
  

  

Abstract—This paper focuses on recognition and tracking of 

maneuvering vehicles in dense traffic situations. We present an 

asynchronous multi obstacle multi sensor tracking method that 

fuses information from radar and monocular vision. A low level 

fusion method is integrated into the framework of an IMMPDA 

Kalman filter. Real world experiments demonstrate that the 

system combines the complementary strengths of the employed 

sensors. 

I. INTRODUCTION 

dvanced driver assistance systems for cars require 

reliable perception of the vehicle environment. In 

particular, high-level driving assistance tasks like emergency 

breaking or full speed range ACC necessitate a level of 

reliability that may only be achieved through a combination 

of multiple sensors. Recognizing and classifying of objects 

on the road as well as determining their position and velocity 

are the key challenges for numerous applications. Being 

complementary in nature, radar and monocular vision may 

yield object detection with high reliability through 

appropriate information fusion techniques [1]-[2]. The 

individual properties of radar and vision, as well as their 

completive potential have been discussed in [3]. Systems 

using radar and vision fusion differ mainly in their fusion 

level and in the synchronous or asynchronous processing 

scheme. Steux and Laurgeau [1] presented in their work a 

synchronous system with low level fusion. They combined 

raw data from vision and radar to produce new raw data that 

are expected to be more informative than the original data. 

Another synchronous system introduced in [2] uses radar 

targets to generate the area of interest (AOI) in each image. 

The detections from these AOI are used to validate the radar 

targets. In [3] Sole developed a synchronous system with 

high level fusion, that tracks objects independently by each 

sensor and subsequently matches, associates and validates 

the tracks of both sensors.  

This contribution proposes asynchronous processing of 

radar and vision data. In contrast to the previously cited 

methods, the proposed approach shall meet the following 

requirements:  

1. Object candidates can be initiated from vision data as 
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well as from radar data. 

2. The method shall work in the field of view of either 

sensor, i.e., objects may be updated using either 

vision data or radar data or both. 

3. Objects can be classified and validated using either 

vision data or radar data or both. 

4. Objects can be tracked even in highly dynamic 

driving maneuvers. 

 

The remainder of the paper is organized as follows: The 

next section introduces the sensor models for radar and 

vision as well as the features used for object tracking. In 

Section 3, an interacting multiple model filter with 

probabilistic data association IMMPDA is proposed. A multi 

sensor tracking system using monocular vision and radar is 

introduced in Section 4. Results from experimental vehicles 

in natural traffic scenes presented in Section 5 lead to a 

conclusion and future work. 

II. SENSOR MODELS 

A. Radar 

In our system a 77-GHz long range radar is used. It has a 

maximum range of 200m and covers an azimuth angle of 

10°, cf. [4]. The accuracy of the radar sensor is high in radial 

direction, i.e. in its measurements of range r and range 

rate rv &= . In angular direction, the radar provides coarse 

measurements for the lateral angle α of each object detected. 

The radial and angular measurements are uncorrelated. Thus, 

the measurement vector 1z  and the measurement covariance 

matrix 1R are given as 
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where ρσσσ α ,,, vr  denote standard deviations and 

correlation coefficient of the respective measurements.  

B. Camera 

We use a monocular camera in our system. The camera 

has a field of view (FOV) of +22° horizontally and +16° 

vertically. The image sequence analysis algorithm searches 

the images for possible objects evaluating a diversity of 

features, like optical flow, symmetry and shadow. Then these 
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features are fused using the Dempster-Shafer Evidence 

Theory [5] to detect potential object boundaries. Typically 

more than one boundary is generated for each vehicle. Each 

boundary represents a candidate for the lower edge of the 

object, i.e. the intersection of the object rear with the road 

plane. This edge is signaled along with its covariance via   
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where 2z denotes the pixel coordinates of the objects’ lower 

center, 3z denotes object width, and 32 ,RR  denote the 

respective covariance matrices. The admissible detection 

range of the image analysis algorithm is restricted to 80m, as 

the reliability of object detection significantly deteriorates 

for larger distances. 

III. IMM KALMAN FILTER 

The interacting multiple model (IMM) Kalman filter has 

been introduced to cope with abruptly changing dynamical 

behavior [6]. Recent work on implementation of IMM for 

real traffic situations has been presented in [7]. The IMM 

filter used in this paper accounts for typical vehicle 

maneuvers, such as constant acceleration or constant speed 

cruising, and the transition between them. It is combined 

with a probabilistic data association (PDA) scheme as 

introduced in [8]. The specifics of our IMMPDA filter are 

presented in the sequel. 

A.  Dynamic models 

As mentioned in the introduction section the key 

information for advanced driver assistance system is the 

position and the velocity of the target. An appropriate choice 

of the coordinate system to represent vehicle dynamics and 

sensor information is crucial for an appropriate model: While 

measurement properties of the employed sensors are best 

represented in polar sensor-fixed coordinates, Cartesian 

global coordinates are best suited to represent vehicle 

dynamics. The advantages and disadvantages of Cartesian 

and polar coordinate system are discussed in [8]. Buehren 

and Yang [9] present an interesting global coordinate model 

and provide a comparison between filter results for model 

representations in sensor-fixed and global coordinate 

systems. In this paper a representation in semi-global 

Cartesian coordinates is proposed. After the prediction and 

innovation steps of the filter have been conducted in global 

Cartesian coordinates, all information is transformed into a 

coordinate system moved with the host vehicle.  

Two alternative dynamic system models are used in our 

IMM filter: 

1) The first dynamic model assumes constant velocity 

cruising: 
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where vxν and vyν  denote zero-mean uncorrelated noise of 

standard deviation vxσ  and vyσ , respectively, accounting 

for the uncertainty in acceleration. 

2) The second dynamic model assumes constant 

acceleration, described by: 
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where axν and ayν  denote zero-mean uncorrelated noise of 

standard deviation axσ  and ayσ , respectively, accounting 

for the uncertainty in jerk. 

B. Model interaction 

The initial state for prediction of each model is a mixture 

of the states from the last cycle of all models with the mixing 

probabilities: 
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where 
i

kkX 1|1 −−  and 
i

kkP 1|1 −−  is the state and covariance of 

the model i of the last cycle. 

C. Model filtering 

Using the initial state and covariance the predicted states 

and covariances are calculated in a Kalman filter according 

to the two motion models. The innovation and state update in 

the Kalman filter under the different model assumptions will 

be discussed in Section 4. 

D. Model probability update    

The calculation of the likelihood function for an IMM 

filter with PDA has been introduced in [8]. Therefore the 

likelihood function 
j

kΛ corresponding to the model j is: 
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where the DP  denotes the detection probability of a target, 

GP   is the association gate probability, β is the false alarm 

density, m is the number of the associated measurements of a 

target and ( )ijij SVN ,0;  is a Gaussian distribution for the 

innovation ijV  with zero mean and the covariance ijS . 

Thus the updated model probabilities are: 
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with the normalizing constant 
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E. Estimate and covariance combination    

The mixture of the model-conditioned states estimates and 

covariances yields the resulting system state estimate and 

covariance according to the mixture equations 
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IV. MULTI SENSOR TRACKING SYSTEM 

A. Measurement transformation 

We use a linear Kalman filter in Cartesian coordinates. 

Hence, the measurements from radar and camera are 

transformed to the Cartesian coordinate model of the system. 

The transformation of radar measurements is given by 
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where egoxv , is the longitudinal velocity of the host vehicle, 

and the transformation matrix g is defined as 
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In [10] Stein presents a method which computes range and 

range rate using the road geometry and the point of contact 

of the vehicle and the road in image. According to this 

method the longitudinal range x and the lateral range y of an 

object can be computed like below: 
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where f  is the focus length of  the camera, H  is the height 

between the camera and ground, yp  and xp  denote the 

pixel coordinates of the objects’ lower center in (2) and pc  

is the pixel pitch unit. 

The object width can be computed as 

f

cxw
W

p⋅⋅
=                 (19) 

Due to the sensitivity of camera measurements on weather 

conditions, vertical road curvature and tilt dynamics of the 

host vehicle, range measurements of the camera may 

eventually be highly inaccurate. Therefore, in this paper we 

employ the predicted range value 1| −kkx  from the initial state 

0

1|1 −− kkX  of the models in (8) to calculate y  and W  for 

each model filter. Thus the transformation of camera position 

measurements reads 
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with the transformation matrix 

170



  



















=
−

f

cx

pc

fH

h
pkk

yp

1|

2

0

0

            (21) 

Likewise, coordinate transformation of the width is given by 
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B. Probabilistic data association 

The IMM algorithm requires that the used motion models 

have identical validation regions in measurement space. In 

this paper, we use the combined state prediction of the 

system given by 
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where 
j

kkX 1| −  and 
j

kkP 1| −  denotes the predicted state and 

covariance of the model j whereas jc  is the predicted model 

probability from Eq. (7).  

Radar measurements are associated to targets using a 

validation gate as described in [11] with a gate probability 

set to 0.98.  

The association of camera measurements to targets is a 

little more complex. The targets are at first transformed to 

boundaries in each image following Eqs. (17), (18) and (19). 

Target boundaries are associated with camera measurements 

if they match with the respective measurement boundary. 

Two special cases are explicitly considered: 

1) If a target is occluded by another target closer to the host 

vehicle in image, we impose that only the closer one is 

seen by the camera.  

2) In praxis a radar reflection may come from any possible 

matters on the road, like vehicles, trees or cola cans. In 

order to prevent that a moving vehicle may be assumed 

to be occluded by nearby stationary objects, we impose 

that moving targets may not be occluded by stationary 

targets. 

The PDA procedure yields the association probabilities of 

the measurement with the targets as outlined [11]. 

C. Asynchronous filtering 

The notion of synchrony in the context of multi sensor 

tracking systems my refer to sensors or to the tracking 

process itself: 

1) Synchrony of sensors 

In a synchronous sensor system all sensors take every 

measurement at the same time instant. In contrast 

asynchronous sensors operate independently and often 

even at different measure rates. 

2) Synchrony of  tracking 

A synchronous tracking system predicts or retrodicts 

measurements or objects that may be taken at different 

time instances into pseudo measurements or objects that 

are aligned in time [12]. In contrast, asynchronous 

tracking systems employ every measurement or object 

upon availability to validate and initiate its tracks.  

A main drawback of synchronous tracking system against 

asynchronous system is the loss of sensor information when 

several measurements are “compressed” into a pseudo 

measurement. Furthermore, prediction or retrodiction of 

sensor information introduces additional noise to the overall 

system. Last not least, the additional time delay of a 

synchronous system may be prohibitive for the functionality 

of safety relevant advanced driver assistance systems. 

For the sake of modularity, sensors typically operate 

independent of another and hence provide asynchronous 

data. The radar and camera used in our system measure 

objects independently. The radar has a measurement rate of 

10 Hz while the camera operates at 25 Hz. To achieve 

maximum flexibility of the tracking system we have 

developed an asynchronous tracking system with low level 

data fusion for the asynchronous sensors. This allow for full 

exploitation of sensor information and mixing of sensor 

information at an early stage of the analysis procedure. 

Because the processing time the radar sensor is significantly 

larger than the processing time of the camera sensor (Fig. 1), 

the tracking system receives the radar measurements after the 

camera measurements even when the radar and camera 

sensors begin their measurements simultaneously. This 

problem is well discussed in [13]. A theoretically optimal 

solution as well as a cost-effective approximation thereof is 

presented in [14]. To resolve the problem we store all 

received measurements of the camera into a buffer that is 

read out when new measurements of the radar arrive. Then 

the tracking system can process the buffered camera data and 

the just received radar data sequentially in the order of their 

measurement times. This process is shown in Fig. 2.  

 

 
 

 

 

 

Fig. 1. The measuring time of radar and camera 
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Fig. 2. Asynchronous sensor data processing 

1) Radar data and camera data arrive at the tracking 

system 

2) All camera data MT1, MT2 and MT3 camera 

are buffered. 

3) The radar data MT2 radar and the camera data 

MT1 and MT2 camera, which arrived in the 

system between the arriving times of MT1 radar 

and MT2 radar, build a data processing block 

that is processed sequentially in the order of 

measurement by the tracking system. 

D. Target recognizing and validation 

When a target is measured by the camera we use the width 

information to classify the target as a passenger car, truck or 

a motorcycle. Furthermore we calculate a probability of track 

existence for each target using the integrated PDA (IPDA) 

introduced in [15].  

V. RESULTS 

The evaluation of the multi sensor system is based on data 

recorded from driving on highways and in urban areas. The 

radar measurements and camera images were recorded 

together with the longitudinal speed of the host vehicle. 

The constant velocity model of IMM is parameterized as: 

vxσ =1m/s^2 and vyσ =1m/s^2 

The constant acceleration model is parameterized as: 

axσ =100m/s^3 and ayσ =50m/s^3 

The transition matrix of the IMM filter is set to 

.
98.002.0

02.098.0
)1.0( 








=spM  

The initiation values of the models are 0.2 for the CV 

model and 0.8 for the CA model.  

 
 

 
 

 Figs. 3 and 4 show results from a typical urban driving 

scene where a vehicle is followed by the host vehicle. Figs. 5 

- 8 show the tracked parameters together with the 

measurements. Using the information of the camera sensor 

the target is also correctly classified as passenger car with a 

width of 1.55 meter. 

VI. CONCLUSIONS 

In this paper we present an IMMPDA multi sensor 

tracking system using asynchronous processing of 

measurements of radar and vision. The result of the 

simulation using measurements in real traffic situations 

shows that the tracking system combines the advantages of 

both sensors and the IMM works correctly. In Fig. 8 we can 

see that the range measurements of camera are unreliable 

over a distance of 35 meter due to pitch dynamics of the host 

vehicle. Even though the proposed system copes well with 

this situation, future work on image stabilization could 

contribution to directly improve the measurement data. In 

particular, this will enhance the tracking performance for 

targets that are only measured by the camera.  

 

Fig. 4. The target is turning left and is only measured by 

the camera. 

 

Fig. 3. The target is measured by both, the radar and the 

camera. The boundaries depict the measurements provided 

by the camera sensor and the triangle depicts the radar 

detection. The cross show the target tracked by the 

proposed method. 
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Fig. 8. Angle in [°] computed from the tracked lateral 

distance range.  Due to its high accuracy the tracked angle 

is dominated by the camera measurements. 

 

Fig. 7. Model probability of the constant velocity model. 

At the 11 s and 12 s the IMM filter switches from constant 

velocity model to constant acceleration model. 

 

Fig. 6. Tracked velocity of the target in [m/s]. Only the 

radar can measure the velocity instantaneously. At the 10.5 

s and 12 s the target brakes strongly. Between 11.2 s and 

11.5 s and from 13 s onwards the target cruises at almost 

constant velocity. 

 

Fig. 5. Tracked range of the target in [m]. 

Due to its high accuracy the tracked range is dominated by 

the range measurements of the radar. 
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