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1 Introduction

The past years have revealed a dramatically increasingesiten the use of mobile
Geographical Information Systems (GIS) in various autaedapplications. Car nav-
igation systems employ digital maps to guide the driver éodésired destination. Next
generation driver assistance systems will use enhanceslimapder to present precise
navigation hints (including speed limits, locations of gagtions, restaurants, etc.), and
for assisted vehicle control. Furthermore, methods fooaatnous enhancements of
existing maps using video and lidar sensors are currentigiudevelopment. An ex-
haustive overview of potential applications for upcominghite Gl systems can be
found in chapter 2.

All applications share the need for a robust assignment@ftkasured vehicle
position to a road segment in the digital map. This processlied map matching
Since the emergence of the field in the 1970s (French (198&)siderable progress
has been reported (cf. the surveying articles of Bernstadrkarnhauser (1998), White
et al. (2000), Quddust al. (2003) and Lakaki®t al. (2004)). However, users of
navigation systems still encounter some erroneous maghingteesults.

On the contrary, manufacturersincreasingly aim for a semapthitecture of naviga-
tion systems. Hence, a growing number of navigation systionmsot rely on multiple
vehicle sensors - such as a combination of DGPS, odometegynod- but instead
restrict themselves to GPS only. This is necessarily tru¢hfe newly evolving PDA
(Personal Digital Assistant) navigation systems, whiah identified in chapter 1 as
key devices for next generation GIS, as well as for low cosinnavigation solutions.

In this chapter a robust map matching algorithm is presemtaidh exclusively
relies upon information from a standard GPS receiver (hewéke integration of data
from an integrated GPS dead-reckoning unit is straightfod) Mobile phone based
location systems can equally serve as input. The achiea&bleracy of mobile phone
location is examined in detail in chapter 11.

In contrast to standard map matching techniques the wietiécle pathis esti-
mated for each time step within an iterative, statisticalptimal Bayesian estimator
(a Bayesian estimator using a different formulation hastoeveloped by Scott and
Drane (1994)) .

The algorithm is suitable for all maps using the standard seEgment representa-
tion as piecewise linear links. An introduction into digitaaps and GPS is given in
NCHRP (2002), for example. The map database used by theraughoff-the-shelf



and frequently used in today’s navigation systems. Erréngpoto 40 metres with
respect to ground truth data have been encountered.

Section 2 derives the Bayesian classifier for matching amgesiGPS position and
orientation datum to the map. Incorporation of the clagsifieo an Hidden Markov
Model in section 3 accounts for the vehicle position andrggion history, information
about the road network topology, driving restrictions ameldssumed driving direction.

The vehicle path estimation proves to be robust even forlemgihg inner city
scenarios, some of which are shown in section 5. A furtheravgment of the quality
of current navigation systems for platforms without acdesi-vehicle sensors (i.e.
odometer or gyro) is anticipated.

The reliable and accurate determination of the current pssition is considered
a prerequisite not only for automotive applications butdowide variety of mobile
Geographical Information Systems. The described algorigmot particularly tailored
to automotive applications and can thus be integrated inyonaobile GIS requiring
positioning information.

2 Bayesian classification of GPS data

Map Matching can be formulated as a stochastic classificédisk: The measured GPS
position and orientation vector= (x,y,@)" is to be assigned to the road elemint
with highest a posteriori probability:

I = argmax p(ki|x) . (1)

The map represents a road element as a line segment definsdtayi and end vertex.
Figure 1(a) illustrates the classification task.

A situation that clearly justifies the use of both positiod anientation information
is given in Figure 1(b). While standard position-based magcinng procedures would
erroneously assign the encircled position data to roadexi¢ka, the orientation data
assist to their correct assignment.

The assumption of uniformly distributed a priori probai®i for the road elements
p(ki), together with Bayes formula (cf. Du@ al. (2001), for example), yields:

Bayes Theorem
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The class conditional probabilify(x|k;) of the vehicle state measuremenihen
traversing road elemeit is modelled by two, statistically independent, random-vari
ables:

» The Euclidean distandebetween vehicle positionandk; is modelled as zero-
mean, normally distributed random variaBevith standard deviatioog.



Figure 1: Red dots indicate GPS measurements, black limaesgtg denote road ele-
ments from the map(a) Classification task: Given a GPS measurentant @) the
probability of being located on an arbitrary road elemgritas to be estimated. Or-
thogonal distance and orientation difference thereby serve as crite(ig.Example
of erroneous assignment to road elementor the highlighted GPS measurements if
only positional information is used.

» The angular differencé¢ between vehicle orientatiop and the orientation
of the road elemeng is modelled as zero-mean, normally distributed random
variable®. The standard deviation .

The values for the standard deviatioms and g have to account for the uncer-
tainties in both the map and the GPS receiver data. The GRStation information
becomes less reliable at lower speeds, theraefgrés chosen to be inversely propor-
tional to the measured GPS speed.

Equation 1 can now be rewritten as the following Mahalandistance:

I = argmaxp(xfki)
= argmax ps(b(x,ki)) - po(d@(x,ki))
B 1 ~ b(xki) 1 _6<p2(x,ki)
= argmax T exp( 20% ) N exp( 20(% )
Y .
= argmin b (;ék') + 6¢2§;’k') . (3)
(0]

This yields the desired classifier for a single time instdtigure 2 illustrates the
properties of the classifier for one particular road element

After assigning the current vehicle state to a road elentéwetvehicle position
and orientation estimates are updated accordingly. Thatepgosition is determined
by the orthogonal projection of the GPS position on the aszigoad element. The
updated orientation equals the orientation of the road etem
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Figure 2: Properties of the classifier. The black line demateoad element with an
angle of 45° with respect to theaxis. The likelihoodp(x|k;) is brightness-coded
with respect to different vehicle orientations. The highiéelihood is observed for a
vehicle orientation of 45°, the lowest for a vehicle drivijugt in opposite direction,
i.e. 225°,

3 Incorporation of position history and network topol-
ogy

Up to now, the proposed classifier exclusively uses positiahorientation information

from the current time step. Additionally, all informatioarcerning the topology of the
road network is discarded. A considerable increase ofifilzetion robustness can be
achieved by including the following features in the classifi

* Position history and orientation history: using all pawly measured position
and orientation data will lead to a significant reductiontod fmpact of gross
measurement errors.

» Road network topology: considering the relations amoffgidint road elements
will inhibit impossible consecutive map matchings (i e. ansition from road
elementk; at timet to road elemenk; at timet + 1, althouglhk; andk; are not
connected).

The described features can be fully incorporated in the majeimng process by
the Hidden Markov Model described in the next section.



3.1 Hidden Markov Model (HMM)

Animportant class of Markov Models can be represented byahsistic finite state ma-
chine, with state transitions and outputs being descrilyedrbbability distributions.
A Hidden Markov Model is defined by the five-tuple: state spaet of possible ob-
servations, transition probabilities, emission proliied and initial state distribution.
Dudaet al.(2001), for example, provide an introduction to Hidden Marknodelling.
Figure 3 depicts the proposed model. Each road elelendnstitutes one element
of the state space. The emission probabilipésgk;) correspond to the classification
rule from Eq. 2. The transition probabilitiggk ; ki) = ajj represent the road network
topology: Two elements have a non-zero transition probighohly if they share at
least one vertex. No state transition is preferi@d= SiVj.
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Figure 3: First-order Hidden Markov Model. Circles dendie tnodel states, thin
arrows denote state transitions. Road elemkésdkj are assumed to be connected.
The dashed arrows indicate the output probabilities.

We can now formulate the optimum estimate for the path(it,it_1,...,i1) for
an observed input sequernce Xt_1,...,X1 using the chain rule as:

R T
I = argmax (|1 P(xt[Kic)) - P(Kic Ki_1) - P(xa[kiy) - (4)
t=

The Viterbi algorithm is used for a minimum cost computatidithe best path. It
iteratively computes the statistically optimal sequentstate transitions for a given
sequence of vehicle states.

3.2 Extended HMM

The Hidden Markov Model is further augmented by considetimg roads’ driving
restrictions (i.e. one way streets) and, moreover, thenasdudriving direction of the
vehicle. Both are incorporated by the following model erdeanents:



» The elements of the state space are enhanced by a flag dgti@idriving di-
rection. One road element can thus yield one (for onewaysy@elements in
the state space.

» The transition probabilities between two state space efsare set to a very
small value for contradictory driving directions, reflexiprobability for doing
a U-turn.

Figure 4 depicts the proposed model extension. Traversiogé element oppo-
site to its allowed driving direction is no longer permitteddditionally, paths with
contradictory driving directions are assumed very uniikel
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Figure 4: Extended Hidden Markov Model depicting the caserelmoad elements
andk; are bidirectional. Emission and transition probabilitiese been omitted. Only
state transitions with non-zero transition probabilitg shown. A dashed transition
arrow indicates a low transition probability (reflectingtt-turn probability).

3.3 Detection of erroneous map topology

The maximum a posteriofprobability given by Eq. 2 can directly be used as a mea-
sure of goodness of the classification result. A very low @ahdicates a coarse GPS
measurement error, as already indicated by low horizaetdi¢al dilution of precision
(HDOP/VDOP) values within the GPS receiver protocol, or adeiling error. Mod-
elling errors refer to an erroneous map topology due to misgiad elements. Hence,
the algorithm inherently provides a means for detectingrexous map data.

In the case of a detected model error the Hidden Markov Mad®ldet by discard-
ing all previously aquired position data.



4 Revised position estimate

The proposed classifier assigns GPS data to the most likatiysegment of the digital
map. This allows for a subsequent update of the vehicle sttmate. Within this

contribution the updated position is determined by theagtimal projection of the GPS
position on the assigned road element. The updated ori@miguals the orientation
of the road element. Another possibility of computing thelaged position estimate
using the vehicle speed data from the GPS sensor for de&drieg is described in

Ochienget al. (2003).

5 Examples in complex urban environment

The proposed map matching has been successfully testedsxparimental vehicle in
the inner city of Karlsruhe, Germany. All tests are run omdgad hardware (Pentium
4, 2 GHz processor). The digital map is commercially avddamd frequently used
in today’s navigation systems. A standard low-cost GPSivec&ithout differential
corrections is used with an estimated standard deviatigmosition and orientation
measurements of 10-15 metres and 15°. Data is acquired at IThiz processing
time of the algorithm is 0.01 seconds per GPS datum. Realgggn®@rmance can thus
be achieved on systems up to hundred times slower, for exaompPDA processors.
Several test runs were performed with a total amount of mwaa four hours of on-
line testing (equalling about 15000 measured GPS datag)amtdense urban area.
Examples of the computed path results are shown in Fig. 5.

Few intermediate misclassifications occurred fet% of the data points due to
severe deviations of the GPS measurement (up to 80 metiesesjpect to the correct
road element) or due to occasionally coarse map digitis#tip to 40 metres deviation
from ground truth data). All of those cases were based ondlf@ifing configuration:
The vehicle was standing still close to an intersection &Bd3PS points were slowly
drifting away from the true position. It is believed that sieodfew cases will elegantly
be circumvented by preferring self-transitions over titéorss to any follow-up road
elements for low vehicle speeds within the emission prdhigsiof the Hidden Markov
model.

All intermediate misclassifications are completely conga¢ead by the algorithm
leading to an completely error-free posterior vehicle pegtimate! Figure 6 illus-
trates how an intermediate misclassification in a very cempbad configuration was
automatically corrected by the HMM towards the correct @atlsoon as enough mea-
surements corroborated the belief in the correct path. Qoeptional case leading to
one erroneous path estimate was observed which is analyfegl.i7.

The travelled route contained three map topology errofsrniag to missing road
elements. All three cases have been successfully clasasieddelling errorby the
algorithm (cf. Sec. 3.3).



6 Conclusion and Future Developments

A map matching method has been presented which exclussighg upon information
from a standard GPS receiver. The method exploits the \eepadition and orientation
history, information about road network topology, drivimgtrictions and the assumed
driving direction for each road element. A Hidden Markov Mblas been formulated
leading to a statistically optimal, iterative Bayesiarnrastion procedure. In contrast to
conventional map matching, the whole vehicle path is estithat each time step. An
initialization procedure as required by other methods isne@ded. The method has
proven to be robust even on challenging inner city scenafesal-time performance
has been shown. An improvement of navigation quality fotfptans without access to
vehicle sensors (odometer or gyro, respectively) is grdteid by the method. This is
especially the case for handheld navigation systems. &umthre, the studies revealed
that additional vehicle sensors are not necessary in codgeld robust map matching
results.

The current contribution focused giobalmap matching, i.e determining the most
likely road segment within the network. Howeviecal map matching, i.e. determining
the lateral vehicle pose within the road segment still rema@n open challenge (an
approach using Differential GPS is described in &ual. (2004)). Current research
focuses on video sensor based estimation of the number e$ kamd the subsequent
estimation of the vehicle ego pose, namely lateral offsdtaientation with respect to
the road segment. Further work concerns methods for an a¢ohextension of the
digital map by the estimated attributes.
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Figure 5: Map Matching results in complex situations. Omerednt of the background
grid covers a 50 m area. The small dots correspond to measaune@PS positions.
The computed path is marked by white dashed double linesbiBuok dot with white
surrounding corresponds to the map matched vehicle posdicthe current time step.
Despite severe deviations between GPS measurements amwéthelements from the
map, the correct path (according to the classification byradruobserver) has been
successfully found in all situations.
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Figure 6: Sequence of Map Matching results in a complex sitmaAn initially cor-
rectly assigned path (top left and top right) was intermiedijamisclassified due to
erroneous GPS and map data (middle left), but was correateatds the correct path
as soon as enough measurements had corroborated therb#ietorrect path (middle
right and bottom).
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Figure 7: Erroneous Map Matching result. The vehicle wasrerously assigned to the
lower, parallel running road element although the measueéitle orientation didn’t
indicate any right turn. This is due to the fact that the pos# of approximately twenty
follow-up position measurements yielded a significanttgéat error for the upper, cor-
rect element, leading to a larger overall error. That casédoonly be corrected if the
standard deviation of the orientation would be set to a vergibvalue compared to the
standard deviation of the position. This decision is notifiesl because of the often
large orientation deviations of the road elements in the awemppared to ground truth.
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