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Abstract—In this contribution, we present a probabilistic the image. The coarse geometric property of a scene is
quel for video-bas_ed objept recognition that jointly considers eastimated in [4] by learning appearance-based models of
object and context information. The model can be interpreted geometric classes. Another possibility to represent context

as an extension of the Bayesian framework, which forms : f i i 1 ider it indl tity that b
the basis for most probabilistic object recognition methods. 'Mformation s to consider it as a singie entity that can be

We consider the environment in the vicinity of the observer recognized by means of a global representation bypassing
as a profitable source of context information and propose a the identification of the constituent objects. In [5] the colour

prior that is capable of imposing such scene information into  and grey-level distribution in the image is used to separate
the object recognition process. After introducing the context different scene categories. In [13], [14] Gabor-Filters and

descriptor used in this work, a simple model is presented . . .
to express different scene categories within the road-traffic in [15], [6] Fourier analysis methods are used to exiract

domain. We show how context information can be incorporated €dge information from the image. A comparison of different
into our existing object recognition scheme by evaluating the context feature descriptions can be found in [12].

dependencies between a specific scene category and selecteth this work, context is defined as a set of low-level
object properties. The proposed descriptor has been trained jmage features describing the scene structure as a single,
and the model has been evaluated on real image data. . - . )
coherent entity. The impact of the context information to our

probabilistic object recognition procedure is modelled using
parameterised priors for a given set of object categories. The

Autonomous navigation in open and dynamigparameters of these priors are determined in a training stage.
environments implies the comprehensive perceptiom this way, the model can account for the changes in the
and understanding of the environment in the vicinity ofBurrounding of the vehicle and hence induce modifications
the vehicle. Especially for applications in the road traffidn the object detection process as e.g. accelerate a pedestrian
domain the robust and reliable detection of close-by traffidetection process by focusing the attention to scene-specific
participants is of major interest. In this context, vision(urban vs. rural domain) regions in the image. Trying
sensors provide a rich and versatile source of informatiol avoid the use of arbitrarily defined or heuristically
[9], [7]. Based on the finding that the human visual systermotivated a-priori object knowledge in our recognition
not only makes use of local, object-inherent informatiorscheme, we argue that with the context-aware object prior
for object detection and recognition but also considers ththe scene understanding process can be enriched by a
global scene context, we propose an object recognitianeasurable quantity. Using such a prior makes it possible
method that jointly considers local and global imagdo incorporate information into the recognition process
information. Studies on human scene perception have showutich is very intuitive to humans. Obviously, this is almost
that the structural arrangement of many real-world scenésmpossible to express within a method that exclusively
has a stronger impact to the overall understanding of aronsiders object-inherent information. The model presented
environment and the objects contained within than thi this work is especially interesting for an autonomously
identification and analysis of the objects itself. An empiricahavigating system as such a system is operating in a
proof of this can be found in [2]. For the developmentonstantly changing environment. By utilising the scene
of reliable and comprehensive computer vision systems irformation, an object recognition method can adapt to
aiming to achieve the level of human performance — weome scene-specific object characteristics and therefore
believe that it is essential to broaden ones attention beyoidprove the recognition performance.
the object itself considering the entire image for the global
recognition task.
In previous studies the contextual information has been The remainder of the paper is organized as follows. Secti-
expressed by e.g. defining a collection of objects and a set Il presents some of the theoretical background underlying
of rules about the world in which the system is expected tthe idea of context-aware object priors. The descriptor for
operate [3], [11]. In [10] a statistical approach is presenteexpressing scene context and the context model will be
that learns the joint distribution of a number of objectgpresented in Section Ill. Section IV presents the experimental
within the scene based on a set of local measurements rigsults before conclusions are drawn in Section V.

I. INTRODUCTION



Il. SCENE CONTEXT IN IMAGES image. Equation (2) formalises the main principle underlying

Inspired by recent research results [13], in this work wéhe classic approach for object recognitidhe only image
extend our existing scene segmentation method [1] by tffgatures Fhat are relevant for the detection of an object at
global featurescene contextTo be able to pour context ON€ spatlial location are the features that potentially belong
information into our object detection framework, first the© the object and not to the backgroufiB].
question of how to characterise and describe a scene has td8#OWing this paradigm, in our approach object knowledge
answered. It is important to note that such a description mud#s been represented solely by a set of descriptors expressing
be independent of any object-intrinsic measure. Experimerif3€ local appearance of salient object parts. To account for
in human scene perception [6] have shown, that the modté geometric relationships among object parts, a sparse
requested criterion to classify an image is treivenesof structural prior over part configurations of a specific object
the displayed scene, i.e. to what extend the scene is structuf@iegory has been designed. The background was thus treated
in strong geometrical patterns originating from man-mad@Ss @ collection of distractors but not as an entity that also
structures. However, according to this study, the domina§Pnveys information about the object identity. We argue that
criterion of humans to discriminate deliberate images is th&€ incorporation of object-specific scene context into our
opennes®f a scene. While spacious areas and the presentefne segmentation framework can drastically improve the
of the horizon indicate an open scene, the existence BfOCESS as () |n_suff|C|ent__ intrinsic obje_ct mformatlpn can
close and high-rising structures are a sign for a low degrd¥® augmented with and (ii) the exhaustive exploration of a
of openness. We argue that the openness of a scene'é@e_ search space corresponding to dlffere_nt object models,
an adequate criterion to characterise a traffic scene. To [f¢ations and scales can be reduced by using scene context
able to incorporate the context information into our existingS an indicator of object presence and properties.

framework, a probabilistic model is elaborated in the sequePCENe context can be incorporated into our existing Baye-
sian formulation by splitting the parameter vectdr from

A. Probabilistic Model Equation (1) into a parM_ that evaluates the local object
We wish to segment an image(P), consisting of a set Pproperties (see Equation (2)) and a pdg that describes the

of pixels P= {p1,...pn} .pi € R? into figure, i.e. image complementary parts of the image, namely the background

points p; belonging to an object categor® and back- Of _the object. The posterior object probability can then be

ground. Taking a Bayesian perspective, a set of binary labaglitten

I = ((p1),..,1(pn)) = (I1,..,IN) is deﬁned,_ with one Iab(_el Py mcy (YD - Puc (1)
li € {O,background for each image point and posterior P(1=0|Y;M_;M¢) = P ) 3
probability {MuMc}
. Pu (YD -Bu(l) By considering the scene context in the likelihood term
P(l=0[Y:M) = Pu(Y) 1) Pivumey (Y1) it is now possible to account for different

. . appearances of the object as a function of the context.
P(I]Y;M) states the probability for the presence of an objeci|ihoygh of great interest, in this paper we will focus on

at image positiorpi (i.e.l;=0) asaproduc_t of the likelihood o study of the second fact@.(I) which has received

term Py (Y |l) which evaluates the labelingwith respect ,ch |ess attention in computational vision and object re-
to observationsy and the object prioRy (I). M states the oaniion. While, strictly speaking, this approach violates
object model parameter vector of a specific object categoffe fyndamental Bayesian principle that priors should not

and must be known to the system beforehand. be estimated from data, in practice it leads to more sensible
An important property in Equation (1) is the fact, thalgq)ions than setting priors arbitrarily or using priors that
observationsy are referred to the entire image. This impli-5 e mainly motivated by heuristic assumptions. Choosing the

cates that in statistical approaches for object recognition ”b%rameter seMc which maximizeshy (1) will originate a
; . . c
high complexity ofY makes the modeling d¥l extremely o \which is inferred from the image data favouring the

difficult. i . ) segmentation of an object in an environment that is typical
Most current object recognition schemes manage this co, the specific object category.

plexity problem by assuming that the regions surrounding
the object can be modelled independent with respect to t
object presence, i.e. there exists no dependency between the
scene background and the object contained in the scene. ThidNext to the actual object categoey, in this work we are
assumption changes Equation (1) to further interested in the categocy of the scene the object

B, (Y1) - P() is contained in. qu a given object ca_ttegory this information
— (2) can then be exploited to make predictions about the scene-
P (Y) specific behaviour of an object. In the road-traffic domain this
Now, the object-centeredposterior probability for the pre- could e.g. be used for the behaviour prediction of pedestrians:
sence of an object is exclusively parametrisedMby. M| in urban environments pedestrians are more likely to appear
states a set of local object parameters, ideally describing theross the entire road while in rural areas they are more
local appearance and specific properties of an object in thikely to remain on the footpath on the side of the road. For

Object Category

P(l=0|Y;M)~



the purpose of this work an object is defined by

O = {co.Cs} (4)

with
« Cp Stating the object category. We annotate an object to
one of the three categories:

— ‘car’,

— ‘bicycle’,

— ‘pedestrian’ and

« Cg Stating the scene category. There exist three different
categories annotating trpennes®f the environment:

— ‘open’ describes the scene as an open, poorly s_trugi-g. 1. A collection of images used to train the respective scene category.
tured area, e.g. motorways or roads with multiplerop: images assigned to scene categdosedMiddle: images assigned to
lanes, scene categorgemi-operBottom: images assigned to scene categmpgn

— ‘semi-open’ describes more structured and develo-
ped traffic areas as e.g. rural roads, ) o

— ‘closed’ describes highly developed and structurefrigure 1 some of the training images are shown. It can be

areas as e.g. urban and inner-city areas.

dominate the upper half of images annotatddsed (e.g.

clearly seen that numerous edges of different orientations

I1l. CONTEXT DESCRIPTOR ANDSCENE ANALOGY caused by buildings, street signs or traffic lights). In contrast,

As already mentioned in Section Il, structural information " 29€S assigned to the scene categpynoften emphasize

plays an important role in human scene perception. Motivé&: ..
ted by this finding, we are now left with the task to find ancharactenzmg structures.
efficient and meaningful set of image features to represent the

structure of a scene. Depending on the specific configuration Orientation
of this context feature it should be possible to separate an
image into different scene categories.

In this work, the features describing the scene context are
expected to quantify the magnitude and orientation of edges
in different image resolutions to get an exhaustive description
of the scene with fine and coarse scene structures. We used
the filter responses of ateerable pyramid8] which is a
multi-scale, orientation sensitive gradient filter.

A. Context Description using Steerable Pyramids
Formally, the decomposition of an ima@&P) by a steera- Orientation

ble pyramid withns. scales anah,, orientations corresponds l \ = - - /
to a transformatiorZ with an output ofK = (nsc- nyr) filter ° - - - - - -
' — -

responsedy(G(P))
F{G(P) nee.Nor } = {f(GP) ey k- (B © - - -

In this work the description of the scene context is based
on the filter output of a steerable pyramid with; = 6
orientations andnsc = 4 different scales. To describe the
context features obtained by transformati#n in the sequel
we use a simplified notatidrdefined by

Fig. 2. Feature vectoM (G(P),k) for scene categoryglosed (top) and

M(G(P),k) = 2’ {|.F# {G(P),Nsc,Nor } |} , (6)  open(bottom).
which assigns the magnitudes of te= 24 filter responses
to each image point. B. Feature Vector Compression

horizon line, sign-postings or kerbstones as strong and

ConcerningM (G(P),K), there exists a strong relationship The resulting context descriptor is very complex. To
between the category of a scene and the filter responses of [h&ye the method computationally feasible, the descriptor is

steerable pyramid. Figure 2 shows the averaged magnitudesinnressed and redundant information is discarded. It can
of the filter responses for the two scene categasigsnand

closedbased on a training data set d®0 images each. In  symboalically, the change in notation is expressed4y:)



be seen in Figure 2 that not only orientation and magnitude IV. TRAINING AND EVALUATION

of the filter response but also the location bears characteristicty pe able to compute context-aware object priors, a
scene information. To preserve the expressiveness of thgining stage is required in which the system learns the
descriptor it is of great importance to maintain this quantitye|ationship between the contextual features presented in

in the compression process. Section Ill and the scene-specific object properties. As men-
In a first step the complexity d¥l(G(P), k) is reduced by a tioned in Section II-A, we are interested Ry, (I = O) with
sub-sampling process according to O = {co,cs}, i.e. the probability of some object property that
b M (G(P),k) can be inferred based on the contextual parameteMset
M>™(s, k) = T () Objects can be annotated = {car, bicycle, pedestrigrsta-

pcBisk B . . -~ '
ting the object category anty = {open, semi-open, closgd

For a fixedk, all matrix entries ofM (G(P),k) within the stating the scene category respectively.
isotropic block sizeB are merged to one super-pixel with According to this notation, the prior probability from Equa-
coordinatess= (s,s,)" as illustrated in Figure 3. Conside- tion (3) can be separated into
ring the original image proportions, every sub-sampled filter _ ) )
responseMsU(s k) is composed 0B- 6 = 48 super-pixels. Auc (1) = Ruc (PICo,¢s) - Anc (Co [ &s)-Fuc(Cs), (10)
Rearranging all of these super-pixels to a more compact viewith
leads to all52dimensional vector. This vector is further < Puc(Cs) stating the probability of a specific scene
compressed using principle component analysis (PCA). In category and
this work thenpc = 100 components of the feature vector « Ruc(Co | Cs) stating the probability of a specific object
with largest Eigenvaliiehave been identified as sufficient to category and
describe the scene context and will be subsequently noted ag Puc (P|Co,Cs) stating the probability of image point3

context descriptoMc. to belong to object categorgpy and scene categorys
based on the context model expressedvhy.
—— e If it is assumed that the context descriptbtc conveys
FM(G(P), k) S,ul enough information about the identity of a scene, strong

priors on the existence of some object category within this
scene can be drawn.

Msub(s’ ]\”)

A. Scene Classification

Above, Py (cs) is the probability of an image to belong
to scene categorgs, based on the scene-specific context
model parametrised wittMc. Considering observationg
in the classification process results in

pmc (Y cs) - P(cs)

Fig. 3. Sub-sampling process of descriptdi(G(P),k). The obtained P(CS|Y;MC) = Pw (Y) , With
context descriptorMS“b(s, k) is composed o#8 super-pixels resulting in ¢ (11)
a 1152dimensional vector. pvc(Y) = Z pmc(Ylcs)-P(cs).

|

C. Modelling Scene Context P(cs)_ states the a-priori prol_)ability for the presence of a
certain scene category. In this work we presumed all scene
With the single components of the context descriptogategories to be equally likely, i.€(cg) = 1. The second
being stochastically independent and assuming that they &#m py_(Y|cs) describes the likelihood, or image evidence,

Cs is formally expressed by configuration of Mc. The observation se¥ consists of
h=npc the output of the steerable pyramid filter introduced in
p(Mc|cs) ~ rl p(Mcjcs), (8) Section IlI-A.
J:

B. Scene-Specific Object Classification

In Equation (10) the second term describes the probability
p(Mcjlcs) = /V(HJCS,(J]CS)- (9) for the occurrence of an object of categaxy copditiqngd
on scene categorgs and Mc. We make the simplifying
The model parametemsic j = (ujcs,aps) have been deter- assumption that the object category is only conditioned on
mined in a training stage which will be presented in mor¢he scene category, i.e.

detail in the next section. Rw. (Co | Cs) ~ P(co | Cs). (12)

2 H H i i sub i .. . -
Varitgﬁcglmenswnallty reduction d¥1°"(s k) retained97,16% of the total  B5g5ed on a training data set of 300 images the probability

3The hypothesis was refined makingxa-test of goodness of fit at a P(CO | CS) was determined heu”St'Ca”y accordlng to Figu-
significance level ofx = 0,05. re 4.

with



o~ car ‘o = bycicle ¢0 = pedestrian True positives False positives
cg = open 80 % 15% 5% P(cs|Y:Mc) > 0:95 P(cs|Y:Me) < 0,5
cg = semi-open 50 % 25% 25% # of principle components # of principle components
s = closed 33% 33% 33% 100 75 50 25 100 75 50 25
¢g = open 92.9% | 85.7% | 75.0% | 60.7% || 3.6%| 3.6%| 10,7% | 17.6%
cg = semi-open|| 80,3% | 72,7% | 63,6% | 43,9% || 15,2% | 18,2% | 25,8 % | 42,4%
Fig. 4. P(co|cs) for co = {car, bicycle, pedestrignconditioned on scene cs = closed 85,5% | 76.4% | 69.1% | 60,0% | 9.1% | 109% | 145% | 21.8%

categorycs = {open, semi-open, closéd

. . Fig. 6. Scene classification for a variable number of principle components.
C. Scene-Specific Object Occurrence
The first term in Equation (10) states the probability of 3
image pointsP to be assigned to object catega®y given Object categonycar an average probability dy. (I = O) >

object categoryco and scene categomgs. In a training step 0,60 could be guaranteed while this lower bound could be
the characteristic spatial distribution fixed for over90%of the objects assigned to categbigycle

or pedestrian Figure 7 shows the expected occurrence maps
Puc (Plco, cs) ~ P(Plco, Cs)- (13)  for the individual object categories in different environments.
of the single object categories conditioned on the scene chhe context-aware prior probability of an object category
tegories has been determined. Figure 5 shows the occurrence
distribution of the different object categories as a bar chart
and the probability distributions modelled as a Mixture-of-
Gaussians (MoG).

co car bycicle pedestrian

[

semi-open closed

open

Fig. 5. Characteristic occurrence probabil§P|co,Cs) in the image plane ) B ) )

for object categorieso — {car, bicycle, pedestrignconditioned on scene Fig- 7. In this example, the occurrence probability for a certain object

categorycs = {open, semi-open, closkdNext to the bar charts (black) also category is simply a measure of local intensity contrast, i.e. regions with a

the approximated probability distributions are shown. low probability are black, regions with a high probability keep their original
intensity value. Above, th@S! column shows the original image, the"d

column shows the occurrence map of object categeay the 39 column

D. Context-Aware Object Prior shows the occurrence map of object categoigycle and the4™ column

’ shows the occurrence map of object categoegestrian

With Equation (11), Equation (12) and Equation (13) the
scene-specific object prior in Equation (10) is fully definedey is expressed as a linear combination over all scene
Now, for every positionp; in the image, the probability categoriescs. In Figure 8 the probabilityPy.(Is = O) =
of obje_ct categoryco based on scene categocy can be %Z(j::lﬂvlcﬂj = O) of image segmen§ = (pi1,..,pic) tO
determined. belong to object category car, bicycle and pedestrian is
The previously presented context-aware object prior hagustrated. Object hypothesis have been generated based on
been evaluated based on the results of 149 test images.tfe local object propertynotion similarity as described in
Figure 6 the classification results for the individual scengl].
categories with respect to the dimension of the context
descriptor are shown. A scene category was assumed to V. CONCLUSION
be classified as correct, if the probability measure was In this contribution, a model has been presented that
P(cslY ;Mc) > 0,95. Furthermore, the number of misclassifi-evaluates the strong relationships between an object and the
cations P(cg|Y;Mc¢) < 0,50) is shown. For all annotations to scene it is contained in. A statistical measure, describing the
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Fig. 8. Left: Detected objects based on the local object property

motion similarity in three-dimensional spaceRight: Prior probability
Puc(ls = O) of image regionS to belong to object categord =

{car, bicycle, pedestrign

(8]

(9]
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