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Abstract— Autonomous driving in unstructed environments
has attracted an unprecedented level of attention when the
DARPA announced the Grand Challenge Competitions in 2004
and 2005. Autonomous driving involves (at least) three major
subtasks: perception of the environment, path planning and
subsequent vehicle control. Whereas the latter has proven a
solved problem, the first two constituted, apart from hardware
failures, the most prominent source of errors in both Grand
Challenges.

This paper presents a system for real-time feature detection
and subsequent path planning based on multiple stereoscopic and
monoscopic vision cues. The algorithm is, in principle, suitable
for arbitrary environments as the features are not tailored to a
particular application.

A slightly modified version of the system described here
has been succesfully used in the Qualifications and the Final
Race of the Grand Challenge 2005 within the Desert Buckeyes’
autonomous vehicle.

I. INTRODUCTION

Path planning is concerned with the problem of moving an
entity from an initial configuration to a goal configuration. The
resulting route may include intermediate tasks and assignments
that must be completed before the entity reaches the goal
configuration. External sensors provide input to the path
planner, the most common of which include monoscopic and
stereoscopic vision sensors and range finders, based on sonar,
radar or laser light.

Path planning problems have been excessively studied wi-
thin the robotics community, with applications ranging from
robot manipulator navigation for medical or manufacturing
applications to autonomous exploration in unknown environ-
ment, e.g. for military or planetary exploration purposes. [2]
is an excellent survey on relevant work since the 1980’s and
proposes a classification scheme for path planning algorithms.
[3] summarizes work on vision-based navigation and mapping.

The Grand Challenge turned out as an excellent testbed for
comparison of different sensor data processing and path plan-
ning strategies (Fig. 1). It is an open contest for autonomous
land vehicles that has been announced in 2004 and 2005 by the
US Defense Advanced Research Projects Agency (DARPA). It
requires autonomous robotic ground vehicles to successfully
navigate a course of roughly 200 miles of off- and on-road
terrain from Barstow, CA to Primm, NV. The course is roughly
defined by GPS-waypoints that are published two hours before
the race. Prior to the Grand Challenge race is a qualifying

event, testing the vehicles’ abilities to autonomously navigate
and avoid obstacles. In 2005, from 200 initial participants 40
were selected for the qualifying, 20 of whom were chosen for
the final race.

Fig. 1. The Grand Challenge 2005 Qualifying event: The Desert Buckeyes
autonomous vehicle successfully navigating through a tunnel (left, onboard
camera) and a narrow gate bounded by reflecting obstacles (right, spectator’s
camera).

This article introduces a fast path planning algorithm for
unstructured environments based on multiple, complementary
stereoscopic and monoscopic vision cues. Further incorpora-
tion of additional, arbitrary sensor information, e. g. lidar or
radar, is straightforward.

The algorithm’s path planning strategy is based on the
following assumptions:

• A good path is maximally even.
• The transition between scene components involves a non-

smooth change of color.
• The road exhibits a preferred texture orientation in driving

direction due to antecedent vehicles passing (this can be
observed even in the case of paved roads).

The algorithm is thus suitable to any environments where these
assumptions at least roughly hold. Each assumption is tested
for validity for each possible path by specially tailored feature
extractors. A fast path planning strategy is introduced which
is based upon a probabilistic grid map using an active testing
model for efficient computation.

This document is structured as follows: First, we give a
brief overview of the system architecture. Next, the used
vision cues and the corresponding feature extraction schemes
are examined. The next section focuses on the path planner,
followed by real-time issues concerning the search strategy.
We conclude by providing results from the system’s intense



field test in the Grand Challenge Race and the Qualifying
Event, thereby commenting on benefits and drawbacks.

II. SYSTEM ARCHITECTURE

Fig. 2 provides an overview of the system architecture.
A monoscopic and a stereoscopic vision sensor, ultrasonic
devices and four laser range finders serve as external sensors,
while GPS plus Intertial Navigation System (INS) supply ve-
hicle positioning data. The sensor data, including measurement
uncertainties, and an internal database provide the input to
an internal representation of the environment that is updated
at 5Hz frequency. It serves as input to the path planning
algorithm.

Whereas the global path planning is predominantly de-
termined by map information and the GPS waypoints that
are announced two hours prior to the race, the local, short-
term path planner focuses on the information from positioning
devices and external sensors.

The next section sketches the vision sensor’s role in the ge-
neration of the environment representation and path planning.
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Fig. 2. System architecture

III. IMAGE ANALYSIS

A robust path estimator is dependent on reliable, com-
plementary environmental feature detectors. They serve to
discriminate between (at least) two classes: place to savely
drive upon and obstacle of any kind. A stereoscopic vision
sensor, in principle, provides sufficient information for that
task.
Three complementary, monoscopic and stereoscopic vision
feature tests have been developed, exploiting information
about depth, texture homogeinity and local texture orientation.
They are considered suitable to a wide variety of environments.
Each is presented in greater detail in the sequel.

A. Disparity feature

Stereo disparity is an appealing vision feature since it
provides instantaneous depth measurements for most pixels of

the camera image and therefore enables identification of the
road plane. The term disparity refers to the 1d displacement
of corresponding pixels in a stereo image pair. It is inversely
related to the distance of an observed object point and usually
found via area based matching (see [6], [7] for reviews on
stereo matching techniques in general and with an emphasis
on automotive applications).

The Zero-Mean Sum of Squared Differences (ZSSD) is
used for quantification of the dissimilarity between two image
blocks:

ZSSD(R,L) =
∑

x∈B

[(

R(x)− R̄
)

−
(

L(x)− L̄
)]2

, (1)

where R̄ and L̄ denote the mean intensities of R, and L and B
denotes the block pixels. It is closely related to the variance
of the intensity difference between the two image regions:
ZSSD(R,L) ∼ Var(R−L).

The ZSSD requires slightly more computational effort than
e.g. the sum of absolute differences (SAD), but is invariant
with respect to differing lighting conditions. Additionally, it
induces a meaningful quality measure for disparity estimates:

SNR(R,L) =
Var(R)

Var(R−L) =

∑

x∈B
(

R(x)−R̄
)2

ZSSD(R,L)
. (2)

This defines a signal-to-noise ratio, in terms of the ratio of the
texture in the right block R with respect to the texture of the
difference image R − L. Thus, Eq. (2) reflects the intuitive
notion that corresponding image blocks with high texture may
show larger dissimilarity than those with little texture.

For improved performance, and for generation of sparse
disparity images, a matching with adaptive windows as intro-
duced in [9] has been implemented. Figure 3 depicts disparity
estimates for typical imagery. Only disparity measurements
with a signal-to-noise ratio larger than 2.0 are displayed. The
stereo matching procedure requires 80 ms for each run on a
Intel Pentium M processor with 2 Ghz.

Following the work of [8], the ground plane can be detected
from stereo disparities using the v-disparity. Each row in the v-
disparity image is given by the histogram of the corresponding
row in the disparity image. Each tilted plane in 3D space (with
zero roll angle) becomes a straight line in the v-disparity image
(see Fig. 4). In the current publication, the line parameters are
estimated using the Radon transform, which is implemented
efficiently using the central slice theorem (cf. [10]), and readily
provides a quality measure, namely the number of pixels in the
image that are consistent with the detected ground plane. The
advantages of the v-disparity method are its simplicity and its
robustness, whereas a drawback is the difficult determination
of the ground plane’s roll angle.

After estimation of the ground plane, the height above/below
ground (parallax) d∆(x) of an arbitrary image point x ∈ R2
is given by the difference between measured disparity and the
disparity of the ground plane at that position. The parallax
serves as input to the feature test.

Figure 4 shows the estimated parallax for the stereo images
from Figure 3 as a bird’s eye view.
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Fig. 3. (a) and (b) Raw stereo image pair, (c) disparity image, (d) right image
with partial overlay of the ground plane, estimated using the v-disparity. The
matching block size was set to 9 × 9 pixels. Only measurements with a
signal-to-noise ratio larger than 2.0 are displayed.
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Fig. 4. (a) The height above/below ground in brightness-encoded birds’s
eye view. Light coloring denotes positive, dark denotes negative heights,
respectively. Unobservable parts, either due to occlusion by obstacles or due
to a limited field of view, are colored in black. (b) V-disparity image. The
white dashed line is the estimated ground plane line. For illustration purpose,
the horizon is visualized in the original image.

B. Texture feature

Depth information cannot be computed for regions without
dominant gradients in both directions due to the aperture pro-
blem. In addition, computed depth values become less reliable
at greater distances. However, a human can discriminate quite
reliably between roads and obstacles even for homogenously
textured or far-distance regions because he extrapolates in
various ways from reliably classified points. A completely
unsupervised segmentation, i. e. not relying on any known
classification results, would not be feasible for the scenes
considered here, because of the abundance of possible road
and obstacle textures.

The texture feature described below has been designed
to adopt this extrapolation strategy with respect to color
information, starting at reliably classified seed points which are
provided by a simple disparity based segmentation into road
plane and obstacle. In the sequel this problem is formulated

as a graph theoretic approach and solved by computing some
shortest paths within the graph.

The path cost c(x, y) between two arbitrary points x and y
is defined as the minimum sum of the pixel transition costs
from start to goal over all possible paths

c(x, y) = min
(x1,...,xn),x1=x,xn=y

n−1
∑

i=1

cost(xi, xi+1), (3)

where xi and xi+1 are 4-neighboring pixels. The transition
cost between neighboring pixels is defined as the squared,
normalized difference of the color median in a rather large
environment:

cost(x, y) =
( ||med(g(x))−med(g(y))||

||gmin − gmax||

)2

. (4)

The path cost is thus a measure for the smoothness (w.r.t. co-
lor) of the best path between two image regions. Note that, in
this formulation, neither short nor smooth paths are generally
preferred. While this measure works more robustly in the RGB
color space it has successfully been used here with grayvalue
cameras.

By interpreting image pixels and their 4-neighbors as the
vertices and edges of an undirected graph, the shortest path
problem can be solved using either Kruskal’s or Dijkstra’s
single source shortest path algorithms (see [1]).

The input to the feature test is the difference between the
minimum path cost to any obstacle seed point s0,i and the
minimum path cost to any road seed point s1,i:

t(x) = min
i
(c(x, s0,i))−min

i
(c(x, s1,i)) . (5)

This quantifies degree of certainty that the pixel in question
belongs to an obstacle (t(x) = 1) or the road (t(x) = −1). A
low value for |t(x)|, on the contrary, indicates an unreliable
estimate.

While more seed points increase classification robustness,
the algorithm can principally cope with an arbitrary number
of given seed points.

The classifier is illustrated in Fig. 5.
Previous downsampling of the rectified input image eases

computational load without loss of classification robustness, as
the feature has been designed to only consider the rough color
impression of an image patch. The thereby suppressed high
frequency information is exploited in the orientation feature
described in the next section.

C. Orientation feature

The feature of local orientation is based on the assumption
that the path in question features structures that are oriented
in the direction of the path. These structures could be tire
marks within the path or the edge of the path, for example.
Subsequently, a probabilistic model for the local orientation
at a given image point is formulated. The probability of the
point to belong to the path is then computed using Bayes’
formula. This forms the basis for computing the probability
for the patch in question to belong to the path. First, the
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Fig. 5. Texture-only based classification. Results for an image without
apparent change in texture between obstacle (the upper left part of the field)
and driveable area (the road and the lower left part of the field, where the
grass is cut). Displays the original image after 5× 5 median filtering and (a)
parts classified as obstacles and (b) parts classified as flat area, based on the
given road and driveable area seeds. Correctly, the classifier does not take
notice of the texture transition between road and field on the left, because of
the driveable area seeds present in both parts.

Fig. 6. Brightness-encoded output of the local orientation feature, tested for
an orientation of µ = 0, i. e. straight ahead. High grayvalues correspond to
small orientation differences. Note how the tire marks in the sand cause, in
average, significantly larger outputs than the other parts of the image.

local orientation is computed from the grey value gradient
covariance matrix (cf. [4]):

M(x) =

[

(∂g(x)
∂x1

)2 (∂g(x)
∂x1

)(∂g(x)
∂x2

)

(∂g(x)
∂x1

)(∂g(x)
∂x2

) (∂g(x)
∂x2

)2

]

(6)

with g(x) = g(x1, x2) being the grey value. We are interested
in image points with one dominant orientation, therefore, we
consider those points xi in the image with a high ratio λ1

λ2
of

the two eigenvalues λ1 > λ2 of M(x). Then, the orientation
α(x) is computed as

α(x) =
1

2
arctan

(

2(∂g(x)
∂x1

)(∂g(x)
∂x2

)

(∂g(x)
∂x1

)2 − (∂g(x)
∂x2

)2

)

+
π

2
(7)

Fig. 6 shows the results of the orientation-only classifier
output with the direction straight upwards in the image being
tested for.

IV. PATH PLANNING

We represent a path by a sequence p = (p1, . . . ,pN )
of N patches pn. Each patch is described with a small set
of parameters. In our experiments we have used rectangular
patches of length l and width b. As depicted in Figure 7, each
patch may then be described by its center vector pn ∈ R2
where a seed patch p0 = (l, 0)T has been predefined to start
the path directly in front of our vehicle.
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Fig. 7. Definitions of coordinate system and path

We comprise all available features into a vector y. Consi-
dering p and y as realizations of random vectors P and Y,
respectively, one may formulate the a posteriori distribution
for the path given the features with the Bayesian paradigm as

p (P = p|Y = y) =
p (Y = y|P = p) · p (P = p)

∑

p p (Y = y|P = p) · p (P = p)
.

(8)
The conditional entropy H (P|Y = y) quantifies our remai-
ning uncertainty about the path. We continue to reduce this
uncertainty by successively gathering features from the images
until the distribution (8) concentrates at one or a few paths that
are overwhelmingly likely. This procedure belongs to the class
of active testing (cf. [5]). The two distributions on the right
side of (8) are formulated in the following subsections.

A. Path Model

The prior p (P = p) expresses our expectations on typical
paths. We have selected a first-order Markov chain that favors
a smooth sequence of patches.

p (P = p) =

N
∏

n=1

p (Pn = pn|Pn−1 = pn−1)

= ke
λ
∑N

n=1
pTn ·pn−1 , (9)

where the partition function k is a normalization factor. It
is worth noting that maximum probability is associated to
a straight path. Any difference in orientation between sub-
sequent patches is punished with weight λ. Extensions that
favour constant curvature or constant curvature rate can easily
be formulated with higher-order Markov chains. However, it
is emphasized that this model only weakly constrains path
geometry. In contrast parametric models that impose hard
constraints any complex path may be estimated if sufficiently
supported by the image data.



B. Observation Model

The likelihood p (Y = y|P = p) in (8) constitutes the
relationship between the image information y to a given path
p. We gather our feature vector as a sequence of active tests
y = (y1, . . . , yK). In this sequence, each test yk is influenced
by only a single patch pi. Let p1(yk) and p0(yk) denote the
distribution of the test on and beyond the path, respectively.
Assuming conditional independency of the test sequence we
can write

p (Y = y|P = p) =
K
∏

k=1

p (Yk = yk|P = p)

=

K
∏

k=1
p/∈Ck

p0(yk) ·
K
∏

k=1
p∈Ck

p1(yk), (10)

where Ck denotes the set of all paths that include the patch
that is investigated by the kth test.

The next step consists in defining the distributions p1 and
p0 for the described image features, reflecting our expectations
concerning the feature output for a given on- or off-road patch.

1) Disparity feature test: The distribution of the disparity
parallax d∆ is modelled as white gaussian:

pi,D(yk) = pi,D(d∆) =
∏

x∈Gk

1
√

2πσ2i
e
−
d∆(x)

2

2σ2
i , i ∈ {0, 1} .

(11)
Gk denotes the set of points belonging to the patch that is
tested for in the kth test. The on-road variance is significantly
smaller than the off-road variance, i. e. σ1 << σ0. Hence, the
disparity test favours planar patches lying in the road plane.
Each parallax estimate exceeding a quality threshold, defined
in terms of Equation 2, constitutes one feature test.

2) Texture homogeinity feature test: The texture feature t(i)
quantifies the belief that a certain image pixel belongs to an
obstacle (t = 1) or the road (t = −1). A low value for |ti|
indicates an unreliable estimate. The distributions are therefore
modelled as:

p1,T (yk) = p1,T (t)

=
∏

x∈Gk

2

σ
√
2π
· e−

(1−t(x))2

2·σ2 · σ(1− t(i)) (12)

p0,T (yk) = p0,T (t)

=
∏

x∈Gk

2

σ
√
2π
· e−

(−1−t(x))2

2·σ2 · σ(t(i) + 1)(13)

Hence, this feature test favors patches with a smooth path
(w.r.t. color) to a known road part compared to the smoothness
of a path to a known obstacle.

3) Texture orientation feature test: The distribution for the
local orientation α ∈ [0, π] is modeled as:

p1,O(yk) = p1,O(α)

=
∏

x∈Gk

C1

σ
√
2π
· e−

(µ−α(x))2

2·σ2 +
1− C1

π
(14)

p0,O(yk) = p0,O(α)

=
∏

x∈Gk

1

π
. (15)

Eq. 14 is a mixture of a gaussian, with a mean angle µ

equalling the direction of the tested patch, and a uniform
distribution, with 0 < C1 < 1 being the mixing parameter
(however, the algorithm is rather robust towards the choice of
C). The gaussian assigns a high probability to regions that are
oriented in patch direction. The uniform distribution increases
robustness towards gross outliers.

Eq. 15 reflects the assumption that no preferred orientations
are assumed off-path.

C. Search tree

Insertion of (9) and (10) into (8) yields the a posteriori
distribution of the path for the given features. Since its
complexity increases exponentially with path length N an
exhaustive search is prohibitive even for moderate N . We have
implemented a search tree that guarantees to find the path of
length N with maximum a posteriori probability. The length
N increases over time and we stop our search when either a
sufficient length is reached or a preset time interval dedicated
to path computation has expired.

V. EXPERIMENTAL RESULTS

A. Hardware setup

A custom stereo vision sensor was build for the special
requirements in the Mojave desert. We used Flea cameras from
PointGrey Research which offer a VGA resolution with a good
SNR and an automatic synchronization between the cameras
without disabling the AGC feature. They were mounted with a
base width of 37cm. The cameras were mounted inside of two
protection cases, additionally featuring a large sun shield that
prevented from direct sunlight on the CCD sensors in most
cases. Attached wipers provided the possibility of regularly
cleaning the cases’ windows.

Future developments include the use of a (probably ad-
aptive) optical filter, for further reduction of the possibility
of sensor blooming under the extreme light conditions in
the desert. Additionally CMOS chips, offering a logarithmic
sensitivity to incoming light, could be used, if attaching
custom external trigger hardware.

B. Results

Fig. 8 displays the computed path for a stereo image from
a preliminary test sequence taken on a German dirt road. It
clearly illustrates the reduction of measurement uncertainty
due to inclusion of complementary feature tests, compared
to single feature detectors. Fig. 9 provides examples on path
computation for other terrains.



A slightly modified version of the algorithm was used within
the DARPA Grand Challenge Qualifying and the Final Race.
Additional information was provided by the external sensors
described in section II and by a positioning device. The Desert
Buckeyes successfully avoided all obstacles in the Qualifying
and autonomously drove a distance of about 50km in the final
race in completely unknown terrain.

(a)
(a) (b)

Fig. 8. Calculated path. Obstacles are the sign to the right and the unreaped
field in the upper-left. (a) Path, based on disparity information only. A 30

◦

orientation difference between camera and vehicle was assumed in the camera
calibration unit, resulting in the corresponding orientation of the starting patch.
In the overexposed spot in the middle of the road disparity could not be
computed. Therefore, and as a smooth path is generally favoured, the path
direction remains constant until approaching the unreaped field. (b) Path, after
inclusion of the texture and orientation information. The local orientation of
the tire marks lead to a path correction towards the road, despite its higher
smoothness cost.

(a) (b)

Fig. 9. Calculated path for varying terrains. In all observed cases, obstacles
have been clearly avoided.

VI. CONCLUSION AND OUTLOOK

We have introduced a fast and robust vision-based path-
planning algorithm that has been successfully used within the
DARPA Grand Challenge 2005 within the Desert Buckeyes
vehicle, cooperatively developed by the Ohio State University
and the University of Karlsruhe.

The system features a robust real-time feature detection
that has been tested in a wide variety of environments inclu-
ding desert, paved roads, unpaved tracks and meadows. The
underlying holistic probabilistic framework allows a reliable
obstacle detection and subsequent path planning.

The active testing scheme allows for a straightforward
integration of scene domain (disparity) and image domain (tex-
ture) features. This prevents from those errors that are caused
by imperfect coordinate transformations and projections.

Whereas the disparity feature clearly outperforms the 2D
feature tests in standard situations, the latter prove important
in regions where disparity information cannot be reliably

computed, i. e. in homogeneously textured and in far distance
regions.

The system can easily be extended to a stand-alone global
path planning solution by additional inclusion of positioning
information. The position of the next GPS waypoint can con-
stitute an additional feature test, favoring a vehicle orientation
towards the mission goal.

Current work on the system includes temporal tracking of
the detected path, which further reduces the impact of noise
within the feature outputs.

One drawback is, that the current implementation is strongly
dependent on the quality of the ground plane estimation.
Furthermore, vision sensing in general faces problems with
reflecting obstacles. To cope with these, additional inclusion
of further complementary feature tests, based for example on
radar or lidar measurements, are recommended.
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