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Abstract— An exact localization of trains is essential for
effective disposition and design of modern train operating
systems, allowing a better use of the given infrastructure. In
this paper we propose to use turnouts on rail tracks as absolute
landmarks and re-calibration points for onboard location sys-
tems. The measurements base on an eddy current sensor system,
additionally providing speed information through correlating
inhomogeneities along the rail track. This paper presents a
hidden Markov model approach that offers a robust detection
and separation of turnouts. The proposed algorithm makes it
possible to process whole train stations with successive turnouts
continuously, to perform a first low-level classification and to
separate close events that can be accurately cut out of the signal,
which is a basis for an advanced classification.

I. INTRODUCTION

A robust and reliable positioning system is essential for

modern and yet to come train operating concepts. Current

approaches heavily rely on navigation beacons placed along

the track, which are expensive in installation and mainte-

nance. These landmarks fulfil the task to re-calibrate relative

measurement systems, e.g. odometers, and provide an exact

position even in dense vegetation and valleys where satellite

systems tend to fail.

Recent approaches ([1],[2]) propose an onboard location

system based on a combination of velocity measurements,

digital map, and GPS information. The whole system is

built upon a new eddy current sensor system which is

capable of a non-contact speed measurement, not sensitive

towards hard weather condition or wheel slippage. Besides

calculating the speed information, which is achieved by

correlation principles, the signals are applicable for turnout

classification. The detection of the turnouts in the signal

is at present implemented with several thresholds, whereas

the classification is performed by a cross correlation with

reference signals [3]. While the reported results indicate

the general feasibility of this approach, the usability of

the system suffered from the low automation level - the

thresholds and parameters must be adapted manually to

each track - and the fact that this method is incapable to

separate events that follow in short distance within the signal.

This disqualifies the system to cope with unknown tracks

or explicitly separating and clipping turnouts from other

occurrences for a later classification.

Hidden Markov models (HMMs) are capable to model a

variety of nondeterministic systems and signals by assuming

an unobservable Markov chain that governs the no stationary

nature of the signal. Therefore, they are an ideal tool to solve

the detection and classification of turnouts on the one hand

and other track installations on the other hand in one step.

We present in this paper a solution for the detection and

segmentation problem of current systems and implement a

stochastic approach, which can easily be augmented to a

high-level classification system.

The remainder of this paper is organized as follows: A

description of the employed eddy current sensor system is

given first. Section III describes turnouts in general and

introduces a signal model for the source and shape of the

generated signals. HMMs and their implementation with the

given system model are depicted in Section IV. Results

and possible further applications are outlined in Section V,

whereby the paper is concluded in Section VI with a prospect

for further work.

II. EDDY CURRENT SENSOR SYSTEM (ECS)

Eddy current sensors are used to detect inhomogeneities

in the magnetic resistance of ferromagnetic materials. The

given system consists of two differential sensors in a row,

separated by the distance l. The sensors are placed in a

housing for electromagnetical shielding, which is mounted

100 mm above the railhead of the train bogie. This enables

the sensor to detect all major changes in the magnetic field

along the track, mainly rail clamps but also turnouts and

their components. Figure 1 shows the sensor system installed

on a test train. A closed loop correlator [4] is used to

Fig. 1: Eddy current sensor system mounted on a railcar bogie.

determine the speed given the distance l. A typical signal

s(t) of the sensor system is shown in Figure 2. On open
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Channel A
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Fig. 2: Qualitative sensor signal s(t) of the sensor signal for a
guard rail amidst rail clamps.

tracks, the signal is mainly induced by the clamps whose

equidistant spacing yields almost periodicity in the signal. A

considerable change of the signal is observable when the

sensor enters turnout areas. The amplitude is higher and

changes notably which causes a change in the periodicity

of the signal. Turnouts consist of many different parts,

e.g. signal boxes, but the three main components present

in every turnout are switchblade, frog and guard rail (see

Subsection III-A).

The signals used for this paper are recorded with a sensor

mounted on a tram of the local train operator. Test drives

are carried out on a track situated near Karlsruhe, offering a

length of approximately 18 km and 54 turnouts of which 21

are passed on a normal run.

III. SIGNAL MODEL

For the detection and classification of turnouts with HMMs

a specific signal model is needed. This section will first

describe and explain turnouts as well as their different com-

ponents. Proper features to separate the several components

in the signal space are then derived and afterwards combined

with an adequate signal processing and a source model for

the signal.

A. Turnouts

Figure 3 shows a sketch of a turnout and the signal s(x)
produced by its components. The turnout can be subdivided

into six segments that can be recognized in the signal. Due

to different rail clamps, used for wooden sleepers inside

the turnout area, segment I exhibits higher amplitudes. The

subsequent switchblade segment II includes high peaks at the

welding points before the movable part of the switchblade

starts. Segment III is characterized by an area with higher

amplitude than common turnout rail clamps (IV) can induce

because of the higher amount of metal parts in that section,

necessary to move the switchblade uniformly. The fifth

segment contains either frog or guard rail, depending on

whether the train follows the left main track or the right

branch track. The sixth and last area is again characterized

by the amplitude of turnout rail clamps. These six sections

form a characteristic chain of events when traversed by a

train.
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Fig. 3: Scheme of turnout and sensor signal s(x) when driving on
right branch track.

B. Classification Features

For each of the four directions a train can take when

passing over turnouts, a signal sequence is observed that is

characteristic for the individual components passed. It turned

out that for a given sequence the major components are

sufficient to know the direction: Detecting a guard rail after

the switchblade is sufficient to know the train passes right,

while the sequence switchblade and frog indicates a left turn.

Therefore, the signal model of the main components and

possible disturbances, such as road crossings or rail joints,

have to exhibit a distinct separability given the sensor signal.

The component length and amplitude are convenient features

according to the sensor system. The separation could not

be improved with the frequency information of the clamps

according to the fact that the rail clamps exhibit the same

intrinsic distance in frogs and guard rails.

All guard rails on the test track are of the same type and

have a length of 5 m. Frogs differ slightly in their length

and shape depending on the turnout type and size (e.g. wye

turnouts). They vary from 2 m up to 2.8 m. The switchblade

model contains a strong amplitude peak at the beginning with

a length of 1 m. The amplitudes depend on the amplification

and have a ratio of approximately 1:0.4 for switchblade and

guard rail and 1:0.5 given switchblade and frog. Possible

disturbances that occur in the track are modeled with a

length of 1 m to 1.5 m and lower amplitude than the

main components. Figure 4 shows a three dimensional sight

of the three main components with their particular normal

distributions and the assumed disturbance model. The applied

model assumes amplitude and length as normally distributed

independent random variables Ai and Li with Ai, Li ∼
NA,L(µi, σ

2

i ), where i denotes the specific components. This

assumption is appropriate due to bogie vibrations and shifts

while passing the turnouts, different types of them and a

slightly different track geometry at every turnout. All these

influences are assumed to be statistically independent and

gaussian distributed.
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Fig. 4: Gaussian model for main turnout components and distur-
bance.

C. Signal Preprocessing

In order to use the statistical model described in Subsec-

tion III-B a rectification of the signals is conducted first.

The signal is filtered with a band pass filter to remove

a possible offset and high frequency noise. To use the

component lengths as a feature requires a transformation of

the signal s(t) into a speed independent spatial signal s(x).
This is achieved by a combination of the raw time signals and

the respective speed output of the closed loop correlator. The

transformation adds another source of stochastic jitter caused

by uncertainties in the speed estimation, which originates

from the cross correlation as well as from sensor movements

of the bogie (see [5]).

A common approach for the analysis of oscillating signals

in speech and signal processing is to examine the signal enve-

lope [6]. The algorithm applied in this paper is composed of

two steps. First the power signal is computed by short-term

integration of the squared signal over the integration length

T . A moving average (MA) filter for smoothing is applied

afterwards. The resulting signal resembles to the low pass

filtered magnitude of the Hilbert transform and represents the

smoothed envelope of the original signal, which is the basis

for subsequent pattern matching algorithms. Figure 5 shows

the raw signal and the envelope later used for the pattern

matching algorithms. It illustrates that the adoption of the

preprocessing steps result in an higher turnout component

length in spatial space and a reduced spatial resolution.

Symmetric filters ascertain invariance of the modes to this

processing.

x [samples]

s(x)

Fig. 5: Envelope of the signal after preprocessing.

D. Signal Generation

The discussion in Subsection III-B and III-C was focused

on the analytical properties of the signal. The signal genera-

tion process is probabilistically modeled using the following

two assumptions:

• Turnouts appear randomly distributed in the signal (pre-

suming no map is present).

• Each component of the turnout emits a specific signal

sample which is drawn from its underlying distribution.

The sensor signal is consequently interpreted as a two-stage

stochastic process. In the first stage, a component class Ωk

is selected from the distribution pk over all possible classes

k ∈ {1..K}. The second stage is modeled by a multivariate

continuous process with the conditional probability density

P (x|Ωk). This property reflects the fact that even the same

turnout can produce different signals depending on the speed

measurement quality and other random influences.

With this model for the generation and the analytical shape

of the signal it is possible to implement a sophisticated

stochastic model.

IV. HIDDEN MARKOV MODELS

Hidden Markov models (HMMs) are state of the art

statistical models used in a large variety of applications,

such as time series in automated speech recognition and

apply widely in biological sequence analysis [7], handwriting

recognition [8] and simulation of stochastic processes [9]. A

good introduction to HMMs can be found in [10] and [11],

a comprehensive paper with an excellent tutorial is [12].

A. HMM Theory

A Markov process is a sequence of states q = q1, q2, ...,

which take on values out of a set of elements Q =
{s1, ..., sN}. In a first order Markov process, the condi-

tional probability of state qt at time instant t given all

prior states is completely determined by the previous state

qt−1, i.e. P (qt|q1...qt−1) = P (qt|qt−1). All possible state

transitions are comprised in the so called transition matrix

A = [aij ]N×N according to aij = P (qt = sj |qt−1 =
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si). Given the matrix A and an initial vector π, obeying
∑

j aij = 1 and
∑N

i=1
πi = 1, a so called Markov chain is

completely described.

In addition to the Markov chain, a second stochastic

process is generates a symbol of the set V = {v1, ..., vK}
at every time step. For an observer of the process only

the emitted discrete series of symbols is visible, defined

as O = O1, O2, ..., Ot ∈ V which depends on the states

taken at every time step and is expressed as the probability

P (Ot|qt). This leads straightforward to the definition of

the so-called emission matrix B = [bjk]N×K where bjk =
bj(vk) = P (Ot = vk|qt = sj) and

∑

j bjk = 1.

We are thus left with a two-stage stochastic process where

the hidden (non-observable) state sequence q induces the ob-

servation sequence O. Every HMM is therefore completely

determined by its N states, the possible symbols K and the

parameter set λ = (π,A,B). For the later implementation

it should be mentioned that continuous probability density

functions are used for the emissions according to P (Ot =
x|qt = j) = bj(x) where bj(·) obeys

∫

x
bj(x)dx = 1.

This accounts for the specific continuous features as used

in the remainder of this paper. With a fully specified HMM

the probability of the non-observable state given the emitted

symbols can be estimated through computing its posterior:

P (q|O) ∝ P (O|q)P (q) ∝
T

∏

t=1

p(Ot|qt) p(q1)

T
∏

t=2

p(qt|qt−1)

B. HMM-based modeling of the ECS Signals

As explained before, each turnout is varying in depen-

dency of its type, specific geometric attributes and non

predictable noise. In Section III a stochastic signal model

for turnouts has been introduced which fits perfectly to the

HMM approach presented in this section. In Section III-B

we pointed out, that the main information given in each

sensor signal is amplitude and length of the singular turnout

parts. The following subsections explain the implementation

of each feature into the HMM framework. The adaption of

the model parameters according to analogue ECS signals

is thereby called training to the common machine learning

vocabulary.

1) Length and transition matrix: Each turnout can be

subdivided into six areas as shown in Figure 3. After the

transformation into the spatial space the length of each

segment is equal when passing the same turnout. Variations

may only occur due to uncertainty in speed estimation. The

first step is to assign each area of the turnout to a state of

an HMM.

The arrangement of states and transitions depends on the

application. Therefore many different HMM architectures

are described in literature. A model architecture or model

topology is derived by sketching the HMM as a finite

state machine. If the underlying transition matrix A is fully

occupied the model is often called ergodic, while for the

modeling of time series left-to-right models are applied [12].

Figure 6 displays the left-to-right model fitted into the turnout

scheme. An advantage of this model is the sparsity of the

transition matrix and explicit start and end points of the

Markov chains. It is now possible to model the length of

II VIVIIII IV

Fig. 6: Left-to-right model applied on a single turnout.

each area as a state occupancy duration of an HMM state. A

limitation of the underlying Markov chain is the fact that

the probability for the duration d to stay in a state i is

geometrically distributed according to P (d) = ad−1

ii (1−aii).
Therefore the average state occupancy for a known self

transition probability aii is given to d = 1

1−aii

.

The key components to distinguish between a left and right

turn of the train are the frog and the guard rail. The analysis

of the sensor signals and the assumed model displayed in

Figure 4 indicates that due to widely overlapping distribu-

tions of the amplitudes, a geometric distribution model is

insufficient to separate the components.

Hence, the proposed method adopts state tying, where

multiple states share the same observation distribution. Each

single state is replaced by l new states with identical self

transition probability. This results in a new state occupancy

distribution, which is equivalent to that of a random vari-

able consisting of the sum of l independent geometrically

distributed random variables. The distribution of this sum is

again a discrete distribution, the negative binomial distribu-

tion which has a none-zero mode. The resulting probability

mass function is given as

P ((X) = n) =

(

n − 1
l − 1

)

al
ii(1 − aii)

n−l

where aii is the self transition probability and n is the

discretized duration. The choice of l can be freely done

for each state under the constraint that the mode is getting

sharper with bigger l while the computational complexity

for the HMM conditions to O(l2). After an appropriate

l and n are chosen for each turnout component, the self

transitions for each tied state in A can be calculated. The

parallel implementation of two chains results in a bimodal

distribution, which is applied in the turnout area IV, which

length is either 13 m or 19 m depending on the turnout

radius.

2) Amplitude and emission matrix: While the component

length is expressed in the transition matrix A, the amplitude

information is modeled through the emission matrix B.

Five HMMs λi=1..5, are necessary to model the four

possible crossings of a turnout plus the possible disturbances.

Due to preprocessing steps and component variations are

better results achieved if the models are trained on real data

instead of assuming ideal behavior of length and amplitude.

Four different turnouts crossed in a different direction have
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been selected, and the sections have been labeled manually.

The emission probabilities of each state are assumed to

be normal distributed according to bj(x) ∼ N (µj , σ
2

j ).
Therefore, the parameters θ = (µj , σ

2

j ) can be determined

with a maximum likelihood estimator based on the amplitude

of each sample xi of every state j according to L(θj |X) =
∏N

i=1
P (X = xi|θj) [13].

3) Continuous recognition: A major problem of recent

approaches is the separability of the single events, e.g. two

turnouts following in close dstance. The following approach

solves this problem in two steps: After the models for

each driving direction are trained, it is possible to separate

turnouts from other events and classify the driving direc-

tion. Therefore a single turnout is classified by choosing

the model which maximizes the probability P (O|λ) =
∑N

j=1
αt(j)βt(j), where αt and βt are the forward and

backward probabilities for being in a state j at the time t

(see [12], [7] for further details). In succession, the more

interesting task is to give the most probable state sequence

for several events in a given area, e.g. when passing a

train station. Hence, secondly, an additional state for normal

clamps is introduced which connects the individual events.

The connection of the several models through a so called

glue state enables detection and classification of arbitrary

events. The topology for this continuous detection task is

depicted in Figure 7. The task of finding the most probable

Event 1

Event n

...
GS

Fig. 7: Topology for a continuous event detection with glue state
(GS).

state sequence for given observations is accomplished by the

Viterbi algorithm [14].

V. RESULTS

For the performance test of the proposed HMM a model

was built up as explained in the previous sections. Four

turnout directions and a disturbance model were expressed

by 166 states. A first verification of the model was done

by viewing the HMM not as an stochastic acceptor but

as a generator. The shape and duration of the generated

turnouts are exemplarily shown in Fig. 8 and fit well in length

and amplitude when compared to real signals. The variance

in the state duration was significantly improved, what was

proved by simulating the generation of state transition with

a desired duration. The variance of this transition, generated

with the standard geometric distribution is 95% of the mean,

compared to 45% of the mean when modeled with the

s(x)

x

1

2

3

4

6

5

0

Fig. 8: Simulated turnouts with HMM as generator.

negative binomial model described in Section IV-B.1. For the

evaluation of the most probable state sequence the Viterbi al-

gorithm was implemented. The HMM parameters are adapted

from real ECS data preprocessed as described in III-C down

sampled by a factor eight. Therefore each sample in the

following figures represents 16 cm of the track. The test

sequences were taken with various length and containing

various events to test several situations. The HMM output is

marked as a solid red line. The height h of this line indicates

the classification output of the distinct events: 0 encodes the

common rail track areas with normal clamps, 1,2,3 and 4

are chosen for the four possible turnout passing directions, 5

indicates a disturbance. Figure 9 exemplarily shows results in

separating the two turnouts and the disturbances, in the given

case a road crossing. The considered sequence has a length

of 136 m. Although they are extremely close, the turnouts are

cut out very sharp and can be separated, which is not possible

with conventional threshold methods. Besides employing the

x

s(x)

Fig. 9: HMM output and low passed envelope of the test sequence
illustrating separation of single events.

HMM for the separation task which exhibits an excellent

performance it is possible to use the output of the HMM as

a classifier. The difficulty here is the intra class variance for

components of the same type. Figure 10 shows the results

for three turnouts in a train station, whereas turnout 2 and

3 are separated by clamps diverse of standard parts that are
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correctly classified as a disturbance. While turnout 2 and 3

x

s(x)

Fig. 10: Turnout detection with wrong classification.

are classified correctly, the misclassification of turnout 1 is

a result of the deviation in the amplitude of the guard rail

compared to the one used to train the model.

One of the main advantages of the given model archi-

tecture is the easy augmentation; new events like turnout

crossings or new turnout types are easily implemented and

trained. This paper outlines how to detect driving directions

in a first low-level classification with as less states as possible

to assure a good generalization. Therefore, more complex

and specialized models should be applied in later stages to

reduce computational complexity in the detection and cut-out

stage.

A more simple way to rectify the result is to check the

length of the components after the classification with the help

of the state output. Frogs longer than 3.5 m and guard rails

shorter than 3.5 m are detected and reclassified.

The most effective and thus proposed method is to use the

given HMM as a detector which can give also an a priori

probability of the direction. The detected segment is cut out

and then classified by a more specialized HMM, e.g. for

finding specific turnouts.

In our experiments all 20 turnouts were detected and cut-

out correctly. True positive classification rate, i.e. rightly

classify the driving direction of the train, was 61.5%. A

false negative, i.e. a turnout classified as disturbance or not

detected, never occurred at all.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper proposes a novel stochastic approach to detect

turnouts in noisy signals. The proposed HMM approach fits

well to the described signal generation and occurring difficul-

ties. The HMMs easily outperform the hitherto used methods

for detection and separation. They provide a high potential

for automation and hierarchical classification. Disturbances

along the track, stochastic variances of the signal caused

by vibration or electro magnetic jitter as well as systematic

failures that depend on uncertain speed measurements are

successfully overcome. Available a priori knowledge, e.g. a

distribution of the turnouts according to a poisson distribu-

tion, is directly implementable in the presented framework.

The applied Viterbi algorithm allows a continuous detection

with a recursive correction of the best path for every new

sample. The calculation time for a sequence length of 500 m

is currently 6.74 s when implemented in Matlab.

B. Future Works

The classification rate may be further improved through

expanding the HMM by new models for special turnouts or

characteristic components. All current misclassifications are

based on the similarity of guard rails and frogs. Although a

negative binomial distribution is far better than the simple

geometric HMM state duration distribution, it is still not

sufficient in worst case scenarios. On the other hand it is

still necessary to allow a variation in the length caused by

the big variety of different turnout types. Further research

will focus on this problem with more specialized models,

methods and additional training data.
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