(k)

and T√ǫj(k) → Tǫ(k).

Proof. Let (ǫj) ⊂ L∞
a,b(0, d) with ǫj

∗
⇀ ǫ. If k = 0, then R√

ǫj(k) = R√
ǫ(k) = 1

and T√ǫj(k) = T√ǫ(k) = 0, so there is nothing to prove. Assume k ∈ R \
{0}. From Theorem 3.10 it follows that Sk is especially (sequentially) weak*

continuous as a map to C(0, d), i.e., ǫj
∗
⇀ ǫ in L∞

a,b(0, d) implies Skǫj → Skǫ
in C(0, d). This is due to the fact that the embedding H1(0, d) →֒ C(0, d) is

compact and that weakly convergent sequences become strongly convergent
under compact mappings. From (3.32) we then get

T√ǫj(k) = e−ikd(Skǫj)(d) → e−ikd(Skǫ)(d) = T√ǫ(k)

and

R√
ǫj(k) = e−ikdTǫj(k)((Skǫj)(0)−1) → e−ikdTǫ(k)((Skǫ)(0)−1) = R√

ǫ(k).
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1

1

a

b

x

n5

Figure 3.2: The function nj, j = 5, from Remark 3.13.

Remark 3.13. The convergence of Corollary 3.12 can of course also be ob-

served numerically. For example, let us set for some a, b > 0

nj(x) =

{
a+ (b− a) (⌊2jx⌋ mod 2) , x ∈ [0, 1],

1, otherwise,

see Figure 3.2. Then n2
j

∗
⇀ n2, where n2(x) = (a2 + b2)/2, x ∈ [0, 1], and

n2(x) = 1, otherwise. Indeed, if one does the computations, one sees that

Rnj
(k) → Rn(k), and not, as one might naively expect, Rnj

(k) → Rñ(k),
where ñ(x) = (a+ b)/2, x ∈ [0, 1], and ñ(x) = 1, otherwise.

3.3 Hardy space properties

In this section we show that the reflection coefficient lies in the Hardy space
H∞(C+). Although this appears reasonable, we are not aware of any proof of

our results in the literature. We already know that the reflection coefficient is
analytic on C+ (Theorem 3.5(a)), but it remains to show that it is bounded.

We first show this property when the refractive profile n is a step function
and then use the method from Section 3.2.4 to extend the result to general
n. We begin with some preparations.

3.3.1 Changing the surrounding medium

In this and the next subsection we investigate how reflection and and trans-
mission coefficient vary under certain transformations of n. Assume that a
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refractive profile n is given with n|[0,d] ∈ L∞
a,b(0, d), but now n|(−∞,0) = nl and

n|(d,∞) = nr, where nl and nr are positive, but not necessarily equal to 1.
It is straightforward to generalize the definitions of reflection and transmis-

sion coefficient to this case: Let u1,nr
(x, k) be the solution of the Helmholtz

equation (3.1) with initial conditions
{
u1,nr

(d, k) = eiknrd,

u′1,nr
(d, k) = iknre

iknrd,
(3.34)

and let u2,nl
(x, k) be the solution of (3.1) with initial conditions

{
u2,nl

(0, k) = 1,

u′2,nl
(0, k) = −iknl.

(3.35)

We now have u1,nr
(x, k) = eiknrx for x ≥ d and u2,nl

(x, k) = e−iknlx for x ≤ 0.
One can see as in Section 3.1.3 that uj(·, k) and uj(·,−k) are linearly inde-

pendent for k 6= 0, j = 1, 2, whence there are functions αnl,nr
(k), βnl,nr

(k),
γnl,nr

(k) and δnl,nr
(k) such that

u2,nl
(x, k) = αnl,nr

(k)u1,nr
(x, k) + βnl,nr

(k)u1,nr
(x,−k), (3.36)

u1,nr
(x, k) = γnl,nr

(k)u2,nl
(x, k) + δnl,nr

(k)u2,nl
(x,−k) (3.37)

for k 6= 0. As earlier, reflection and transmission coefficient from the left and

from the right are defined by

T1,nl,nr
(k) =

1

βnl,nr
(k)

, R1,nl,nr
(k) =

αnl,nr
(k)

βnl,nr
(k)

,

T2,nl,nr
(k) =

1

δnl,nr
(k)

, R2,nl,nr
(k) =

γnl,nr
(k)

δnl,nr
(k)

.

The following proposition states how reflection and transmission coefficient
from the left change if we change the surrounding medium on the left, i.e.,

nl.

Proposition 3.14. Let nl, ñl > 0. For transmission and reflection coeffi-

cient from the left with respect to nl and ñl, respectively, we have

R2,ñl,nr
(k) =

(
1 + nl

ñl

)
R2,nl,nr

(k) +
(
1 − nl

ñl

)

(
1 − nl

ñl

)
R2,nl,nr

(k) +
(
1 + nl

ñl

),

T2,ñl,nr
(k) =

2T2,nl,nr(
1 − nl

ñl

)
R2,nl,nr(k) +

(
1 + nl

ñl

).



3.3. HARDY SPACE PROPERTIES 55

Proof. As in Section 3.2.1, evaluating (3.37) at x = 0 and using the initial

conditions (3.35),

u1,nr
(x, k) = γnl,nr

(k) + δnl,nr
(k), (3.38)

u′1,nr
(0, k) = −iknlγnl,nr

(k) + iknrδnl,nr
(k). (3.39)

Notice that the left hand side does not depend on nl. We solve this for γnl,nr

and δnl,nr
to get (k 6= 0)

γnl,nr
(k) =

1

2

(
u1,nr

(0, k) +
1

knl
u′1,nr

(0, k)i

)
, (3.40)

δnl,nr
(k) =

1

2

(
u1,nr

(0, k)− 1

knl
u′1,nr

(0, k)i

)
. (3.41)

We now plug (3.38) and (3.39) into (3.40) and (3.41) for ñl instead of nl and
obtain

γñl,nr
(k) =

1

2

((
1 +

nl
ñl

)
γnl,nr

(k) +

(
1 − nl

ñl

)
δnl,nr

(k)

)
,

δñl,nr
(k) =

1

2

((
1 − nl

ñl

)
γnl,nr

(k) +

(
1 +

nl
ñl

)
δnl,nr

(k)

)
.

It follows that

R2,ñl,nr
(k) =

γñl,nr
(k)

δñl,nr
(k)

=

(
1 + nl

ñl

)
γnl,nr(k) +

(
1 − nl

ñl

)
δnl,nr(k)(

1 − nl

ñl

)
γnl,nr

(k) +
(
1 + nl

ñl

)
δnl,nr

(k)

=

(
1 + nl

ñl

)
R2,nl,nr

(k) +
(
1 − nl

ñl

)

(
1 − nl

ñl

)
R2,nl,nr

(k) +
(
1 + nl

ñl

)

and

T2,ñl,nr
(k) =

1

δñl,nr
(k)

=
2(

1 − nl

ñl

)
γnl,nr

(k) +
(
1 + nl

ñl

)
δnl,nr

(k)

=
2T2,nl,nr

(k)(
1 − nl

ñl

)
R2,nl,nr(k) +

(
1 + nl

ñl

).
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It is straightforward to modify the proof of Theorem 3.5(b) to obtain

Proposition 3.15. We have the following relations:

(a) For k ∈ C, nlT1,nl,nr
(k) = nrT2,nl,nr

(k).

(b) For k ∈ C, the reality conditions

Tj,nl,nr
(k) = Tj,nl,nr

(−k)

and
Rj,nl,nr

(k) = Rj,nl,nr
(−k),

j = 1, 2, hold.

(c) For k ∈ R,

nl
nr

|T1,nl,nr(k)|2 + |R1,nl,nr(k)|2 =
nr
nl
|T2,nl,nr(k)|2 + |R2,nl,nr(k)|2 = 1.

Notice that T1 and T2 do not coincide any more if nl 6= nr.

3.3.2 Shifting n

We again consider a refractive profile n with n|[0,d] ∈ L∞
a,b(0, d) and n|(−∞,0) =

nl and n|(d,∞) = nr, where nl and nr are positive real numbers. We are
interested in reflection and transmission coefficient of the shifted profile

ns(x) = n(x − d1), where d1 > 0. In this subsection, all quantities with
respect to ns are decorated with a small s. Especially, Rs

2 and T s2 denote

reflection and transmission coefficient from the left with respect to ns, while
R2 and T2 denote reflection and transmission coefficient from the left with
respect to n. (For simplicity, we drop the dependence on nl and nr in our

notation.)

Proposition 3.16. We have

Rs
2(k) = e2iknld1R2(k),

T s2 (k) = eik(nl−nr)d1T2(k).

Proof. From the initial conditions (3.34) for u1 at x = d and for us1 at x =
d+ d1 it is not hard to see that

us1(x+ d1, k) = eiknrd1u1(x, k).
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From (3.37) we have

u1(x, k) = γ(k)e−iknlx + δ(k)eiknlx for x ≤ 0,

us1(x, k) = γs(k)e−iknlx + δs(k)eiknlx for x ≤ d1,

so on the one hand

us1(0, k) = γs(k) + δs(k),

(us1)
′(0, k) = −iknlγs(k) + iknlδ

s(k),

and on the other hand

us1(0, k) = eiknrd1u1(−d1, k) = eik(nr+nl)d1γ(k) + eik(nr−nl)d1δ(k),

(us1)
′(0, k) = eiknrd1u′1(−d1, k) = −iknleik(nr+nl)d1γ(k) + iknle

ik(nr−nl)d1δ(k).

Together,

γs(k) = eik(nr+nl)d1γ(k),

δs(k) = eik(nr−nl)d1δ(k).

It now follows that

Rs
2(k) =

γs(k)

δs(k)
= e2iknld1

γ(k)

δ(k)
= e2iknld1R2(k)

and

T s2 (k) =
1

δs(k)
=

1

eik(nr−nl)d1
δ(k) = eik(nl−nr)d1T2(k).

3.3.3 Hardy space properties of R and T

After these preparations we can finally show that the reflection and transmis-
sion coefficient lie in certain Hardy spaces. As already mentioned, analyticity

follows from Theorem 3.5(a), and it remains to prove boundedness. We are
going to do this in two steps. First, we show boundedness of R and T for

piecewise constant refractive indices n using the results from Sections 3.3.1
and 3.3.2. We then generalize this result to arbitrary n ∈ L∞

a,b(0, d) via
density and the method of Section 3.2.4.

We need some notation. Assume that we have a refractive profile n with
n|[0,d] ∈ L∞

a,b(0, d) and n|R\[0,d] = 1. By adding a layer we formally mean
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d d1 d̃ = d+ d1 xx

n ñ

11

Figure 3.3: Adding a layer.

replacing n by ñ, where

ñ(x) =





1, x < 0,
n1, 0 ≤ x ≤ d1,
n(x− d1), x > d1,

see Figure 3.3. Here, n1, d1 > 0. We can also describe the change from n to
ñ in the following way. Write

Unl
n(x) =

{
nl, x < 0,
n(x), x ≥ 0

for the change of the surrounding medium on the left hand side. Moreover,

write
Vyn(x) = n(x− y)

for the shift as in the previous subsection. Then

ñ(x) = U1Vd1
Un1

n(x).

By Rn and Tn we denote the reflection and transmission coefficient from
the left (i.e., R2 and T2) with respect to the refractive profile n.

Theorem 3.17. Assume that n is a step function with n|[0,d] ∈ L∞
a,b(0, d) and

n|R\[0,d] = 1. Denote by dopt =
∫ d

0 n(x) dx the optical thickness. Then

Rn ∈ H∞(C+) with ‖Rn‖H∞(C+) ≤ 1

and

Tn ∈ ei(dopt−d)·H∞(C+) with ‖Tn(·)e−i(dopt−d)·‖H∞(C+) ≤ 1.
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Remark 3.18. The impulse response of the LTI system associated with Tn
is T̂n. From Theorem 3.17 it follows that supp T̂n ⊂ [dopt − d,∞). For
actual physical materials we always have n(x) ≥ 1 for x ∈ R, i.e., the optical

thickness is larger than the physical thickness, dopt ≥ d. In this case the
LTI system associated with Tn is causal. If the optical thickness is smaller

than the physical thickness (which is physically impossible), then the impulse
response of the system has an acausal part.

Proof of Theorem 3.17. We prove the theorem by induction. If n(x) = 1

for x ∈ R, then Rn(k) = 0 and Tn(k) = 1 for all k ∈ C+. This follows
for example from Theorem 3.5. Then d = dopt = 0, and it is clear that
Rn ∈ H∞(C+) and Tn ∈ ei(dopt−d)·H∞(C+) and that the norm estimates hold.

Now assume that n ∈ L∞
a,b(0, d) is a step function. By induction hy-

pothesis, Rn ∈ H∞(C+) and Tn ∈ ei(dopt−d)·H∞(C+). We need to show

that if we add a layer, i.e., if we replace n by ñ(x) = U1Vd1
Un1

n(x), then

Rñ ∈ H∞(C+) and Tñ ∈ ei(d̃opt−d̃)·H∞(C+), and the norm estimates still

hold. Here, d̃ = d+ d1, and d̃opt =
∫ d̃

0 ñ(x) dx = dopt + n1d1.

By Proposition 3.14,

RUn1
n(k) =

(
1 + 1

n1

)
Rn(k) +

(
1 − 1

n1

)

(
1 − 1

n1

)
Rn(k) +

(
1 + 1

n1

) .

By induction hypothesis, |Rn(k)| ≤ 1 on C+. Therefore,

∣∣∣∣
(

1 − 1

n1

)
Rn(k) +

(
1 +

1

n1

)∣∣∣∣ ≥
∣∣∣∣1 +

1

n1

∣∣∣∣−
∣∣∣∣1 − 1

n1

∣∣∣∣

= 2 min

{
1,

1

n1

}
,

(3.42)

whence
∣∣RUn1

n(k)
∣∣ ≤

1 + 1
n1

min
{

1, 1
n1

} .

Thus, RUn1
n ∈ H∞(C+). By Proposition 3.15, |RUn1

n(k)| ≤ 1 for k ∈
R. Since the modulus of functions in H∞(C+) takes its maximum on R,
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‖RUn1
n‖H∞(C+) ≤ 1. Further, by Propositions 3.14 and 3.16,

RU1Vd1
Un1

n(k) =

(
1 + 1

n1

)
e2ikn1d1RUn1

n(k) +
(
1 − 1

n1

)

(
1 − 1

n1

)
e2ikn1d1RUn1

n(k) +
(
1 + 1

n1

) .

Since |e2ikn1d1RUn1
n(k)| ≤ 1 for Im k ≥ 0, it follows just as before that

‖Rñ(k)‖H∞(C+) ≤ 1.

Similarly, for the transmission coefficient we have

TUn1
n(k) =

2Tn(
1 − 1

n1

)
Rn(k) +

(
1 + 1

n1

) .

By (3.42), the denominator is bounded away from zero on C+, and by the

induction hypothesis, Tn ∈ ei(dopt−d)·H∞(C+). Therefore, it follows that
TUn1

n ∈ ei(dopt−d)·H∞(C+). Further,

TU1Vd1
Un1

n(k) =
eik(n1−1)d1TUn1

n(k)(
1 − 1

n1

)
e2ikn1d1RUn1

n(k) +
(
1 + 1

n1

).

As before, the denominator is bounded away from zero on C+. Using this
and the fact that TUn1

n ∈ ei(dopt−d)·H∞(C+), we get

Tñ ∈ ei(dopt−d+(n1−1)d1)·H∞(C+) = ei(d̃opt−d̃)·H∞(C+).

Moreover, since |Tñ(k)| ≤ 1 on R and since the modulus of functions in

H∞(C+) takes its maximum on R, ‖Tñ(·)e−i(dopt−d)·‖H∞(C+) ≤ 1. This proves
the induction step and therefore the theorem.

Theorem 3.19. Let n|[0,d] ∈ L∞
a,b(0, d) and n|R\[0,d] = 1. Then we have

Rn ∈ H∞(C+) with ‖Rn‖H∞(C+) ≤ 1

and

Tn ∈ ei(a−1)d·H∞(C+) with ‖Tn(·)e−i(a−1)d·‖H∞(C+) ≤ 1.

Proof. Let (nj) ⊂ L∞
a,b(0, d) be a sequence of step functions such that for

ǫj = n2
j and ǫ = n2 we have ǫj

∗
⇀ ǫ in L∞

a2,b2(0, d). Such a sequence exists

because step functions with values in [a2, b2] are dense in L∞
a2,b2(0, d) with
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respect to the weak* topology, see, e.g., [17, Proposition 2.2]. We then have

d
(j)
opt =

∫ d
0 nj(t) dt ≥ ad for all j. By Theorem 3.17, Tnj

∈ ei(d
(j)
opt−d)·H∞(C+).

Because for d1 ≥ d2 the inclusion eid1·H∞(C+) ⊂ eid2·H∞(C+) holds true, it

follows that Tnj
∈ ei(a−1)d·H∞(C+) for all j.

Now fix k ∈ C+. Then |Tnj
(k)| ≤ |e−ik(a−1)d| for all j, i.e., the sequence

(Tnj
(k))j is bounded. Let Sk be the operator from Theorem 3.10. It then

follows as in Step 1 of the proof of Theorem 3.10 that (Skǫj) is bounded in

H1(0, d). As in the rest of the proof of Theorem 3.10 one can show that
Skǫj ⇀ Skǫ in H1(0, d).

Especially, it follows as in Corollary 3.12 that Rnj
(k) → Rn(k) and

Tnj
(k) → Tn(k) for every k ∈ C+. By Theorem 3.17 we know that |Rnj

(k)| ≤
1, whence |Rn(k)| ≤ 1. Similarly, |Tn(k)| ≤ |e−ik(a−1)d|. The theorem follows

since we already know that Rn and Tn are analytic on C+.

3.4 An optimization problem for the reflection coeffi-

cient

We have seen in the previous sections that the set of reflection coefficients
which correspond to physically realizable layered media (i.e., which have
a finite thickness d and a refractive profile that only varies between two

bounds a and b) is severely restricted. Therefore, one can not expect that
there is a refractive profile n creating an arbitrary prescribed reflection coef-

ficient Rdesired. As earlier, we denote by Rn the reflection coefficient from the
left (i.e., R2) corresponding to the n. Instead of using a complicated merit

function like (0.1) to measure the distance between Rdesired and a realizable
reflection coefficient Rn, we simply consider the Lp-distance. To make things

concrete, suppose we are given an interval I ⊂ R and a desired (complex-
valued) reflection coefficient Rdesired ∈ L∞(I). Fix a thickness d and the
bounds a and b. We are then interested in the minimization problem

minimize ‖Rn −Rdesired‖Lp(I)

subject to n ∈ L∞
a,b(0, d),

(R-OPTp)

where 1 ≤ p ≤ ∞. We indicated in the introduction of this thesis that

it is virtually impossible to actually solve (R-OPTp) numerically. The best
thing one can hope for in practice is to find some n0 ∈ L∞

a,b(0, d) such that

‖Rn0
−Rdesired‖Lp(I) is close to infn∈L∞

a,b(0,d)
‖Rn−Rdesired‖Lp(I). Even proving
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that the infimum is a minimum, i.e., that (R-OPTp) has a solution, requires

several of our new results from this chapter.

Theorem 3.20. For every 1 ≤ p ≤ ∞ the optimization problem (R-OPTp)

has a solution n ∈ L∞
a,b(0, d), i.e., there is n0 ∈ L∞

a,b(0, d) such that ‖Rn0
−

Rdesired‖Lp(I) ≤ ‖Rn − Rdesired‖Lp(I) for all n ∈ L∞
a,b(0, d).

Proof. We write the optimization problem in terms of the permittivity ǫ, i.e.,

we consider
minimize Jp(ǫ)

subject to ǫ ∈ L∞
a2,b2(0, d),

(ǫ-OPTp)

where

Jp(ǫ) = ‖R√
ǫ −Rdesired‖Lp(I).

Obviously, problems (ǫ-OPTp) and (R-OPTp) are equivalent, i.e., it suffices
to show that (ǫ-OPTp) has at least one solution.

The set L∞
a,b(0, d) is (sequentially) weak* compact in L∞(0, d) (see, e.g.,

[17, Proposition 2.2]). Thus we have the existence of a minimum if we

can show that Jp is (sequentially) weak* continuous on L∞
a,b(0, d). So let

(ǫj) ⊂ L∞
a,b(0, d) with ǫj

∗
⇀ ǫ.

Case 1: 1 ≤ p < ∞. By Corollary 3.12, R√
ǫj(k) → R√

ǫ(k) pointwise
in k ∈ R. Moreover, |R√

ǫj(k)| ≤ 1 by Theorem 3.5(b). By dominated

convergence we then have ‖R√
ǫj − Rdesired‖Lp(I) → ‖R√

ǫ − Rdesired‖Lp(I), i.e.,
Jp is (sequentially) weak* continuous on L∞

a,b(0, d).

Case 2: p = ∞. Let η > 0 be arbitrary. By the bound on R′(k) from
Theorem 3.6 we can find δ > 0 such that for every ǫ ∈ L∞

a,b(0, d)

sup
|k−k̃|<δ

|R√
ǫ(k) −R√

ǫ(k̃)| ≤ η/3.

Now pick finitely many points kl ∈ I such that for all l

min
l̃ 6=l

|kl − kl̃| ≤ 2δ.

By Corollary 3.12 we can choose j0 ∈ N large enough so that for all j ≥ j0
and for all of the finitely many kl

|R√
ǫj(kl) −R√

ǫ(kl)| ≤ η/3.
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For k ∈ I we can then pick kl ∈ I such that |k − kl| ≤ δ, and therefore, for

j ≥ j0,

|R√
ǫj(k) − R√

ǫ(k)|
≤ |R√

ǫj(k) − R√
ǫj(kl)| + |R√

ǫj(kl) −R√
ǫ(kl)| + |R√

ǫ(kl) −R√
ǫ(k)|

≤ η/3 + η/3 + η/3 = η,

i.e.,

‖R√
ǫj −R√

ǫ‖L∞(I) ≤ η.

This proves (sequential) weak* continuity of J∞ and therefore the theorem.

3.5 Further remarks

If the refractive profile n is smooth, much more is known. Especially, the
inverse problem has been studied. For example, for n in certain spaces X of

smooth functions the corresponding range of reflection coefficients, {Rn : n ∈
X}, has been characterized, and algorithms to reconstruct n from a given

reflection coefficient are known. For smooth n one can apply a variable
transformation called Liouville transformation. It transforms the Helmholtz

equation (3.1),
u′′(x) + k2n2(x)u(x) = 0,

either into a variant of the Helmholtz equation [56, 57, 58] or the Schrödinger
equation [8]. For example, to obtain the variant of the Helmholtz equation,

one sets t(x) =
∫ x

0 n(s) ds, γ(t) = n(x(t)) and v(t) = u(x(t)). Then (3.1) is
transformed into

v′′(t) + α(t)v′(t) + k2v(t) = 0,

where α(t) = γ′(t)
γ(t) . It has been shown that the scattering operator s : α 7→ R,

where R is the reflection coefficient corresponding to α, is bijective as a

mapping from L2(0,∞) to the Hardy space HE(C+), where

HE(C+) =

{
f : f analytic on C

+, sup
b>0

E(f(· + ib)) <∞, f(−k) = f(k)

}
,

and

E(f) =

∫ ∞

−∞
− log(1 − |f(x)|2) dx.
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Moreover, an algorithm to reconstruct α (and thus n) from R ∈ HE(C+) is
known, the layer-stripping method. Similarly, in the case of the Schrödinger

equation, there are results concerning the range of reflection coefficients and
methods to reconstruct the refractive profile from a given reflection coefficient

in this range [1, 8, 13, 14, 18, 21, 37, 47].
It has been attempted in [11] to use these results for the mirror design

problem, but it has turned out that the practical value is limited. First and
foremost, the involved spaces do not fit. For example, refractive profiles n
corresponding to R ∈ HE(C+) (and thus α ∈ L2(0,∞)) need not satisfy

n|R\[0,d] = 1 for some d > 0 and may therefore not be physically realizable.
Although there is a characterization of s(L2(0, B)) with B > 0 [57, Section

3] (i.e., the set of reflection coefficients corresponding to α with support in
(0, B)), this is not helpful, either. In order to make use of this, we would

need to approximate a desired reflection coefficient Rdesired by some R ∈
s(L2(0, B)). It is not quite obvious how this could be accomplished. For
example, s(L2(0, B)) is not convex.

Moreover, materials that are typically used for optical interference coat-
ings cover only a very limited range of refractive indices. This is why we

decided to use the space L∞
a,b(0, d) for refractive profiles at the beginning

of this chapter. If we take α ∈ L2(0, B), then the corresponding refractive

profile n may still take values that are too large or too small.
Finally, even if we are lucky enough to obtain a physically realizable re-

fractive profile from a reconstruction algorithm, further optimization is nec-
essary. Although the refractive index of typical coating materials is only
slightly frequency-dependent, this needs to be included in a final optimiza-

tion step. The reconstruction algorithms always yield smooth refractive pro-
files n. For optimization, n has to be approximated by a refractive profile

consisting of many very thin layers (i.e., a step function). The number of lay-
ers necessary to represent n accurately may be a few thousand. In contrast,

the more common binary structures such as in Figure 0.1 usually consist of
at most 100 or 200 layers, which makes final optimization much easier.



Chapter 4

Constrained Optimization in Hardy
Spaces: Theory

It seems that physicists do not object to rigorous proofs
provided they are rather short and simple.

E. C. Titchmarsh, Eigenfunction Expansions, Part II

In this chapter we consider the following problem.

Problem 4.1. Let g ∈ C(∂D) with g > 0, K ⊂ ∂D closed with positive

measure and ϕ ∈ C(K) such that |ϕ| ≤ g on K. Moreover, let p ∈ [1,∞].
We are interested in the optimization problem

minimize ‖f − ϕ‖Lp(K)

subject to f ∈ E,
|f | ≤ g on ∂D.

(OPTp)

Here, E is either the space H∞(D) or the space A(D). In the first case
we denote the problem by (H-OPTp), and in the second case we denote the

problem by (A-OPTp).

In some cases it may also be desirable to admit more general g. We prove
most of the theorems in this and the next chapter for continuous g and

remark only afterwards whether the assumptions on g can be weakened, how
this possibly changes the theorem, and what has to be changed about the

proof.
The motivation for considering the above problem is the following. In the

last chapter and in the introduction of this thesis we mentioned that it is
extremely hard to find a global optimum of the problem

minimize ‖Rn −Rdesired‖Lp(I)

subject to n ∈ L∞
a,b(0, d).

(R-OPTp)

65
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A general drawback of all available optimization methods is that they do

not give the user information on how close the current solution is to a global
optimum: If the current solution almost satisfies some desired specifications

arising from an application, there is no way to tell whether an algorithm
might just need another hour of CPU time to find an acceptable solution, or

whether even the global optimum of the problem (R-OPTp) does not satisfy
the desired specifications.

Our goal is now to compute a bound for the minimum of (R-OPTp).

The idea is to replace the search space of realizable reflection coefficients
{Rn : n ∈ L∞

a,b(0, d)} by a larger (but not too large) space which has nicer

properties, that is, for which it is easier to find a global (with respect to the
bigger space) minimum of the objective function. We saw in the last chapter

that the space of realizable reflection coefficients R is rather restricted: It is
necessary that R ∈ H∞(C+) (causality principle) with ‖R‖H∞(C+) ≤ 1 (no

gain of energy), see Theorem 3.19. So if we replace {Rn : n ∈ L∞
a,b(0, d)}

by the convex set {f ∈ H∞(C+) : ‖f‖H∞(C+) ≤ 1} and use the mapping
from Theorem 2.12 to transport everything from H∞(C+) to H∞(D), we

end up with the problem (H-OPTp) (with g ≡ 1, ϕ is the desired reflection
coefficient transported to H∞(D), and K is I transported to the circle).

By allowing general g ∈ C(∂D) instead of g ≡ 1, we can model addi-
tional restrictions on the reflection coefficient arising from applications. For

example, in the design of dispersion-compensating mirrors for the compres-
sion of laser pulses one might be interested in having a pump window [51],

that is, a frequency interval where the reflection coefficient is small. We can
incorporate this into our model by choosing g to be small in that particular
interval.

Moreover, the reflection coefficient R must satisfy the reality condition
R(k) = R(−k), see Theorem 3.5. However, we do not incorporate this into

(H-OPTp) since we will see in Section 4.3 that under symmetry assumptions
on ϕ, g and K the solution of (H-OPTp) also satisfies real symmetry.

We begin in Section 4.1 by proving existence (1 ≤ p ≤ ∞) and uniqueness
(1 < p < ∞) for (H-OPTp). In Section 4.2 we show that the solution of
(H-OPTp) satisfies a remarkable extremal property. From this we also deduce

uniqueness for the case p = ∞ and, under the assumption that K 6= ∂D,
the case p = 1. As just mentioned, Section 4.3 is devoted to symmetry

properties. In Section 4.4 we show that the minimum of (H-OPTp) (1 ≤ p <
∞) and the infimum of (A-OPT∞) can be approximated by polynomials.
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This is important because in numerical computations we can only work with

polynomials. In Section 4.5 we show that if K is nice enough, then the
infimum of (A-OPT∞) is equal to the minimum of (H-OPT∞). This also

makes (H-OPT∞) accessible for numerical solution.

4.1 Existence (1 ≤ p ≤ ∞) and uniqueness (1 < p <∞)

The first question we have to address is of course whether (H-OPTp) has a
solution and, if it has a solution, whether this solution is unique.

Theorem 4.2. (H-OPTp) has a solution, 1 ≤ p ≤ ∞.

Proof. Let (fn) ⊂ H∞(D) with |fn| ≤ g be a minimizing sequence∗, i.e.,
‖fn − ϕ‖Lp(K) → inff∈H∞(D), |f |≤g on ∂D ‖f − ϕ‖Lp(K). It is always possible to

choose such a sequence since the set of feasible solutions {f ∈ H∞(D) :
|f | ≤ g} is non-empty: It contains f ≡ 0. Obviously, ‖fn‖H∞(D) is bounded

independent of n (by ‖g‖L∞(∂D)). It follows that (fn) is a normal family
(see, e.g., [49]), i.e., it contains a subsequence (which we also call (fn)) that
converges uniformly on compact subsets of D to some function f ∈ H∞(D).

We use the subscript r to denote the Poisson integral of functions on the
circle, that is, fr(e

iϑ) = f(reiϑ) = 1
2π

∫ π
−π f(eit)Pr(ϑ − t) dt, where Pr is the

Poisson kernel for the disk. Using Theorem 2.3, we have

‖f − ϕ‖Lp(K) = ‖1K(f − ϕ)‖Lp(∂D)

= lim
rր1

‖(1K(f − ϕ))r‖Lp(∂D)

= lim
rր1

lim
n→∞

‖(1K(fn − ϕ))r‖Lp(∂D)︸ ︷︷ ︸
≤‖1K(fn−ϕ)‖Lp(∂D) by Thm. 2.3(b)

≤ lim inf
n→∞

‖1K(fn − ϕ)‖Lp(∂D)

= lim inf
n→∞

‖fn − ϕ‖Lp(K).

For the third equality we used that fn converges uniformly to f on compact
subsets of D and the fact that fn is the Poisson integral of its boundary
values (Theorem 2.4).

It remains to show that f is feasible, that is, |f | ≤ g. Because fn is feasible,
g − |fn| ≥ 0 on ∂D. Since the Poisson kernel is nonnegative, the Poisson

∗In this and the next chapter, we use n as an index, and not for refractive profiles. From this chapter
on, we do not deal with refractive profiles any more, so no confusion will arise.
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integrals (g − |fn|)r are nonnegative. Due to uniform convergence (g − |f |)r
is also nonnegative. From the pointwise convergence (g − |f |)r → g − |f |
a.e. as r ր 1 it follows that g − |f | is nonnegative.

Together, it follows that f is a solution of (H-OPTp).

Uniqueness is especially easy in the case 1 < p <∞.

Theorem 4.3. (H-OPTp) is uniquely solvable for 1 < p <∞.

Proof. The theorem follows directly from the fact that the norm on Lp(K)

is strictly convex for 1 < p <∞: Assume that f ∗
1 and f ∗

2 are both solutions
of (H-OPTp), i.e., they minimize ‖f − ϕ‖Lp(K) over {f ∈ H∞(D) : |f | ≤
g on ∂D}. Let τ ∗ = ‖f ∗

1 − ϕ‖Lp(K) = ‖f ∗
2 − ϕ‖Lp(K) be the minimum. Due

to convexity of the latter set, (f ∗
1 + f ∗

2 )/2 is also feasible. Suppose that
f ∗

1 6= f ∗
2 . Then due to strict convexity of the norm, ‖(f ∗

1 + f ∗
2 )/2−ϕ‖Lp(K) <

(‖f ∗
1 − ϕ‖Lp(K) + ‖f ∗

2 − ϕ‖Lp(K))/2 = τ ∗. This is a contradiction, so the
solution must be unique.

We wish to point out that so far we have not used the assumption that
|ϕ| ≤ g on K. We will see in the next section that this assumption ensures

uniqueness in the cases p = ∞ and, if additionally K 6= ∂D, p = 1.

4.2 Extremal properties and uniqueness (1 ≤ p ≤ ∞)

The solution of (H-OPTp) satisfies a remarkable extremal property.

Theorem 4.4. Let f ∗ be a solution of (H-OPTp) and τ ∗ = ‖f ∗−ϕ‖Lp(K) > 0.
If 1 ≤ p <∞, then for almost all eiϑ ∈ ∂D \K

|f ∗(eiϑ)| = g(eiϑ).

If p = ∞, then, for almost all eiϑ ∈ ∂D, f ∗(eiϑ) is on the boundary of the set

S(ϑ, τ ∗) = {z ∈ C : |z| ≤ g(eiϑ), |z − ϕ(eiϑ)| ≤ τ ∗ if eiϑ ∈ K}.

Moreover, for 1 < p ≤ ∞, the solution of (H-OPTp) is unique. If K 6= ∂D,
then the solution of (H-OPTp) is also unique for p = 1.
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Re

Im

ϕ(eiϑ)

τ ∗

g(eiϑ)

S(ϑ, τ ∗)

Figure 4.1: Theorem 4.4 says that if f ∗ is a solution of (H-OPT∞), then for a.a. eiϑ ∈
K, f ∗(eiϑ) is on the boundary of the intersection of the above two disks. Moreover, for
a.a. eiϑ ∈ ∂D \K, f ∗(eiϑ) is on the boundary of the disk {|z| ≤ g(eiϑ)}.

Remark 4.5. If τ ∗ = 0, then ϕ = f ∗|K for any solution f ∗ of (H-OPT∞).
In this case, uniqueness follows from Theorem 2.6: If f̃ is another solution,

then f̃ = f ∗ on K, so f̃ = f ∗ on ∂D. However, it is not hard to see that the
implication of Theorem 4.4 need not hold true in general if τ ∗ = 0: Given

some closed K ⊂ ∂D with λ(K) > 0 and λ(∂D\K) > 0, take any ϕ ∈ C(K)
such that ϕ is the restriction to K of some nonzero function ψ ∈ A(D) and

use g ≡ 2‖ψ‖H∞(D). The solution of (H-OPTp) with these K, ϕ and g is just
f ∗ = ψ. But clearly f ∗ < g, and in the case p = ∞, f ∗(eiϑ) is not on the
boundary of S(ϑ, 0) for almost all eiϑ ∈ ∂D.

Remark 4.6. Theorem 4.4 is a variant of a well-known result for the Nehari

problem (see, e.g., [25, Chapter IV, Theorem 1.3]): For a given function
ϕ ∈ L∞(∂D) there exists a unique best approximation f ∗ in H∞(D) (without

constraints), and |f ∗−ϕ| is a.e. constant. This means that for τ ∗ = |f ∗−ϕ| =
inff∈H∞(D) ‖f − ϕ‖L∞(∂D), f

∗(eiϑ) is on the boundary of the set {z ∈ C :

|z − ϕ(eiϑ)| ≤ τ ∗} for almost all eiϑ ∈ ∂D.

Various generalizations of the Nehari problem that have special cases in

common with (H-OPTp) have been considered. For example, if p = ∞, g is
constant on ∂D \ K and g is so large on K that the constraint |f | ≤ g is
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not active on K, then (H-OPTp) is a special case of a problem that has been

studied in the context of system identification, see [5], and also [4, 6]. An
extremal property similar to the one from Theorem 4.4 can be shown for the

solution of this problem.
Another generalization of the Nehari problem arising in H∞ control theory

has been studied quite extensively in the literature, see, e.g., [30] or [31]
and the references therein: Given a performance function Γ : ∂D × C →
[0,∞) one is interested in minimizing ‖Γ(·, f(·))‖L∞(∂D) over f ∈ H∞(D).

When Γ(eiϑ, z) = |ϕ(eiϑ) − z| for some ϕ ∈ L∞(∂D), then this is the Nehari
problem. Under certain assumptions on Γ one can prove that there is a

unique minimizer f ∗, and that Γ(eiϑ, f ∗(eiϑ)) is a.e. constant. This means
that, with τ ∗ = inff∈H∞(D) ‖Γ(·, f(·))‖L∞(∂D), f

∗(eiϑ) is on the boundary of

the set {z ∈ C : Γ(eiϑ, z) ≤ τ ∗} for almost all eiϑ ∈ ∂D. Depending on the
assumptions one puts on Γ, there are various ways to prove this (see, e.g.,

[29, 30, 31, 33]). Indeed, the main idea of our proof of Theorem 4.4 is from
the proof of [29, Theorem 1].

As it is common in convex optimization, we are going to use the Hahn-
Banach Theorem to prove Theorem 4.4. Before we can do this, we need an

auxiliary result.
Let

Sp = {f ∈ L∞(∂D) : |f | ≤ g, ‖f − ϕ‖Lp(K) ≤ τ ∗},
where τ ∗ is the minimum of (H-OPTp).

Lemma 4.7. Let 1 ≤ p ≤ ∞ and assume that τ ∗ > 0.

(a) The set Sp is convex.

(b) The interior of Sp is non-empty and disjoint from A(D).

(c) Every element of Sp is a pointwise limit of functions from Sp∩C(∂D).

Proof. There is not much to show for (a), because it is immediate from the
definition that Sp is convex. Moreover, it is clear that the interior of Sp

cannot contain any function from A(D): If there were such a function f , we

would have ‖f −ϕ‖Lp(K) < τ ∗, contradicting the definition of τ ∗. This is the
second part of (b).

By Tietze’s Extension Theorem [49, Theorem 20.4], ϕ can be extended
to a function that is continuous on ∂D. We also denote this extension by ϕ.
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We arrange it so that |ϕ| ≤ g on ∂D. Now let ǫ = τ ∗/(2‖1‖Lp(K)) and define

a(eiϑ) =

{
ϕ(eiϑ), |ϕ(eiϑ)| ≤ g(eiϑ) − ǫ,
ϕ(eiϑ)
|ϕ(eiϑ)|(g(e

iϑ) − ǫ), otherwise.

It is straightforward to prove that ‖a − ϕ‖L∞(∂D) ≤ ǫ and |a| ≤ g − ǫ. Let
v ∈ L∞(∂D) with ‖v‖L∞(∂D) ≤ ǫ. Then ‖(a+ v)−ϕ‖Lp(K) ≤ ‖2ǫ1‖Lp(K) = τ ∗

and |a+ v| ≤ g, i.e., a+ v ∈ Sp. Because τ ∗ is positive by assumption, a lies
in the interior of Sp. This finishes the proof of (b).

The proof of (c) is not particularly hard, but a little more technical. We
first consider the case 1 ≤ p < ∞. Let f ∈ Sp. Then there is a sequence

(f̃n) ⊂ C(∂D) with ‖f̃n‖L∞(∂D) ≤ ‖f‖L∞(∂D) such that f̃n → f a.e. (see, e.g.,

[49, Chapter 2]). By dominated convergence, ‖f̃n−ϕ‖Lp(K) → ‖f−ϕ‖Lp(K) ≤
τ ∗. Now set

f̃ 1
n = ϕ+ (f̃n − ϕ)

‖f − ϕ‖Lp(K)

‖f̃n − ϕ‖Lp(K)

.

Then f̃ 1
n ∈ C(∂D), f̃ 1

n → f a.e., and moreover ‖f̃ 1
n−ϕ‖Lp(K) = ‖f−ϕ‖Lp(K) ≤

τ ∗. However, it may not hold true that |f̃ 1
n| ≤ g. We therefore define

functions fn by

fn(e
iϑ) =

{
f̃ 1
n(e

iϑ), |f̃ 1
n(e

iϑ)| ≤ g(eiϑ),

ϕ(eiϑ) + µn(e
iϑ)(f̃ 1

n(e
iϑ) − ϕ(eiϑ)), otherwise,

where µn is a function on ∂D such that, if we are in the second case of the
above definition, then |fn(eiϑ)| = g(eiϑ) as in Figure 4.2. Concretely, we set
µn(e

iϑ) = 1/pϑ(f̃
1
n(e

iϑ)), where pϑ is the Minkowski functional

pϑ(z) = inf{t > 0 : |ϕ(eiϑ) + t−1(z − ϕ(eiϑ))| ≤ g(eiϑ)}.

Then fn is continuous, |fn| ≤ g, and fn → f pointwise a.e. Moreover, if
|f̃ 1
n(e

iϑ)| > g(eiϑ), then pϑ(f̃
1
n(e

iϑ)) > 1, and therefore

|fn(eiϑ) − ϕ(eiϑ)| =

∣∣∣∣∣
f̃ 1
n(e

iϑ) − ϕ(eiϑ)

pϑ(f̃ 1
n(e

iϑ))

∣∣∣∣∣ ≤ |f̃ 1
n(e

iϑ) − ϕ(eiϑ)|.

If follows that ‖fn − ϕ‖Lp(K) ≤ ‖f̃ 1
n − ϕ‖Lp(K) ≤ τ ∗, so fn ∈ Sp ∩ C(∂D).

This proves (c) for 1 ≤ p <∞.
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Re
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ϕ(eiϑ)

g(eiϑ)

fn(eiϑ)

f̃ 1

n(eiϑ)

Figure 4.2: Definition of the functions fn.

It remains to consider the case p = ∞. Let f ∈ S∞. Then we have

‖f − ϕ‖L∞(K) ≤ τ ∗. As before, there is a sequence (fKn ) ⊂ C(K) such that
fKn → f pointwise a.e. on K and ‖fKn − ϕ‖L∞(K) ≤ τ ∗, and we can arrange

it so that |fKn | ≤ g on K. By Tietze’s Extension Theorem, every fKn can
be extended to a function that is continuous on ∂D. We also denote this
extension by fKn , and we arrange it so that |fKn | ≤ g on ∂D. Similarly, there

is a sequence (f ∂D
n ) ⊂ C(∂D) such that f ∂D

n → f pointwise a.e. on ∂D, and
we arrange it so that |f ∂D

n | ≤ g on ∂D.

Now let Un ⊂ ∂D be open with K ⊂ Un and meas(Un \ K) ≤ 1
2n ,

where meas denotes Lebesgue measure on the circle. Regularity properties
of Lebesgue measure ensure that this is always possible [49]. By Urysohn’s
Lemma there is hn ∈ C(∂D) with hn ≡ 1 on K, hn ≥ 0 and supphn ⊂ Un.

Set

fn = hnf
K
n + (1 − hn)f

∂D
n .

Then fn ∈ C(∂D), fn → f a.e., and |fn| ≤ g on ∂D. Moreover, fn = fKn on
K, whence ‖fn−ϕ‖L∞(K) = ‖fKn −ϕ‖L∞(K) ≤ τ ∗. Therefore, fn ∈ S∞. This

proves (c) for p = ∞.

We are now ready to prove Theorem 4.4. Our proof goes along the lines
of the proof of [29, Theorem 2].
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Proof of Theorem 4.4. By the Hahn-Banach Theorem and properties (a) and

(b) of Lemma 4.7, there is a nonzero λ ∈ C(∂D)∗ such that

Reλ(Sp ∩ C(∂D)) ≤ Re λ(A(D)). (4.1)

Because A(D) is a linear space, we must have either Reλ(A(D)) = R or
Reλ(A(D)) = 0. But because of (4.1), Re λ(A(D)) is bounded from below,
whence

Reλ(A(D)) = 0. (4.2)

Therefore, there is a nonzero l ∈ H1
0(D) = {f ∈ H1(D) : f(0) = 0} such that

λ(f) =

∫ π

−π
f(eiϑ)l(eiϑ) dϑ

for all f ∈ C(∂D), see, e.g., [25, Chapter IV]. Using the right hand side of
the above equation, we can extend λ to all of L∞(∂D).

If f ∈ Sp, then by property (c) of Lemma 4.7, there is a sequence (fn) ⊂
Sp ∩ C(∂D) such that fn → f pointwise a.e. Because (fn) is bounded by g,
dominated convergence yields λ(fn) → λ(f). It follows from (4.1) and (4.2)

that
Reλ(f) ≤ 0 for all f ∈ Sp. (4.3)

Further, if f ∈ H∞(D), then f is the pointwise limit of functions in A(D).
This follows for example from Theorem 2.4. Dominated convergence and
(4.2) imply

Reλ(f) = 0 for all f ∈ H∞(D). (4.4)

We now prove the assertion of the theorem for the case 1 ≤ p < ∞. Let

f ∗ be a solution of (H-OPTp). Then f ∗ ∈ H∞(D) ∩ Sp. If ∂D \K has zero
measure, there is nothing to show, so we can assume that ∂D\K has positive

measure. Assume to the contrary that it is not true that |f ∗| = g a.e. on
∂D\K. Then there are a set I ⊂ ∂D\K of positive measure and ǫ > 0 such
that |f ∗| + ǫ ≤ g on I. Let h ∈ L∞(∂D) be any function with ‖h‖L∞(∂D) ≤ ǫ

and supph ⊂ I. Then f ∗ + h ∈ Sp, and

0
(4.3)

≥ Re

∫ π

−π

(
f ∗(eiϑ) + h(eiϑ)

)
l(eiϑ) dϑ

(4.4)
= Re

∫ π

−π
h(eiϑ)l(eiϑ) dϑ.

The same inequality follows for −h, ih and −ih, whence
∫ π
−π h(e

iϑ)l(eiϑ) dϑ =
0 for all h ∈ L∞(∂D). But then l = 0 on I, and Theorem 2.6 implies l = 0
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on ∂D. This is a contradiction to l 6= 0. Therefore, it must hold true that

|f ∗| = g a.e. on ∂D \K.

The statement for the case p = ∞ follows with a similar argument.

From Theorem 4.3 we already know that the solution of (H-OPTp) is
unique for 1 < p < ∞. For p = ∞, uniqueness follows from the fact that

the sets S(ϑ, τ ∗) are strictly convex for all ϑ: If f ∗
1 and f ∗

2 are both solutions
of (H-OPT∞), then (f ∗

1 + f ∗
2 )/2 is also a solution of (H-OPT∞), because the

norm ‖ · ‖L∞(K) is convex. Because the sets S(ϑ, τ ∗) are strictly convex and
f ∗
j (e

iϑ) is on the boundary of S(ϑ, τ ∗) for almost all eiϑ, j = 1, 2, it follows

that f ∗
1 = f ∗

2 . If p = 1 and K 6= ∂D, then ∂D \ K is nonempty and open
and therefore has positive measure. Uniqueness then follows in the same way
from the fact that the sets {z ∈ C : |z| ≤ g(eiϑ)} are strictly convex for all

eiϑ ∈ ∂D \K.

Remark 4.8. Theorem 4.4 still holds true if we admit more general g in
Problem 4.1, for example, if g is continuous up to finitely many jump dis-

continuities. We only used the continuity of g in the proof of Lemma 4.7(c).
In order to prove Theorem 4.4 for this case, one has to adapt that proof. We

leave out the details, because they are technical and do not add any insight.

The following example demonstrates that Theorem 4.4 need not hold true
if we drop the assumption that |ϕ| ≤ g on K.

Example 4.9. Let K = ∂D, ϕ(eiϑ) = 2 and g(eiϑ) = |2 + eiϑ|. Then
the solution of (H-OPT∞) is not unique, and also the extremal property

from Theorem 4.4 is not satisfied. Indeed, because g(eiπ) = 1, we have
minf∈H∞(D), |f |≤g ‖f − ϕ‖L∞(K) ≥ 1. On the other hand, let f0(e

iϑ) = 1,

f1(e
iϑ) = 2 + eiϑ and fλ(e

iϑ) = λf0(e
iϑ) + (1 − λ)f1(e

iϑ). Then fλ is feasible
for (H-OPT∞), 0 ≤ λ ≤ 1, and ‖fλ − ϕ‖L∞(K) = 1. Thus, the solution of

(H-OPT∞) is not unique. Further, fλ does not satisfy the extremal property
from Theorem 4.4 for 0 < λ < 1.

The reason why the proof of Theorem 4.4 fails if we drop the assumption
|ϕ| ≤ g on K is that the set S∞ may have empty interior, i.e., S∞ may

not satisfy property (b) from Lemma 4.7. Indeed, in Example 4.9 this is
the case because of the singularity at ϑ = π, see Figure 4.3. However, one

can show that S∞ satisfies the conditions from Lemma 4.7 under additional
assumptions, for example, if τ ∗ satisfies τ ∗ > supeiϑ∈∂D |ϕ(eiϑ)| − g(eiϑ).



4.2. EXTREMAL PROPERTIES AND UNIQUENESS (1 ≤ P ≤ ∞) 75

0
pi/2

pi
3/2 pi

2 pi

0

1

2

3

4

−2

−1

0

1

2

Re

θ

Im

Figure 4.3: In Example 4.9, functions from the set S∞ take values in the above tube. The
set S∞ has empty interior because of the singularity at ϑ = π. The straight black line is ϕ,
and the other black curve is f1.

Remark 4.10. Under some additional assumptions on g and ϕ we can obtain
a continuity result. Recall that a function f defined on ∂D is called Dini

continuous if for some ǫ > 0 it holds that

∫ ǫ

0

ωf(t)

t
dt <∞,

where

ωf(δ) = sup{|f(eiϑ) − eit| : |ϑ− t| < δ}

is the modulus of continuity of f . Moreover, recall that for f ∈ L∞(∂D) the
essential range of f near eiϑ is the set

ess ran(f, eiϑ) =

{
z ∈ C :

f−1(Bǫ1(z)) ∩ ei[ϑ−ǫ2,ϑ+ǫ2] has positive
Lebesgue measure for all ǫ1, ǫ2 > 0

}
.

Here, Bǫ(z) = {w ∈ C : |z − w| < ǫ} denotes a ball in C.

Assume that g and ϕ are Dini continuous. Let f ∗ be the solution of
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(H-OPT∞) and assume that τ ∗ = ‖f ∗ − ϕ‖L∞(K) > 0. Let

Γ1 = {eiϑ ∈ ∂D : ess ran(f ∗, eiϑ) ⊂ ∂Bτ∗(ϕ(eiϑ))},
Γ2 = {eiϑ ∈ ∂D : ess ran(f ∗, eiϑ) ⊂ Bg(eiϑ)(0)}.

By Theorem 4.4 we especially have ∂D \ K ⊂ Γ2. Using the techniques
from Hui [33], one can show that f ∗ is continuous on Γ◦

1 and Γ◦
2, where the

little circle denotes the interior of a set. A result of Chirka [16, Theorem
33] then implies that if ϕ ∈ Ck(K) and g ∈ Ck(∂D), k ≥ 2, then f ∗ ∈
Ck−1,1−ǫ(Γ◦

1 ∪ Γ◦
2 ∪ D) for any ǫ > 0.

We do not know whether under the above assumptions f ∗ is also con-
tinuous on all of K◦. The difficulty that arises when one tries to apply the

techniques from [33] is that for some eiϑ ∈ K the boundary of the set S(ϑ, τ ∗)
is not an analytic curve.

4.3 Symmetry

Let us address the question when the solution of (H-OPTp) is real symmetric,

that is, f ∗(eiϑ) = f ∗(e−iϑ) for all eiϑ ∈ ∂D. This is important since we know

that the reflection coefficient for the Helmholtz equation is real symmetric.

Theorem 4.11. Assume that K = K and that ϕ and g are real symmetric.
If 1 < p ≤ ∞, then the solution of (H-OPTp) is real symmetric. If p = 1,

then there is a real symmetric solution.

Proof. Let f ∗ be a solution of (H-OPTp). From the assumptions it follows

that the function f̃(eiϑ) = f ∗(e−iϑ) is also a solution of (H-OPTp). If 1 <

p ≤ ∞, then uniqueness implies f̃ = f ∗, i.e., f ∗ is real symmetric. If p = 1,

then note that (f ∗ + f̃)/2 is real symmetric, feasible for (H-OPTp) and

‖(f ∗ + f̃)/2−ϕ‖L∞(K) ≤
1

2
‖f ∗−ϕ‖L∞(K) +

1

2
‖f̃ −ϕ‖L∞(K) = ‖f ∗−ϕ‖L∞(K).

Thus, (f ∗ + f̃)/2 is a real symmetric solution of (H-OPTp).

4.4 Approximation by smooth functions, 1 ≤ p <∞
In numerical computations we cannot work with general functions from

H∞(D), but only with polynomials. In this section we show that the min-
imum of (H-OPTp) (1 ≤ p < ∞) and the infimum of (A-OPT∞) can be
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approximated by polynomials (Theorem 4.13). It follows especially that the

infimum of (A-OPTp) is equal to the minimum of (H-OPTp) for 1 ≤ p <∞.
In Section 4.5 we will show that under additional assumptions this is also

true in the case p = ∞.
We begin with a lemma which states that functions that are feasible for

(H-OPTp) (or (A-OPT∞)) can be approximated by polynomials that are
feasible for (H-OPTp) (or (A-OPT∞)).

Lemma 4.12. Let either 1 ≤ p < ∞ and f ∗ ∈ Hp(D) or p = ∞ and f ∗ ∈
A(D). Assume that |f ∗| ≤ g on ∂D. Then there is a sequence (fn) ⊂ A(D)

with |fn| ≤ g on ∂D such that

‖fn − f ∗‖Lp(∂D) → 0 as n→ ∞. (4.5)

Furthermore, we may even arrange it for the fn to be polynomials, that is,

to be of the form

fn(e
iϑ) =

Nn−1∑

k=0

αNn,ke
ikϑ. (4.6)

If f ∗ is real symmetric, then we can arrange it for the fn to be real symmetric,
that is, to have real coefficients αNn,k.

Proof. We first show that there is a sequence (fn) that satisfies (4.5). In

the case p = ∞ we can simply take fn = f ∗, so we only have to consider
the case p < ∞. For 0 < r < 1 let f ∗

r be the Poisson integral f ∗
r (e

iϑ) =
1
2π

∫ π
−π f

∗(eit)Pr(ϑ− t) dt. We then have f ∗
r ∈ A(D) and ‖f ∗

r − f ∗‖Lp(∂D) → 0
as r ր 1 by Theorem 2.3, but it might not be true that |f ∗

r | ≤ g on ∂D.

We are going to construct sequences (rn) with rn ր 1 and (ηn) with ηn → 1
such that fn = ηnf

∗
rn

satisfies |fn| ≤ g on ∂D. It then follows that

‖fn − f ∗‖Lp(∂D) = ‖ηnf ∗
rn − f ∗‖Lp(∂D)

≤ ‖f ∗
rn
− f ∗‖Lp(∂D) + |1 − ηn|‖f ∗

rn
‖Lp(∂D) → 0

as n→ ∞, since ‖f ∗
rn‖Lp(∂D) is bounded by ‖f ∗‖Lp(∂D) (see Theorem 2.3).

Fix ǫ > 0. Because g is uniformly continuous on ∂D, there is δ > 0 such
that |ϑ − t| ≤ δ implies |g(eiϑ) − g(eit)| ≤ ǫ/2. Furthermore, as r ր 1, Pr
becomes increasingly concentrated at 0 so that there is ̺ < 1 such that for
all r ∈ [̺, 1)

max
t∈[−π,π]\[−δ,δ]

|Pr(t)| < (ǫ/2)

(
1

2π

∫ π

−π
|g(eiϑ)| dϑ

)−1

.
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Now for r ∈ [̺, 1)

|f ∗
r (e

iϑ)| =

∣∣∣∣
1

2π

∫ π

−π
f ∗(ei(ϑ−t))Pr(t) dt

∣∣∣∣

≤
∣∣∣∣

1

2π

∫

[−δ,δ]
f ∗(ei(ϑ−t))Pr(t) dt

∣∣∣∣+
∣∣∣∣

1

2π

∫

[−π,π]\[−δ,δ]
f ∗(ei(ϑ−t))Pr(t) dt

∣∣∣∣

≤ max
t∈[ϑ−δ,ϑ+δ]

|f ∗(eit)| +
(

max
t∈[−π,π]\[−δ,δ]

|Pr(t)|
)(

1

2π

∫ π

−π
|f ∗(eit)| dt

)
.

For the last inequality we used that Pr is positive and 1
2π

∫ π
−π Pr(t) dt = 1.

Since |f ∗| ≤ g,

|f ∗
r (e

iϑ)| ≤ max
t∈[ϑ−δ,ϑ+δ]

|g(eit)| +
(

max
t∈[−π,π]\[−δ,δ]

|Pr(t)|
)(

1

2π

∫ π

−π
|g(eit)| dt

)
,

and therefore

|f ∗
r (e

iϑ)| ≤ (g(eiϑ) + ǫ/2) + ǫ/2 = g(eiϑ) + ǫ.

We have just shown that for an arbitrary ǫ > 0 there is ̺ = ̺(ǫ) < 1 such
that for all r ∈ [̺, 1), |f ∗

r | ≤ g + ǫ.
To finish the proof of (4.5), let (ǫn) be a sequence of positive real numbers

with ǫn → 0. Choose rn ≥ ̺(ǫn) such that rn ր 1. Then

|f ∗
rn| ≤ g + ǫn ≤

(
1 +

ǫn
mineiϑ∈∂D g(eiϑ)

)
g.

Set ηn =
(
1 + ǫn

mineiϑ∈∂D
g(eiϑ)

)−1

. Then ηn → 1, and |fn| = |ηnf ∗
rn
| ≤ g, and

of course fn is in A(D). We have already seen that ‖fn − f ∗‖Lp(∂D) → 0 as
n → ∞.

It remains to show that there is a sequence of functions that also satisfies
(4.6). Since fn is continuous, there is a polynomial f̃n such that ‖f̃n −
fn‖L∞(∂D) ≤ ǫn. Notice that if f ∗ is real symmetric, then fn is real symmetric:
In the case p <∞ this is due to the symmetry of the Poisson kernel. In the
case p = ∞ we chose fn = f ∗, so fn is trivially real symmetric. If fn is real

symmetric, we can also choose the polynomial f̃n to be real symmetric. Using
the same argument as before, we can find a sequence (ηn) of real numbers

with ηn → 1 such that ηnf̃n satisfies |ηnf̃n| ≤ g on ∂D. Then

‖ηnf̃n − fn‖Lp(∂D) ≤ ηn‖f̃n − fn‖Lp(∂D) + (1 − ηn)‖fn‖Lp(∂D) → 0,

and therefore (ηnf̃n) satisfies (4.5) and (4.6).



4.4. APPROXIMATION BY SMOOTH FUNCTIONS, 1 ≤ P <∞ 79

From the preceding lemma it follows that the minimum of (H-OPTp), 1 ≤
p <∞, and the infimum of (A-OPT∞) can be approximated by polynomials.

Theorem 4.13. If 1 ≤ p <∞, then there is a sequence (fn) of polynomials
of the form (4.6) with |fn| ≤ g such that

‖fn − ϕ‖Lp(K) → min
f∈H∞(D), |f |≤g

‖f − ϕ‖Lp(K) as n→ ∞.

If p = ∞, then there is a sequence (fn) of polynomials of the form (4.6) with

|fn| ≤ g such that

‖fn − ϕ‖L∞(K) → inf
f∈A(D), |f |≤g

‖f − ϕ‖L∞(K) as n→ ∞.

If K = K and ϕ and g are real symmetric, then we can arrange it for the fn
to be real symmetric.

Proof. Use Lemma 4.12. If 1 ≤ p < ∞, then the assertion about real sym-
metry follows with Theorem 4.11. If p = ∞, then use that under the given

symmetry assumptions the infimum can always be approximated by real sym-
metric functions using the argument from the proof of Theorem 4.11.

If g is not continuous, then the following version of Theorem 4.13 still
holds true.

Theorem 4.14. Let 1 ≤ p ≤ ∞. Suppose that instead of g ∈ C(∂D) we
have g ∈ L∞(∂D) with infeiϑ∈∂D g(e

iϑ) > 0. Then there is a sequence (fn) of
polynomials of the form (4.6) with |fn| ≤ g such that

‖fn − ϕ‖Lp(K) → inf
f∈A(D), |f |≤g

‖f − ϕ‖Lp(K) as n→ ∞.

If K = K and ϕ and g are real symmetric, then we can arrange it for the fn
to be real symmetric.

Proof. Fix ǫ > 0. Pick f ∗ ∈ A(D) with |f ∗| ≤ g and

‖f ∗ − ϕ‖Lp(K) ≤ inf
f∈A(D), |f |≤g

‖f − ϕ‖Lp(K) + ǫ/2.

Let g̃ ∈ C(∂D) such that |f ∗| ≤ g̃ ≤ g and inf g̃ > 0. We can for example

take g̃(eiϑ) = max{|f ∗(eiϑ)|, inf g}. By Lemma 4.12 there is a polynomial f̃
of the form (4.6) such that |f̃ | ≤ g̃ and ‖f̃ − f ∗‖Lp(∂D) < ǫ/2. Together,

‖f̃ − ϕ‖Lp(K) ≤ ‖f ∗ − ϕ‖Lp(K) + ǫ/2 ≤ inf
f∈A(D), |f |≤g

‖f − ϕ‖Lp(K) + ǫ.

This proves the first part of the theorem. The part about real symmetry can
be seen as before.
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4.5 Approximation by smooth functions, p = ∞

In the last section we saw that in the case 1 ≤ p < ∞, the infimum of
(A-OPTp) is equal to the minimum of (H-OPTp). In this section we show

that under additional assumptions this is still true for p = ∞. This whole
section is devoted to the proof of

Theorem 4.15. Assume that K is the disjoint union of finitely many inter-

vals of positive length, i.e., K =
⋃n
j=1Kj, where Kj = ei[λj ,ρj ] for some

λj < ρj. Then the infimum of (A-OPT∞) is equal to the minimum of

(H-OPT∞).

As far as practice is concerned, the assumption that K is the union of
finitely many intervals is not strong. It is satisfied in all of the examples

coming from practice that we consider in Chapter 5. Moreover, if this ad-
ditional assertion of Theorem 4.15 is satisfied, then it follows together with

Theorem 4.13 that the minimum of (H-OPT∞) can even be approximated
by polynomials.

The proof of Theorem 4.15 is rather technical and lengthy. We divide it

into several lemmas. Before we start with the proof, we try to give an idea
of the structure.

• Lemmas 4.16 and 4.17 deal with the construction and properties of

certain analytic functions ψδ mapping D into D, see Figure 4.4. The
important properties are that ψδ converges uniformly to the identity as
δ → 0 and that ψδ(e

iϑ) converges tangentially to eiϑ for certain points

eiϑ ∈ ∂D.

• The idea is to consider f ∗ ◦ ψδ, where f ∗ is the solution of (H-OPT∞),
i.e., ‖f ∗ − ϕ‖L∞(K) = minf∈H∞(D), |f |≤g ‖f − ϕ‖L∞(K) = τ ∗. Importantly,

f ∗ ◦ ψδ ∈ A(D). In Lemma 4.19 we prove that lim supδ→0 ‖f ∗ ◦ ψδ −
ϕ‖L∞(K) ≤ τ ∗. Tangential convergence of ψδ at certain points is a crucial

ingredient of the proof.

• This does not prove Theorem 4.15 yet, since f ∗ ◦ψδ may not be feasible
for (A-OPT∞), i.e., we may not have |f ∗ ◦ ψδ| ≤ g. However, we can

multiply f ∗ ◦ ψδ by some positive η such that η(f ∗ ◦ ψδ) is feasible
for (A-OPT∞) and η = η(δ) → 1 as δ → 0. It will turn out that
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‖η(δ)(f ∗ ◦ ψδ) − ϕ‖L∞(K) converges to the minimum of (H-OPT∞) as

δ → 0, which finishes the proof of Theorem 4.15.

In the following, we use the multivalued complex argument function that
maps a complex number z with polar representation z = reiϑ, r > 0, ϑ ∈ R,

to the set ϑ + 2πZ. The advantage of using the multivalued argument is
that rules like arg(zw) = arg z + argw, z, w ∈ C \ {0}, hold, which are more
tedious to write down if one restricts the argument, e.g., to [−π, π). However,

we do not make this explicit in our notation, i.e., we write arg z = ϑ instead
of arg z = ϑ + 2πZ. We also write arg z ∈ I to express that there is some

ϑ ∈ arg z with ϑ ∈ I.

After this sort of small talk we finally start with the proof of Theorem 4.15.

Lemma 4.16. Let p : ∂D → [0,∞) be Lipschitz continuous and let

h(z) =
1

2π

∫ 2π

0

eiϑ + z

eiϑ − z
p(eiϑ) dϑ, z ∈ D.

For δ ∈ (0, 1) let Fδ(z) = z(1 − δh(z)) and let

ψδ(z) =
Fδ(z)

‖Fδ‖H∞(D)
(1 − δ2).

Then the following statements hold true.

(a) ψδ ∈ A(D) and ψδ(D) ⊂ D.

(b) ψδ converges uniformly to the identity as δ → 0. More precisely, there

is a constant C > 0 such that maxz∈D |ψδ(z) − z| ≤ Cδ, δ ∈ (0, 1).

(c) If Reh(eiϑ) = 0 and Im h(eiϑ) 6= 0, then ψδ(e
iϑ) → eiϑ tangentially as

δ → 0. More precisely,

argψδ(e
iϑ) = ϑ+ arctan

(
−δ Im h(eiϑ)

)
,

and there are δ0 > 0 and C > 0 such that for δ ∈ (0, δ0) and for all eiϑ

with Reh(eiϑ) = 0 and Im h(eiϑ) 6= 0

∣∣1 − |ψδ(eiϑ)|
∣∣ ≤ Cδ2.
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Figure 4.4: Top: The bold curves on the circle ∂D comprise some set K. The curve inside
the circle is ψδ(∂D) with δ = 0.1. The function h that is needed in the construction of ψδ

is 1 on some subset of K, 0 on ∂D \ K and linear in between. Bottom: The curce inside
the circle show where ψδ maps the boundary points of K when δ varies between 0.5 and 0.
The curces approach the boundary points of K tangentially to the unit circle and from the
interior of the cone {λK : λ ≥ 0}.
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Our definition of the function Fδ is inspired by a result of Nehari [44,

Chapter V.11] concerning conformal mapping from the unit disk to nearly
circular domains. To the reader not too familiar with Hardy spaces we should

point out that the real part of the function h is the Poisson integral of p,
and especially Reh = p on ∂D.

Proof. From the basic theory of Hardy spaces it is well-known that h is

analytic on D. Moreover, since p is Lipschitz continuous, h ∈ A(D), see, e.g.,
[25, Corollary III.1.4]. (Continuity of h actually follows already if p is only

Dini continuous, but we are not going to use that.) Therefore ψδ ∈ A(D).
From the definition of ψδ it is clear that ψδ(D) ⊂ D. This is (a).

In order to see (b), notice first that (1 − δ|h(z)|)|z| ≤ |Fδ(z)| ≤ (1 +

δ|h(z)|)|z| implies

|1 − ‖Fδ‖H∞(D)| ≤ δ‖h‖H∞(D).

Then

|ψδ(z) − z| ≤ |Fδ(z) − z| +
∣∣∣∣

1 − δ2

‖Fδ‖H∞(D)
− 1

∣∣∣∣ |Fδ(z)|

≤ δ|zh(z)| +
∣∣1 − δ2 − ‖Fδ‖H∞(D)

∣∣ |Fδ(z)|
‖Fδ‖H∞(D)

≤ δ‖h‖H∞(D) + δ2 + |1 − ‖Fδ‖H∞(D)|
≤ (2‖h‖H∞(D) + 1)δ.

This is (b) with C = 2‖h‖H∞(D) + 1.

It remains to prove (c). For any eiϑ ∈ ∂D

argψδ(e
iϑ) = argFδ(e

iϑ) = arg
(
eiϑ(1 − δh(eiϑ))

)

= ϑ+ arg
(
1 − δh(eiϑ)

)
= ϑ+ arctan

( −δ Im h(eiϑ)

1 − δReh(eiϑ)

)
.

Let especially Reh(eiϑ) = 0 and Im h(eiϑ) 6= 0. Then

(
argψδ(e

iϑ)
)
− ϑ = arctan

(
−δ Im h(eiϑ)

)
,

which converges linearly to zero as δ → 0. This is the first assertion of (c).

Since Reh is the Poisson integral of p and since p ≥ 0 on ∂D, we have
Reh ≥ 0 on D, i.e., h only takes values in {Re z ≥ 0}. Then for z ∈ D and
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δ ≤ 2
‖Reh‖L∞(∂D)

|Fδ(z)| = |z||1 − δh(z)| ≤
√

|1 − δReh(z)|2 + δ2(Imh(z))2

≤
√

1 + δ2(Im h(z))2 ≤ 1 + δ2 (Imh(z))2

2

≤ 1 + δ2
‖ Imh(z)‖2

L∞(∂D)

2
.

(4.7)

Both the condition for δ and the fact h only takes values in {Re z ≥ 0}
were needed for the second inequality. Moreover, if Re h(eiϑ) = 0, then

|Fδ(eiϑ)| =
√

1 + δ2(Im h(z))2 ≥ 1, whence ‖Fδ‖H∞(D) ≥ 1. Therefore,

∣∣1 − |ψδ(eiϑ)|
∣∣ = 1 − |Fδ(eiϑ)|

‖Fδ‖H∞(D)
(1 − δ2)

=
‖Fδ‖H∞(D) − (1 − δ2)

√
1 + δ2(Imh(eiϑ))2

‖Fδ‖H∞(D)

≤ ‖Fδ‖H∞(D) − (1 − δ2)

(4.7)

≤ δ2

(
‖ Imh(z)‖2

L∞(∂D)

2
+ 1

)
,

which converges quadratically to zero as δ → 0. The second assertion of

(c) therefore holds true with C =
‖ Imh(z)‖2

L∞(∂D)

2
+ 1. To summarize, we have

proved that the argument of ψδ(e
iϑ) converges linearly as δ → 0, while its

modulus converges quadratically. This means that ψδ(e
iϑ) → eiϑ tangentially.

We are going to apply Lemma 4.16 to a certain function p which we
construct in the following lemma.

Lemma 4.17. There is a Lipschitz continuous function p : ∂D → [0,∞)

such that

h(z) =
1

2π

∫ 2π

0

eiϑ + z

eiϑ − z
p(eiϑ) dϑ

satisfies Im h(eiλj) < 0, Imh(eiρj) > 0 and Reh(eiϑ) = 0 for eiϑ in some
neighborhood of the points eiλ1, . . . , eiλn and eiρ1, . . . , eiρn.
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Proof. We begin with some simple estimates. First of all, recall from basic

theory of Hardy spaces that for Lipschitz continuous p

Imh(eiϑ) =
1

2π

∫ π

−π
p(ei(ϑ−t)) cot(t/2) dt,

where the integral exists as a principal value integral (see, e.g., [32, Chap-
ter 6]). Now assume that p : ∂D → [0,∞) is some Lipschitz continuous

function with 0 ≤ p ≤ 1, supp p ⊂ ei[0,σ] for some 0 < σ ≤ π, and p(eiϑ) = 1
for ϑ ∈ [ǫ, σ − ǫ] for some small ǫ > 0. Then we have the estimate

Im h(ei0) =
1

2π

∫ π

−π
p(e−it) cot(t/2) dt =

1

2π

∫ 0

−σ
p(e−it) cot(t/2) dt

≤ 1

2π

∫ −ǫ

−σ+ǫ

cot(t/2) dt = −1

π
ln

(
sin((σ − ǫ)/2)

sin(ǫ/2)

)
.

(4.8)

Notice that we used σ ≤ π for the inequality so that cot(t/2) ≤ 0 for t ∈
[−σ, 0]. Similarly,

Im h(eiσ) ≥ 1

π
ln

(
sin((σ − ǫ)/2)

sin(ǫ/2)

)
. (4.9)

Moreover, if eiϑ ∈ ∂D such that p = 0 on ei[ϑ−η,ϑ+η] for some η > 0, then

| Im h(eiϑ)| =
1

2π

∣∣∣∣
∫ π

−π
p(ei(ϑ−t)) cot(t/2) dt

∣∣∣∣

≤ 1

π

∫ π

η

cot(t/2) dt = −2

π
ln(sin(η/2)).

(4.10)

We are now going to construct a function p that satisfies all of the asser-

tions of the lemma. Without loss of generality we can assume that |Kj| ≤ π
for all j. If this is not true, we can apply a Möbius transformation. Let

d0 = minj 6=l dist(Kj, Kl) and M = − 2
π ln(sin(d0/2)). Let ǫ > 0 be so small

that for all j ∈ {1, . . . , n}
1

π
ln

(
sin((|Kj| − ǫ)/2)

sin(ǫ/2)

)
≥ nM. (4.11)

For each j let pj be a Lipschitz continuous function on ∂D such that supp pj ⊂
Kj = ei[λj ,ρj ], 0 ≤ pj ≤ 1 and pj = 1 on ei[λj+ǫ,ρj−ǫ]. Then p =

∑n
j=1 pj satisfies

all of the assertions of the lemma. Indeed, let

hj(z) =
1

2π

∫ 2π

0

eiϑ + z

eiϑ − z
pj(e

iϑ) dϑ
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By (4.10) we have for every j ∈ {1, . . . , n}
∣∣∣∣∣∣

∑

l 6=j
Im hl(e

iλj)

∣∣∣∣∣∣
≤ (n− 1)M and

∣∣∣∣∣∣

∑

l 6=j
Im hl(e

iρj)

∣∣∣∣∣∣
≤ (n− 1)M,

(4.12)

and by (4.8), (4.9) and (4.11) we have

Im hj(e
iλj) ≤ −nM and Im hj(e

iρj) ≥ nM. (4.13)

(4.12) and (4.13) together give

Im h(eiλj) ≤ −M and Im h(eiρj) ≥M.

Concerning the statement about the real part of h, we use that we have some
freedom left in the construction. We can choose the pj such that pj = 0 for

all j in some small neighborhood of the points eiλ1, . . . , eiλn and eiρ1, . . . , eiρn.
The statement then follows from the fact that Reh(eiϑ) = p(eiϑ) for all
eiϑ ∈ ∂D.

The following lemma seems quite obvious to us, but we are not aware of

any reference. We therefore prove it for the convenience of the reader. Recall
that for f ∈ L∞(∂D) the essential range of f on a measurable set I ⊂ ∂D is

ess ran(f, I) =

{
z ∈ C :

f−1(Bǫ(z)) ∩ I has positive Lebesgue

measure for all ǫ > 0

}
.

Here, Bǫ(z) = {w ∈ C : |z−w| < ǫ} denotes a ball in C. For example, if f is

continuous and I is a closed interval, then the essential range conincides with
the classical range, i.e., ess ran(f, I) = f(I) = {f(eiϑ) : eiϑ ∈ I}. However,

it is clear that the last expression does not make any sense for functions
from L∞(∂D). Further, when ei[ϑ1,ϑ2] is an interval on ∂D, we also write
ess ran(f, [ϑ1, ϑ2]) instead of ess ran(f, ei[ϑ1,ϑ2]) for simplicity of notation.

Lemma 4.18. Let f ∈ H∞(D). Then for any ǫ > 0 there is δ > 0 such that
if z ∈ D and eiϑ ∈ ∂D with |z − eiϑ| ≤ δ, then

f(z) ∈ conv(ess ran(f, [ϑ− ǫ, ϑ+ ǫ])) + Bǫ(0).

Proof. Fix some ǫ > 0. Let δ > 0 such that arg eiBδ(0) ⊂ [− ǫ
2,

ǫ
2] and such

that for all r ∈ (1 − δ, 1)
∣∣∣∣∣1 − 1

1
2π

∫
[−ǫ/2,ǫ/2]Pr(t) dt

∣∣∣∣∣ ≤
ǫ

2‖f‖H∞D)
(4.14)
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and
1

2π

∫

[−π,π]\[−ǫ/2,ǫ/2]

Pr(t) dt ≤ ǫ

2‖f‖H∞D)
. (4.15)

This is possible, because the Poisson kernel is an approximate identity.

Now let z ∈ D and eiϑ ∈ ∂D with |z − eiϑ| ≤ δ and write z = reiτ with
r ≥ 0 and τ ∈ R. Notice that r ∈ (1 − δ, 1). Then

f(z) =
1

2π

(∫

[−ǫ/2,ǫ/2]

+

∫

[−π,π]\[−ǫ/2,ǫ/2]

f(ei(τ−t))Pr(t) dt

)
=: I1 + I2. (4.16)

For the second integral it follows from (4.15) that

|I2| ≤
ǫ

2
. (4.17)

For the first integral we have

I1 =

(
1

1
2π

∫
[−ǫ/2,ǫ/2]Pr(t) dt

)
1

2π

∫

[−ǫ/2,ǫ/2]

f(ei(τ−t))Pr(t) dt

+

(
1 − 1

1
2π

∫
[−ǫ/2,ǫ/2]Pr(t) dt

)
1

2π

∫

[−ǫ/2,ǫ/2]

f(ei(τ−t))Pr(t) dt

=: I ′1 + I ′′1 .

(4.18)

From (4.14) we get

|I ′′1 | ≤
ǫ

2
. (4.19)

Since Pr ≥ 0 and

(
1

1
2π

∫
[−ǫ/2,ǫ/2]

Pr(t) dt

)
1
2π

∫
[−ǫ/2,ǫ/2]Pr(t) dt = 1, it follows that

I ′1 ∈ conv(ess ran(f, [τ − ǫ/2, τ + ǫ/2])).

From arg eiBδ(0) ⊂ [− ǫ
2
, ǫ

2
] it follows that τ = arg z ∈ [ϑ − ǫ

2
, ϑ + ǫ

2
], whence

[τ − ǫ/2, τ + ǫ/2] ⊂ [ϑ− ǫ, ϑ+ ǫ]. Therefore,

I ′1 ∈ conv(ess ran(f, [ϑ− ǫ, ϑ+ ǫ])). (4.20)

Now (4.16)–(4.20) together yield

f(z) = I ′1 + I ′′1 + I2 ∈ conv(ess ran(f, [ϑ− ǫ, ϑ+ ǫ])) + Bǫ(0).
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A big step towards the proof of Theorem 4.15 is

Lemma 4.19. Let h be a function with the properties from Lemma 4.17. For
δ > 0 let ψδ be constructed from h as in Lemma 4.16. Let f ∗ be the solution

of (H-OPT∞) and τ ∗ = ‖f ∗ − ϕ‖L∞(K). Then

lim sup
δ→0

‖f ∗ ◦ ψδ − ϕ‖L∞(K) ≤ τ ∗.

Proof. Fix ǫ > 0. Write h = u+ iv. Let δ0 > 0 be so small that

|t| ≤ 2δ0‖v‖L∞(∂D) ⇒ |ϕ(ei(ϑ+t)) − ϕ(eiϑ)| ≤ ǫ

2
. (4.21)

By the properties of h from Lemma 4.17 there is η > 0 such that for all
ϑ ∈

⋃n
j=1[λj, λj + η] we have u(eiϑ) = 0 and v(eiϑ) ≤ m < 0 for some m.

Since v is bounded away from zero, there is a constant C1 > 0 such that for

0 < δ ≤ δ0 and all ϑ ∈
⋃n
j=1[λj, λj + η]

C1δ ≤ arctan(−δv(eiϑ)) ≤ ‖v‖L∞(∂D)δ. (4.22)

Now let ϑ ∈ [λj, λj + η] for some j and 0 < δ ≤ δ0. Write ψδ(e
iϑ) = reiτ

with r ≥ 0 and real τ . Then

|(f ∗ ◦ ψδ)(eiϑ) − ϕ(eiϑ)|

= |f ∗(reiτ) − ϕ(eiϑ)| =
1

2π

∣∣∣∣
∫ π

−π
(f ∗(ei(τ−t)) − ϕ(eiϑ))Pr(t) dt

∣∣∣∣

≤ 1

2π

(∫

[−C1δ,C1δ]

+

∫

[−π,π]\[−C1δ,C1δ]

|f ∗(ei(τ−t)) − ϕ(eiϑ)|Pr(t) dt

)
.

(4.23)

We estimate the first integral. Let |t| ≤ δC1. From Lemma 4.16(c) we have

(τ − t) − ϑ = arctan(−δv(eiϑ)) − t (mod 2π). (4.24)

Further,

| arctan(−δv(eiϑ)) − t|
(4.22)

≤ (‖v‖L∞(∂D) + C1)δ ≤ 2δ0‖v‖L∞(∂D).

Now (4.21) implies |ϕ(ei(τ−t)) − ϕ(eiϑ)| ≤ ǫ
2, so

|f ∗(ei(τ−t)) − ϕ(eiϑ)| ≤ |f ∗(ei(τ−t)) − ϕ(ei(τ−t))| + |ϕ(ei(τ−t)) − ϕ(eiϑ)|
≤ |f ∗(ei(τ−t)) − ϕ(ei(τ−t))| + ǫ

2
.

(4.25)
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We now show that ei(τ−t) ∈ Kj = ei[λj ,ρj ] for δ small enough. From (4.24)

we have τ − t = ϑ + arctan(−δv(eiϑ)) − t (mod 2π). Now let δ1 > 0 be so
small that η + (C1 + ‖v‖L∞(∂D))δ1 ≤ |Kj| for all j and assume further that

0 < δ ≤ δ1. Then by choice of ϑ, (4.22) and choice of t

ϑ+ arctan(−δv(eiϑ)) − t ∈ [λj, λj + η] + [C1δ, ‖v‖L∞(∂D)δ] + [−C1δ, C1δ]

= [λj, λj + η + (C1 + ‖v‖L∞(∂D))δ]

⊂ [λj, ρj].

It follows that ei(τ−t) ∈ Kj. By assumption, ‖f ∗ − ϕ‖L∞(K) ≤ τ ∗, so

|f ∗(ei(τ−t)) − ϕ(ei(τ−t))| ≤ τ ∗. (4.26)

(4.25) and (4.26) together give

|f ∗(ei(τ−t)) − ϕ(eiϑ)| ≤ τ ∗ +
ǫ

2
,

and therefore the first integral in (4.23) can be estimated by

1

2π

∫

[−C1δ,C1δ]

|f ∗(ei(τ−t)) − ϕ(eiϑ)|Pr(t) dt ≤ τ ∗ + ǫ/2. (4.27)

We estimate the second integral in (4.23) by

1

2π

∫

[−π,π]\[−C1δ,C1δ]

|f ∗(ei(τ−t)) − ϕ(eiϑ)|Pr(t) dt

≤
(∫

[−π,π]\[−C1δ,C1δ]

Pr(t) dt

)(
1

π
‖g‖L∞(∂D)

)
.

(4.28)

A straightforward calculation shows that
∫

[−π,π]\[−C1δ,C1δ]

Pr(t) dt = 2π − 4 arctan

(
1 + r

1 − r
tan

(
C1δ

2

))

≤ 2π − 4 arctan

(
1

C2δ2
tan

(
C1δ

2

))
,

where we recall that r = |ψδ(eiϑ)| and C2 is the constant from Lemma 4.16(c).
The last expression converges to zero as δ → 0. We want to emphasize that

this is the point where tangential convergence is needed: In order for the
expression inside of the arctan to converge to infinity, it is necessary that
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1− r = 1− |ψδ(eiϑ)| converges faster to zero than linearly in δ. We conclude
that there is δ2 > 0 such that 0 < δ ≤ δ2 implies that the expression on

the right hand side of (4.28) is smaller than ǫ
2 . Combining this with the

estimates (4.23) and (4.27) we obtain that if 0 < δ ≤ min{δ0, δ1, δ2}, then

for all ϑ ∈
⋃n
j=1[λj, λj + η]

|(f ∗ ◦ ψδ)(eiϑ) − ϕ(eiϑ)| ≤ τ ∗ + ǫ. (4.29)

Similarly, one can show that there is δ3 > 0 so that this inequality holds for
0 < δ ≤ δ3 and all ϑ ∈ ⋃n

j=1[ρj − η̃, ρj] with some η̃ > 0.

It remains to show that for small enough δ the inequality holds for ϑ ∈⋃n
j=1[λj +η, ρj− η̃]. This is an easy consequence of Lemma 4.18. By uniform

continuity there is ǫ1 > 0 such that ǫ1 ≤ ǫ
2, ǫ1 ≤ max{η, η̃} and such that

|t| ≤ ǫ1 ⇒ |ϕ(ei(ϑ+t)) − ϕ(eiϑ)| ≤ ǫ

2
. (4.30)

By Lemma 4.18 there is ǫ2 > 0 such that

|eiϑ−z| < ǫ2 ⇒ f ∗(z) ∈ conv(ess ran(f ∗, [ϑ−ǫ1, ϑ+ǫ1]))+Bǫ1(0). (4.31)

Finally, by Lemma 4.16(b) there is δ4 > 0 such that for all 0 < δ ≤ δ4 we

have maxz∈D |ψδ(z) − z| ≤ ǫ2. Now let ϑ ∈ [λj + η, ρj − η̃] for some j. Then
for 0 < δ ≤ δ4 we have |ψδ(eiϑ) − eiϑ| ≤ ǫ2, so

f ∗(ψδ(e
iϑ))

(4.31)
∈ conv(ess ran(f ∗, [ϑ− ǫ1, ϑ+ ǫ1])) + Bǫ1(0)

⊂ conv


 ⋃

|t|≤ǫ1

Bτ∗(ϕ(ei(ϑ+t)))


+ Bǫ/2(0)

since ǫ1 ≤ max{η, η̃}
(4.30)
⊂ Bτ∗+ǫ/2(ϕ(eiϑ)) +Bǫ/2(0) = Bτ∗+ǫ(ϕ(eiϑ)).

This is just equation (4.29).

Summing up, we have shown that if 0 < δ ≤ min{δ0, . . . , δ4}, then ‖f ∗ ◦
ψδ − ϕ‖L∞(K) ≤ τ ∗ + ǫ. Because ǫ > 0 was arbitrary, this proves the lemma.

Using the work we have done so far it is not hard any more to prove
Theorem 4.15.



4.5. APPROXIMATION BY SMOOTH FUNCTIONS, P = ∞ 91

Proof of Theorem 4.15. Let f ∗ be the solution of (H-OPT∞) and τ ∗ = ‖f ∗−
ϕ‖L∞(K). Fix ǫ > 0. Let ǫ1 > 0 such that with

η =

(
1 +

ǫ1
mineiϑ∈∂D g(eiϑ)

)−1

we have (1−η)‖f ∗‖H∞(D) < ǫ/2. Because ψδ converges uniformly to the iden-
tity as δ → 0 and since g is uniformly continuous, it follows from Lemma 4.18
as in the proof of Lemma 4.19 that for δ > 0 small enough

|(f ∗ ◦ ψδ)(eiϑ)| ≤ g(eiϑ) + ǫ1.

By Lemma 4.19 we have for δ > 0 small enough

‖f ∗ ◦ ψδ − ϕ‖L∞(K) ≤ τ ∗ +
ǫ

2
.

From Lemma 4.16(a) it follows that f ∗ ◦ ψδ ∈ A(D). Moreover, for eiϑ ∈ ∂D

|(f ∗ ◦ ψδ)(eiϑ)| ≤ g(eiϑ) + ǫ1 ≤
(

1 +
ǫ1

mineiτ∈∂D g(eiτ)

)
g(eiϑ),

whence |η(f ∗◦ψδ)| ≤ g. This means that η(f ∗◦ψδ) is feasible for (A-OPT∞).

Then

τ ∗ = min
f∈H∞(D),|f |≤g

‖f − ϕ‖L∞(K) ≤ inf
f∈A(D),|f |≤g

‖f − ϕ‖L∞(K)

≤ ‖η(f ∗ ◦ ψδ) − ϕ‖L∞(K) ≤ ‖f ∗ ◦ ψδ − ϕ‖L∞(K) + (1 − η)‖f ∗‖H∞(D)

≤ τ ∗ +
ǫ

2
+
ǫ

2
= τ ∗ + ǫ.

Since ǫ > 0 was arbitrary, minf∈H∞(D),|f |≤g ‖f−ϕ‖L∞(K) = inff∈A(D),|f |≤g ‖f−
ϕ‖L∞(K). This is what we had to prove.





Chapter 5

Constrained Optimization in Hardy
Spaces: Numerics

MOSEK seems to crash. Is that a feature?

The MOSEK frequently asked questions (v. 5.0)

We want to solve (H-OPTp) (or (A-OPTp)) from Chapter 4 numerically. In

Section 5.1 we devise a general discretization scheme for (H-OPTp) and show
that the minimum of the discrete problem converges to the minimum (or infi-
mum) of the continuous problem as the discretization becomes better. More-

over, we can even show convergence of the minimizing functions. In Section
5.2 we consider several concrete discretizations. In the cases p = 2 and p = ∞
we obtain quadratically constrained quadratic programs (QCQPs), which we
write down more explicitly in Section 5.3. In order to solve these problems,

we reformulate them as second-order cone programs (SOCPs). This class of
problems is briefly introduced in Section 5.4, and the SOCP formulations of

our problems are derived in Section 5.5. We finish with numerical examples
in Section 5.6.

5.1 Discretization

We discretize (H-OPTp) in two steps. First, we discretize the space H∞(D)
and obtain a semi-discrete problem. We show that the minimum of the

semi-discrete problem converges to the minimum (or infimum) of the con-
tinuous problem as the dimension of the discrete space tends to infinity

(Theorem 5.1). Moreover, we show convergence of the minimizing functions
(Corollary 5.3), in the cases p = 1 and p = ∞ under the additional assump-

93
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tions of Theorem 4.4 and Theorem 4.15, respectively. Next, we obtain a fully

discrete problem that can be solved on a computer by checking the constraint
|f | ≤ g on ∂D only on a grid and replacing the integral from the objective

function by a quadrature approximation. We show that the minimum of the
fully discrete problem converges to the minimum of the semi-discrete prob-

lem as the grid becomes finer and the quadrature approximation becomes
better (Theorem 5.4). The culmination of this section is Theorem 5.10,
which states that the discretization parameters can be chosen in such a way

that the minimum of the fully discrete problem converges to the minimum of
(H-OPTp) as the discretization becomes better, in the cases p = 1 and p = ∞
again under the additional assumptions of Theorem 4.4 and Theorem 4.15,
respectively. Moreover, we have convergence of the minimizing functions.

We begin with some notation.

5.1.1 Assumptions and notation

From now on we assume K = K and that ϕ and g are real symmetric
so that the solution of (H-OPTp) is also real symmetric (Theorem 4.11).

Optimization therefore takes place in the space

H∞(D) =
{
f ∈ H∞(D) : f(eiϑ) = f(e−iϑ), eiϑ ∈ ∂D

}

=

{
f ∈ L∞(∂D) :

f̂k = 0 for integers k < 0,

f̂k ∈ R for integers k ≥ 0

}

instead of H∞(D). (Also compare Theorem 2.5.)

Let N ∈ N. For α = (α0, α1, . . . , αN−1)
⊤ ∈ RN write

fα(e
iϑ) =

N−1∑

k=0

αke
ikϑ.

Moreover, for β = (β−N , β−N+1, . . . , βN−1)
⊤ ∈ R2N let

fβ(e
iϑ) =

N−1∑

k=−N
βke

ikϑ.

For computations we are going to use the finite dimensional subspaces

H∞
N (D) =

{
fα : fα(e

iϑ) =

N−1∑

k=0

αke
ikϑ, α = (α0, . . . , αN−1)

⊤ ∈ R
N

}
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and

L∞
N (∂D) =

{
fβ : fβ(e

iϑ) =
N−1∑

k=−N
βke

ikϑ, β = (β−N , . . . , βN−1)
⊤ ∈ R

2N

}
.

By X we usually denote a grid on ∂D, i.e., a set of finitely many points

from ∂D. Given two points eiϑ and eiτ on ∂D, we define the distance between
eiϑ and eiτ to be

dist
(
eiϑ, eiτ

)
= min

ei(ϑ+µ)=eiτ
|µ|.

Clearly, we always have dist
(
eiϑ, eiτ

)
≤ π. The fineness of the grid X , i.e.,

the maximal distance between two neighboring points, is

hmax(X ) = max
eiϑ∈X

min
eiτ∈X\{eiϑ}

dist
(
eiϑ, eiτ

)
.

5.1.2 Semi-discrete problem

The first step to obtain a discretization is to replace the space H∞(D) in
(H-OPTp) by the discrete space H∞

N (D). (Recall that we only look for real

symmetric solutions.) We therefore consider the semi-discrete problem

minimize ‖f − ϕ‖Lp(K)

subject to |f | ≤ g on ∂D,

f ∈ H∞
N (D).

(SDPp)

We also write, e.g., (SDPp(N)) or (SDPp(N,ϕ)) in order to denote the above
problem with a specific N or a specific ϕ. For 1 < p < ∞, (SDPp) has a

unique solution since the objective function is strictly convex and we are
minimizing over a compact and convex set. In the cases p = 1 and p = ∞,

the solution may not be unique since the objective function is convex, but
not strictly convex.

Theorem 5.1. If 1 ≤ p < ∞, then the minimum of (SDPp(N)) converges

to the minimum of (H-OPTp) as N → ∞, that is, if f ∗
N is a solution of

(SDPp(N)), and f ∗ is a solution of (H-OPTp), then

‖f ∗
N − ϕ‖Lp(K) → ‖f ∗ − ϕ‖Lp(K) as N → ∞.

If p = ∞, then the minimum of (SDP∞(N)) converges to the infimum of
(A-OPT∞) as N → ∞.
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Proof. We first consider the case 1 ≤ p < ∞. Fix ǫ > 0. By Theorem 4.13

there is a polynomial f̃ with |f̃ | ≤ g such that

‖f̃ − ϕ‖Lp(K) ≤ min
f∈H∞(D), |f |≤g

‖f − ϕ‖Lp(K) + ǫ.

Then for N ≥ deg f̃ − 1

‖f ∗
N − ϕ‖Lp(K) = min

f∈H∞

N (D), |f |≤g
‖f − ϕ‖Lp(K)

≤ ‖f̃ − ϕ‖Lp(K)

≤ min
f∈H∞(D), |f |≤g

‖f − ϕ‖Lp(K) + ǫ

= ‖f ∗ − ϕ‖Lp(K) + ǫ.

On the other hand, since f ∗
N is feasible for (H-OPTp),

‖f ∗ − ϕ‖Lp(K) ≤ ‖f ∗
N − ϕ‖Lp(K).

Together we have for N ≥ deg f̃ − 1

‖f ∗ − ϕ‖Lp(K) ≤ ‖f ∗
N − ϕ‖Lp(K) ≤ ‖f ∗ − ϕ‖Lp(K) + ǫ.

Therefore, ‖f ∗
N − ϕ‖Lp(K) → ‖f ∗ − ϕ‖Lp(K) as N → ∞.

The case p = ∞ can be handled in the same way by using second part of
Theorem 4.13 instead.

Remark 5.2. If g ∈ L∞(∂D) and inf g > 0, then the minimum of (SDPp(N))

converges to the infimum of (A-OPTp) as N → ∞. In order to see this, use
Theorem 4.14 instead of Theorem 4.13 and adapt the preceding proof.

Corollary 5.3. Let f ∗
N be a solution of (SDPp(N)), and f ∗ a solution of

(H-OPTp). If 1 < p < ∞, then (f ∗
N) converges to f ∗ strongly in Lp(∂D). If

p = ∞ and K is the union of finitely many intervals, then (f ∗
N) converges

to f ∗ weakly* in L∞(∂D). If p = 1 and K 6= ∂D, then (f ∗
N) converges to f ∗

weakly in L1(∂D) and strongly in L1(∂D \K).

Proof. The sequence (f ∗
N) is bounded in L∞(∂D). If p = ∞, then there is

a weakly* convergent subsequence (f ∗
Nl

). If 1 ≤ p < ∞, then there is a

subsequence (f ∗
Nl

) which converges weakly in Lp(∂D): In the case 1 < p <∞
this is due to the fact that (f ∗

Nl
) is especially bounded in Lp(∂D) and that
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the unit ball in reflexive spaces in weakly sequentially compact. In the case

p = 1 we notice that, since (f ∗
N) is especially bounded in L2(∂D), we can

extract a subsequence (f ∗
Nl

) which converges weakly in L2(∂D). But weak

convergence in L2(∂D) implies weak convergence L1(∂D). Denote the limit
in any case by f̃ .

Because the norm is sequentially lower semicontinuous with respect to
weak and weak* convergence,

‖f̃ − ϕ‖Lp(K) ≤ lim inf
l→∞

‖f ∗
Nl

− ϕ‖Lp(K) = ‖f ∗ − ϕ‖Lp(K).

Equality on the right hand side follows from Theorem 5.1, for p = ∞ together
with Theorem 4.15. The set of functions that is feasible for (H-OPTp),
{f ∈ H∞(D) : |f | ≤ g on ∂D}, is weakly closed in Lp(∂D) for 1 ≤ p < ∞,

and (sequentially) weakly* closed in L∞(∂D). Therefore, the weak (or weak*)
limit f̃ is also feasible for (H-OPTp), whence ‖f̃ − ϕ‖Lp(K) = ‖f ∗ − ϕ‖Lp(K).

Uniqueness of the solution of (H-OPTp) now implies f̃ = f ∗. (In the case

p = 1 we need K 6= ∂D for uniqueness.) But then it follows that the whole
sequence (f ∗

N) converges weakly (or weakly*) to f ∗: If there were infinitely

many f ∗
N outside of an arbitrary (weak Lp(∂D)- or weak* L∞(∂D)-)neigh-

borhood of f ∗, we could use the preceding arguments to find a subsequence

of these infinitely many f ∗
N that converges to f ∗, which is a contradiction.

If 1 < p < ∞, then weak convergence, f ∗
N − ϕ ⇀ f ∗ − ϕ in Lp(K),

and convergence of the norm, ‖f ∗
N − ϕ‖Lp(K) → ‖f ∗ − ϕ‖Lp(K), imply that

f ∗
N − ϕ → f ∗ − ϕ strongly in Lp(K) (see [3, Ü6.6]), and therefore f ∗

N → f ∗

strongly in Lp(K). Further, by Theorem 4.4, |f ∗| = g a.e. on ∂D \K. Then,

‖g‖Lp(∂D\K) = ‖f ∗‖Lp(∂D\K) ≤ lim inf
l→∞

‖f ∗
N‖Lp(∂D\K) ≤ ‖g‖Lp(∂D\K),

from which it follows that ‖f ∗
N‖Lp(∂D\K) → ‖g‖Lp(∂D\K). As before, weak

convergence and convergence of the norm imply that f ∗
N → f ∗ strongly in

Lp(∂D \K). Together, f ∗
N → f ∗ strongly in Lp(∂D) for 1 < p <∞.

Finally, because |f ∗| = g a.e. on ∂D \ K by Theorem 4.4 and because
|f ∗
N | ≤ g for all N , weak convergence f ∗

N ⇀ f ∗ in L1(∂D \K) implies strong

convergence f ∗
N → f ∗ in L1(∂D \K), see, e.g., [64, Theorem 1].

5.1.3 Fully discrete problem

Unfortunately, we are not aware of any “nice” method to check the constraint
|f | ≤ g on the complete circle. For a complete discretization we only check
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the constraint on some grid X ⊂ ∂D. Moreover, it may not be possible to

compute the objective function exactly. We therefore replace ‖f − ϕ‖Lp(K)

by some quadrature approximation T p(f − ϕ) and obtain the fully discrete

problem
minimize T p(f − ϕ)
subject to |f(eiϑ)| ≤ g(eiϑ), ϑ ∈ X ,

f ∈ H∞
N (D).

(FDPp)

If we want to denote the above problem with, e.g., a specific grid X , a specific
approximation T p, or a specific N , we write (FDPp(X )), (FDPp(X , T p)),
(FDPp(X , T p, N)) and so on. The set of feasible functions {f ∈ H∞

N (D) :
|f(eiϑ)| ≤ g(eiϑ), ϑ ∈ X} is convex and closed in the finite dimensional

space H∞
N (D). From Lemma 5.7 below it follows that if the grid X is fine

enough, then the set of feasible functions is also bounded and therefore,
because H∞

N (D) is finite dimensional, compact. Thus, (FDPp) has a solution.

If additionally the quadrature approximation is strictly convex, then the
solution is unique.

We assume that we are given a sequence (T pn) of quadrature approxima-
tions that converges locally uniformly for functions f ∈ H∞

N (D), i.e.,

sup
f∈H∞

N (D), ‖f‖L∞(∂D)≤1

∣∣T pn(f − ϕ) − ‖f − ϕ‖Lp(K)

∣∣→ 0 as n → ∞. (5.1)

Our aim is to show that, as the grid X on which we check the constraint
becomes finer and as the approximation T p becomes better, the minimum

of the fully discrete problem (FDPp) converges to the minimum of the semi-
discrete problem (SDPp):

Theorem 5.4. Let 1 ≤ p ≤ ∞ and fix N ∈ N. Let (Xn) be a sequence

of grids on ∂D with hmax(Xn) → 0 as n → ∞, and let (T pn) be a sequence
of quadrature approximations to ‖ · ‖Lp(K) such that (5.1) holds. Then the

minimum of the fully discrete problem (FDPp(Xn, T
p
n , N)) converges to the

minimum of the semi-discrete problem (SDPp(N)) as n→ ∞, i.e., if f ∗
N,n is

a solution of (FDPp(Xn, T
p
n , N)), and f ∗

N is a solution of (SDPp(N)), then

T pn(f
∗
N,n − ϕ) → ‖f ∗

N − ϕ‖Lp(K) as n→ ∞.

Theorem 5.1 and Theorem 5.4 together imply

Theorem 5.5. Let (Xn) be a sequence of grids on ∂D with hmax(Xn) → 0 as

n → ∞, and let (T pn) be a sequence of quadrature approximations to ‖ ·‖Lp(K)

such that (5.1) holds.
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(a) Let 1 ≤ p < ∞. Then for each N ∈ N we can choose n(N) such

that the minimum of the fully discrete problem (FDPp(Xn(N), T
p
n(N), N))

converges to the minimum of (H-OPTp) as N → ∞.

(b) Let p = ∞. Then for each N ∈ N we can choose n(N) such that the min-
imum of the fully discrete problem (FDPp(Xn(N), T

p
n(N), N)) converges to

the infimum of (A-OPTp) as N → ∞.

Before we can prove Theorem 5.4 we need a lemma which gives a bound

on the derivative of functions that are feasible for (FDPp(X , N)).

Lemma 5.6. Fix N ∈ N. There are h0 > 0 and C > 0 such that for any
grid X with hmax(X ) ≤ h0 and any f which is feasible for (FDPp(X , N)) the

estimate

‖f ′‖L∞(∂D) ≤ C‖g‖L∞(∂D).

holds true. Here, f ′(eiϑ) = d
dϑf(eiϑ).

Proof. Let X = {eiϑ1, . . . , eiϑn} ⊂ ∂D be some grid. For a coefficient vector
β = (β−N , β−N+1, . . . , βN−1)

⊤ ∈ R2N we write the relations

fβ(e
iϑj) =

N−1∑

k=−N
βke

ikϑj , j = 1, . . . , n,

in matrix form

B(X )β = f(X ). (5.2)

Here, f(X ) is the vector f(X ) = (fβ(e
iϑ1), . . . , fβ(e

iϑn))⊤ ∈ Cn and B(X )
is the matrix B(X ) = (bjk) ∈ Cn×2N , where bjk = eikϑj , j = 1, . . . , n, k =

−N, . . . , N − 1.
Now let ϑj = jπ/N and take the grid XN = {eiϑj : j = 1, . . . , 2N} with

n = 2N points. Then 1√
2N
B(XN) is unitary. Since the set of invertible

matrices is open, and since matrix inversion is a continuous function on this

set, there is h1 > 0 such that if the grid X̃ = {eiϑ̃1, . . . , eiϑ̃2N} satisfies

max
j=1,...,2N

|eiϑj − eiϑ̃j | ≤ h1, (5.3)

then B(X̃ ) is still invertible and

‖B(X̃ )−1‖∞→1 ≤ 2‖B(XN)−1‖∞→1. (5.4)
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Here, ‖ · ‖∞→1 is the operator norm ‖A‖∞→1 = sup‖x‖∞≤1 ‖Ax‖1.

To finish the proof, choose h0 > 0 so small that any grid X ⊂ ∂D with

hmax(X ) ≤ h0 has a subgrid X̃ ⊂ X , consisting of 2N points, that satisfies
(5.3). Let X be such a grid and X̃ a subgrid with (5.3). Let f be feasible for
(FDPp(X , N)), i.e., f ∈ H∞

N (D) with |f(eiϑ)| ≤ g(eiϑ) for all eiϑ ∈ X . Then

f has the form f = fα for some α ∈ RN . By (5.2) we have

B(X̃ )

(
0RN

α

)
= f(X̃ ),

whence

‖α‖1 ≤ ‖B(X̃ )−1‖∞→1‖f(X̃ )‖∞ = ‖B(X̃ )−1‖∞→1 max
eieϑ∈X̃

|f(eiϑ̃)|
(5.4)

≤ 2‖B(XN)−1‖∞→1‖g‖L∞(∂D).

Therefore,

‖f ′‖L∞(∂D) = sup
eiϑ∈∂D

∣∣∣∣∣

N−1∑

k=1

ikαke
ikϑ

∣∣∣∣∣ ≤ N‖α‖1 ≤ 2N‖B(XN)−1‖∞→1‖g‖L∞(∂D).

Thus, the lemma holds with C = 2N‖B(XN)−1‖∞→1.

Next, we show that if the grid Xn is fine enough, then functions that are
feasible for the fully discrete problem (FDPp(Xn, N)) are almost feasible for

the semi-discrete problem (SDPp(N)).

Lemma 5.7. Fix N ∈ N. Then for any ǫ > 0 there is h1 > 0 such that if X
is a grid with hmax(X ) ≤ h1 and f is feasible for (FDPp(X , N)), then

|f | ≤ g + ǫ.

Proof. Since g is uniformly continuous, there is h2 > 0 such that for all

|µ| ≤ h2 and all eiϑ ∈ ∂D we have

|g(eiϑ) − g(ei(ϑ+µ))| ≤ ǫ/2. (5.5)

Suppose that X is a grid with

hmax(X ) ≤ min{h0, h2, ǫ(C‖g‖L∞(∂D))
−1}, (5.6)
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where h0 and C are the constants from Lemma 5.6. Let f be feasible for

(FDPp(X , N)) and let eiϑ ∈ ∂D. Choose eit ∈ X such that dist
(
eiϑ, eit

)
≤

hmax(X )/2. Then

|f(eiϑ)| ≤ |f(eit)| + hmax(X )

2
‖f ′‖L∞(∂D)

≤ g(eit) +
hmax(X )

2
C‖g‖L∞(∂D) by Lemma 5.6

≤ g(eiϑ) +
ǫ

2
+
ǫ

2
by (5.5) and (5.6)

= g(eiϑ) + ǫ.

Thus, the lemma holds true with h1 = min{h0, h2, ǫ(C‖g‖L∞(∂D))
−1}.

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. Fix an arbitrary ǫ > 0. Let ǫ1 > 0 be so small that
for

η =

(
1 +

ǫ1
mineiϑ∈∂D g(eiϑ)

)−1

(5.7)

it holds true that (1 − η)‖ϕ‖Lp(K) ≤ ǫ. (This is possible since η → 1 as
ǫ1 → 0.) By Lemma 5.7 there is n0 ∈ N such that functions that are feasible

for (FDPp(Xn, N)), n ≥ n0, satisfy

|f | ≤ g + ǫ1. (5.8)

Because of (5.1) we can possibly increase n0 such that for all n ≥ n0 and all

f ∈ H∞
N (D) with ‖f‖L∞(∂D) ≤ ‖g‖L∞(∂D) + ǫ1

∣∣T pn(f − ϕ) − ‖f − ϕ‖Lp(K)

∣∣ ≤ ǫ. (5.9)

So (5.9) especially holds true for all f that are feasible for (FDPp(Xn, N)),
n ≥ n0.

Now fix n ≥ n0. Let f ∗
N,n be a solution of the fully discrete problem

(FDPp(Xn, T
p
n , N)), and let f ∗

N be a solution of the semi-discrete problem

(SDPp(N)). Then

T pn(f
∗
N,n − ϕ) ≤ T pn(f

∗
N − ϕ) ≤ ‖f ∗

N − ϕ‖Lp(K) + ǫ. (5.10)

The first inequality holds true because f ∗
N,n is a solution of (FDPp(Xn, T

p
n , N))

and f ∗
N is feasible for (FDPp(Xn, T

p
n , N)), and the second inequality is due to

(5.9).
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On the other hand, take η from (5.7) and set fN,n = ηf ∗
N,n. Because f ∗

N,n

is feasible for (FDPp(Xn, N)), we have |f ∗
N,n| ≤ g+ ǫ1 by (5.8), and therefore

|f ∗
N,n| ≤

(
1 +

ǫ1
mineiϑ∈∂D g(eiϑ)

)
g.

So fN,n = ηf ∗
N,n ≤ g, that is, fN,n is feasible for the semi-discrete problem.

Therefore,

‖f ∗
N − ϕ‖Lp(K) ≤ ‖fN,n − ϕ‖Lp(K).

Further, since η ≤ 1 and (1 − η)‖ϕ‖Lp(K) ≤ ǫ,

‖fN,n − ϕ‖Lp(K) = ‖ηf ∗
N,n − ϕ‖Lp(K) ≤ η‖f ∗

N,n − ϕ‖Lp(K) + (1 − η)‖ϕ‖Lp(K)

≤ ‖f ∗
N,n − ϕ‖Lp(K) + ǫ.

Because (5.9) holds true for f ∗
N,n, we end up with

‖f ∗
N − ϕ‖Lp(K) ≤ T pn(f

∗
N,n − ϕ) + 2ǫ (5.11)

for n ≥ n0.

(5.10) and (5.11) imply that T pn(f
∗
N,n−ϕ) → ‖f ∗

N−ϕ‖Lp(K) as n → ∞.

Remark 5.8. Theorem 5.4 still holds true for more general g. We used
the continuity of g only to prove Lemma 5.7, which we used in the proof of

Theorem 5.4. One can show that Lemma 5.7 is still true if, for example, g
is continuous up to finitely many jump discontinuities.

Corollary 5.9. Let 1 < p < ∞ and fix N ∈ N. Let (Xn) be a sequence

of grids on ∂D with hmax(Xn) → 0 as n → ∞, and let (T pn) be a sequence
of quadrature approximations to ‖ · ‖Lp(K) such that (5.1) holds. Let f ∗

N,n be
a solution of (FDPp(Xn, T

p
n , N)), and let f ∗

N be the solution of (SDPp(N)).

Then (f ∗
N,n) converges to f ∗

N strongly in Lp(∂D) as n → ∞.

We omit the proof, because it is similar to the proof of Corollary 5.3. We
instead prove

Theorem 5.10. Let (Xn) be a sequence of grids on ∂D with hmax(Xn) → 0 as
n → ∞, and let (T pn) be a sequence of quadrature approximations to ‖ ·‖Lp(K)

such that (5.1) holds. Let f ∗ be a solution of (H-OPTp) and let f ∗
N,n be a

solution of (FDPp(Xn, T
p
n , N)).
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(a) If 1 < p < ∞, then for each N ∈ N we can choose n(N) such that

the minimum of (FDPp(Xn(N), T
p
n(N), N)) converges to the minimum of

(H-OPTp) and such that f ∗
N,n(N) → f ∗ in Lp(∂D) as N → ∞.

(b) If p = ∞ and K is the union of finitely many closed intervals, then

for each N ∈ N we can choose n(N) such that the minimum of the
discrete problem (FDPp(Xn(N), T

p
n(N), N)) converges to the minimum of

(H-OPTp) and such that f ∗
N,n(N)

∗
⇀ f ∗ in L∞(∂D) as N → ∞.

(c) If p = 1, then for each N ∈ N we can choose n(N) such that the
minimum of the discrete problem (FDPp(Xn(N), T

p
n(N), N)) converges to

the minimum of (H-OPTp), and, if K 6= ∂D, such that f ∗
N,n(N) ⇀ f ∗ in

L1(∂D) and f ∗
N,n(N) → f ∗ in L1(∂D \K) as N → ∞.

Proof. By Theorem 5.5, in the case p = ∞ together with Theorem 4.15, we
can choose n(N) such that the minimum of (FDPp(Xn, T

p
n , N)) converges to

the minimum of (H-OPTp). As we saw in the proof of Theorem 5.4, we can

additionally achieve that

|T pn(f ∗
N,n(N) − ϕ) − ‖f ∗

N,n(N) − ϕ‖Lp(K)| ≤ ǫN (5.12)

and |f ∗
N,n(N)| ≤ g + ǫN with ǫN → 0 as N → ∞. Especially, (f ∗

N,n(N)) is

bounded in L∞(∂D). As in the proof of Corollary 5.3 we can extract a
subsequence which converges weakly in the case 1 ≤ p < ∞ and weakly* in

the case p = ∞. Denote the limit by f̃ . As before, lower semicontinuity of
the norm implies ‖f̃ − ϕ‖Lp(K) ≤ ‖f ∗ − ϕ‖Lp(K).

Now for any ǫ > 0 all but possibly finitely many f ∗
N,n(N) lie in the set {f ∈

H∞(D) : |f | ≤ g+ ǫ on ∂D}. This set is weakly closed in Lp(D), 1 ≤ p <∞,
and (sequentially) weakly* closed in L∞(D). Therefore, |f̃ | ≤ g + ǫ for any

ǫ > 0, i.e., |f̃ | ≤ g. But this means that f̃ is feasible for (H-OPTp). If follows

that f̃ is a solution of (H-OPTp). Unique solvability then implies f̃ = f ∗.
(In the case p = 1 we need K 6= ∂D.) As before, by uniqueness of the limit
the whole sequence (f ∗

N,n(N)) converges weakly (or weakly* if p = ∞) to f ∗

in Lp(∂D) as N → ∞.
Because of (5.12) and because T pn(f

∗
N,n(N)−ϕ) converges to ‖f ∗−ϕ‖Lp(K),

‖f ∗
N,n(N) − ϕ‖Lp(K) → ‖f ∗ − ϕ‖Lp(K). Also, it follows as in the proof of

Corollary 5.3 that ‖f ∗
N,n(N)‖Lp(∂D\K) → ‖f ∗‖Lp(∂D\K). As before, we obtain

that f ∗
N,n(N) → f ∗ strongly in Lp(∂D) for 1 < p < ∞. In the case p = 1,



104 CHAPTER 5. CONSTR. OPTIM. IN HARDY SPACES: NUMERICS

weak convergence f ∗
N,n(N) ⇀ f ∗ in L1(∂D \K), together with the properties

|f ∗
N,n(N)| ≤ g + ǫN with ǫN → 0 and |f ∗| = g a.e. on ∂D \K, implies strong

convergence f ∗
N,n(N) → f ∗ in L1(∂D \K), see, e.g., [64, Lemma 2].

Example 5.11 (Rectangle rule, case 1 ≤ p < ∞). Assume that K is the

union of finitely many closed intervals of positive measure and that ϕ is
smooth. Let (Xn) be a sequence of grids with hmax(Xn) → 0 as n → ∞.

Then (5.1) is fulfilled for the rectangle rule

T pn(f − ϕ) =


 ∑

eiϑ∈K∩Xn

∣∣f(eiϑ) − ϕ(eiϑ)
∣∣p hϑ




1/p

,

where

hϑ =
min{µ > 0 : ei(ϑ−µ) ∈ X} + min{µ > 0 : ei(ϑ+µ) ∈ X}

2
.

The reason why (5.1) holds for the rectangle rule is Lemma 5.6 and the fact

that the error of the rectangle rule can be estimated by the derivative of the
integrand.

Example 5.12 (Exact quadrature, case p = 2). We will see in the next

section that for p = 2, ϕ ∈ L∞
Nϕ

(∂D) for some Nϕ ∈ N and f ∈ H∞
N (D) it is

in principle possible to compute ‖f −ϕ‖Lp(K) exactly. Assume that (ϕn) is a

sequence with ϕn ∈ L∞
n (∂D) and ‖ϕn−ϕ‖L2(K) → ∞ as n→ ∞ and suppose

that

T 2
n(f − ϕ) = ‖f − ϕn‖L2(K).

Then ∣∣T 2
n(f − ϕ) − ‖f − ϕ‖L2(K)

∣∣ =
∣∣‖f − ϕn‖L2(K) − ‖f − ϕ‖L2(K)

∣∣
≤ ‖ϕ− ϕn‖L2(K),

so (T 2
n) satisfies (5.1).

Example 5.13 (Case p = ∞). Assume that K is the union of finitely many
closed intervals of positive measure and that ϕ is smooth. Let (Xn) be a
sequence of grids with hmax(Xn) → 0 as n→ ∞. Then (5.1) is fulfilled for

T pn(f − ϕ) = max
eiϑ∈K∩Xn

|f(eiϑ) − ϕ(eiϑ)|.

The reason why (5.1) holds is again Lemma 5.6.
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5.2 Discretization: Examples

In this section we consider different discretizations of (H-OPTp) correspond-

ing to different approximations of the objective functions.

5.2.1 1 ≤ p <∞, rectangle rule

Let X = {eiϑ1, . . . , eiϑd} and let N ∈ N. With the rectangle rule to approxi-
mate ‖f − ϕ‖L2(K) (see Example 5.11) we get the problem

minimize


 ∑

j∈K∩X

∣∣fα(eiϑj) − ϕj
∣∣p hϑj




1/p

subject to
∣∣fα(eiϑj)

∣∣ ≤ gj, j ∈ X ,
in the optimization variable α ∈ RN . For the definition of fα see Sec-
tion 5.1.1. The sloppy notation j ∈ X means eiϑj ∈ X , similarly for

j ∈ K ∩ X . Also, we write ϕj = ϕ(eiϑj) and gj = g(eiϑj), j = 1, . . . , d.
Let us assume that X is symmetric, i.e., X = X , and write

X+ = X ∩ {eiϑ : ϑ ∈ [0, π]}.
Then due to the symmetry of fα, g, ϕ and K it actually suffices to consider

minimize Fp(α) =
∑

j∈K∩X

∣∣fα(eiϑj) − ϕj
∣∣p hϑj

subject to Gj(α) =
∣∣fα(eiϑj)

∣∣2 − g2
j ≤ 0, j ∈ X+.

(D-OPTp)

For practical purposes it is useful to drop the 1/p-th power from the objective

function and to write the constraints as in (D-OPTp): For p = 2, (D-OPTp)
is a quadratically constrained quadratic program (QCQP). We will write

down the QCQP formulation of (D-OPT2) more explicitly in Section 5.3.

5.2.2 p = 2, exact quadrature

We come back to Example 5.12. Suppose that ϕ is nice enough and can be
written (or well approximated) in the form

ϕ(eiϑ) =

Nϕ−1∑

k=−Nϕ

βke
ikϑ

with some Nϕ ∈ N and β = (βk)
Nϕ−1
k=−Nϕ

∈ R2Nϕ. (The βk must be real due to
the real symmetry of ϕ.) Then it is possible to compute ‖fα−ϕ‖L2(K) exactly.
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Without loss of generality we may assume that Nϕ ≥ N with possibly some

of the βk equal to zero. To simplify notation in the following, we write
fα(e

iϑ) =
∑Nϕ−1

k=−Nϕ
αke

ikϑ with αk = 0 for k /∈ {0, 1, . . . , N − 1}. We have

‖fα − ϕ‖2
L2(K) =

∫

K

|fα(eiϑ) − ϕ(eiϑ)|2 dϑ =

∫

K

∣∣∣∣∣∣

Nϕ−1∑

k=−Nϕ

(αk − βk)e
ikϑ

∣∣∣∣∣∣

2

dϑ

=

∫

K

Nϕ−1∑

k,l=−Nϕ

(αk − βk)(αl − βl)e
i(k−l)ϑ dϑ

=

Nϕ−1∑

k,l=−Nϕ

(αk − βk)(αl − βl)

∫

K

ei(k−l)ϑ dϑ.

With

mj =

∫

K

eijϑ dϑ

we get the discrete problem

minimize F̃2(α) =

Nϕ−1∑

k,l=−Nϕ

mk−l(αk − βk)(αl − βl)

subject to Gj(α) =
∣∣fα(eiϑj)

∣∣2 − g2
j ≤ 0, j ∈ X+.

(D-OPT2̃)

5.2.3 p = ∞

In the case p = ∞ we use the approximation from Example 5.13 and consider

minimize F∞(α) = max
j∈K∩X+

∣∣fα(eiϑj) − ϕj
∣∣2

subject to Gj(α) =
∣∣fα(eiϑj)

∣∣2 − g2
j ≤ 0, j ∈ X+.

(D-OPT∞)

Notice that due to symmetry we only take the maximum over j ∈ K ∩ X+.
The reason for the square is that this allows us to write (D-OPT∞) as a

QCQP in the following section.

5.3 QCQP formulation of the discrete problems

In this (technical) section we write the problems (D-OPT2), (D-OPT2̃) and
(D-OPT∞) more explicitly as QCQPs. We will use this in the following sec-
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tions when we recast these problems as second-order cone programs (SOCPs),

for which there are efficient solvers available.
If p /∈ {2,∞}, but p is rational, then it is still possible to recast (D-OPTp)

as an SOCP. However, we do not treat this case, because the reformulation is
not especially hard, but more cumbersome, and we want to spare the reader

the technical details. For a strategy to obtain the SOCP formulation in this
case, see, e.g., [2].

5.3.1 p = 2, rectangle rule

In the case p = 2 with the rectangle rule we have for the objective function

F2(α) =
∑

j∈K∩X

∣∣fα(eiϑj) − ϕj
∣∣2 hϑj

=
∑

j∈K∩X

∣∣∣∣∣

N−1∑

k=0

αke
ikϑj − ϕj

∣∣∣∣∣

2

hϑj

=
∑

j∈K∩X



∣∣∣∣∣

N−1∑

k=0

αke
ikϑj

∣∣∣∣∣

2

− 2 Re

(
N−1∑

k=0

αke
−ikϑjϕj

)
+ |ϕj|2


 hϑj

.

For the first summand we have

∑

j∈K∩X

∣∣∣∣∣

N−1∑

k=0

αke
ikϑj

∣∣∣∣∣

2

hϑj =
∑

j∈K∩X

N−1∑

k=0

N−1∑

l=0

αkαle
i(k−l)ϑjhϑj

=
∑

j∈K∩X
α⊤ejej

⊤αhϑj

= α⊤


 ∑

j∈K∩X
ejej

⊤hϑj


α,

where ej = (eikϑj)k=0,...,N−1 ∈ CN . Since the expression is real,

∑

j∈K∩X

∣∣∣∣∣

N−1∑

k=0

αke
ikϑj

∣∣∣∣∣

2

hϑj
= α⊤


Re

∑

j∈K∩X
ejej

⊤hϑj


α.

For the second summand we have

−
∑

j∈K∩X
2 Re

(
N−1∑

k=0

αke
−ikϑjϕj

)
hϑj

= −2

N−1∑

k=0

αk Re


 ∑

j∈K∩X
e−ikϑjϕjhϑj




= 2q⊤α,
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where

q = (qk)k=0,...,N−1, qk = −Re


 ∑

j∈K∩X
e−ikϑjϕjhϑj


 .

It follows that

F2(α) = α⊤


Re

∑

j∈K∩X
ejej

⊤hϑj


α+ 2q⊤α +


 ∑

j∈K∩X
|ϕj|2 hϑj


 .

5.3.2 p = 2, exact quadrature

For the case p = 2 with exact quadrature we have (see last section)

F̃2(α) =

Nϕ−1∑

k,l=−Nϕ

mk−l(αk − βk)(αl − βl)

=
N−1∑

k,l=0

mk−lαkαl − 2
N−1∑

k=0




Nϕ−1∑

l=−Nϕ

mk−lβl


αk +

Nϕ−1∑

k,l=−Nϕ

mk−lβkβl,

where mj =
∫
K eijϑ dϑ. Since K = K we have

mj = Re

(∫

K

eijϑ dϑ

)
=

∫

K

cos(jϑ) dϑ

and mj = m−j. We let

M̃ = (mk−l)
N−1
k,l=0 ∈ R

N×N .

M̃ is a symmetric Toeplitz matrix, that is, it is constant along lines parallel
to the diagonal. Moreover, let

q̃ = (q̃k)k=0,...,N−1, q̃k = −
Nϕ−1∑

l=−Nϕ

mk−lβl.

Then

F̃2(α) = α⊤M̃α + 2q̃⊤α +

Nϕ−1∑

k,l=−Nϕ

mk−lβkβl.
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5.3.3 p = ∞

In the case p = ∞ we have

F∞(α) = max
j∈K∩X

∣∣fα(eiϑj) − ϕj
∣∣2

︸ ︷︷ ︸
=:F j(α)

.

It turns out that

F j(α) = α⊤ (Re ejej
⊤)α+ 2(q(j))⊤α + |ϕj|2 ,

where
q(j) = (q

(j)
k )k=0,...,N−1, q

(j)
k = −Re

(
e−ikϑjϕj

)
.

5.3.4 Constraints

For the constraints we have

Gj(α) =
∣∣fα(eiϑj)

∣∣2 − g2
j =

∣∣∣∣∣

N−1∑

k=0

αke
ikϑj

∣∣∣∣∣

2

− g2
j

=

(
N−1∑

k=0

αke
ikϑj

)(
N−1∑

l=0

αle
−ikϑj

)
− g2

j = α⊤ejej
⊤α− g2

j

= α⊤ (Re ejej
⊤)α− g2

j .

Now ej = γj + iσj, where

γj = (cos(kϑj))k=0,...,N−1 and σj = (sin(kϑj))k=0,...,N−1.

Hence,

Re ejej
⊤ = Re

(
(γj + iσj) (γj − iσj)

⊤
)

= γjγ
⊤
j + σjσ

⊤
j .

5.3.5 Summary

To summarize, the QCQP formulation for p = 2 with the rectangle rule is

minimize α⊤


 ∑

j∈K∩X
(γjγ

⊤
j + σjσ

⊤
j )hϑj


α + 2q⊤α+


 ∑

j∈K∩X
|ϕj|2 hϑj




subject to α⊤ (γjγ⊤j + σjσ
⊤
j

)
α− g2

j ≤ 0, j ∈ X+

(QCQP2)
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in the optimization variable α ∈ RN . For the case p = 2 with exact quadra-
ture we have

minimize α⊤M̃α + 2q̃⊤α +




Nϕ−1∑

k,l=−Nϕ

mk−lβkβl




subject to α⊤ (γjγ⊤j + σjσ
⊤
j

)
α− g2

j ≤ 0, j ∈ X+

(QCQP2̃)

in the optimization variable α ∈ RN . For p = ∞, the QCQP formulation is

minimize t

subject to α⊤ (γjγ⊤j + σjσ
⊤
j

)
α + 2(q(j))⊤α+ |ϕj|2 − t ≤ 0, j ∈ K ∩ X+,

α⊤ (γjγ⊤j + σjσ
⊤
j

)
α− g2

j ≤ 0, j ∈ X+

(QCQP∞)
in the optimization variables t ∈ R and α ∈ RN .

5.4 Second-order cone programs (SOCPs)

In principle, one could try to solve the discrete problems (D-OPTp) (or
(QCQPp)) with general-purpose optimization methods like SQP [22]. How-

ever, this is only advisable for small N and |X+|. SQP becomes rather
impractical for moderately large N and |X+| due to the large number of

non-sparse constraints in (QCQPp). An SQP-based solver from the Mat-
lab optimization toolbox that we tried did not yield any usable results in
reasonable time even for |X+| = N = 256.

During the 1980s and 1990s a class of methods that is much more efficient

for certain convex optimization problems has been developed, interior-point
methods [45]. Just like for finite element methods, their general theory con-

stitutes a framework, and in practice a large number of right implementation
choices has to be made in order to make them efficient [55, 63]. Although one

can use interior-point methods to solve QCQPs directly, as it is for example
done in [34], the more common approach is to recast QCQPs as second-order
cone programs (SOCPs).

The standard second-order cone (or quadratic or Lorentz cone) of dimen-

sion n ∈ N is the set

Qn =
{
(ξ0; ξ) ∈ R × R

n−1 : ‖ξ‖2 ≤ ξ0
}
.
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The semicolon is used to denote concatenation of vectors or matrices in a

column, i.e., (ξ0; ξ) =

(
ξ0
ξ

)
. For n = 1 the definition has to be read as

Q1 = {ξ0 ∈ R : 0 ≤ ξ0} .

The standard form primal SOCP problem is

minimize
ν∑

j=1

cj
⊤
xj

subject to

ν∑

j=1

Ajxj = b,

xj ∈ Qnj
, j = 1, . . . , ν.

(SOCP-P)

Here, the optimization variable is x = (x1; . . . ; xν), where xj ∈ Rnj for some
positive integers nj, j = 1, . . . , ν. Moreover, cj ∈ Rnj , Aj ∈ Rm×nj and

b ∈ Rm for some positive integer m. To put this in words, in an SOCP
one minimizes a linear function over the intersection of an affine linear space
(first constraint) with the Cartesian product of second-order cones (second

constraint). Associated with the above primal problem is the dual problem

maximize b⊤y
subject to A⊤

j y + zj = cj , j = 1, . . . , ν,

zj ∈ Qnj
, j = 1, . . . , ν

(SOCP-D)

in the optimization variables y and z = (z1; . . . ; zν). Primal-dual interior-

point methods solve both the primal and the dual problem at the same time.
In the following section we will cast the QCQPs from the last section into

the dual SOCP form (SOCP-D).
Primal-dual methods have a pretty nifty feature [2]: For primal feasible

x and dual feasible y and z, it always holds true that c⊤x− b⊤y = z⊤x ≥ 0.
Here, c = (c1; . . . ; cν). Moreover, if the problem is both strictly primal feasible

and strictly dual feasible, i.e., there are primal feasible x = (x1; . . . ; xν) with
xj ∈ Q◦

nj
(the interior of the cone), j = 1, . . . , ν, and dual feasible y and z =

(z1; . . . ; zν) with zj ∈ Q◦
nj

, j = 1, . . . , ν, then there exist optimal solutions

x∗ of the primal problem and y∗ and z∗ of the dual problem, and c⊤x∗ −
b⊤y∗ = z∗⊤x∗ = 0. If one inspects the SOCP formulations of (QCQPp) in
the following section, one sees that in these cases −b⊤y∗ is actually equal to
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the minimum of (QCQPp). Thus, by computing the duality gap c⊤x − b⊤y
for primal feasible x and dual feasible y, we could in principle get an error

estimate for the minimum of (QCQPp) (and thus (D-OPTp)).
Reformulating our QCQPs as SOCPs has several advantages. As far as we

know, the only publically available software package that can solve QCQPs
directly is the commercial solver MOSEK [42]. However, MOSEK’s QCQP
solver is less efficient than its SOCP solver, and even its authors recommend

reformulating QCQPs as SOCPs [43]. On the other hand, there are a number
of free software packages available that can solve SOCPs [54, 63]. Further,

notice that there occur matrices with tensor-product structure in the con-
straints of the QCQPs from the previous section. In each of the QCQPs

there are at least |X+| of these matrices, which have size N × N and are
dense. A software package without special data structures for such matrices

would therefore need O(N3) memory (assuming |X+| = O(N)). In contrast
to this, an inspection of the SOCP formulations below shows that these need
only O(N2) memory.

5.5 SOCP formulation of the discrete problems

5.5.1 General strategy to rewrite QCQPs as SOCPs

Notice that a QCQP can always be rewritten as the optimization of a linear
function subject to quadratic constraints: The problem

minimize Q(x)

subject to Qj(x) ≤ 0, j = 1, . . . , ν

in the optimization variable x with quadratic functionsQ andQj is equivalent
to the problem

minimize t
subject to Q(x) − t ≤ 0,

Qj(x) ≤ 0, j = 1, . . . , ν

in the optimization variables t and x. It remains to rewrite the quadratic
constraints as second-order cone constraints.

A quadratic constraint of the form

x⊤B⊤Bx+ 2q⊤x+ r ≤ 0
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with B ∈ Rm×N , q ∈ RN and r ∈ R can be written as a second-order cone
constraint as in (SOCP-D) as follows. We have

x⊤B⊤Bx+ 2q⊤x+ r ≤ 0

⇔ ‖Bx‖2 ≤ −(2q⊤x+ r)

⇔ ‖Bx‖2 ≤ 1

4

((
1 − (2q⊤x+ r)

)2 −
(
1 + (2q⊤x+ r)

)2)

⇔ ‖Bx‖2 +
1

4

(
1 + (2q⊤x+ r)

)2 ≤ 1

4

(
1 − (2q⊤x+ r)

)2

⇔
∥∥∥∥
(

1
2(1 + 2q⊤x+ r)

Bx

)∥∥∥∥ ≤ 1

2
(1 − 2q⊤x− r)

⇔
∥∥∥∥
(
q⊤

B

)
x+

(
1
2(1 + r)

0Rm

)∥∥∥∥ ≤ −q⊤x +
1

2
(1 − r).

Introducing new variables ζ0 = −q⊤x+1
2(1−r) and ζ =

(
q⊤

B

)
x+

(
1
2(1 + r)

0Rm

)
,

x⊤B⊤Bx+ 2q⊤x+ r ≤ 0

⇔







q⊤

−q⊤
−B


x+

(
ζ0
ζ

)
=




1
2(1 − r)
1
2(1 + r)

0Rm


 ,

‖ζ‖ ≤ ζ0

⇔







q⊤

−q⊤
−B


x+

(
ζ0
ζ

)
=




1
2(1 − r)
1
2(1 + r)

0Rm


 ,

(ζ0; ζ) ∈ Qm+2.

This is exactly the form of the constraints in (SOCP-D).

A constraint of the form

x⊤B⊤Bx+ r ≤ 0

can be reformulated in an even easier way:

x⊤B⊤Bx+ r ≤ 0 ⇔ ‖Bx‖ ≤ (−r)1/2

⇔





(
0R1×N

−B

)
x+

(
ζ0
ζ

)
=

(
(−r)1/2

0

)
,

‖ζ‖ ≤ ζ0

⇔





(
0R1×N

−B

)
x+

(
ζ0
ζ

)
=

(
(−r)1/2

0

)
,

(ζ0; ζ) ∈ Qm+1.
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5.5.2 p = 2, rectangle rule

Let S be a matrix such that

S⊤S =
∑

j∈K∩X
(γjγ

⊤
j + σjσ

⊤
j )hϑj

.

Such a matrix S can for example be obtained via eigenvalue decomposition
of the right hand side. For example, if K = ∂D and X = {eiϑj : ϑj =

jπ/d, j = 1, . . . , 2d}, d > 1, then
∑

j∈K∩X (γjγ
⊤
j + σjσ

⊤
j )hϑj

= 2πIN , where

IN is the identity matrix in RN×N . In this case, we can take S =
√

2πIN . In
the general case, due to the symmetry of K and X ,

∑

j∈K∩X
(γjγ

⊤
j + σjσ

⊤
j )hϑj

= 2
∑

j∈K∩X+\{ei0,eiπ}
(γjγ

⊤
j + σjσ

⊤
j )hϑj

+
∑

j∈K∩X+∩{ei0,eiπ}
(γjγ

⊤
j + σjσ

⊤
j )hϑj

.

Since the rank of this matrix is smaller or equal to 2|K ∩ X+|, we can find
S ∈ Rm×N for some m ≤ 2|K ∩ X+|. Then (QCQP2) is equivalent to

minimize t

subject to α⊤S⊤Sα + 2q⊤α+


 ∑

j∈K∩X
|ϕj|2 hϑj


− t ≤ 0,

α⊤ (γjγ⊤j + σjσ
⊤
j

)
α− g2

j ≤ 0, j ∈ X+,

which we again rewrite as

maximize −t

subject to

(
t

α

)⊤ (
0Rm S

)⊤ (
0Rm S

)( t
α

)

+

(
−1
2q

)⊤(
t
α

)
+


 ∑

j∈K∩X
|ϕj|2hϑj


 ≤ 0,

(
t
α

)⊤(
0 γ⊤j
0 σ⊤

j

)⊤(
0 γ⊤j
0 σ⊤

j

)(
t
α

)
− g2

j ≤ 0, j ∈ X+.
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From this, the (dual) SOCP formulation is

max.

(
−1
0RN

)⊤(
t
α

)

s.t.




−1
2 q⊤

1
2 −q⊤

0Rm −S



(
t

α

)
+ zK =




1
2

(
1 −

∑
j∈K∩X |ϕj|2hϑj

)

1
2

(
1 +

∑
j∈K∩X |ϕj|2hϑj

)

0Rm


 ,

zK ∈ Qm+2,


0 0R1×N

0 −γ⊤j
0 −σ⊤

j



(
t
α

)
+ zj =



gj
0

0


 , j ∈ X+,

zj ∈ Q3, j ∈ X+.
(SOCP2)

5.5.3 p = 2, exact quadrature

Let S̃ be a matrix such that S̃⊤S̃ = M̃ . We can choose S̃ ∈ Rm×N for some

m ≤ N . As in the last subsection, (QCQP2̃) can be rewritten as

max.

(
−1
0RN

)⊤(
t
α

)

s.t.




−1
2 q̃⊤

1
2 −q̃⊤

0Rm −S̃



(
t

α

)
+ zK =




1
2

(
1 −

(∑Nϕ−1
k,l=−Nϕ

mk−lβkβl
))

1
2

(
1 +

(∑Nϕ−1
k,l=−Nϕ

mk−lβkβl
))

0Rm


 ,

zK ∈ Qm+2,


0 0R1×N

0 −γ⊤j
0 −σ⊤

j



(
t
α

)
+ zK =



gj
0

0


 , j ∈ X+,

zj ∈ Q3, j ∈ X+.
(SOCP2̃)

5.5.4 p = ∞

Using

γjγ
⊤
j + σjσ

⊤
j =

(
γ⊤j
σ⊤
j

)⊤(
γ⊤j
σ⊤
j

)
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and recalling that the optimization variable is (t;α) we rewrite (QCQP∞) as

maximize −t

subject to

(
t

α

)⊤(
0 γ⊤j
0 σ⊤

j

)⊤(
0 γ⊤j
0 σ⊤

j

)(
t

α

)

+

(
−1

2q(j)

)⊤(
t
α

)
+ |ϕj|2 ≤ 0, j ∈ K ∩ X+,

(
t
α

)⊤(
0 γ⊤j
0 σ⊤

j

)⊤(
0 γ⊤j
0 σ⊤

j

)(
t
α

)
− g2

j ≤ 0, j ∈ X+.

Using the computations from the last subsection we get the (dual) SOCP
formulation

max.

(
−1

0RN

)⊤(
t

α

)

s.t.




−1
2 q(j)⊤

1
2 −q(j)⊤

0 −γ⊤j
0 −σ⊤

j




(
t
α

)
+ zK =




1
2
(1 − |ϕj|2)

1
2(1 + |ϕj|2)

0

0


 , j ∈ K ∩ X+,

zK,j ∈ Q4, j ∈ K ∩ X+,


0 0R1×N

0 −γ⊤j
0 −σ⊤

j



(
t
α

)
+ zj =



gj
0

0


 , j ∈ X+,

zj ∈ Q3, j ∈ X+.
(SOCP∞)

5.6 Numerical experiments

We tried several software packages that can solve SOCPs via interior point
methods: SeDuMi [54], SDPT3 [63] and MOSEK [42]. Both SeDuMi and

SDPT3 are open source software (GPLv2), while MOSEK is a commercial
package. An independent benchmarking of these (and other) packages has
been done in [41].

After some tests we decided to use a slightly modified version of SDPT3
for our computations. MOSEK produced rather inaccurate results for larger

problem sizes, while both SeDuMi and SDPT3 delivered solutions with good
accuracy. Without modifications, SDPT3 was about 1.5 to 3 times slower
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than SeDuMi for our problems. Unfortunately, all three packages are opti-

mized to perform fast on sparse problems. Because our problems are not
sparse, all packages produce a significant amount of overhead. Moreover,

only MOSEK is parallelized.
The advantage of SDPT3 is that it is mainly written in the Matlab

programming language (with just a few parts in C). By far the most time-
consuming step in the algorithms used by SDPT3, SeDuMi and MOSEK
is the multiplication of certain large matrices. By simply converting the

data type of these matrices from sparse to dense before multiplication we
could achieve a speed-up of around 5 to 10 on a single-processor single-core

system and around 25 to 50 on a system with 8 cores. The changes we
made amounted to less than 10 lines of code and still left the function of

SDPT3 completely general. Matrix-matrix multiplication of dense matri-
ces is not only much more efficient, but also the Matlab implementation

is parallelized for dense matrices, but not for sparse matrices. This is why
the speed-up is so much larger for multi-processor systems. Some further
problem-specific optimizations and the usage of a highly optimized imple-

mentation of the basic linear algebra subprograms (Goto BLAS [26]) resulted
in an additional speed-up of around 3. Similar modifications should also be

possible for SeDuMi, but since large parts of SeDuMi are written in C, this
would amount to substantially more work.

The computation times for different sizes of Example 1 from this section
can be found in Table 5.1. Even with our optimizations the two most time-

consuming lines of code in SDPT3 are two certain matrix multiplications.
For example, the total computation time for the largest problem size in
Table 5.1 was 578 seconds. About 345 seconds, i.e., around 60 percent of the

time, were spent on these two matrix multiplications.
The main limitation to the problem size is memory. Let us exemplify

this by (SOCP∞). The matrices A⊤
j are stored in one large matrix A⊤ =

(A⊤
1 ; . . . ;A⊤

ν ). The matrix A⊤ has N + 1 columns, where we recall that N is

the dimension of the discrete space H∞
N (D). For every point inK∩X+ we get

4 rows and for every point in X+ we get 3 rows in A⊤. Consider Example 1
below with N = 212 = 4096 and d = 212 (see (5.13) below), i.e., |X+| = 4097.

In this particular example we have |K ∩ X+| = (|X+| + 1)/2 = 2049, so the
number of rows in A⊤ is

4|K ∩ X+| + 3|X+| = 4 · 2049 + 3 · 4097 = 20487.
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The number of columns is N + 1 = 4097. Each element of A⊤ needs 8
Bytes, so the total amount of memory needed just to store A⊤ is 4 · 4097 ·
20487 = 671481912 Bytes (≈ 0.63 GByte). Unfortunately, SDPT3 is not
optimized for memory efficiency and keeps several copies of A⊤ in memory.

The amount of memory needed for this example in our modified version of
SDPT3 (modified 2) is actually around 4.8 GByte on the system that we
used. (This is the maximal total memory usage including all temporary

results and the memory needed by Matlab itself.) The unmodified version
of SDPT3 requires even more memory, because it uses sparse data structures

for matrices that (for our problems) contain only few zero elements. For
example, the matrix A⊤ from above needs 1073938240 Bytes (≈ 1.00 GByte)

when stored in sparse format.

5.6.1 Example 1: Artificial example

As a test problem we took the function ϕ in the top row of Figure 5.1, g ≡ 1

and K = {eiϑ : ϑ ∈ [π4 ,
3π
4 ] ∪ [−3π

4 , −π4 ]}. We solved a series of problems
for p = 2 with exact quadrature (Nϕ = 214) and p = ∞. We varied the

dimension of the space H∞
N (D) by taking N ∈ {24, 25, . . . , 212}. For each N

we solved the problem for several grids of the form

Xd =
{

ei0π/d, ei1π/d, . . . , ei(2d−1)π/d
}
. (5.13)

We took d ∈ {2log2N , . . . , 214}.
The minima of the optimization problem with different N and d are shown

in Table 5.2. The resulting approximation f ∗ for p = 2 is shown in the middle
row of Figure 5.1, and the resulting approximation f ∗ for p = ∞ is shown

in the bottom row of Figure 5.1. (In both cases we used N = 212, d = 214).
One can see nicely that the solution shows the properties of Theorem 4.4:

The absolute value |f ∗| is (almost) equal to 1 on ∂D \K. Moreover, in the
case p = ∞, |ϕ− f ∗| is (almost) constant on K.

Let us denote by τ pN,d the minimum of the optimization problem with

certain p, N and d. Let

δpN,d =
∣∣∣τ pN,d − τ pN,d/2

∣∣∣ (5.14)

be the difference between two minima when the number of grid points is
doubled. In Figure 5.2 we show how δpN,d behaves for fixed N when we vary
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Figure 5.1: Results from Example 1 with N = 4096, d = 16384. Top left : Absolute value
of an artificial function ϕ. Top right : Real and imaginary part of ϕ. Middle left : Solution
f ∗ for the case p = 2, exact quadrature. Middle right : Difference between ϕ and f ∗ on K
for p = 2, exact quadrature. Bottom left : Solution f ∗ for the case p = ∞. Bottom right :
Difference between ϕ and f ∗ on K for p = ∞.
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N = 2048 N = 4096
d = 2048 d = 4096 d = 4096

p = 2 p = ∞ p = 2 p = ∞ p = 2 p = ∞
SeDuMi 3093 6187 6736 24348 24256 51914
SDPT3, original 5578 9357 11913 23544 53755 78986
SDPT3, modified 1 212 320 382 703 1173 1688
SDPT3, modified 1, Goto BLAS 176 257 311 568 959 1397
SDPT3, modified 2, Goto BLAS 73 100 121 205 434 578
#iterations SeDuMi 31 27 37 54 31 29
#iterations SDPT3 28 30 31 37 30 31

Table 5.1: Some computation times (in seconds) for Example 1. Computations were done
on a system with two Quad-Core Opteron 2352 processors running at 2.1 GHz, achieving
between 25 and 30 Gflops for matrix-matrix multiplication with Goto BLAS. Our Matlab
version was R2007b. For SDPT3 (modified 1) we merely changed the data type of some
matrices from sparse to dense before multiplication. SDPT3 (modified 2) contains further
optimizations, some of them problem-specific.

d. We observe that both for p = 2 and for p = ∞, δpN,d behaves like d−2.

However, by looking only at the left starting points of the curves in Figure 5.2
(marked by circles) we observe that in the case p = 2, also δpd,d behaves like
d−2, while in the case p = ∞ the decay of δpd,d is significantly slower. This

indicates that for p = 2 it should suffice to choose d = N , while for p = ∞
it might be advisable to choose d larger than N .

On the other hand, we consider

∆p
d =

∣∣∣τ pd,d − τ pd/2,d/2

∣∣∣ , (5.15)

the difference between two minima when both the number of grid points

and the dimension N of the space H∞
N (D) are doubled. Table 5.3 shows the

∆p
d and the convergence rate log2

(
∆p
d/∆

p
d/2

)
, and Figure 5.3 shows a plot.

Convergence seems to be approximately linear at least for the cases that we

computed.

5.6.2 Example 2: Wideband dispersion compensating mirror

We consider an example from [40]. Here, one is interested in designing a

dispersion compensating mirror, i.e., a refractive profile with amplitude re-
flectivity close to 1 over a large frequency range and a specified phase shift.
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Figure 5.2: Top: Case p = 2. Each curve shows how δ2

N,d (see equation (5.14)) from
Example 1 varies when N is fixed and d is varied. The starting point of each curve is
marked by a circle. The curve starting at d = 32 is δ2

32,d, the curve starting at d = 64 is
δ2

64,d, and so on. The solid black line indicates a decay of d−2. Bottom: Case p = ∞. Each
curve shows how δ∞N,d varies when N is fixed and d is varied.
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p = 2 p = ∞
d ∆2

d rate ∆∞

d rate
32 2.0228e-03 2.5140e-03
64 4.3028e-04 2.2330 1.6102e-03 0.6428
128 6.0013e-05 2.8419 1.0895e-03 0.5636
256 8.6874e-06 2.7883 6.1446e-04 0.8263
512 3.5529e-05 -2.0320 3.2421e-04 0.9224
1024 9.0181e-06 1.9781 1.5537e-04 1.0613
2048 5.7313e-06 0.6540 6.4489e-05 1.2685
4096 2.7908e-06 1.0382 2.5656e-05 1.3298

Table 5.3: Difference between two minima of Example 1 when both the number of grid
points and the dimension of the space H∞

N (D) are doubled, see (5.15).
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~d−1

Figure 5.3: The data from Table 5.3. The solid black line indicates a decay of d−1.
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The desired phase shift is given as a polynomial around some center fre-

quency ω0,

φ(ω) =
k∑

ν=0

1

ν!
Dν(ω − ω0)

ν,

see Chapter 1. Here, ω is the angular frequency. The relationship between
the angular frequency ω and the wavelength λ is given by ω = 2πc0/λ, where
c0 = 299792458 ms−1 is the speed of light in vacuum. The numbers Dν are

the dispersion coefficients. We explained in Chapter 1 that in practice, one
is only interested in the group delay dispersion

GDD(ω) =
∂2

∂ω2
φ(ω) =

k∑

ν=2

1

(ν − 2)!
Dν(ω − ω0)

ν−2.

Hence, only the dispersion coefficients for ν ≥ 2 are relevant, and there

is some freedom in the choice of D0 and D1. We consider the reflection
coefficient with respect to ω = kc0, which has the same qualitative properties

as the reflection coefficient with respect to k.

We take dispersion coefficients and center frequency from [40, Table 4.1],
D2 = −50.0 fs2, D3 = 32.2 fs3, D4 = 268.2 fs4, D5 = −62.3 fs5 and center

wavelength λ0 = 760 nm, that is, ω0 = 2.4785 fs−1. We chose D1 = 27 fs and
D0 = 0. The desired reflection coefficient is then

Rdesired(ω) = exp

(
i

5∑

ν=0

1

ν!
Dν(ω − ω0)

ν

)
,

see Figure 5.4. As the interval of interest we take [550 nm, 1300 nm], or
[1.4490 fs−1, 3.4248 fs−1]. In order to transport functions from the half-plane
to the disk and back, we use the isometry T∞ from Theorem 2.12. Together

with real symmetry we get

K = {eiϑ : ϑ ∈ [−2.5734,−1.9334]∪ [1.9334, 2.5734]}.

The resulting function ϕ is shown in Figure 5.5.

Computations were done with N = 4096 and the grid Xd as in (5.13) with
d = 16384. In order to use exact quadrature in the case p = 2, we need to

continue ϕ from K to the whole circle. We did this in such a way that the
resulting ϕ is smooth on the whole circle.
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Figure 5.4: Example 2. Left : Desired phase shift φ. Right : Desired group delay dispersion
(GDD).

The results are shown in Figure 5.6. Interestingly, the solutions seem to
show the property from Theorem 4.4 only on the set K. In the case p = 2

we obtained 1.8782e-04 for the minimum of the discrete problem. In the case
p = ∞ we obtained 2.5771e-04 for the minimum of the discrete problem.

Notice further that on can see the implications of Remark 4.10 in Fig-
ure 5.6. We were able to show that for p = ∞ the solution f ∗ is smooth

on the sets Γ◦
1 and Γ◦

2, where Γ1 = {eiϑ ∈ ∂D : |f ∗(eiϑ) − ϕ(eiϑ)| = τ ∗} and
Γ2 = {eiϑ ∈ ∂D : |f ∗(eiϑ)| = g(eiϑ)}. The plot of the GDD indicates that f ∗

is indeed not smooth on the boundary of Γ1 and Γ2. In Example 3, this is
even more noticeable.

5.6.3 Example 3: DCM with pump window

We consider an example from the diploma thesis of Felix Grawert [27].
Grawert investigated the design of dispersion compensation mirrors with

very challenging restrictions. An example where he failed to obtain a mirror
that meets the design goal is the following [27, Section 6.2.1]. He wanted to
have a reflectivity larger than 0.999 between 730 nm and 850 nm. Further,

he needed a pump window from 672 nm to 682 nm where the reflectivity is
smaller than 0.05. Unfortunately, he does not state the desired dispersion

coefficients in the high reflectance region. From his graphs we guess D3 =
−35 fs3 and D2 = −57 fs2 at a center wavelength of 800 nm. Moreover, we
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Figure 5.5: Example 2. Desired reflection coefficient transported to the circle in the
interval of interest. Due to symmetry we only show the interval [0, π]. Left : absolute value
|ϕ|. Right : argument arg(ϕ).

chose D1 = −27 fs and D0 = 0.
We modelled this situation as follows. As the desired reflection coeffi-

cient we took r(ω) = ei
∑3

ν=0
1
ν!Dν(ω−ω0)

ν

and transported this to the circle
as in Example 2 to obtain ϕ, see Figure 5.7. The set K is the HR region

[730 nm, 850 nm] transported to the circle. In order to take care of the pump
window, we transported the interval [672 nm, 682 nm] to the circle and chose
g = 0.05 on this interval and g = 1 on the rest of the circle. Computations

were done for p = ∞ with N = 8192. For the grid we took the points from
Xd, see (5.13), with d = 8192, but we added some additional points in and

around the HR region and the pump region so that the final grid contained
14517 points.

The result is shown in Figure 5.8. For the minimum we obtained 8.1547e-
04, that is, a reflectivity of at least 0.99918 over the HR region, so our

solution barely satisfies Grawert’s requirements. However, since the space
of realizable reflection coefficients is quite a bit smaller than H∞(C+), this
is a strong sign that it is not possible at all to design a mirror that meets

the design goals.
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Figure 5.6: Example 2, solution. Left column: Case p = 2. Right column: Case p = ∞.
Top row : Solution f ∗. Middle row : Solution transported to the real line. Bottom row :
Desired GDD and GDD of the solution.
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Figure 5.7: Example 3. Top row : Desired reflection coefficient transported to the circle,
absolute value and argument. Bottom: Barrier function g. Since the interval where g is not
equal to 1 is so small, only a small subset of the circle is shown.
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transported to the real line (HR region), absolute value. Bottom right : Solution transported
to the real line (pump region), absolute value. Top right : Desired GDD and GDD of the
solution.





Bibliography

[1] Z. S. Agranovich and V. A. Marchenko, The inverse problem of

scattering theory, Gordon and Breach, 1963.

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming,
Math. Program., Ser. B, 95 (2003), pp. 3–51.

[3] H. W. Alt, Lineare Funktionalanalysis, Springer, 4th ed., 2002.

[4] L. Baratchart and J. Leblond, Hardy approximation to Lp func-

tions on subsets of the circle with 1 ≤ p < ∞, Constr. Approx., 14
(1998), pp. 41–56.

[5] L. Baratchart, J. Leblond, and J. R. Partington, Hardy ap-

proximation to L∞ functions on subsets of the circle, Constr. Approx.,
12 (1996), pp. 423–435.

[6] L. Baratchart, J. Leblond, J. R. Partington, and N. Tork-

hani, Robust identification from band-limited data, IEEE Trans. Au-
tomat. Contr., 42 (1997), pp. 1318–1325.

[7] E. J. Beltrami and M. R. Wohlers, Distributions and the Bound-

ary Values of Analytic Functions, Academic Press, 1966.

[8] F. A. Berezin and M. A. Shubin, The Schrödinger equation, Kluwer,
1991.

[9] M. Born and E. Wolf, Principles of Optics, Cambridge University
Press, 7th ed., 1999.
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The purpose of this book is twofold. Our starting point 
is the design of layered media with a prescribed reflec-
tion coefficient. This is formulated as an optimization 
problem. In the first part of this book we show that the 
space of physically realizable reflection coefficients is 
rather restricted by a number of properties. In the se-
cond part we consider a constrained approximation 
problem in Hardy spaces. This problem is a relaxed 
version of the optimization problem for the reflection 
coefficient. More generally, it can be viewed as an 
optimization problem for the frequency response of a 
causal LTI system with limited gain. We analyze the 
approximation problem theoretically and show how to 
solve it efficiently with modern numerical methods.
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