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Abstract— Including road map information in the tracking
of ground moving objects is a challenging problem. While
many self localizing algorithms base on a modelling in global
Cartesian coordinates a few approaches prefer a modelling in
a local map coordinate frame. Throughout this contribution
both strategies are compared theoretically and in numerical
simulations. To achieve robust tracking results current onboard
sensor information is utilized in the tracking framework.
Commonly available on cars or trains are absolute position
information, estimated e.g. by a GPS unit, and relative velocity
measurements, e.g. measured by an odometer. To integrate
road map knowledge with this sensor information time- and
measurement-update equations are derived for both modelling
strategies.

Roads or tracks are often composed by a sequence of
geometric primitives. Approximating this progression of ge-
ometric elements with smooth piecewise defined polynomials
yields an accurate model, which can easily be integrated in the
tracking framework. General preconditions using curves for
tracking purposes are presented. In particular, cubic Hermite
spline curves are chosen and implemented into the tracking
framework.

I. INTRODUCTION

Incorporating prior information about dynamic behaviour

and measurement model both have a strong impact on the

performance of object tracking algorithms [1]. For ground

moving objects assumptions on road- or track-constrained

motion may augment significant information to tracking

processes. To obtain robust object tracking results, there exist

several concepts to include road map information into the

tracking algorithm [2] [3].

To perform a robust road constraint object tracking an

adequate approximation of the road network is to be realized

initially. Roads or tracks are often composed by a sequence

of geometric primitives, e.g. straights, transition curves and

circular arcs, to enable a comfortable and save driving with-

out any abrupt variations in lateral acceleration. A prominent

way to store this geometric knowledge are piecewise defined

linear polynomial models [3] [4]. If additional information

about road tangents is available a more precise geometric

approximation can be achieved, making use of higher order

polynomials. In this paper cubic Hermite splines are selected.

One characteristic of these curves is their locality: If the road

geometry changes in a defined section and the road map has

to be updated, only a limited modification of the geometric

parameters has to be executed.

Furthermore, in many applications the only point of inter-

est concerning these polynomial curves is their interpolation

error, while the type of parameterization is of less interest. By

contrast, realizing object tracking in local curve coordinates

requires not only a correct geometric run of the curve but

although a correct arc-length parameterization. Therefore a

method is proposed to achieve a sufficient approximation

of arc-length parameterization, while the numerical effort

remains manageable.

Given a geometric description of the road constraints, a

mathematical formulation of the estimation problem has to

be chosen, combining this road map knowledge with current

sensor measurements. Because commonly available, absolute

position and relative velocity measurements are chosen to

support the object tracking. Two classes of concepts are being

compared:

In many applications the movement of objects is modelled

in Cartesian coordinates [2]. In the two or three dimensional

case the movements of each component are often assumed

to be decoupled. In case of curved roads the position of the

object then leaves the road constraint during each time- and

measurement-update step. One opportunity to include road

map information can then be realized in a post filter pro-

cessing step - often called map matching [5]. Alternatively,

constrained Kalman filter techniques systematically include

road map knowledge [4], but linearization errors, that occur

during the time update, remain.

The second class of concepts formulates the dynamic

behaviour in local curve coordinates [3] [6]. If the represen-

tation of the road network fulfils several preconditions this

strategy yields in robust results. The road map knowledge

is included effectively and a significant improvement of the

object tracking accuracy can be observed compared to the

global modelling.

Throughout this contribution both concepts are going to

be compared theoretically and in numerical simulations.

Preconditions for both approaches are analyzed and ob-

ject tracking results presented. In comparison with former

approaches the geometric properties of the track- or road

constraints are modelled more precisely. Therefore smooth

piecewise defined third order polynomials are used to achieve

minimal interpolation errors, especially in case of strongly

curved roads. In addition, a simple but sufficient method to
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approximate arc-length parameterization is proposed. Both

modelling strategies result in nonlinear state-to-measurement

relations. To update the state estimation an extended Kalman

filter is implemented.

This paper is organized as follows: In Section II the

available map information source is presented. To combine

these road map database with additional sensor information

principles of information fusion are expressed in Section III.

Both strategies to model objects moving along roads are

presented in Section IV. Finally the concepts are compared

in numerical simulations in Section V and a conclusion

summarizes the results in Section VI.

II. ROAD MAP

The road network is interpolated with naturally parame-

terized piecewise defined curves. To achieve a smooth and

precise approximation of the road, cubic Hermite spline

curves are chosen.

Each element of the road network is given by a set

of absolute positions pi and tangents τi for each of the

n supporting points. First step is to determine parameter

values for each vertex pi. Chord length parameterization

[7] is chosen to achieve a parameterization proportional to

the distances of the data points and to approximate arc-

length parameterization. The curve parameter values ui for

pi = pi(ui) are calculated according to

ui+1 = ui + ||pi+1 − pi|| (1)

as sketched out in Figure 1. The initial chord length is set

to u0 = 0.

Fig. 1. Parameterization of curve element

While data points pi, tangents τi and parameter values

ui are available, both coordinate functions are interpolated

separately with splines. For u ǫ [ui, ui+1] the coordinate

functions are defined piecewise with

s(u) =

(

sx(u)
sy(u)

)

=

(

s
(i)
x (u)

s
(i)
y (u)

)

= s(i)(u) (2)

with

s(i)
x (u) = ax,i + bx,i∆ui + cx,i∆u2

i + dx,i∆u3
i (3)

s(i)
y (u) = ay,i + by,i∆ui + cy,i∆u2

i + dy,i∆u3
i (4)

and ∆ui = u − ui.

To calculate the geometric curve parameters ax,i, . . . , dy,i,

a set of smoothness conditions has to be fulfilled. These

conditions are

s(i)(ui) = pi s(i)(ui+1) = pi+1 (5)

ṡ(i)(ui) = τi ṡ(i)(ui+1) = τi+1. (6)

for i = 0, . . . , n − 1.

Solving the resulting system of equations for each element

of the piecewise defined spline curve gives

s(u) = BT (u)









pi

pi+1

τi

τi+1









(7)

for u ǫ [ui, ui+1] with

B =







2(ui+1 − ui)
−3∆u

3
i − 3(ui+1 − ui)

−2∆u
2
i + 1

−2(ui+1 − ui)
−3∆u

3
i + 3(ui+1 − ui)

−2∆u
2
i

(ui+1 − ui)
−2∆u

3
i − 2(ui+1 − ui)

−1∆u
2
i + ∆ui

(ui+1 − ui)
−2∆u

3
i − (ui+1 − ui)

−1∆u
2
i






.

The matrix entries of B(u) are often called basis functions

of the spline. For further details see [7].

The resulting curve is given in cord length parameteriza-

tion and the parameterization error ǫ(u) = l(u)−u increases

along the arc-length

l(u) =

∫ u

0

‖ṡ(u)‖du (8)

of the spline. Therefore re-parameterization is necessary to

achieve arc-length or natural parameterization [8].

Here a simple method to approximate arc-length parame-

terization is proposed, that yields a bias free error ǫ(u), while

the calculation effort remains small. Based on the current

geometric run of the spline curve s(u) the exact arc-length

is calculated for each vertex according to

li+1 = li +

∫ ui+1

ui

‖ṡ(u)‖du. (9)

Finally each ui is replaced by the corresponding li.

For a simple example curve (length approximately 120m)

starting with a radius of 25m and ending in a straight line

the modification strategy offers quite good results as depicted

in Figure 2. After an initial approximation with cord-length

parameterization the error ǫ1(u) rises on. Improving the

parameterization with the proposed algorithm results in a

bias free error ǫ2(u).
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Fig. 2. Parameterization error function in (m) along the example curve for
cord length parameterization ǫ1(u) and after proposed arc-length parame-
terization ǫ2(u)

III. STATE ESTIMATION WITH THE EXTENDED

KALMAN FILTER

Throughout this contribution the index (. . .)− is used for

the estimation of the state vector before the measurement

update and the index (. . .)+ for the estimation after the

update.

The extended Kalman filter [1] [9] is a tool to estimate a

state vector that can be observed through indirect measure-

ments which are subject to noise. The functional dependency

between a state vector xk and the measurement vector z̃k is

modelled by the matrix equation

z̃k = h(xk) + wk. (10)

The measurement noise wk is assumed white and zero-mean.

Its covariance matrix R describes all deviations from the

expected behaviour.

The extended Kalman filter allows incorporating knowl-

edge of system dynamics into the estimation modelled by

the matrix equation

xk+1 = f(xk) + vk (11)

predicting the state vector from one discrete time instant k
to the next. The system noise vk with the covariance matrix

Q, is again assumed to be white, zero-mean.

If both error sources can be assumed to be additive and

mutual statistically independent the resulting state estimation

minimizes the mean square error. In case of nonlinear

equations the state vector x is estimated approximately bias-

free with mean vector x̂ and with covariance matrix P.

The Kalman filter state estimation is computed in two

main steps [10]. Initially the estimate of the state vector is

predicted with

x̂k = f(x̂k−1) (12)

Pk = Fk−1Pk−1F
T
k−1 + Q. (13)

with Fk−1 is the Jacobian matrix calculated at the current

state estimation according to

Fk−1 = f
′

(x̂k−1). (14)

The measurement update equations

Kk = P−

k HT
k (HkP

−

k HT
k + R)−1 (15)

x̂+
k = x̂−

k + Kk(z̃k − h(x̂−

k )) (16)

P+
k = (I − KkHk)P−

k (17)

adjust the predicted estimation with new incoming mea-

surement information. Again Hk is the Jacobian matrix

calculated with

Hk = h
′

(x̂k). (18)

IV. OBJECTS ON ROADS

Observing an object with variable position x, idealized

moving with constant velocity vx, there are a couple of

ways to model uncertainty. To explain variations in velocity,

state of the art algorithms base on the assumption of white

acceleration [1].

To track objects moving in two or three dimensions often

an identical model is used for each coordinate, while the

movements along each coordinate direction are assumed to

be uncorrelated from the others.

A prominent way to describe the object tracking task is a

formulation of the concept in global Cartesian coordinates. If

a road map is given, a formulation in local curve coordinates

can be used alternatively. Throughout this chapter, time-

and measurement update equations for both concepts are

presented to realize an object tracking with the extended

Kalman filter as described in Section III. The need of a map

matching step is discussed for both formulations.

For the sake of clarity, the whole concept is described for

planar case. However, it easily generalizes to 3d-description.

A. Model in Global Coordinates

Assuming linear motion in xy-coordinate frame the evo-

lution of the object state xk = (xk vx,k yk vy,k)
T

can be

written as

xk+1 = Fxk + Gak (19)

where ak is white Gaussian process noise with variance σ2
a.

It is

F =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









and G =









T 2

2 0
T 0
0 T

0 T 2

2









(20)

where T is the sampling interval.

Caused by the linear state-to-measurement relationship of

position measurements z̃pos,k = (x̃k ỹk)T the measurement

equation can be written as

z̃pos,k =

(

1 0 0 0
0 0 1 0

)

xk + wpos,k. (21)
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To include velocity measurements z̃velo,k measured in

direction of movement the following equation

z̃velo,k =
√

v2
x,k + v2

y,k + wvelo,k (22)

has to be linearized around the current velocity estimation.

Calculation of the Jacobian matrix results in

Hk =
(

0 h1 0 h2

)

(23)

with

h1 =
v̂x,k

√

v̂2
x,k + v̂2

y,k

(24)

h2 =
v̂y,k

√

v̂2
x,k + v̂2

y,k

. (25)

Both white Gaussian measurement noise sequences

wvelo,k and wpos,k are independent of each other and of

the process noise. Its covariances are

Rpos,k =

(

σ2
x,k 0

0 σ2
y,k

)

(26)

and

Rvelo,k = σ2
velo,k. (27)

To improve the state estimation with road map information

two main calculation steps are implemented. These steps are

performed when the current position estimation has left the

road map or when the estimated direction of movement does

not point into the direction of the current road tangent.

Initially the curve parameter value lk with minimal Euclid-

ian distance to the current position is calculated, evaluating

cross product for planar case. The current state estimation

on the road is set to xk = sx(lk) and yk = sy(lk). Moreover

the direction of movement is rotated towards the tangent of

the road map at the curve s(lk). Altogether the mean of the

estimated state is updated, while the covariance of the state

remains unchanged.

B. Model in Local Curve Parameter Frame

Assuming linear motion in local curve coordinate frame

the time update of the current state vector xk = (lk vk)
T

can be written analogously to Eqn. (19) with

F =

(

1 T
0 1

)

and G =

(

T 2

2
T

)

. (28)

To update the current curve length estimation with incom-

ing position measurements z̃pos,k a transformation of local

curve length coordinates to global measurement coordinates

has to be carried out. The mathematical relation between

both coordinate frames is given by the natural Hermite spline

curve as described in Section II. The observation equation

can be written as

z̃pos,k =

(

sx(lk)
sy(lk)

)

+ wpos,k. (29)

Calculation the Jacobian matrix around the current estimation

on the road lk results in

Hk =

(

h1 0
h2 0

)

(30)

with

h1 = bx,i + 2cx,i(l̂k − li) + 3dx,i(l̂k − li)
2 (31)

h2 = by,i + 2cy,i(l̂k − li) + 3dy,i(l̂k − li)
2 (32)

for l̂k ǫ [li, li+1].

The observation equation to update the state estimation

with incoming velocity measurements in direction of move-

ment can be written as

z̃velo,k = (0 1)xk + wvelo,k. (33)

Again the error sources for measurement uncertainty are

assumed to be uncorrelated and white, zero-mean distributed

Gaussian random sequences. The measurement covariances

are equal to the definition in Section IV-A.

While the measurement- and the time-updates are calcu-

lated the estimation lk remains on the road map and the

direction of movement is exactly adjusted in direction of the

road map tangent. Therefore a map matching as described

in Section IV-A is only necessary to initialize the estimation

process with the first incoming position measurement.

V. NUMERICAL SIMULATIONS

The performance of the developed object tracking algo-

rithms was assessed in numerical simulations. Therefore both

models were implemented in a framework to test modern rail

localization techniques.

The covariances of the measurement noise are assumed

to be given by the measurement concept, while the process

noise is a design parameter that influences the performance

of the tracking filter. Throughout this contribution both are

set to fixed values.

To achieve realistic results, train characteristics are taken

into account. Therefore accelerations remain within an in-

terval of −1.5m/s2 ≤ a ≤ 1.3m/s2 while velocities stay

smaller than 25m/s. Curvature values are chosen according

to real rail tracks of secondary lines, with a minimum radius

of around 155m.

The all over length of the test track is approximately

10470m. With one supporting point per 30m the mean

parameterization error as presented in section II decreases

to ǫ = 1.62 · 10−4m.

Initially, the true run of the track (see Figure 3) and veloc-

ities are integrated to obtain the object state, which is later

used as a reference to calculate the errors of the estimated

tracking solutions of both tracking strategies. Afterwards

GPS positions [11] and velocities from an eddy current

sensor system [12] are generated based on the true reference

taken into account typical sensor error characteristics.
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Start gps outage

End gps outage

Direction of
movement

Fig. 3. Simulation test track including area of GPS outage used in
simulation described in Section V-B

Fig. 4. Mean position accuracy of 50 numerical simulations with GPS
position information available throughout the whole time interval for local
curve model (blue) and global Cartesian model (red)

A. Simulation with GPS available

Throughout this simulation both, position and velocity

measurement information, is available during the whole

simulation interval of 600 seconds. The resulting position

errors are depicted in Figure 4.

However both object tracking concepts offer quite good

results in position accuracy.

B. Simulation with GPS outage

During this simulation a GPS outage is assumed starting

at 100 second point and lasting for 300 seconds. During

this time interval the tracking algorithms are only supported

with map information and velocity measurements from the

eddy current sensor system. The resulting position errors are

depicted in Figure 5 and Figure 6.

In the case of a GPS outage the state space model in

curve coordinates outperforms classical modelling in ground

coordinates.

Fig. 5. Mean position accuracy of 50 numerical simulations with GPS
outage of 300 seconds for local curve model (blue) and global Cartesian
model (red)

Fig. 6. Detail of the simulation results presented in Figure 5 with GPS
outage of 300 seconds

VI. SUMMARY AND OUTLOOK

Throughout this paper a geometric model based on Her-

mite spline curves to store road map information is presented,

that can easily be modified for different tracking scenarios

with varying accuracy requirements. Especially in case of

strong curved roads or tracks the interpolation error remains

significantly smaller than classical polygonal models.

To include these piecewise polynomial curves in object

tracking algorithms arc-length parameterization has to be

computed. Therefore a cost minimizing method is proposed

to achieve good approximation results.

Two different approaches to combine this road map in-

formation source with additional sensor measurements are

presented. While classical modelling in Cartesian coordinates

yields an object that can reach every position in the plane

measurement space, a definition in local curve coordinates

results in an object that only can follow given road map

elements. Assuming the road map to be known, the local
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curve model summarizes the past history of the system

sufficiently and predicts future positions more precise. While

time- and measurement updates are calculated the state

estimation remains on the road constraint, a post filter step

to project the estimation on the map is not necessary any

more.

Both tracking algorithms are integrated in a framework

to develop and validate modern train localization concepts.

The simulation parameters are chosen according to train and

track characteristics of secondary lines to achieve significant

results. While absolute position measurements are available

both tracking strategies offer similar performances. In case of

lacking absolute position information the position accuracy

of local curve modelling remains good while the position

error of the second model rises on.

In future work a focus will be on advanced nonlinear

filter methods, such as unscented Kalman filter or particle

filter approaches to minimize linearization errors, which

occur while the nonlinear state-to-measurement relations are

evaluated.
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