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Abstract— In this contribution, we present a probabilistic
model for video-based object recognition that jointly considers
object and context information. The model can be interpreted
as an extension of the Bayesian framework, which forms
the basis for most probabilistic object recognition methods.
We consider the environment in the vicinity of the observer
as a profitable source of context information and propose a
prior that is capable of imposing such scene information into
the object recognition process. After introducing the context
descriptor used in this work, a simple model is presented
to express different scene categories within the road-traffic
domain. We show how context information can be incorporated
into our existing object recognition scheme by evaluating the
dependencies between a specific scene category and selected
object properties. The proposed descriptor has been trained
and the model has been evaluated on real image data.

I. I NTRODUCTION

Autonomous navigation in open and dynamic
environments implies the comprehensive perception
and understanding of the environment in the vicinity of
the vehicle. Especially for applications in the road traffic
domain the robust and reliable detection of close-by traffic
participants is of major interest. In this context, vision
sensors provide a rich and versatile source of information
[9], [7]. Based on the finding that the human visual system
not only makes use of local, object-inherent information
for object detection and recognition but also considers the
global scene context, we propose an object recognition
method that jointly considers local and global image
information. Studies on human scene perception have shown
that the structural arrangement of many real-world scenes
has a stronger impact to the overall understanding of an
environment and the objects contained within than the
identification and analysis of the objects itself. An empirical
proof of this can be found in [2]. For the development
of reliable and comprehensive computer vision systems –
aiming to achieve the level of human performance – we
believe that it is essential to broaden ones attention beyond
the object itself considering the entire image for the global
recognition task.
In previous studies the contextual information has been
expressed by e.g. defining a collection of objects and a set
of rules about the world in which the system is expected to
operate [3], [11]. In [10] a statistical approach is presented
that learns the joint distribution of a number of objects
within the scene based on a set of local measurements in

the image. The coarse geometric property of a scene is
estimated in [4] by learning appearance-based models of
geometric classes. Another possibility to represent context
information is to consider it as a single entity that can be
recognized by means of a global representation bypassing
the identification of the constituent objects. In [5] the colour
and grey-level distribution in the image is used to separate
different scene categories. In [13], [14] Gabor-Filters and
in [15], [6] Fourier analysis methods are used to extract
edge information from the image. A comparison of different
context feature descriptions can be found in [12].
In this work, context is defined as a set of low-level
image features describing the scene structure as a single,
coherent entity. The impact of the context information to our
probabilistic object recognition procedure is modelled using
parameterised priors for a given set of object categories. The
parameters of these priors are determined in a training stage.
In this way, the model can account for the changes in the
surrounding of the vehicle and hence induce modifications
in the object detection process as e.g. accelerate a pedestrian
detection process by focusing the attention to scene-specific
(urban vs. rural domain) regions in the image. Trying
to avoid the use of arbitrarily defined or heuristically
motivated a-priori object knowledge in our recognition
scheme, we argue that with the context-aware object prior
the scene understanding process can be enriched by a
measurable quantity. Using such a prior makes it possible
to incorporate information into the recognition process
which is very intuitive to humans. Obviously, this is almost
impossible to express within a method that exclusively
considers object-inherent information. The model presented
in this work is especially interesting for an autonomously
navigating system as such a system is operating in a
constantly changing environment. By utilising the scene
information, an object recognition method can adapt to
some scene-specific object characteristics and therefore
improve the recognition performance.

The remainder of the paper is organized as follows. Secti-
on II presents some of the theoretical background underlying
the idea of context-aware object priors. The descriptor for
expressing scene context and the context model will be
presented in Section III. Section IV presents the experimental
results before conclusions are drawn in Section V.
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II. SCENE CONTEXT IN IMAGES

Inspired by recent research results [13], in this work we
extend our existing scene segmentation method [1] by the
global featurescene context. To be able to pour context
information into our object detection framework, first the
question of how to characterise and describe a scene has to be
answered. It is important to note that such a description must
be independent of any object-intrinsic measure. Experiments
in human scene perception [6] have shown, that the most
requested criterion to classify an image is thenativenessof
the displayed scene, i.e. to what extend the scene is structured
in strong geometrical patterns originating from man-made
structures. However, according to this study, the dominant
criterion of humans to discriminate deliberate images is the
opennessof a scene. While spacious areas and the presence
of the horizon indicate an open scene, the existence of
close and high-rising structures are a sign for a low degree
of openness. We argue that the openness of a scene is
an adequate criterion to characterise a traffic scene. To be
able to incorporate the context information into our existing
framework, a probabilistic model is elaborated in the sequel.

A. Probabilistic Model

We wish to segment an imageG(P), consisting of a set
of pixels P = {p1, ..,pN} ,pi ∈ R2 into figure, i.e. image
points pi belonging to an object categoryO and back-
ground. Taking a Bayesian perspective, a set of binary labels
l = (l(p1), .., l(pN)) = (l1, .., lN) is defined, with one label
l i ∈ {O,background} for each image point and posterior
probability

P(l = O|Y ;M) =
PM (Y |l) ·PM (l)

PM (Y)
. (1)

P(l|Y ;M) states the probability for the presence of an object
at image positionpi (i.e. l i = O) as a product of the likelihood
term PM (Y |l) which evaluates the labelingl with respect
to observationsY and the object priorPM (l). M states the
object model parameter vector of a specific object category
and must be known to the system beforehand.
An important property in Equation (1) is the fact, that
observationsY are referred to the entire image. This impli-
cates that in statistical approaches for object recognition the
high complexity ofY makes the modeling ofM extremely
difficult.
Most current object recognition schemes manage this com-
plexity problem by assuming that the regions surrounding
the object can be modelled independent with respect to the
object presence, i.e. there exists no dependency between the
scene background and the object contained in the scene. This
assumption changes Equation (1) to

P(l = O|Y ;M)≈ PML(Y |l) ·P(l)
PML(Y)

. (2)

Now, the object-centeredposterior probability for the pre-
sence of an object is exclusively parametrised byML. ML

states a set of local object parameters, ideally describing the
local appearance and specific properties of an object in the

image. Equation (2) formalises the main principle underlying
the classic approach for object recognition:the only image
features that are relevant for the detection of an object at
one spatial location are the features that potentially belong
to the object and not to the background[13].
Following this paradigm, in our approach object knowledge
has been represented solely by a set of descriptors expressing
the local appearance of salient object parts. To account for
the geometric relationships among object parts, a sparse
structural prior over part configurations of a specific object
category has been designed. The background was thus treated
as a collection of distractors but not as an entity that also
conveys information about the object identity. We argue that
the incorporation of object-specific scene context into our
scene segmentation framework can drastically improve the
process as (i) insufficient intrinsic object information can
be augmented with and (ii) the exhaustive exploration of a
large search space corresponding to different object models,
locations and scales can be reduced by using scene context
as an indicator of object presence and properties.
Scene context can be incorporated into our existing Baye-
sian formulation by splitting the parameter vectorM from
Equation (1) into a partML that evaluates the local object
properties (see Equation (2)) and a partMC that describes the
complementary parts of the image, namely the background
of the object. The posterior object probability can then be
written

P(l = O|Y ;ML;MC) =
P{ML|MC}(Y |l) ·PMC(l)

P{ML;MC}(Y)
. (3)

By considering the scene context in the likelihood term
P{ML|MC}(Y |l) it is now possible to account for different
appearances of the object as a function of the context.
Although of great interest, in this paper we will focus on
the study of the second factorPMC(l) which has received
much less attention in computational vision and object re-
cognition. While, strictly speaking, this approach violates
the fundamental Bayesian principle that priors should not
be estimated from data, in practice it leads to more sensible
solutions than setting priors arbitrarily or using priors that
are mainly motivated by heuristic assumptions. Choosing the
parameter setMC which maximizesPMC(l) will originate a
prior which is inferred from the image data favouring the
segmentation of an object in an environment that is typical
for the specific object category.

B. Object Category

Next to the actual object categorycO, in this work we are
further interested in the categorycS of the scene the object
is contained in. For a given object category this information
can then be exploited to make predictions about the scene-
specific behaviour of an object. In the road-traffic domain this
could e.g. be used for the behaviour prediction of pedestrians:
in urban environments pedestrians are more likely to appear
across the entire road while in rural areas they are more
likely to remain on the footpath on the side of the road. For



the purpose of this work an object is defined by

O = {cO,cS} (4)

with

• cO stating the object category. We annotate an object to
one of the three categories:

– ‘car’,
– ‘bicycle’,
– ‘pedestrian’ and

• cS stating the scene category. There exist three different
categories annotating theopennessof the environment:

– ‘open’ describes the scene as an open, poorly struc-
tured area, e.g. motorways or roads with multiple
lanes,

– ‘semi-open’ describes more structured and develo-
ped traffic areas as e.g. rural roads,

– ‘closed’ describes highly developed and structured
areas as e.g. urban and inner-city areas.

III. C ONTEXT DESCRIPTOR ANDSCENE ANALOGY

As already mentioned in Section II, structural information
plays an important role in human scene perception. Motiva-
ted by this finding, we are now left with the task to find an
efficient and meaningful set of image features to represent the
structure of a scene. Depending on the specific configuration
of this context feature it should be possible to separate an
image into different scene categories.
In this work, the features describing the scene context are
expected to quantify the magnitude and orientation of edges
in different image resolutions to get an exhaustive description
of the scene with fine and coarse scene structures. We used
the filter responses of asteerable pyramid[8] which is a
multi-scale, orientation sensitive gradient filter.

A. Context Description using Steerable Pyramids

Formally, the decomposition of an imageG(P) by a steera-
ble pyramid withnsc scales andnor orientations corresponds
to a transformationF with an output ofK = (nsc·nor) filter
responsesfk(G(P))

F {G(P),nsc,nor }= { fk(G(P))}k=1, ...,K . (5)

In this work the description of the scene context is based
on the filter output of a steerable pyramid withnor = 6
orientations andnsc = 4 different scales. To describe the
context features obtained by transformationF , in the sequel
we use a simplified notation1 defined by

M(G(P),k) = Z {|F {G(P),nsc,nor}|} , (6)

which assigns the magnitudes of theK = 24 filter responses
to each image point.
ConcerningM(G(P),K), there exists a strong relationship
between the category of a scene and the filter responses of the
steerable pyramid. Figure 2 shows the averaged magnitudes
of the filter responses for the two scene categoriesopenand
closedbased on a training data set of100 images each. In

Fig. 1. A collection of images used to train the respective scene category.
Top: images assigned to scene categoryclosedMiddle: images assigned to
scene categorysemi-openBottom: images assigned to scene categoryopen.

Figure 1 some of the training images are shown. It can be
clearly seen that numerous edges of different orientations
dominate the upper half of images annotatedclosed (e.g.
caused by buildings, street signs or traffic lights). In contrast,
images assigned to the scene categoryopenoften emphasize
a horizon line, sign-postings or kerbstones as strong and
characterizing structures.
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Fig. 2. Feature vectorM(G(P),k) for scene categoryclosed (top) and
open(bottom).

B. Feature Vector Compression

The resulting context descriptor is very complex. To
make the method computationally feasible, the descriptor is
compressed and redundant information is discarded. It can

1symbolically, the change in notation is expressed byZ (·)



be seen in Figure 2 that not only orientation and magnitude
of the filter response but also the location bears characteristic
scene information. To preserve the expressiveness of the
descriptor it is of great importance to maintain this quantity
in the compression process.
In a first step the complexity ofM(G(P),k) is reduced by a
sub-sampling process according to

Msub(s,k) = ∑
P∈B(s,k)

M(G(P),k)
nB

. (7)

For a fixedk, all matrix entries ofM(G(P),k) within the
isotropic block sizeB are merged to one super-pixel with
coordinatess= (sx,sy)T as illustrated in Figure 3. Conside-
ring the original image proportions, every sub-sampled filter
responseMsub(s,k) is composed of8 ·6 = 48 super-pixels.
Rearranging all of these super-pixels to a more compact view
leads to a1152-dimensional vector. This vector is further
compressed using principle component analysis (PCA). In
this work thenpc = 100 components of the feature vector
with largest Eigenvalue2 have been identified as sufficient to
describe the scene context and will be subsequently noted as
context descriptorMC.

Fig. 3. Sub-sampling process of descriptorM(G(P),k). The obtained
context descriptorMsub(s,k) is composed of48 super-pixels resulting in
a 1152-dimensional vector.

C. Modelling Scene Context

With the single components of the context descriptor
being stochastically independent and assuming that they are
normally3 distributed, the context model for a scene category
cS is formally expressed by

p(MC|cS)≈
h=npc

∏
j=1

p(MC, j |cS) , (8)

with

p(MC, j |cS) = N (µCS
j ,σCS

j ) . (9)

The model parametersMC, j = (µCS
j ,σCS

j ) have been deter-
mined in a training stage which will be presented in more
detail in the next section.

2the dimensionality reduction ofMsub(s,k) retained97,16% of the total
variance

3The hypothesis was refined making aχ2-test of goodness of fit at a
significance level ofα = 0,05.

IV. T RAINING AND EVALUATION

To be able to compute context-aware object priors, a
training stage is required in which the system learns the
relationship between the contextual features presented in
Section III and the scene-specific object properties. As men-
tioned in Section II-A, we are interested inPMC(l = O) with
O= {cO,cS}, i.e. the probability of some object property that
can be inferred based on the contextual parameter setMC.
Objects can be annotatedcO = {car, bicycle, pedestrian} sta-
ting the object category andcS = {open, semi-open, closed}
stating the scene category respectively.
According to this notation, the prior probability from Equa-
tion (3) can be separated into

PMC(l) = PMC(P|cO,cS) ·PMC(cO | cS) ·PMC(cS) , (10)

with
• PMC(cS) stating the probability of a specific scene

category and
• PMC(cO | cS) stating the probability of a specific object

category and
• PMC(P|cO,cS) stating the probability of image pointsP

to belong to object categorycO and scene categorycS

based on the context model expressed byMC.
If it is assumed that the context descriptorMC conveys
enough information about the identity of a scene, strong
priors on the existence of some object category within this
scene can be drawn.

A. Scene Classification

Above, PMC(cS) is the probability of an image to belong
to scene categorycS, based on the scene-specific context
model parametrised withMC. Considering observationsY
in the classification process results in

P(cS|Y ;MC) =
pMC(Y |cS) ·P(cS)

pMC(Y)
, with

pMC(Y) = ∑
i

pMC(Y |cSi ) ·P(cSi ) .
(11)

P(cS) states the a-priori probability for the presence of a
certain scene category. In this work we presumed all scene
categories to be equally likely, i.e.P(cS) = 1

3. The second
term pMC(Y |cS) describes the likelihood, or image evidence,
of scene categorycS characterised by the trained parameter
configuration of MC. The observation setY consists of
the output of the steerable pyramid filter introduced in
Section III-A.

B. Scene-Specific Object Classification

In Equation (10) the second term describes the probability
for the occurrence of an object of categorycO conditioned
on scene categorycS and MC. We make the simplifying
assumption that the object category is only conditioned on
the scene category, i.e.

PMC(cO | cS)≈ P(cO | cS) . (12)

Based on a training data set of 300 images the probability
P(cO | cS) was determined heuristically according to Figu-
re 4.
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Fig. 4. P(cO | cS) for cO = {car, bicycle, pedestrian} conditioned on scene
categorycS = {open, semi-open, closed}.

C. Scene-Specific Object Occurrence

The first term in Equation (10) states the probability of
image pointsP to be assigned to object categoryO given
object categorycO and scene categorycS. In a training step
the characteristic spatial distribution

PMC(P|cO,cS)≈ P(P|cO,cS). (13)

of the single object categories conditioned on the scene ca-
tegories has been determined. Figure 5 shows the occurrence
distribution of the different object categories as a bar chart
and the probability distributions modelled as a Mixture-of-
Gaussians (MoG).
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Fig. 5. Characteristic occurrence probabilityP(P|cO,cS) in the image plane
for object categoriescO = {car, bicycle, pedestrian} conditioned on scene
categorycS= {open, semi-open, closed}. Next to the bar charts (black) also
the approximated probability distributions are shown.

D. Context-Aware Object Prior

With Equation (11), Equation (12) and Equation (13) the
scene-specific object prior in Equation (10) is fully defined.
Now, for every positionpi in the image, the probability
of object categorycO based on scene categorycS can be
determined.

The previously presented context-aware object prior has
been evaluated based on the results of 149 test images. In
Figure 6 the classification results for the individual scene
categories with respect to the dimension of the context
descriptor are shown. A scene category was assumed to
be classified as correct, if the probability measure was
P(cS|Y ;MC) > 0,95. Furthermore, the number of misclassifi-
cations (P(cS|Y ;MC) < 0,50) is shown. For all annotations to

True positives False positives

# of principle components # of principle components

open

closed

semi-open

Fig. 6. Scene classification for a variable number of principle components.

object categorycar an average probability ofPMC(l = O) >
0,60 could be guaranteed while this lower bound could be
fixed for over90%of the objects assigned to categorybicycle
or pedestrian. Figure 7 shows the expected occurrence maps
for the individual object categories in different environments.
The context-aware prior probability of an object category

Fig. 7. In this example, the occurrence probability for a certain object
category is simply a measure of local intensity contrast, i.e. regions with a
low probability are black, regions with a high probability keep their original
intensity value. Above, the1st column shows the original image, the2nd

column shows the occurrence map of object categorycar, the 3rd column
shows the occurrence map of object categorybicycle and the4th column
shows the occurrence map of object categorypedestrian.

cO is expressed as a linear combination over all scene
categoriescS. In Figure 8 the probabilityPMC(lSi = O) =
1
C ∑C

j=1PMC(l j = O) of image segmentSi = (pi,1, ..,pi,C) to
belong to object category car, bicycle and pedestrian is
illustrated. Object hypothesis have been generated based on
the local object propertymotion similarity as described in
[1].

V. CONCLUSION

In this contribution, a model has been presented that
evaluates the strong relationships between an object and the
scene it is contained in. A statistical measure, describing the



Fig. 8. Left: Detected objects based on the local object property
motion similarity in three-dimensional space.Right: Prior probability
PMC(lSi = O) of image regionSi to belong to object categoryO =
{car, bicycle, pedestrian}.

influence of characteristic scene properties to object priors,
has been developed. The expressiveness of the context-aware
object prior has been evaluated on real image data.
In ongoing work, we expect to increase the performance of
the method by further refining and extending the context
descriptor. Additionally, the performance shall be increased
by an exhausting training of different object and scene
categories. Furthermore it is intended to fully incorporate
the context-aware object prior into our existing scene seg-
mentation framework.
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