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Abstract— Present vision based driver assistance systems are
designed to perform under good-natured weather conditions.
However, limited visibility caused by heavy rain or fog strongly
affects vision systems. To improve machine vision in bad
weather situations, a reliable detection system is necessary
as a ground base. We present an approach that is able to
distinguish between multiple weather situations based on the
classification of single monocular color images, without any
additional assumptions or prior knowledge. The proposed
image descriptor clearly outperforms existing descriptors for
that task. Experimental results on real traffic images are
characterized by high accuracy, efficiency, and versatility with
respect to driver assistance systems.

I. INTRODUCTION

Vision based driver assistance systems (DAS) are currently

designed to perform under good-natured weather conditions.

Unfortunately, limited visibility often occurs in daily life

(e.g. heavy rain or fog). As this strongly affects the accuracy

or even the general function of vision systems, the actual

weather condition is a valuable information for assistance

systems. Based on the results of weather classification,

specialized approaches for each class can be invoked to

improve cognition. This will form a key factor to expand the

application of DAS from selected environmental conditions

to an overall approach.

Little work has been done on weather related issues for in-

vehicle camera systems so far. Nayar [8] studied the visual

effects of rain and came up with a photometric rain drop

model that describes refraction and reflection of light by a

rain drop. Additionally, they determined the effect of camera

parameters on image disturbance and developed an approach

of detecting and removing rain from videos. Narasimhan

[14], [15], [16] analyzed images taken under poor static

weather conditions. They used the Koschmieder model to

estimate scattering coefficients of the atmosphere and restore

the contrast of weather degraded images.

Even though Nayar as well as Narasimhan reported impres-

sive results for their specific problems, these approaches

can’t be easily transferred to automobile applications. All

approaches assume a static observer whereas in automo-

bile applications, egomotion of the camera is obviously

the normal case. In addition, the numerous shapes of rain

drops on a windshield will complicate the employed models

significantly.

Work on weather related issues in automobile applications

has been conducted by [9] and [10]. Hautiere [9] estimated

the visibility distance using charge-coupled device cameras.

Kurihata [10] used a machine learning approach with rain-

drop templates, so called eigendrops, to detect rain drops on

windshields. However, both lack a holistic approach to deal

with all kinds of adverse weather conditions.

In this contribution, we propose a general approach suitable

for any kind of weather situation and for any egomotion. As

a first step, we present an image classification method that

reliably distinguishes between certain weather conditions.

Whereas little work has been done on DAS for bad

weather situations, scientific research in image classification

or categorization is very broad. Generally, the goal is to

decide whether an image belongs to a certain category or not.

Depending on the application, categories can include various

natural scenes [11], but often images are tested for the

presence of a certain object category, e.g. [5], [13], [17], [19].

All modern approaches are based on the extraction of local

image features, as global features turned out to be not robust

enough to deal with variations in view, lighting, occlusion

and object variations. Different kinds of local features have

been proposed with histogram-based features like SIFT [12],

HOG [3], and shape context [1] being among the most

discriminant. However, these features perform weakly for the

intended task.

Based on local features, machine learning classification ap-

proaches are often proposed that range from simple decision

trees [13] up to the introduction of additional semantic layers

as the very popular bag-of-features approach [2], [19].

While these approaches have achieved remarkable results

for generic image categorization, no such system has been

proposed yet to distinguish weather situations. Additionally,

most existing features are based on grayscale images and

only few approaches have tried to use color features, e.g.

[20]. We believe that color casts due to atmospheric effects

may provide valuable, additional information.

The key contributions of this paper are the develop-

ment of robust histogram features for the task of weather

recognition, and their application in an efficient and effec-

tive image classification framework. The method we pro-

pose works on single monoscopic color images from in-

vehicle cameras and extracts robust and meaningful his-

togram features, as depicted in section II. In section III,

we then apply a support vector machine (SVM) on the
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Fig. 1. Proposed method: Several histogram features (like brightness, contrast, etc.) are calculated in different regions of the image and gathered in one
large vector. The vector is then classified by a Support Vector Machine to obtain the estimated weather situation.

features to classify the image into one of the classes

C = {clear weather, light rain, heavy rain}. Section IV

shows detailed experimental classification results, discusses

the proposed features significance and compares them to

standard image descriptors.

II. FEATURE EXTRACTION

A robust weather classification technique is depending on

reliable, strong environmental features. Single images, in

principle, provide sufficient information for that task.

We first define regions of interest (ROI) which will be

used for feature extraction. As depicted in Fig. 1, one

global ROI gathers information about the overall effect of

weather on the image. In addition, this region is divided into

twelve sub-ROI’s that cover the local (and distant-dependent)

effects in more detail. Within each ROI, several features are

evaluated: local contrast, minimum brightness, sharpness,

hue and saturation, detailed below. As some features cannot

be computed pixelwise, a ROI is subdivided into 10x10 pixel

blocks, and each feature is computed in each block. All

features return values between 0 and 1 and vote for one bin

of their ROI and feature dependent histogram. Thus, there

are 13 ROIs with 5 histograms each.

Histogram bins do not describe the actual local features very

accurately, but on the other hand they are very robust in

terms of outliers and noise. As we are interested in the

overall distribution of features within the image, histogram

bins describe the image information appropriately. Beyond

that, the quantity of extracted features directly influences the

complexity of classification in terms of accuracy, compu-

tational time and number of required training images. We

discretize the feature histograms into 10 bins as it turned out

to be a good compromise between descriptors accuracy and

classification effort. The proposed features are presented in

greater detail in the following.

A. Contrast and Minimum Brightness

In clear weather conditions, the radiance from a scene

point reaches the observer unaltered. However, dealing with

adverse weather conditions, atmospheric effects cannot be

neglected anymore. In recent literature [14], [15], [16], [9],

the Koschmieder Model has been established as a description

of the atmospheric effects of weather on the observer

E = I∞ρe−β(λ)d + I∞(1 − e−β(λ)d), (1)

where E is the pixel brightness, I∞ is the background

intensity, ρ is the normalized radiance of a scene point [15],

d is the distance and β(λ) is the scattering coefficient. Note

that β is a function of the wavelength λ whose relationship

is given by Rayleigh’s law [14], [16]. For small atmospheric

particles like fog or haze, β can be assumed to be constant.

Equation (1) implies that the irradiance and thus the bright-

ness observed by each pixel of the sensor is altered by two

fundamental scattering phenomena: attenuation and scattered

light. In other words, light directly transmitted from the scene

point will be exponentially attenuated and superimposed by

the environmental illumination that will be refracted towards

the observer. For scene points with a low normalized radiance

ρ, the direct transmission term can be neglected. Hence, we

expect an increasing pixel brightness due to scattered light:

Emin ∝ (1 − e−βd). (2)

In other words, the minimum local pixel brightness will

increase with β and d according to the second term in the

right-hand side of (1).

The local contrast C can be defined as

C =
Emax − Emin

Emax + Emin
, (3)

where Emax and Emin are the local extrema of the pixel

brightness. To increase robustness of contrast estimation, we

determine brightness extrema by averaging the darkest and
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brightest pixels within the ROI’s. Inserting (1) in (3) yields

C =
ρmax − ρmin

ρmax + ρmin + 2(eβd − 1)
. (4)

As a result, the local contrast solely depends on scene

point properties (which remain constant), distance d and the

scattering coefficient β.

B. Sharpness

Clearly distinguishable objects under friendly weather

conditions are expected to have sharp edges with large

contrast differences. In addition to the contrast feature dis-

cussed above, a gradient based method, called the Tenengrad

Criteria [18], is used to determine the sharpness of the test

images. It is based on an average determination of the sobel

gradient magnitude

T =

∑

i

√

S2
X(i) + S2

Y (i)
∑

i 1
, (5)

with i = [1..all pixels] and the sobel filter responses being

SX , SY . This method originates from autofocusing tasks

where two images with identical scene information are

evaluated according to their sharpness. It fails when applied

to images with different context due to the following occur-

rences: contrast-variance and edge-quantity-variance. Ferzli

and Karam [6] proposed a perceptual-based sharpness metric

which is invariant to contrast and edge quantity. Similar to

their approach, but with slight variations in detecting edge

pixels and weighting the influence of contrast, we define the

Advanced Tenengrad Criteria as

Tadv =

∑

i δi ρ(i)
√

S2
X(i) + S2

Y (i)
∑

i δi

, (6)

where δi = 1 if pixel i is an edge pixel (0 otherwise) and

ρ(i) is a weighting factor that is assumed to be inversely

proportional to the local contrast.

C. Color Features

Grayscale features are widely used for image processing

tasks that range from low level algorithms to highly so-

phisticated modules, though there is growing attention to

color information [20], [7] in feature extraction and tracking

topics. Dealing with adverse weather conditions and limited

visibility where the significance of features decreases, we

attach high importance to additional color information. We

extract hue and saturation from the HSV color space. For

robustness, local mean values are taken in each 10x10 pixel

block.

For all ROIs and features, their values are extracted block-

wise and summarized by a histogram. Then, we combine all

histograms into one extended descriptor vector, so we get

vector v = (v1, ..., vn) with n = (13 ROIs) ∗ (5 features) ∗
(10 bins) = 650 scalar elements describing the image.

III. CLASSIFICATION

In this section, we will use the extended descrip-

tor vector v as described in the last section to de-

cide on the image class. In our case, the classes corre-

spond to weather situations which we divide into C =
{clear weather, light rain, heavy rain}. Thus, the problem of

classification can be thought of as finding some function f

that maps from descriptor space D into the classes C with

c = f(v), where f : D → C.

For a descriptor space with a small number of dimensions,

such a function f can be designed by hand, whereas for

high-dimensional descriptor spaces (e.g. discussed problem:

D = R
650) this becomes nearly impossible for a human.

The machine learning framework can be used to find such

a function from training examples. Numerous methods have

been proposed [4] using techniques like k-Nearest-Neighbor,

Decision Trees, Neural Networks and Support Vector Ma-

chines (SVM).

As SVMs are simple, fast, and powerful, we decided to use

them as our learning and classification method. In principle,

a linear SVM generates a hyperplane in the descriptor

space D and classifies descriptors by calculating on which

side of the hyperplane the descriptor vector (=point) lies.

Mathematically, the hyperplane is represented by its normal

vector w with offset b, then for a given descriptor v a score

is calculated by s = w
T
v − b and the final decision is

(s ≥ 0). As a hyperplane can only separate two classes,

several hyperplanes are needed for the multiclass case, and

the scores from each hyperplane have to be combined to get

the final classification.

The hyperplane parameters w and b are optimized in the

learning stage to separate the two classes as far as possible.

After training, the weights vector w can be evaluated to

get the significance of single features for the classification

outcome. Huge values correspond to discriminant features,

whereas small values indicate weak features.

One of the advantages of SVM’s is that kernel methods

can be incorporated in the algorithm. With them, non-

linear decision boundaries can be found. We tested two very

common kernels, linear and RBF (Radial Basis Functions),

with the result that RBF may outperform the linear kernel.

However, since one parameter for the RBF kernel has to be

optimized manually and our descriptor space is big enough

that linear separation is sufficient, we preferred applying a

linear kernel.

IV. EXPERIMENTS

In order to overcome the problem of limited image data

within the widespread field of adverse weather, we built up

a database with video sequences (currently 150 sequences

≈ 500000 single images), labeled according to their partic-

ular weather conditions. We randomly selected images from

the database to build up our fixed training and testing data

sets. We ensured that no image is used for both training and

testing at the same time, as well as we ensured equal amount

of images for each class.
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Fig. 2. Some example images from our image database.

TABLE I

CLASSIFICATION RESULTS FOR SUBSET 1 (EXPRESSWAY ONLY), SUBSET 2 (+ RURAL SCENES) AND SUBSET 3 (+ RURAL AND URBAN SCENES). ROWS

CONTAIN THE CORRECT CLASSES (THEY SUM UP TO 180, 300 AND 450 RESPECTIVELY), COLUMNS THEIR CLASSIFICATION RESULTS.

SUBSET 1 SUBSET 2 SUBSET 3

clear light rain heavy rain clear light rain heavy rain clear light rain heavy rain

clear 178 2 0 275 24 1 411 39 0
light rain 2 178 0 17 253 30 67 341 42

heavy rain 0 7 173 0 24 276 5 47 398

180 images for each class 300 images for each class 450 images for each class

Total error rate: 2.04% Total error rate: 10.67% Total error rate: 14.81%

(correct: 529, wrong: 11) (correct: 804, wrong: 96) (correct: 1150, wrong: 200)

A. Classification results for linear SVM

We compose three subsets with increasing demands on

the classification by expanding the environmental conditions

from expressway only to all possible scenery:

• SUBSET 1: This subset is limited to expressway scenes

only with altogether 1080 images.

• SUBSET 2: Here, we expanded the experiments to rural

environments, taking 900 expressway scenes and 900

rural scenes into account.

• SUBSET 3: The last subset is similar to SUBSET 2 but

with additional 900 images of urban environments.

Fig. 2 shows some example images which illustrate the

difficulty of the task. Each category contains images of a

large range of brightness and color values, so any single

feature would not be sufficient to detect the weather situation

with an acceptable confidence.

Experiments reveal that for expressway scenes accurate

classifiaction is achieved. We investigate the results in Table I

in more detail by applying binary classification to the image

sets, that means we only take images from 2 classes. Images

that have been classified to the omitted class before, are

reassigned to the remaining two classes. It turns out that

for subset 1 we achieved an error-free classification between

clear and heavy rain (correct: 360, wrong: 0, error rate: 0%).

The error rate between clear and light rain is 1.1% (correct:

356, wrong: 4, error rate: 1.1%). The most uncertain decision

is between light rain and heavy rain (correct: 353, wrong:

7, error rate: 1.9%). Even humans would not unanimously

agree on the correct category of images of these two classes,

as the border between light and heavy rain is fluent. Fig. 3(a)

shows the corresponding ROC curves, which emphasizes the

quality of the classification result.

With increasing demands due to changing environments

(subset 2 and subset 3), the accuracy decreases. This is based

on the fact that distance dependent features can hardly be

extracted from rural scenes since the sub-ROIs do not reflect

a robust distance estimation anymore (obstacles in front of

the vehicle, closed scene with surrounding objects...).

Classwise comparison of the results for subset 2 show

error rates up to 10.2%. Remarkably, classification between

clear weather and heavy rain is still very accurate (correct:
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Fig. 3. Receiver Operating Characteristic (ROC) curves for classification results. Axis cropped as to show the top left quarter only.

597, wrong: 3, error rate: 0.5%). In subset 3, classification

between clear and heavy rain again remains at a low error

rate of less than 1% (correct: 892, wrong: 8, error rate: 0.9%).

Most misclassifications arise from situations that are hard

to define, i.e. that are somewhere inbetween clear and

light rain or light rain and heavy rain. The second main

source of error are outlier images where bridges and other

objects confuse the extracted image statistics. However, since

weather conditions do not change instantly, it is possible to

classify multiple times and combine the results to improve

accuracy. Further optimization is possible by using non-linear

SVM that better suit the application.

Execution times are ≈ 1.8s per image on a Centrino

2.4GHz running Matlab. Nearly all time is spent on feature

extraction, which can be reduced significantly by using

optimized code (possibly on the GPU for real time usage).

Anyway, since high measuring rates > 0.5Hz are not nec-

cessary, this approach is already applicable for DAS.

B. Feature evaluation

To benchmark our approach compared to existing meth-

ods, the proposed features are evaluated in regard to their

significance for the classification decision as well as their

overall performance. However, studying the effects of omit-

ted features on classification results leads to a known

problem with linear SVM-kernels: If the dimensionality of

descriptor space D drops below a lower bound, a linear

feature separation cannot be drawn anymore. For that reason,

we used a non-linear RBF kernel for subsequent evaluation.

In section II, we proposed a novel image descriptor for

the task of weather classification. In oder to benchmark its

performance, we additionally extracted color wavelets as well

as a combination of SIFT features and color histograms and

compared the classification results. As depicted in Fig. 4(a),

the proposed features clearly outperforms both standard

image descriptors.

Low error rates in SVM classification can only be achieved

with optimal feature selection. As mentioned in section III,

parameter w of the SVM tells us the significance of each

dimension of descriptor space D. In our experiments, all

feature weights are evenly distributed, that means not one

feature alone or any combination of some features is able

to achive high discrimination, the descriptiveness lies in

the combination of all proposed features. We verified these

results by omitting single features and running tests again.

Altogether, there are
∑5

i=1

(

5
i

)

= 31 possible combinations

of the proposed features. Fig. 4(b) shows the classification er-

ror for all possible feature combinations. It can be observed,

that all classification errors considering the same amount are

close to their mean, whereas a classification improvement can

only be achieved by taking additional features into account.
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V. CONCLUSIONS AND FUTURE WORK

We presented a novel approach to weather conditions clas-

sification based on single monoscopic color images. Thereby

we did not make any assumptions like having a static camera

nor is the approach restricted to a specific application setting.

The approach will work without restrictions in terms of

camera, frame rate or environment. The approach achieves

low error rates of less than 1% for the distinction between

clear weather and heavy rain and even acceptable error

rates for the three-class-case. We discussed that the main

misclassifications can be reduced significantly by classifying

consecutively every few seconds and filtering outliers, as

the weather situation cannot change very rapidly. It could

be shown that all proposed features are important to the

same degree for a robust weather classification and clearly

outperform standard image descriptors.

Future work will expand C by adding other weather situ-

ations like fog to our database. Improvements of the overall

classification results could be achieved by further in-depth

studies to non linear SVM-kernels. Specialized methods on

certain weather situations can then be invoked based on the

classification result to improve existing vision algorithms.
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ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.

[4] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern

classification. Wiley, 2. ed. edition, 2001.

[5] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object
categories from google”s image search. In ICCV ’05: Proceedings of

the Tenth IEEE International Conference on Computer Vision, pages
1816–1823, Washington, DC, USA, 2005. IEEE Computer Society.

[6] R. Ferzli and L.J. Karam. Human visual system based no-reference
objective image sharpness metric. In IEEE Internatl. Conference on

Image Processing, pages 2949–2952, Atlanta, GA, 2006.
[7] P. Gabriel, J.-B. Hayet, J. Piatera, and J. Verly. Object tracking using

color interest points. In IEEE Conference on Advanced Video and

Signal Based Surveillance, pages 159–164, 2005.
[8] K. Garg and S.K. Nayar. Vision and rain. Internatl. Journal of

Computer Vision, 75(1):3–27, 2007.
[9] N. Hautière, R. Labayrade, and D. Aubert. Real-time disparity contrast

combination for onboard estimation of the visibility distance. In IEEE

Transactions on Intelligent Transportation Systems, volume 7, 2006.
[10] H. Kurihata, T. Takahashi, I. Ide, Y. Mekade, H. Muraseand Y.

Tamatsu, and T. Miyahara. Rainy weather recognition from in-vehicle
camera images for driver assistance. In IEEE Proceedings, Intelligent

Vehicles Symposium, pages 205–210, 2005.
[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.
Computer Vision and Pattern Recognition, 2006 IEEE Computer

Society Conference on, 2:2169–2178, 2006.
[12] David G. Lowe. Object recognition from local scale-invariant features.

In Proc. of the International Conference on Computer Vision ICCV,

Corfu, pages 1150–1157, 1999.
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