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Abstract— This contribution proposes a method to generate
object hypotheses from stereo obstacle detection and image
motion. Our algorithm is a general approach since it does
not require any a priori information about the shape of the
observed objects but relies on the basic assumption that the
objects are rigid. The algorithm has two processing stages:
First, obstacles are detected using stereo vision. Second, each
obstacle is segmented into clusters of consistent motion in 3D
space. The clustering process explicitly accounts for measurement
uncertainties of stereo disparity and 2d motion. Our system may
serve as a general feature for higher-level object detection and
classification.

I. INTRODUCTION

Object detection is one of the key abilities of modern driver
assistance systems. A vast literature on this subject exists
and different sensors (RADAR, LIDAR, monocular and stereo
cameras, etc.) have already been employed to approach object
detection. Among these sensors stereo cameras may have
particularly strong potential because they combine a broad
variety of different cues, such as, e.g., disparity, displacement,
texture, color, and shape.

It has been shown that stereo cameras allow efficient detec-
tion of obstacles in the path of a vehicle (e.g. [1]). However,
the limited depth resolution of stereopsis imposes a strong
restriction for object detection. To illustrate this problem,
consider the cyclist in Figure 1. Using stereo depth information
alone, the bicycle can hardly be separated from the parking
car standing next to it. Since the depth accuracy decreases
at least quadratically with the distance, this problem becomes
even more apparent if the distance between the object and the
observing cameras is large.

Several approaches exist to overcome this problem: If we
have a priori knowledge of the objects in the scene, we
can combine this information with stereo object detection.
E.g., if we are to design a detection algorithm specialized
for vehicles, we could use image features such as shadows,
symmetry, bounding boxes, etc. (e.g. [2]). Another important
feature for object detection is motion. Recalling our previous
example in Figure 1, the cyclist and the parking car can easily
be separated if we consider the 2d motion (or displacement)
between corresponding points in two consecutive frames of
one camera.

Motion is a very general feature for object detection and is
even an important cue in human visual perception (e.g., we can
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Fig. 1. Sample images and 2d correspondence data: a,b) rectified left and
right stereo images, c) disparity (pixels) of marked region, d) 2d motion
(pixels) of marked region. The bicycle and the parking vehicle can hardly be
separated from disparity alone, but image displacement can clearly distinguish
between both objects.

detect well camouflaged objects as soon as they start to move).
For computer vision, 3D object motion is very appealing. If
we detect objects by finding segments of equal 3D motion, the
only constraint we rely on is rigidity of the observed objects.
This assumption holds true for most ”simple” objects such as
cars, trucks, etc. and at least for parts of more complex objects
(e.g., the head of a pedestrian). However, the measurement
of general object motion comprising 3D translation and 3D
rotation from stereo image streams is difficult since it relies on
noisy disparity and 2d motion data. Thus, tracking procedures
are required. A recursive scheme has been proposed in [3],
which allows determination of rigid motion with six degrees
of freedom (dof) and improves depth resolution by integrating
stereopsis and 2d displacement. We envision that 3D motion
will form a valuable and general clue that supports specialized
algorithms for detecting certain classes of objects.

The goal of this contribution is to generate initial ob-
ject hypotheses. Our presented approach combines both 3D
position and 3D motion. We propose to simplify motion
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segmentation using an assumption that may be considered
natural in automotive applications: We impose the constraint
that object motion is mainly parallel to the ground plane.
The resulting object hypotheses may serve as a starting point
for subsequent tracking as proposed in [3], but we suppose
the presented method will also be beneficial for other object
detection approaches.

The algorithm presented in this contribution can be divided
into two main stages: In the first stage, obstacles in our path are
found by stereo vision only. To accomplish this, we identify
the ground plane on which our vehicle is traveling. Using the
location of the ground plane, we can classify all detected
3D points into one of the four categories ”ground plane”,
”obstacle”, ”negative obstacle” (e.g., a ditch in the road) and
”irrelevant” (i.e. all points located well above the vehicle).
Obstacle points lying close together are then grouped with a
flood filling algorithm. The purpose of the second stage is
to separate these groupings into clusters of consistent rigid
3D motion. Since in this contribution, we focus on generating
initial object hypotheses and do not use tracking, we do not
account for full 3D motion with all degrees of freedom.
Instead, we simplify our problem by considering only 3D
motion parallel to the ground plane. Regions with similar
motion components parallel to the road surface are segmented
using a divisive clustering algorithm. The proposed algorithm
yields promising results on first real-world image data.

The paper is organized as follows: Section II presents the
algorithm to locate the ground plane from stereo data, the
classification of 3D object points and grouping of obstacle
points. In Section III, we describe how visual motion can
be used to refine the results of the stereo obstacle detection.
A divisive clustering algorithm is used to generate object
hypotheses. Throughout the paper, the proposed algorithms
are demonstrated on the sample data from Fig. 1. Section IV
concludes this paper with a short summary of our results.

II. OBSTACLE DETECTION

A. Locating the ground plane

We define obstacles as 3D structures that arise from the road
surface. In fact, as depicted in Fig. 2, given the position of the
ground plane, we can categorize all observed 3D points into
four groups: (a) irrelevant points that are located well above
the traveling vehicle, (b) obstacles in front of the observer,
(c) points belonging to the ground plane, and (d) negative
obstacles such as ditches in the road. Thus, reliable location
of the road surface is a vital part of obstacle detection.

In this contribution, stereo disparity is computed via
block matching. The Zero-Mean Sum of Squared Differences
(ZSSD) between two blocks is used as distance measure
for matching. As introduced by [4], the matching errors
of neighboring windows are also included in our matching
criterion. Using this method, we obtain valid disparities even
in image regions with low texture. Our current stereo matching
procedure requires 80 ms for each run on a Intel Pentium M
processor with 2 Ghz.

Fig. 2. Obstacle detection. Given a 3D point cloud from stereo vision and the
location of the ground plane on which the vehicle is traveling, we can classify
all object points into four categories: irrelevant (a), obstacles (b), ground plane
(c) and negative obstacles (d).
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Fig. 3. Extracted disparity (in pixels) for the images in Fig. 1. Disparity is
obtained by matching blocks of 9 × 9 pixels.

Following the work of [5], the ground plane can be de-
tected from stereo disparities using the well known v-disparity
concept. Each row in the v-disparity image is given by the
histogram of the corresponding row in the disparity image.
Labayrade et al. found that each tilted plane in 3D space
(with zero roll angle) becomes a straight line in the v-disparity
image (see Fig. 4). This line can easily be detected using, e.g.,
a Hough or Radon transform. We have decided to employ a
Radon transform for line detection since it does not require
binarization of the input image and it can be implemented
efficiently using the central slice theorem [6]. The advantages
of the v-disparity method are its simplicity and its robustness.
However, there are also two drawbacks: First, the determina-
tion of the roll angle from the v-disparity is difficult. Second,
if we are given sub-pixel accurate disparity estimates, the
computational burden of the ground plane detection increases
drastically. Several extensions to our current road surface
location are possible: We could apply a Total-Least-Squares
(TLS) algorithm to refine the ground plane estimation and
include a roll angle. Furthermore, accounting for the dynamics
of the vehicle by tracking as proposed in [7] will improve our
results. However, these extensions have not yet been included
in our system.
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Fig. 4. V-disparity and detected ground plane.

B. Identifying and grouping obstacles

Given the position and orientation of the road surface,
we are now ready to classify the image points. Using their
3D position obtained with stereo matching, we can compute
their height above or below the ground plane and label them
accordingly. Figure 5(a) shows the classification results as a
bird’s eye view.
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(b) Obstacles

Fig. 5. Classification of 3D points using the extracted ground plane. The
left figure shows a bird’s eye view in which trafficable road is plotted in gray,
obstacles are denoted by white color and black marks image regions where
no valid information is available. Negative obstacles were not present in this
example. The image on the right shows the disparities of all points in the
obstacles category.

Depicted in Fig. 5(b) are the disparities of all relevant
obstacle points in our path. As a first guess for objects in
the scene, we can now group connected regions in Fig. 5(b)
as obstacles. Connected regions are found using a standard
flood filling algorithm (e.g., taken from Intel’s Integrated Per-
formance Primitives (IPP) Library). This algorithm connects
two neighboring pixels if the distance between their disparities
is equal to or less than one pixel.

The result of the flood filling algorithm is shown in Fig. 6.
We obtain mostly satisfying results, but as expected the cyclist
and the parking car were merged due to their similar disparity.

III. MOTION SEGMENTATION AND CLUSTERING

The objective of this section is to refine the obstacle
detections results. We incorporate image motion to check the

a)

b)

Fig. 6. Obstacle detection results (a: object contours, b: color coded objects).
Note that the cyclist and the parking vehicle could not be separated.

consistency of each connected obstacle region from Sec. II-B
and segment each obstacle into separate object hypotheses if
necessary. A divisive clustering method is used that explicitly
accounts for the measurement uncertainties of disparity and
2D motion.

A. Image displacement and 3D motion

In this contribution, we determine image displacement with
a hierarchical Lukas-Kanade-algorithm as proposed in [8]. To
reduce computation time, 2D motion is not determined for
all image pixels. Instead, we confine 2D motion estimation
and clustering to a subset of equally-spaced image points with
distances of 3 pixels in both horizontal and vertical direction.
In a post-processing stage, each remaining point is assigned to
a cluster using nearest-neighbor interpolation. Figure 7 depicts
the result obtained for our sample images from Figure 1.

Let us consider an observed object point with 3D coordi-
nates (X, Y, Z)T and denote its image position by (x, y)T . For
simplicity, we assume that the cameras are fully calibrated
and all entities within the images are given in normalized
coordinates, i.e. we suppose that the images were acquired
by ideal cameras with focal lengths f =1 and image centers
located at coordinates (0, 0)T . Please note that the measured
disparity ∆ and image displacement (u, v)T are also specified
in normalized camera coordinates. With this camera setup, the
distance Z of the object point and its disparity are related by

Z =
b

∆
, (1)

where b indicates the base length of the stereo rig.
Since we consider each 3D point individually, we cannot

account for 3D rotation. Thus, our rigid motion model is fully
specified by the velocity T = (U, V, W )T . The Longuet-
Higgins equations (cf. [9]) describe the relation between
3D velocity and 2D displacement. For the case of purely
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(a)

(b)

Fig. 7. Extracted 2D motion for the whole image (top) and detected obstacle
”cyclist and parking car” (bottom).

translational 3D motion, we obtain

x = X/Z ,

⇒ ẋ =
Ẋ

Z
− X

Z2
Ż =

U − xW

Z
, (2)

y = Y/Z ,

⇒ ẏ =
Ẏ

Z
− Y

Z2
Ż =

V − yW

Z
. (3)

Combining Eqs. (1–3), we get

u =
∆
b

(U − xW ) , (4)

v =
∆
b

(V − yW ) . (5)

Eqs. (4) and (5) constitute two constraints for the three
unknown velocity components (U, V, W )T . Consequently, we
need to impose further simplifications before we can evaluate
the velocity of the observed point. Several possibilities exist:

1) Known ego motion:
This simplification (presented in e.g. [10], [11], though
with a different derivation as given here) was adapted for
automotive applications in [11]. Assuming that the ego
velocity (−U0,−V0,−W0)T of the vehicle is known,
the relative velocity of a stationary object is given by
(U0, V0, W0)T . Using Eqs. (4) and (5), we obtain

u

∆
=

U0

b
− W0

b
x , (6)

v

∆
=

V0

b
− W0

b
y . (7)

Eqs. (6) and (7) form two linear relations between
(x, u

∆ ) and (y, v
∆), respectively. A stochastic test on

these linear constraints can be employed to decide
whether or not an image point (x, y)T belongs to a
stationary object. In [11], this test was extended to
account for 6d ego motion (translation and rotation)
and good performance in practice was reported. The
advantages of this method are its simplicity and
robustness. On the other hand, it requires knowledge
of the vehicle’s ego motion (which probably will
not constitute a problem in automotive applications).
Furthermore, it only reaches a binary decision whether
or not the object we are looking at is moving
independently from the observer. Thus, it cannot
distinguish between two different non-stationary objects.

2) Motion parallel to the retina W = 0:
Another possible approach is to consider 3D motion
components parallel to the image plane only, i.e. W = 0.
Using this assumption, we can determine the remaining
velocity components from our disparity and displace-
ment measurements:

U =
b u

∆
, (8)

V =
b v

∆
. (9)

Subsequently, we could generate object hypotheses by
clustering points with similar parallel motion (U, V )T .
The same result was obtained by [12], where dynamic
objects are also assumed to move mainly parallel to the
image plane and 2D projection of the motion component
W in Eqs. (4–5) was imposed being approximately
constant, i.e. xW = yW = k. Talukder et al. have
also implemented a test based on the constraints (8–9)
to detect independently moving objects in the scene [12].

3) Motion parallel to the ground plane:
We impose another assumption that may be considered
natural in automotive applications. Namely, we consider
object motion being parallel to the ground plane. To
illustrate this simplification, let us first analyze (without
loss of generality) the case where the road surface is
parallel to the X-Z-plane of the camera system. With
both roll and pitch angle equaling zero, motion parallel
to the ground plane implies V|| = V = 0. Thus, from
the Longuet-Higgins Eqs. (4–5) follows that

U|| = U = − b

∆
vx − uy

y
, (10)

W|| = W = − b

∆
v

y
. (11)

In the general case with non-zero pitch angle θ and
roll angle ρ, (U||, V||, W||)T denote the velocity of the
observed point with respect to a coordinate system that
is aligned with the ground plane. For parallel motion,
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Fig. 8. 3D motion parallel to the ground plane for the detected obstacle
(”cyclist and parking car”) from Fig. 1.

we have V|| = 0. Then, the velocities (U, V, W )T and
(U||, V||, W||)T are related by:

U = U|| cos ρ + W|| sin ρ sin θ (12)

V = U|| sin ρ − W|| cos ρ sin θ (13)

W = W|| cos θ (14)

and using the Longuet-Higgins equations, we obtain

U|| = − b

∆
u c2 + v c3

c1
, (15)

W|| = − b

∆
u sinρ − v cos ρ

c1
, (16)

where c1 = x sin ρ cos θ − y cos ρ cos θ − sin θ ,

c2 = cos ρ sin θ + y cos θ ,

c3 = sin ρ sin θ − x cos θ .

The specific application will have to determine whether
roll and pitch are negligible and it is safe to use
Eqs. (10–11) instead of the general formulation (15–16).
Fig. 8 depicts the estimated horizontal motion com-
ponents for the detected obstacle ”cyclist and parking
vehicle”. Visually, we can distinguish two dominant
velocities and thus two different objects. Clustering all
points with consistent motion will be discussed in the
next section.

B. Segmentation and Clustering

To segment different objects from Fig. 8, we group points
with similar horizontal velocity T|| =

[
U||, W||

]T
. However,

the accuracy of the velocity vector will not be equal for all
obstacle points. In fact, the uncertainty of T|| depends on the
3D position of the object: For closer objects, the precision
of the horizontal velocity will be significantly higher than for
objects that are far away. A clustering algorithm must account
for this property. We therefore use Mahalanobis distances to
evaluate the similarity of two velocity vectors.
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Fig. 9. Clustering result for Fig. 8 using Mahalanobis distances. Our
algorithm found two clusters and removed one velocity estimate from the
original set.

Assuming that the measurement uncertainty of the estimated
disparity is given by σ∆ and the uncertainty of the displace-
ment components is specified by σu and σv , respectively, we
can approximate the covariance matrix K of our horizontal
velocity vector by

K = Cov{T||} = H


σ2

∆ 0 0
0 σ2

u 0
0 0 σ2

v


 HT . (17)

Here, the matrix H denotes the Jacobian of T|| as defined in
Eqs. (15–16) with respect to the measurements ∆, u and v (all
in normalized coordinates):

H =
∂T||

∂ [∆, u, v]T

=
b

∆ c1

[
u c2+v c3

∆ −c2 −c3
u sin ρ−v cos ρ

∆ − sinρ cos ρ

]
. (18)

In the object segmentation process, we will identify each
cluster by its center µ. Using the covariance matrices Ki

associated with the elements T||,i of a cluster C, the center
can be computed as a weighted sum:

µ =

[∑
i∈C

K−1
i

]−1 [∑
i∈C

K−1
i T||,i

]
. (19)

The distance of an element to a cluster is then given by the
Mahalanobis distance

d
(
T||; C

)
=

(
T|| − µ

)T
K−1

(
T|| − µ

)
. (20)

If we assume that the measurement errors in ∆, u and v orig-
inate from a Gaussian white noise process, the Mahalanobis
distance is χ2-distributed with two degrees of freedom. We can
then decide with an error probability of 5% that a velocity
vector T|| is inconsistent with a cluster C if the distance
d

(
T||; C

)
is larger than dmax = 5.9915.

To separate observed objects, we apply a divisive clustering
technique that is adapted from the well-known ISODATA
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method of [13]. The algorithm is described as follows:

1) Initialization: Set number of clusters N = 1 and initial-
ize the first cluster C1. Its center µ1 is the centroid (19)
of all given features T||,i.

2) Determine all unclassified features that cannot be associ-
ated with C1, i.e. all features for which the distance (20)
to the cluster center is above the threshold dmax.

3) While the number of unclassified features is above a
given threshold (in our examples, we allow four unclas-
sified feature points), do:

a) Initialize a new cluster CN+1 and use an arbitrary
unclassified feature point as its center µN+1. Set
N = N + 1.

b) For each feature T||,i, find the nearest cluster
center using the Mahalanobis distance (20). If the
minimum distance is below the threshold dmax, as-
sociate the feature to its closest cluster. Otherwise,
T||,i is stored in the list of currently unclassified
features.

c) Recompute the centers for each cluster.
d) Repeat steps b) and c) until convergence is

achieved, i.e. the association of the elements to the
clusters does not change any more, or a maximum
number of iterations is exceeded (in our example,
the algorithm converged after two iterations).

Fig. 9 depicts the results of the clustering algorithm for our
previous example. Two clusters were identified and one feature
was rejected since it could not be associated with either of the
two dominant velocities. The proposed segmentation method
was applied to all detected obstacles and performs well as
visualized in Fig. 10. We find that the cyclist and the parking
car are now well separated into two distinct objects.

IV. CONCLUSION

We have presented a method to generate object hypotheses
from three frames of a stereo image sequence: In a first
step, obstacles that arise from the road surface are detected
using disparity information of a stereo camera. This yields an
initial guess for objects in the scene but in many cases will
produce insufficient results due to the limited depth resolution
of stereopsis.

Thus, in a second step, each detected obstacle is segmented
into clusters of similar motion. We argue that motion in space
parallel to the road surface is well suited for object segmenta-
tion. A divisive clustering technique is used to separate objects.
Divisive clustering is computationally efficient since we expect
only a small number of different objects within each obstacle
region. In addition, our clustering algorithm explicitly accounts
for measurement uncertainties in stereo and 2D motion data.

Our algorithms give good results on first real data experi-
ments. We believe that the object hypotheses generation from
stereo vision and image motion can be used to initialize object
tracking. It could also serve as a general feature to support

a)

b)

Fig. 10. Detected objects using the proposed clustering technique (a: object
contours, b: color coded objects). The cyclist and the parking vehicle are now
detected as two individual objects.

high-level object detection and classification. Future work
should extend obstacle detection to non-flat road geometry.
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