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Service-Oriented Architecture (SOA) represents an architectural shift for
building business applications based on loosely-coupled services. In a multi-
layered SOA environment the exact conditions under which services are to
be delivered can be formally specified by Service Level Agreements (SLAs).
However, typical SLAs are just specified at the top-level and do not allow ser-
vice providers to manage their IT stack accordingly as they have no insight on
how top-level SLAs translate to metrics or parameters at the various layers of
the IT stack. This paper addresses the research problems in the area of SLA
translation, namely, the correlation and mapping of SLA-related metrics and
parameters within and across IT layers. We introduce a conceptual frame-
work for precise definition and classification of SLA translations in SOA.
With such a framework, an in-depth review and analysis of the state of the
art is carried out by the category, maturity, and applicability of approaches
and methodologies. Furthermore, we discuss the fundamental research chal-
lenges to be addressed for turning the vision of holistic and transparent SLA
translation into reality.

1 Introduction

The paradigm of Service Oriented Architecture (SOA) has changed the way for build-
ing IT-based systems [7, 58]. Initially SOA was mainly applied to restructure the IT
stack within an organization. More recently it also evolves as a common paradigm for
cross-organizational service landscapes where services are considered as tradeable goods.
Consequently, services operate under a strong business context where service customers
can expect services to be provided under well-defined and dependable conditions and
with clearly associated costs.
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Service Level Agreements (SLAs) are a common way to formally specify the exact
conditions (both functional and non-functional behavior) under which services are or
shall be delivered. However, the current SLAs in practice are just specified at the top-
level interface between a service provider and a service customer. Top-level SLAs can be
used by customers and providers to monitor whether an actual service delivery complies
with the agreed SLA terms. In case of SLA violations penalties or compensations can
be directly derived.

However, top-level SLAs do not allow service providers to either plan their IT land-
scapes according to possible, planned or agreed SLAs. Nor they allow to understand why
a certain SLA violation might have occurred. The reason for this is that SLA guarantee
terms are not explicitly or directly related to actual performance metrics or configuration
parameters. This makes it difficult for service providers to derive proper configuration
parameters from top-level SLAs and to assess (lower-level) monitoring metrics against
top-level SLAs. Overall, the missing relation between top-level SLAs and (lower-level)
metrics and parameters is a major hurdle for managing IT stacks in terms of IT plan-
ning, prediction or adjustment processes and in accordance with possible, planned or
actual SLAs.

Our vision is to use the paradigm of SLAs for managing a complete IT stack in cor-
relation with top-level SLAs which are agreed at business level. This complies very well
with the technical trend to apply the paradigm of service-orientation across the complete
IT stack (infrastructure/platform/software as a service) but also with the organizational
trend in IT companies to organize different departments as service departments (provid-
ing infrastructure resources, middleware, applications or composition tools as a service).
SLAs will be associated with multiple elements of the stack at multiple layers, e.g. SLAs
for elements of the physical infrastructure, virtualized infrastructure, middleware, ap-
plication level and process-level. Such internal SLAs describe the contract between the
lower-level entity and a higher-level entity which consumes the lower one. More pre-
cisely, the SLAs specify the required or agreed performance metrics but also the related
configuration parameters.

The fundamental challenge for realizing this vision is how to properly correlate the dif-
ferent SLAs in such a scenario so that they form a well synchronized SLA hierarchy. This
is basically a translation problem where clear translation rules are needed for translation
of terms (metrics and parameters) between the different layers and elements. Obviously,
neither a naive top-down nor a bottom-up approach alone can realize this. For example,
throughput requirements might be translated in a top-down manner, assuming that suf-
ficient behavior models of the system are available. In contrast to that, response times
are more likely to be translated in a bottom-up manner. A comprehensive approach for
SLA translation will have to combine those competing approaches in order to allow for
the derivation of a comprehensive solution that satisfies all the various SLA terms at all
layers.

The contribution of this paper is threefold. Firstly, we introduce a conceptual frame-
work for a more precise definition of the problem of SLA translation. This includes a
model for multi-layered SOA and a classification of four basic translation types. Secondly,
we present a comprehensive review of the related work by the category of approaches
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and methodologies. We examine SLA translation with an integrated view from a multi-
layered perspective, which we believe is crucial for understanding and classifying SLA
translation problems in SOA. Thirdly, based on the analysis of the state of the art, we
present the main research challenges ahead in order to achieve the sketched vision.

The rest of the paper is organized as follows: Section 2 sets the context of this paper by
introducing a conceptual framework of multi-layered SOA and defining four main types of
SLA translations. Section 3 presents a detailed review and analysis of technical solutions
for SLA translations, categorized by the main methodologies. These include knowledge
and rule based approaches, queuing-analytic model based approaches, and statistical
learning based approaches. The optimization methods used for top-down translation are
highlighted in these categories. Based on the review and analysis, Section 4 identifies and
discusses several main challenges for future research. Concluding remarks are presented
in the last section.

2 The Conceptual Framework

In order to enable a proper discussion and comparison in Section 3, we first introduce
a conceptual framework comprising a SOA reference model, a definition of the concepts
of SLAs and SLA translation as well as a categorization of four fundamental translation
types.

There are a few reference models and architectures for SOA proposed by different
standard bodies, such as OMG [56], OASIS [57], and SOA Alliance [67]. Similar ele-
ments are shared among these proposals, with different perspectives and details. In the
context of this paper we use a reference architecture for SOA largely in line with OMG,
which is closely related to its Model-Driven Architecture [55]. The target SOA architec-
ture consists of four main layers, namely Operational Resources, Software Components,
Business Services, and Business Processes. It is also possible that multiple sub-layers
exist in one layer. Such a layered architecture [66, 11] has the advantages of clearly sep-
arating different levels of abstraction, and makes it easy to associate layers with roles.
A layered view serves as an important basis for the discussion of SLA translation in this
paper.

Firstly let us define what is a SLA in the context. A Service Level Agreement (SLA)
refers to a part of a service contract between customers and service providers where the
level of a service is formally defined [34]. In this paper the concept of SLA is broader
than the traditional sense of customers and providers. Our SLA definition is in close
correspondence with the layered SOA architecture sketched above. Each layer or sub-
layer can have SLAs defined, sometimes referred as “sub-SLAs” or “OLAs (Operational
Level Agreements)”. SLAs can include both functional and non-functional properties
(NFPs), where the latter is the main focus in this paper. NFPs can be categorized into
qualitative NFPs (e.g. operational policies) and quantitative NFPs (e.g. response time
and availability). Typically certain thresholds or targets are used to constrain a quanti-
tative NFP, which can be referred as a “Service Level Objective (SLO)”. Quantitative
NFPs in SLOs can sometimes be referred as metrics or Key Performance Indicators
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Figure 1: Observables (metrics) and configurables (parameters) in SOA layers, with dif-
ferent types of translations.

(KPIs). Most qualitative NFPs, along with some quantitative ones, are typically con-
figurable and can be set as parameters. Different kinds of metrics and parameters exist
at different layers in a multi-layered SOA environment. For example, the service layer
might have “web service response time” as metric and “authentication method” as a
parameter. The resource layer might have “number of cores” as metric and “network
latency” as parameter. It is evident that these metrics and parameters at one layer or
different layers are somehow correlated, but fully characterizing their relationships can
be complex and remains as a challenging task. We treat such problems in a multi-layered
SOA environment as “SLA translation”.

Translation is a term with different views and interpretations in different research do-
mains. In networking [78] policy translation is defined as “the transformation of a policy
from a representation and/or level of abstraction, to another representation or level of
abstraction”. For instance, a high-level policy on Class of Service (CoS) can be mapped
into low level configuration parameters on routers in a straightforward way [76]. In other
domains such as computer systems, however, correlating a higher-level objective such as
service response time with low-level operational parameters may involve sophisticated
queuing-analytic models (e.g. [18]) and/or machine learning techniques (e.g. [20]). In
this paper we define SLA translation as any form of transformation of metrics and pa-
rameters, within one layer or from one (sub)layer to another in a multi-layered SOA
environment. Such a definition opens a broader perspective towards SLA translation
problems in SOA. It makes it necessary to review the state of art in multiple domains
(e.g. networking, computer systems, and software performance engineering), in multiple
topic areas (e.g. QoS mapping, SLA decomposition, performance prediction, depen-
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dency analysis, fault diagnosis and control), and with different type of methodologies
(statistics, queuing theory, optimization, and machine learning).

Based on the concepts of SOA layers and the distinction between metrics and parame-
ters, we distinguish four main translation types. These are shown on an exemplary basis
in Figure 1 together with some examples of metrics and parameters in different layers.
The four types are:

• C2C (Configuration to Configuration): this type of translation mostly relates to the
dependencies within a layer or between layers. Such dependency graphs are useful in
configuration management and problem diagnosis.

•M2C (Metric to Configuration): this type of translation translates higher-level objec-
tives to lower-level system parameters. It can also be referred as ”top-down” translation
or SLA decomposition. It is useful for sizing and capacity planning, mostly at design
time.

• C2M (Configuration to Metric): this type of translation predicts higher-level ob-
jectives from lower-level system parameters. It can also be referred as ”bottom-up”
translation or performance prediction. It is useful both what-if analysis at design time
and predictive management at run time.

• M2M (Metric to Metric): this types of translation correlates a high-level metric
with lower-level metrics. The translation can go both directions, namely decomposition
or prediction, depending on the usage scenario. It is useful for forecasting and problem
diagnosis at run time.

Noteworthy that the depicted translations are just examples which might be actually
composed of several lower level translations (e.g. M2M might consist of a sequence of
M2M translations). We will see that most of the work under study can be categorized
into one of these types. Therefore, this classification will be heavily used in the discussion
of the next Section.

3 Methodologies for SLA Translation

In this section we review and analyze technical solutions by three main categories of
methodologies, namely, knowledge and rule based approaches, queuing-analytic model
based approaches, and statistical learning based approaches.

3.1 Knowledge and Rule Based Approaches

In knowledge and rule based approaches, domain-specific expert knowledge and rules are
applied to make deductions or choices. The most visible related work to SLA translation
are from the network domain. As is well known, the concept of Quality of Service (QoS)
and SLA are firstly used in the telecommunication and networking community. The
network QoS metrics, mostly quantitative, naturally appear in multiple layers and in
different levels of abstraction. The translation problem is addressed either explicitly or
implicitly, so it is worthwhile to review the work in the networking domain.
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3.1.1 Policy Translation and QoS Mapping

The network traffic has shown strong self-similarity [46] and rich scaling behavior [1].
The realistic packet arrival process is not “smooth” as a Poisson process, instead, the
interarrival time distribution can be heavy-tailed (amplitude burstiness) and the arrival
rate can exhibit long range dependence (temporal burstiness). The practical implication
of such characteristics is that, even when the average arrival rate is low, random bursts
of traffic can be expected to saturate network devices. This indicates that packets
should not be treated uniformly because different types of traffic have different QoS
requirements. DiffServ is such a networking architecture that specifies a mechanism to
provide different QoS guarantees on IP networks [12, 8]. It can, for instance, to provide
low-latency, guaranteed service to real-time audio and video traffic while serving web
traffic or file transfers with best-effort. DiffServ enable this via traffic classification and
marking. A 6-bit value is encoded into the Type of Service (TOS) field of the IP header,
which can be used to define traffic classes in a flexible way. The commonly-defined types
are, for instance, default (best effort), expedited forwarding (low-loss and low-latency),
and assured forwarding (different drop rate). DiffServ is simple, easy-to-implement, and
scalable. Nevertheless, a main disadvantage is that how routers in different domains
deal with the TOS field is somewhat arbitrary, making it difficult to predict end-to-end
behavior.

In the DiffServ domain as long as the policy validation step is completed successfully,
the translation process is straightforward [76]. Different users (replaced with IP addresses
and port numbers) are associated with Class of Services (CoS). The high-level CoS
policies are mapped into low-level network parameters such as delays, bandwidth rates,
and DiffServ-specific details via mapping tables. The common practice is that an domain
expert has pre-configured the mapping tables from CoS to different network levels. Such
network level parameters can subsequently be used to configure devices.

There are efforts in HPC and Grid community to introduce the concepts of SLAs
and service oriented science [31]. On production HPC centers, however, it is largely up
to the site administrators to interpret higher level objectives and implement resource
management policies based on experience. There are policy engines that provide good
management capabilities, such as priority queues, fairshares, resource throttling, and
advanced reservation [35]. Nevertheless, the implemented policies and configuration
parameters are hand-tuned and sometimes ad-hoc. This results in poor performance
time to time, especially given the burst behavior of job arrivals and job computation
times [47, 68]. In such cases a historical knowledge base of configurations could be helpful
by taking workload patterns into account.

Another translation-related topic is functional QoS mapping. A generic function maps
a set of variables to another variable(s). Such a mapping can be derived in different ways,
for instance, via a simple pre-determined analytic function [45], via statistic techniques
such as regression analysis [63], via operation research methods [48], or via machine
learning [32, 81]. Most of the research in networking aims at building pre-determined
functions to map low-level network metrics to high-level QoS objectives, which is a simple
and effective method given expert knowledge is in place.
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In [45] it defines a set of QoS objectives (e.g. availability, latency), network perfor-
mance metrics (e.g. RTT , #PacketLoss), and associate them with evaluation functions.
For example, latency = f(RTT ) =

∑
RTT / #TestPackets. In [48] a mapping func-

tion is defined as D = DN + DS + DC , where D is the response time, DN , DS , DC

are network latency, system delay and software delay, respectively. Queuing operational
laws are used to correlate network latency with link bandwidth and router throughput.
Similar problem is addressed in [73] where an experimentally built graphic function is
used to map network latency and DB access time.

3.1.2 Semantic Translation and Rule-Based Engines

Wichadakul and Nahrstedt [79] presents a translation system for QoS-aware applica-
tions such as Video-on-Demand. The translation process can be divided into multiple
phases. Firstly, The application components and their dependencies are specified by the
developer, where each component is supported by a QoS profile. The QoS profile con-
sists of QoS categories (e.g. performanceVideo) and their quantitative QoS dimensions
(e.g. frame rate and resolution). A user-to-application template defines different QoS
levels (e.g. high, medium, low) with specific categories and dimensions. Secondly, the
application QoS requirements is translated into specific configurations of middleware im-
plementations (e.g. CPU scheduling, bandwidth broker, real-time messaging), enabled
by a middleware abstraction layer (MAL). Several methods are developed by the authors
to address important issues:

1. A mapping rule engine is pre-defined to map application QoS requirements to
genetic middleware services in MAL. For example, one rule is defined as “IF the
label is ‘real-time end-to-end multimedia transmission’ THEN all components need
local CPU broker service”.

2. The mapping of generic middleware representation to possible configurations of
middleware implementations is modeled as a constraint satisfaction problem. For
instance, QoS provisionsQprov by a configured middleware implementation satisfies
QoS requirements Qreq.

3. A semantic-specific translation scheme is defined to map QoS dimensions to specific
middleware implementation’s semantics and expected parameters.

To sum up, building rule-based knowledge bases is the main approach for policy/SLA
translation in networking. To facilitate such a process QoS information has to be cat-
egorized and differentiated. At the network level standards such as DiffServ exist for
classification. At the application level, however, solutions have to be application-specific
as described above [79]. Pre-determined analytic functions, if obtainable, can be used
as rules for mapping, while sometimes semantic translations are necessary. Although all
the information have to be pre-built by domain experts into the knowledge base, this
approach remains as a basic yet effective method for enabling translations.
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Figure 2: A typical 3-tier architecture for e-
commerce applications
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Figure 3: A queuing network model (QNM)
for multi-tier applications

3.2 Queuing-Analytic Model Based Approaches

In some domains expert knowledge for pre-defined rules and mapping functions are not
always manageable, or simply not possible. For example, there is no clearly definable
functional relationship between web server response time and CPU load in all situations.
Therefore correlating a high-level objective with low-level metrics or parameters is an
active research field in computer systems, although different names may be called such as
performance modeling, prediction, or autonomic management. In this section we focus
on approaches based on analytic modeling, specifically referring to queuing network
models. Before introducing the main queuing-analytic methodologies, we briefly discuss
some approaches which do not strictly belong to this category but are of particular
interest to SLA translation in the distributed systems domain.

Amazon’s global web store has a decentralized service oriented infrastructure. In
e-commerce sites at such a large scale, a page request typically requires a response
constructed by sending requests to a large number of services. These services often have
multiple dependencies and the call chain is across multiple layers. To ensure a clear
bound on the page delivery at the application level, each and every dependency in the
infrastructure needs to deliver its functionality with even tighter bounds. So the Amazon
internal SLAs are expressed and measured at the 99.9 percentile of the distribution. For
example, The read and write operations have latencies within 200ms for 99.9% of all the
requests for a peak load of 500 requests per second. A storage system called Dynamo
is designed to deliver such stringent SLAs by leveraging and combining well-established
techniques from distributed systems research [25]. This is a typical bottom-up approach:
high-level response times have a better chance to be guaranteed by ensuring tight bounds
on low-level operations.

3.2.1 Queuing Network Models (QNM)

Performance modeling of web-based e-commerce applications has been an active research
field for many years. As is shown in Figure 2, a typical e-commerce application consists
of three tiers: a web tier for HTTP web page processing, an application tier for core

8



application/middleware components, and a backend database tier for data storage. Each
tier can be scaled to a cluster of servers if necessary. Queuing network models (QNM)
are well-established analytic methods to model such systems [44, 52], as is shown in
Figure 3. Mean Value Analysis (MVA) and variants as popular analytic solvers have
been applied to multi-tier systems with session-based workloads [6, 17, 74]. Most of the
MVA-based approaches have strict assumptions on distributions and do not consider
burstiness/heavy-tail behavior, which is inherent in the workloads of such systems [51,
80].

3.2.2 Top-Down Translation Solved as a Constraint Satisfaction Problem

In this section we focus on discussing a QNM-based approach by Chen et al. [17, 18] that
translates service level objectives (SLOs) into low-level system thresholds. Compared
to the common bottom-up approaches for performance modeling and prediction, their
solution is of particular interest in that it explicitly addresses the “SLA Decomposition”
problem. It presents a typical top-down translation process from the average response
time to the system resource thresholds in a multi-tier e-commerce environment. We use
an open (request-based) workload to explain the translation process in detail because a
close-form solution can be presented.

A QNM-based performance model establishes the relationship between application
response time and workload characteristics, application configuration, and resource pa-
rameters. Consider an open queuing network model with the following notations:

1. N : no. of transaction types, i: index of transaction type

2. R: no. of resource types, j: index of resource type

3. M : no. of tiers, k: index of tier

4. λi: arrival rate of transaction type i

5. γk: number of servers at tier k

6. Dik: service demand of transaction type i at tier k

7. Ujk: utilization of resource type j at tier k

Assuming even distribution of loads among servers at each tier, one tier with k servers
can be modeled as k M/M/1 queues. As deduced in [18] the close-form solution for the
average response time is

TR = f(γ1, ..., γM ) =
∑
k

∑
i
λi
γk
∗Dik +

∑
j

U2
jk

1−Ujk∑
i
λi
γk

, (1)

and the utilization of each resource is

U = D0 +
∑
i

Di ∗
λi
γ
, (2)
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where D0 is the background utilization of the resource. and Di is the resource demand
of transaction type i at the resource. Resource demands Di are obtained by profiling
based on historical data or benchmarking and the problem can be solved using statistical
techniques such as linear regression.

The output of the SLA decomposition is a set of system-level parameters such as the
number of servers in each tier, and the server specifications such as CPU and memory
(contained in the profile).

The process of the SLA decomposition can be formulated as a constraint satisfac-
tion problem. Given an open workload with transaction mixes and SLA objectives (e.g.
TR = f(γ1, ..., γM ) < θ, Ucpu < 50%), the problem is to find γk to satisfy such con-
straints. Constraint satisfaction problems on finite domains are typically solved using a
form of search or an optimization technique [64]. For linear equations there are standard
techniques such as linear programming that can be used as solvers. Constraint satis-
faction algorithms as generic optimization methods can be combined with other models
than queuing networks to address top-down SLA translation problems, in which SLOs
can be treated as constraints.

Besides multi-transaction mixes, the technique presented in [18] introduces a multi-
class MVA algorithm that can handle multiple customer classes (e.g. Gold, Silver,
Bronze). Similar solution is also developed for closed (session-based) workloads. The
limitation of the approach, as discussed above, is that only average response time is cal-
culated and it is not able to handle bursty workloads. Nevertheless, the solution by Chen
et al. provides a systematic methodology to translate high-level objectives to low-level
policies.

3.2.3 Layered Queuing Network (LQN) Models

Layered queuing network models are firstly developed independently in [83] and [62], then
a joint effort as a toolset [28]. The name “layers” is coined by Rolia and Sevcik [62],
who introduced a heuristic MVA algorithm for hierarchically layered software systems.
Woodside et al. [83, 82, 28] introduce the concept of tasks, entries, and phases in a
layered approach, and it is able to handle parallelism and multiple scheduling disciplines
such as priority queues. The main extension of LQN to ordinary queuing networks is
that in LQN a server may become a client to other servers. This makes it possible
for LQNs to explicitly model a system as layers of interacting software entities, which
generate demands on the physical resources such as CPUs and disks. QNMs can only
model software structures implicitly via service demands, as is shown in Section 3.2.1.
Therefore LQNs reflect the structure of distributed (software) systems more naturally
and they provide models that match the layered view of service-oriented architecture.

An example 3-tier e-commerce server platform modeled using LQNs is shown in Fig-
ure 4. We can see that in a 3-tier commerce server platform, “client”, “WebServer”,
“AppServer” and “DBServer” can be structured in hierarchical layers. These servers (or
tasks) are mapped onto physical resources such as CPUs and disks. It is possible to
specify multiple entries and activity graphs in one layer such as “AppServer”, describing
in detail its behavior. LQNs can be solved by both analytic solvers [82] and simula-
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Figure 4: A layered queuing network (LQN) model for a typical 3-tier e-commerce server
platform.

tions [28, 40]. Analytic solvers are limited to exponential distributions and mean value
analysis (MVA). Recent work have been found on predicting system performance under
bursty arrivals. Krishnamurthy et al. [42] proposes a hybrid approach that improve the
accuracy of analytic performance models with bursts of user sessions. It exploits a Monte
Carlo method that is able to estimate arbitrary distributions for workload parameters
such as interarrival time, and combines it with both QNMs and LQNs. It is shown that
a LQN-based approach has better accuracy than the classic QNM models.

Although conceptually LQNs are proven techniques to model layered system archi-
tecture and analyze its quantitative behavior, there are practical considerations that
limit its usage. On one hand, software developers usually build system models that
deal with functional aspects only. On the other hand, adhoc performance models are
developed by performance experts, which are difficult to build and validate for complex
software systems. A new paradigm that tries to bridge this gap is to annotate software
models with performance data (e.g. UML [61], system scenarios [60]), and transform
them into performance models such as LQN [5, 40]. Tools and platforms have been
developed for facilitating this process [4, 5]. In [22] a framework is proposed to inte-
grate a software model and a platform model for performance analysis via simulations.
There are tradeoffs with different approaches. Analytical models are fast and inexpen-
sive but have strict assumptions that limit its applicability. Simulations is general and
more applicable, however, it is relatively slow and involves time-consuming sensitivity
analysis.
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3.3 Statistical Learning Based Approach

Analytic performance models are powerful mathematical tools but their practical usage
may be limited by the simplified assumptions. Knowledge bases of “if-then” rules are
themselves hard to build, maintain, and adapt to system changes. An alternative ap-
proach is to apply statistics and machine learning techniques [32, 81]. These techniques
work on trace data to induce models and rules, assuming little or no domain knowledge.
However, significant research efforts are needed to identify the most applicable statistical
learning techniques and apply them in a way that can be deployed efficiently and effec-
tively in practice. In this section we review several statistical learning based approaches
that are applied successfully to problems related to SLA translation.

3.3.1 Probabilistic Models for Inference

Cohen et al. [20] applies a class of probabilistic models to induce the relationship between
system-level metrics and service level objectives (SLOs) on a typical 3-tier e-commerce
sever platform. SLOs are defined on high-level metrics such as response time or through-
put of transactions. For instance, an SLO can be expressed as “response time should be
less than 5 seconds for 90% of the requests, measured at a 10-minute interval”. An SLO
state S indicates whether an SLO is in compliance or violation, denoted as S = {s+, s−}.
A set of n system-level metrics, denoted as M = {m0, ...mn}, are measured at applica-
tion server (AS) or DB server, such as mean/variance of AS CPU time and mean DB
swap space. The monitoring data are collected for < S,M >, which are used as the
input training data set. The problem is to learn a classifier that can predict the SLO
state S given a set of system metrics as input values.

The proposed probabilistic model is an extended naive Bayesian network called tree-
augmented naive Bayesian network (TAN) [29], which is illustrated in Figure 5. A classic
naive Bayesian classifier learns from the training data set the conditional probability of
attributes Li given the class label H (Pr(Li|H)). Bayes rule is applied to compute
the probability of H given Li (Pr(H|Li)) and classification is done by predicting the
class with the highest posterior probability. In naive Bayesian classifiers all Li are
conditionally independent given class H. In TAN, as an addition, an edge from Li to
Lj is introduced besides H to show that the influence of attribute Li on H also depends
on Lj . As is shown in figure 5, each attribute Li has one and only one augmenting edge
from another attribute pointing to it. TAN imposes a directed acyclic graph among Li
so the relationships among metrics are captured. This is particularly useful in diagnosis
as the TAN model becomes interpretable and expert knowledge can be incorporated.

Based on the technique presented above, Cohen et al. [21] shows how multiple machine
learning techniques can be combined systematically in solving performance diagnosis
problems. A first and important step is to manipulate the set of input attributes. One
method is feature selection, namely, selecting a subset of the most relevant attributes
for use in TAN. A directed search strategy such as greedy search can be used for feature
selection. A more sophisticated technique is to transform the raw attributes/metrics into
another representation, the so-called “signatures”, which are more suitable for learning
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Figure 5: A tree-augmented naive Bayesian network (TAN). H is the high-level
SLO state to be predicted/classified, {L1, L2, ..., L5} is a set of low-level
attributes/system-level metrics.

and clustering. The signature construction process is as follows:

1. A given data trace is divided into epochs. For each epoch an ensemble of TAN
models are learned and the ones with higher accuracy for estimating SLO violations
are selected (one ensemble method called “bagging” [32]).

2. Corresponding to the raw metrics M = {mi}, a vector of signatures Sig = {sigi ⊂
(1,−1, 0)} can be constructed: sigi = 1 (attributed) if metric mi is selected by
the models and its value is “abnormal”. sigi = −1 (not attributed) if metric mi

is selected by the models and its value is “not abnormal”. sigi = 0 (irrelevant) if
metric mi is not selected.

It is proven that it is more effective to cluster signatures Sig than raw metrics M , using
clustering techniques such as K-means or K-medians [81]. The center of the cluster
can be considered as syndrome for the problem. Signatures can have annotations (e.g.
root cause, solutions), which can be searched and retrieved for fast problem solving. In
this approach we can see that the TAN model is combined with other machine learning
techniques such as feature selection, ensemble methods, and information retrieval for a
practical solution.

3.3.2 Constraint Satisfaction via Exhaustive Search

In [43] Kumar et al. proposes a TAN-based approach from deriving low-level metrics from
high-level objectives. It introduces the system state represented by a set of variables V ,
which includes both a subset Vφ for high-level objectives (e.g. responseTime, accuracy),
and a subset of low-level parameters Vτ such as cacheRefreshTime and allocatedServers
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(Vφ ⊂ V, Vτ ⊂ V ). The SLA compliance or violation is defined using the high-level
objectives:

Γ(Vφ) =
∏
i

γ(oi, v
φ
λ(i)), (3)

where oi represents the objectives such as operational range, λ(i) is the mapping between
oi and variables in Vφ, vφλ(i) is the objective-defined variable in Vφ, and γ is a boolean

function which returns true if vφλ(i) values conforms oi.
The approach by Kumar et al. firstly partitions the data from system states V into

a small number of sub-spaces that have a reduced set of controllable variables Vτ , by
defining a specific distance function between variables in V . Then in each sub-space a
TAN model is applied to determine the probability for SLA compliance/violation:

p = Pr(Γ(Vφ)|V ). (4)

The suitable ranges of variables in Vτ are calculated using exhaustive search: an enu-
meration of possible values for V τ

i are substituted into V and p is calculated when Γ(Vφ)
is set to SLA compliance. If p is larger than a pre-defined threshold, the value is then
recorded in a SLA-compliance set for low-level metrics.

To sum up, statistical learning techniques such as Bayesian networks has the advan-
tages over queuing-analytic models in that they assume little domain knowledge and
such black-box approaches are generic enough to apply to translation problems between
arbitrary layers. However, it is assumed that certain amount of training data has to be
available for learning and validation. It also takes substantial design and experimental
efforts to apply such techniques successfully in systems.

3.3.3 Adaptability and Online Optimization

Most of the work we covered so far concern “static” or “offline” translation, namely,
constructing or inducing a model that captures the relationship between high- and low-
level metrics/parameters. We also briefly review some approaches that focus on more
“dynamic” or “online” perspective of SLA-related management. Techniques such as con-
trol theory [27, 59] and reinforcement learning [69] are applied to implement online con-
trollers that measure and keep high-level objectives in a (sub)optimal state by adaptively
adjusting certain low-level system parameters according to the changing environment.
Statistical signal processing techniques are frequently used as well. In [39] Koliver et
al. introduce fuzzy-logic to represent QoS information and use filtering algorithms to
adapt QoS parameters dynamically. In [87] Kalman filters are used to track and adapt
performance model parameters in LQNs, making the model continuously updated over
time. These methods are not covered in detail in the context of this paper.

In some cases a hybrid approach can achieve good results by getting the best of both
worlds, such as the approach proposed in [36]. Comparing to the online algorithms for
resource provisioning, it optimizes the configuration policies for different types of work-
loads offline using a discrete gradient-based search algorithm. Such (workload, config)
pairs are then passed through a decision-tree learner to generate the rule sets, which in

14



turn are used in run time dynamically according to a given workload at a given time.
Utility functions are necessary components to be carefully defined in these optimization
problems [15, 85]. And there are approaches proposed to deal with multiple conflicting
objectives [75, 77].

3.3.4 Dependency and Critical Path Analysis

Statistical learning techniques are able to map a set of input variables to another set
of variable(s) via probabilistic modeling and learning from data, and the system under
study is considered as a black box. This can be considered as an advantage in one
perspective, but may be a disadvantage in another perspective. Sometimes we may want
to know the system structure in one more level of detail: the underlying components
and their dependencies. In a layered view it also applies to the relationships between
layers. As far as translation is concerned, it becomes clear once the dependencies among
components are identified and the delays of components are calculated. To manage the
complexity the component itself can be a black box. We refer such techniques following
a “gray box” approach.

Firstly we look at the methodologies for dependency analysis in distributed systems.
In [2] Aguilera et al. proposes an approach to infer causal path patterns from traces
in distributed systems of black-box nodes. Data are obtained passively by tracing the
messages between nodes, without knowledge on message semantics or nodes themselves.
Two offline algorithms are developed to extract path information from traces. The first
algorithm, called the “nesting” algorithm, is a heuristic method that combines all per-
edge traces into a single global trace and individual traces are examined to determine
how calls are nested. The output of the nesting algorithm is a call graph that shows the
hierarchical structure of a particular causal path. The average latency of the nodes and
the edges can also be calculated. Such information is useful in determining sub-SLAs for
nodes in the system. The second algorithm makes use of a well-known signal processing
technique called “convolution”. In contrast to the nesting algorithm, the convolution
algorithm separates the whole trace into per-edge traces, which in turn can be treated
as time signals. The convolution method can then be used to find cross-correlations
between signals. The result of convolution is a directed graph where nodes can appear
multiple times. Comparing the two algorithms the intuitive path structure inferred by
the nesting algorithm shows more potential to be used in SLA translation, although the
accuracy of the nesting algorithm suffers from the increased parallelism in the trace.
Other techniques for dependency analysis include static dependence model construc-
tion [37], which uses information from system-wide configuration repositories such as
Windows registry and Linux RPM. Different than most passive techniques, Brown et
al. [9] propose an active approach combined with statistical methods to characterize
dynamic dependencies between system components. However, active “perturbation” is
invasive and it impacts the performance, availability, and behavior of the production
system, which is normally not acceptable in production environment.

Secondly we focus on the critical path of a dependency graph. In a distributed ap-
plication there may be many parallel executions but only some of the components are
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responsible to the overall response time. And the longest execution path along these
components is called a “critical path”. A further step after dependency analysis is to
identify a critical path that determines the overall response time. In [84] Yang and Miller
constructs a program activity graph (PAG, acyclic) using the data collected during the
execution of a program. The critical path (i.e. the longest path) can be calculated
by easily modifying most available shortest path algorithms, for instance, Chandy and
Misra’s algorithm [14]. Statistical extension is also proposed for comparing execution
lengths which are in the form of statistical distributions [86].

Last but not least, successful dependency analysis requires efficient, accurate, end-
to-end measurement and monitoring tools. Chen et al. [16] proposes an approach for
end-to-end trace collection of client requests through system components by tagging calls
with request-IDs on J2EE servers. Cherkasova et al. [19] measure end-to-end Internet
service performance by server side monitoring of HTTP packet traces. Web page time is
broken down to detailed response times of network and processing, and statistical filter-
ing mechanism is applied to reconstruct page accesses. Hellerstein et al. [33] externalize
the definition of transactions and use it to construct response time measurements from
event streams. It is not a black-box approach as the components have to be instrumented
to generate events with specific structures. The advantage of such an approach is that
transactions can be decomposed into multiple layers of sub-transactions which relate
to different components such as authentication, HTTP and DNS. A layered monitoring
framework is necessary for enabling dependency analysis and SLA translation across
layers.

3.4 Classification and Discussion

After detailed review and analysis of state of the art, we summarize our findings in this
section. Serving as a quick reference, Table 1 includes summaries of the main literature
under study. We present the discussions by the SLA translation types which are defined
in Section 2.

•We find that C2C (Configuration to Configuration) type of translation is investigated
heavily in DiffServ and policy conversion in the networking domain. This is reasonable
since the separation of classes of services (CoS) naturally involves specifications of low-
level device (e.g. router) configurations. In computer systems C2C translation largely
relates to dependency analysis and critical paths. By combining both static system
information and dynamic tracing data, the dependency structures of components can
be discovered and characterized to a useful level. These are important information in
correlating distributed components within or across layers. Techniques that are used for
C2C translation include semantic-specific translation, rule-based systems, and statistical
analysis.

• C2M (Configuration to Metric) type of translation constitutes a large portion of re-
search as performance predictions are popular topics across domains, including computer
system management and software performance. At design time analytic models such as
queuing networks and layered queuing networks are commonly used for characterizing
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Reference Topic Approach Category Type Source Target

[45] Mapping QoS met-
rics to network met-
rics

Simple functional map-
ping by defining evalua-
tion functions

Knowledge
and rules

M2M Packet loss,
delay, utiliza-
tion

Availability,
latency,
MTTF

[73, 48] Mapping applica-
tion SLA to network
parameters

Experimental method
to build graphic func-
tions [73]; queuing-
analytic and operational
laws [48]

Queuing-
analytic;
statistical

M2C Application
response time

network la-
tency

[8, 12] Diffserv - Differenti-
ated services in the
Internet

Classification of services
based on QoS require-
ments

Knowledge
and rules

M2C Latency, loss CoS coding

[76] Policy validation
and translation

Translate classes of ser-
vices (CoS) into device
configurations

Knowledge
and rules

C2C CoS coding router param-
eters

[39] QoS mapping and
adaptation

Fuzzy-logic controller and
filter algorithms, rule
based inference engine

Rule
based;
statistical

C2M Packet loss Frame rate

[79] Application specific
middleware configu-
ration

QoS profiling, semantic
translation, constraint
satisfaction

Knowledge
and rules

M2C Frame rate,
size

middleware
and resource
parameters

[35, 31] Resource man-
agement on HPC
clusters

scheduling algorithms in-
cluding priority queues,
fairshare, throttling, etc.

Knowledge
and rules

M2C Application
response time,
throughput

Resource
parameters

[25] E-commerce plat-
form management

Distributed systems tech-
niques on data partition-
ing, replication, and fail-
ure management

Analytical
algorithms

M2M DB access
time, avail-
ability

Web response
time

[6, 74] Performance model-
ing of multi-tier sys-
tems

Queuing network models
and mean value analysis
(MVA)

Queuing
analytic

C2M Resource
parameters

Response time

[42] Performance model-
ing of multi-tier sys-
tems with burst ses-
sions

Combine queuing network
models with Monte Carlo
simulation that deals with
heavy-tail distributions

Queuing
analytic

C2M Resource
parameters

Response time

[17, 18] SLA decomposition
in multi-tier systems

Queuing network mod-
els and a regression-based
profiling technique

Queuing
analytic

M2C Response time Resource
parameters

[62, 83,
28]

Performance model-
ing and prediction of
software

Layered queuing network
(LQN) models and mean
value analysis (MVA)

Queuing
analytic

C2M Resource
parameters

Response
time, through-
put

[61, 60,
40]

Performance predic-
tion of software sys-
tems

Annotate software mod-
els (e.g. UML, sys-
tem scenarios) and trans-
form them into perfor-
mance models (e.g. LQN)

Queuing
analytic

C2M Resource
parameters

Response
time, through-
put

[22, 5] Performance predic-
tion of software sys-
tems

Integrate software and re-
source models for perfor-
mance prediction via sim-
ulation

Queuing
analytic,
simulation

C2M Resource
parameters

Response time

[43] Derivation of com-
ponent level objec-
tives from SLAs

State space partitioning
and Bayesian networks

Statistical M2C Response time Resource
parameters

[59, 27,
69, 36]

Autonomic SLA
management in
multi-tier systems

Control theory, reinforce-
ment learning, signal pro-
cessing, rule-based sys-
tems

Statistical C2M Resource
parameters

Response time

[20, 21,
38]

Performance di-
agnosis and fault
management

Multivariate regression
analysis, metric trans-
formation, Bayesian
networks

Statistical M2M Utilization,
DB access
time, etc

Response time

[2, 86,
9]

Dependencies of
system components
and critical path
analysis

Heuristic correlation algo-
rithms, critical path pro-
filing, active perturbation
and statistical modeling

Statistical C2C System config-
uration

Critical paths
and depen-
dency graphs

[16, 19,
33]

Measurement and
monitoring tech-
niques

instrumentation, tagging,
trace analysis

Statistical - - Response
time, through-
put

[15, 75,
77]

Resource allocation
in hosting centers,
service composition

Utility and economic ap-
proach, multiobjective op-
timization

Statistical C2M Resource
parameters

Response
time, profit,
energy

Table 1: Summary of the main references, including topics, approaches, method cate-
gories, translation types, source and target metrics/parameters.



relationships between metrics and parameters. Given the specified low-level resource pa-
rameters, the high-level metrics can be predicted based on performance models. At run
time statistical methods such as time series and control theory proves to be successful in
tracking target metrics and adjusting parameters accordingly. Other machine learning
techniques such as reinforcement learning can also be applied for online optimization.

• M2C (Metric to Configuration) translation is the opposite direction compared to
C2M. Similar models as in C2M can be used (e.g. the queuing network model), which
characterize the relationship between metrics and parameters. The problem then be-
comes how to derive parameters given pre-defined thresholds on metrics. Such problem
can be formulated as constraint satisfaction problem and techniques such as heuristic
search algorithms or linear programming are commonly-used solvers. This type of trans-
lation, or so-called SLA decomposition, becomes increasingly important for SLA-aware
management during design and planning phase.

• M2M (Metric to Metric) translation relies on analytic or statistical models that cor-
relate high-level and low-level metrics. Bayesian networks is such a class of probabilistic
models that are successfully applied to M2M problems. Trained on historical trace data,
relationship between a high-level metric and several low-level metrics can be built using
Bayesian classifiers. On one hand, the sub-SLAs associated with low-level metrics can
be used to “predict” high-level SLA violation. This is called a forecasting/classification
process. On the other hand, high-level SLAs can be broken down to define several sub-
SLAs by leveraging constraint satisfaction algorithms. This is called a decomposition
process. Metric to metric translation shows its importance for SLA-driven operation
management at the run time phase.

We believe that these four main types of translations are crucial topics to be addressed
for managing SLAs in multi-layered SOA.

4 Research Challenges

As is shown above, problems associated with each translation type are of different kind
in nature. We have reviewed a number of solutions and approaches which have been
developed successfully for each type of SLA translations. In this section, we discuss
several main research challenges ahead for making the vision of holistic SLA-driven IT
management a reality.

1. Realistic workloads and usage patterns

Most of the queuing-network based performance models under review rely on unrealistic
Markovian workload assumptions to be analytically tractable. However, real user behav-
ior and real world workloads exhibit heavy-tailed distributions and high-level burstiness
in many situations. And they are unknown or hard to anticipate at design time. Such
statistical properties, in turn, may have great impacts on the system performance and
resource consumption. Therefore workloads and usage patterns need to be taken into
account in defining SLAs. For example, guaranteeing average or percentile of response
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times may have dramatically different implications on the service provider side under
bursty or none-bursty usage patterns. The challenges associated with workloads come
from two aspects: firstly performance models need to be improved, so that burstiness and
high variability can be considered during the capacity planning phase. Secondly, usage
profiles and workloads have to be parameterizable for facilitating the SLA specification
and design time optimization.

2. Tradeoff-analysis for scalable approaches

Translation lies in the core of SLA management in that it correlates metrics and pa-
rameters within and across layers. As such it has to possibly consider a huge number of
properties. This includes identifying relevant properties, identifying relevant correlations
between properties, and deriving property values in order to answer certain SLA man-
agement questions. Consequently, SLA translation faces two scalability issues. Firstly,
the issue of compute scalability, i.e. the scalability of actual algorithms (e.g. analyt-
ical or statistical ones) in terms of required compute resources, respectively in terms
of time needed to generate a response. Though this issue is well known in the perfor-
mance prediction community many scientific results simply do not scale with industrial
problem-sizes. Secondly, there is the related issue of modeling scalability which is about
the required (and typically manual) effort to discover and model relevant properties as
well as their correlations. Many of the scientific results assume from scratch engineer-
ing of systems which obviously does not work for legacy applications but even for new
applications the associated effort is often far to cost intensive and therefore not used in
industrial practice.

Both these issues are well known in research around SLA translation or performance
engineering and there is most likely no silver bullet to solve them. However, the challenge
we see in order to make the best out of existing techniques is a thorough tradeoff analysis
which contrasts the required accuracy for SLA translation with the needed effort in terms
of human, time and compute resources.

3. Innovation and integration of methodologies

Innovating methodologies is crucial for more efficient and effective problem solving in
SLA translations. We have seen how SLA decomposition is solved as a constraint satis-
faction problem and optimization techniques such as linear programming and exhaustive
search are applied as solvers. There is much room for improvement by applying more
advanced optimization methods. For instance, in addition to deliver the SLA guarantees
the service provider mostly cares about reducing operational costs on its side. This is
essentially a problem with multiple objectives (e.g. performance and cost), which are
conflicting with each other. In such cases multi-objective optimization (MOO) methods
and utility theory prove to be more applicable than single-objective based methods. The
search strategies for design time exploration can also be improved, for example, from
exhaustive search to stochastic and heuristic search.

The performance models for mapping parameters to metrics needed to be improved
as well. We have seen recent research on the accuracy gain of layered queuing models
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over classic queuing networks [42]. The real challenge lies in a performance model which
could naturally represent the logical layers in a multi-layered service systems. Such a
model would be ideal in the context of SLA translation, and more active research are
need towards this direction.

So far we have talked about the translation problem from a static view, namely,
at design time. There are also many challenges at run time. We have seen that the
application of Bayesian networks as probabilistic models to correlate metrics at different
layers. Since the system and the workload evolve along time, it would be desirable that
the model be adaptive as well. There are advances in theory of dynamic models, for
example dynamic Bayesian networks (DBNs), but few work looks at their applications
in real-world production systems. Kalman filters, which is considered as the most simple
type of DBNs, have been recently applied to track and adapt model parameters in
LQNs [87].

On one hand, integration is to combine the best of the breed methodologies from
the performance modeling and optimization to address a particular SLA translation
problems. On the other hand, integration comes from the need of problem solving across
multiple domains. The landscape of today’s service provider is inherently integrated. It
consists of all kinds of elements, namely networks, servers, storage, and software stacks.
Therefore the fulfillment of any higher-level objective requires proper enforcements not
on a single resource, but on multiple resources at low levels. For example, in order
to guarantee certain bounds on the response times for ERP-type of requests there are
potentially many configuration steps. It involves the ERP software, the application and
database servers, the network configuration, and more. In the research community it
is common-practice, or even necessary to focus on a specific domain (e.g. server) by
making assumptions on other domains. However, great amount of work are needed to
deliver practical solutions in real service-oriented environments, for which integrated
approaches are necessary and have to be well developed.

4. Model integration and transformation

After discussing the problem of methodology integration, we address the issues with
model integration. The full SOA stack typically includes independently developed mod-
els and various model artifacts provided by different parties for different purposes. For
example, there are infrastructure-level models such as CIM, software component mod-
els such as SCA or UML component diagram, and business process models such as
BPEL. Potential usage scenarios include architecture design, deployment description,
testing, and operation. Information available in these models could be highly important
for solving SLA translation related problems, for example, the resource specification in
CIM and the component information by SCA. To obtain such information efficiently
from many different models, it is necessary to extract and represent the information in a
harmonized and integrated way. Therefore a systematic approach to model integration,
transformation, and mapping play an important role for supporting SLA translations. A
harmonized representation of available model information can also generate new insights
for a broader range of translation problems. For instance, sub-SLAs for software compo-
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nents can be defined, monitored, and enforced only if component-level model information
are exposed and made available for translation algorithms.

5. The definition of layers and layer interfaces

In certain SOA application scenarios, it is not possible to build a complete holistic view
of the system, or to clearly identify all the layers as defined in Section 2. Therefore
the definition and separation of layers should be flexible and reflect the context and
customized view of a specific environment. It is a challenging task to find a balance
between the abstraction of layers and the exposure of layer internal information for en-
abling SLA translation, especially when the layers are across administrative boundaries.
For instance, a Software-as-a-Service (SaaS) provider makes use of the infrastructure
provided by a cloud provider. The correlation between high-level metrics such as re-
sponse time and some low-level operational metrics in the infrastructure becomes not
possible because low-level monitoring information may be only available to the cloud
provider. In this case the interfaces between layers must be well-defined on what infor-
mation should be exchanged between two parties. This is also in close relationship on
the concrete guarantee terms to be specified in the SLAs.

6. Business values and reference benchmarks

Estimating the business values of IT services probably represents a even higher level
of translation problems beyond the technical scope of this paper. Nevertheless, it is
necessary to point out its importance as the economic structure of service systems has
increased greatly in terms of complexity. Quantitative assessment of business values and
impact provides valuable guidelines for IT service deployment and change management.
For some recent work towards this direction we refer to [13, 26].

Benchmarks are needed in order to compare and evaluate different approaches. For
E-Commerce and dynamic web sites widely-used benchmarks include TPC-W and RU-
BiS [3]. In the scope of this paper we are primarily interested in application server and
web services benchmarks. Many industry vendors provide their own ones (e.g. SAP, Or-
acle), and TPC also provides the TPC-App benchmark [72]. TPC-App models processes
and services that a retail distributor support ordering and retrieving product informa-
tion, which represents a typical business-to-business (B2B) transactional scenario. Some
early work has used this benchmark in comparing middleware platforms such as J2EE
and .NET [30]. We envision that more upcoming research work on SLA translation
adopt standardized benchmarks so their results can be compared and evaluated.

5 Summary

In this paper we reviewed and analyzed the state of the art of SLA translation in SOA.
We adopt a multi-layered perspective and distinguish four main types of translation
problems, which prove to be successful in classifying and evaluating a broad range of
approaches across multiple domains. Our research is driven by the importance of layers
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and a holistic view in service-oriented systems, and the growing needs for translating
metrics and parameters across multiple layers.

We find that semantic-specific translation and rule-based systems are common prac-
tices for policy configuration and translation in the networking domain, given expert
information in place. This applies to qualitative NFP translation (mostly configuration)
in computer systems and software engineering as well. For quantitative translations
queuing-analytic models are popular and well-established methodologies. On one hand,
such models can be directly applied for performance prediction problems (namely config-
uration to metric translation). On the other hand, similar models can be combined with
constraint satisfaction and optimization algorithms for decomposing high-level objective
into low-level parameters (namely metric to configuration translation). Statistics and
machine learning techniques can also be applied in various situations. It can be com-
bined with analytic models to form a comprehensive approach. It is particularly useful in
situations when only a black-box approach is feasible. One class of probabilistic models
called Bayesian networks prove to be effective to capture relationships between a high-
level metric with a set of low-level metrics with or without the system knowledge. Such
metric to metric translations are powerful tools for problem diagnosis of SLA violations.

Though many sophisticated approaches for partial SLA translations exist, comprehen-
sive and general purpose solutions are still to be developed. On the way forward we see
major challenges in terms of integrated modelling of relevant perspectives (workloads,
layers, business value) and innovative and integrated algorithms (multi-objective, layered
approaches, multi-domain). We envision that more active research and development will
be carried out for SLA translation topics in SOA-enabled IT systems, and we believe
that such efforts will contribute to drive SOA to be a success.
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