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Abstract— We propose a method for navigating a car-like
vehicle within an unstructured environment. Path planning is
posed as a graph search problem. The search graph is set
up in a way that implies derivation of a feed forward term
for a downstream closed loop controller. An informed search
algorithm is used that is guided by a heuristic cost function
that accounts for both kinematic constraints of the vehicle and
the topology of the vehicle’s free space. Configuration space
obstacles are computed from an obstacle map acquired from a
high definition laser range scanner and search is restricted to
the collision free subset of the configuration space. The algo-
rithm allows for solving all of the following problems: Precise
parking maneuvers, narrow turns, long distance navigation. The
system has been used sucessfully on board the autonomous car
ANNIEWAY in the DARPA Urban Challenge competition of
2007.

I. INTRODUCTION

Planning collision free paths is of prime importance in
robotic applications. Path planning becomes more challeng-
ing when applied to a robotic system of a non-holonomic na-
ture, like a four-wheeled vehicle, since kinematic constraints
of the system must be accounted for. In this work, we present
a method for planning paths for such a system that interfaces
directly to a closed loop controller. Obstacles are input as a
discrete map that is obtained from a laser range scanner.

In structured areas, i.e. areas where a geometrical road
network description is available, paths can be generated
in a straight forward way from a graph representation of
this network. In case of the ANNIEWAY robot, a complex,
hierarchically organised state machine generated paths from
this graph in compliance with traffic regulations. In an
unstructured environment, like parking lots, loading zones
and offroad areas, a graph for path planning is first to be
established. Some approaches to path planning generate it
explicitly, like the popular probabilistic path planning (PPP)
algorithm introduced in [8], that utilises a graph that is

established by sampling its nodes randomly from the free
configuration space.

We define an implicit graph that is expanded on the fly by
an A* search algorithm. A* search is a well known concept
in the domain of robotic path planning (cf. [3]), that allows
for accelerating exploration of the search space by defining a
heuristic cost function that gives expected cost-to-go for each
node of the search graph. If the cost function underestimates
the actual distance to the goal, A* is guaranteed to find the
least-cost path. If the error of the cost function is big, A*
quickly degenerates to an exponential time algorithm. This is
common when a metric cost function is used and search gets
stuck in a dead end configuration. We avoid this problem by
designing an obstacle sensitive cost function that accounts
for the topology of the free space.

Search is performed on a graph in which all paths are fea-
sible. It is directly derived from a kinematic model of the car
and not only guarantees feasibility of the generated path, but
also allows for straight forward design of a combined feed
forward/feed backward controller. Adding a feed forward
term makes the controller react more quickly and accurate,
since reaction of the vehicle to steering input is modelled
seperatly from controller offset introduced by noise. A tight
coupling of path planning and closed loop control turned out
to be useful and yielded a very robust and capable system.

We restrict search to the collision free subset of configura-
tion space by calculating configuration space obstacles from
an obstacle map obtained from a 360°-laser range scanner.
The discrete nature of this obstacle map motivated dealing
with configuration space obstacles in a discrete way as
well, as opposed to more traditional approaches that require
obstacle input in the form of polygonal data ([8]).

As part of the ANNIEWAY project, the algorithm is
used whenever the available road network definition is not
sufficient to generate paths from it directly. This is the case
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Fig. 1. Laser range scanner and obstacle mapping. Vertical structures
detected within laser scanner data are mapped to a 2D-grid.

for parking maneuvers, turns and whenever recovery from
an unforeseen situation is required. Parking maneuvers, in
the Urban Challenge (UC), take place within special zones
that are defined solely by perimeter points. No additional
information for navigating within a zone is given, and it can
contain static and dynamic obstalces. While it is possible to
precompute a k-turn maneuver from sufficient road definition
in an ad hoc way, our algorithms can plan turning maneuvers
in a much more generally. Even in structured environment
with detailed road geometry data, the algorithm is used as
a fall back solution whenever the vehicle gets off track, the
road is blocked or no sensible localisation within the given
road definition is possible.

II. CONFIGURATION SPACE

Planning is performed within the three dimensional con-
figuration space C, that is spanned by a 2D-position ~x and
orientation ψ of the robot. In the spirit of [4], our algorithm
restricts C to a discrete space. The upstream laser scanning
system detects vertical structures in the environment and ac-
cumulates these over time, so that, by continous exploration,
a complete map of the environment can be obtained. The
collision free subset of C, called the free space of the robot,
is computed from this discrete obstacle map.

Let nψ denote the number of discrete orientations of the
vehicle. The 2D-obstacle map can be transfered to the dis-
cretised configuration space by convoluting it nψ times with
a structuring kernel as depicted in figure 2. The shape of the
kernel is chosen to resemble the shape of the vehicle, but is
dilated by a 1 m disk to guarantee the safety distance required
by UC regulations [1]. By precomputing the configuration
space in discretised form, a collision check for a certain
configuration can be performed quickly in O(1) by a simple

Fig. 2. Structuring elements for transferring obstacles into the discretised
configuration space. Left: A 1 m safety distance is added to the shape of
the robot. Right: Structuring element for one discrete angle.

Fig. 3. Configuration space obstacles. Result of convoluting an obstacle
map acquired from processing lidar data (black) with the structuring element
from figure 2. Note that if the robot has the same orientation as the
structuring element and is positioned in the red area, it must intersect with
an obstacle.

table lookup. Figure 3 shows an xy-slice of the configuration
space with configuration space obstacles for one orientation.

III. IMPLICIT SEARCH GRAPH

To guarantee feasibility of the generated path, we search a
graph in which all traversions obey the kinematic constraints
of the vehicle. A node of the search graph can be completely
described by a tuple (~x, ψ, δ), with ~x, ψ and δ denoting
position, orientation and steering angle (i.e. the deflection
of the front wheels) of an instance of the kinematic model
(see figure 4). Steering angle δ is from a set of nδ discrete
steering angles that are distibuted equidistantly over the range
of feasible steering: D = {δ1 . . . δnδ

}. All nodes of the graph
are connected by an arc of fixed length .

We generate the successors of a node vp = (~xp, ψp, δp) by
solving the kinematic model equations for initial values taken
from vp and δ̇ =

δp−δi

s
, for each δi ∈ D. This spans arcs

between the nodes that closely resemble clothoid segments.
It is equivalent of driving the car model over a distance s

at constant speed while uniformly turning the front wheels
from δp to δi. For the set of nodes {(~0, 0, δi), δi ∈ D}, this
results in n2

δ successors, and another n2
δ if backward motion

is allowed. Successors of other nodes can be generated

Fig. 4. Kinematic one track model. Model equations can be derived from
side ratios in the pink triangle.
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Fig. 5. Implicit search graph. Each node has nδ successors. The connecting
arcs resemble clothoid segments.

quickly from this precomputed set by subsequent rotation
and translation. Figure 5 shows part of the search graph.

IV. HEURISTICS

To guide the search process we combined two different
cost functions. The first one accounts for kinematic contraints
of the vehicle, while the second one is derived from the
Voronoj graph of the vehicle’s free space and so incorporates
knowledge of the obstacle’s shapes and positions.

Local cost function

We use the so called RTR metric as a local cost function.
RTR (rotation-translation-rotation) paths connect two config-
urations by two circular arcs of minimum turning radius and
a straight segment tangenting both. It can be shown easily
(cf. [8]), that for every pair of configurations a finite number
of such paths can be constructed. The RTR metric is the
arclength of the shortest such path. RTR paths do neither
have continous curvature nor are they optimal (the optimal
- in terms of arclength - solution to the local navigation
problem are the so called Reeds and Shepp paths, cf. [6]),
but are preferred by us due to their computational simplicity.
Figure 6 illustrates RTR metric.

Fig. 6. Local cost function for -90° change or direction. The left hand side
shows three examples for minimum RTR paths. Destination position was in
the middle of the image, destination orientation was to the right. The right
image shows the value of the RTR metric, evaluated for an upward starting
position (bright: high value, dark: low value). Some equidistance lines are
superimposed on the left image.

Fig. 7. Voronoj based cost function. Top: Voronoj lines (green) of the free
space are generated as an 8-connected graph. Bottom left: Voronoj graph
labeled using Dijkstras algorithm. Brightness corresponds to shortest-path
distance to destination (red circle). Bottom right: Cost function evaluated
over R

2 by matching to the Voronoj graph (equidistant lines are superim-
posed to visualise gradient direction).

Voronoj based cost function

We construct a powerful, obstacle sensitive cost function
based on the Voronoj graph of the free space of the vehicle.
Actually, a superset of the free space is used that is invariant
to the vehicles orientation. It is generated by generating
configuration space obstacles for a disk shaped structure that
is the intersection of all structuring elements from figure 2.

Our algorithm to calculate Voronoj lines from a binarised
obstacle map is similar to [5], however, instead of using the
vector distance map, we use the approximate chamfer metric
to be able to label Voronoj lines using only two passes over
the obstacle map. The method is derived from an algorithm
([2], [7]) for calculating the euclidean distance transform. It
gives the Voronoj lines as a set of 8-connected pixels.

After matching the target position to the closest point on
the Voronoj graph, Dijkstras algorithm is used to calculate
the shortest path distance to the target position for every
point on the graph. Cost for a position not on the graph is
derived by matching to the closest point on the graph and
incorporating the matching distance in a way that leads to a
gradient of the cost function that is slightly sloped towards
the Voronoj lines.

Using this heuristic function is appealing for several
reasons. Since the Voronoj lines comprise the complete
topology of the free space, search cannot get stuck in a dead
end configuration, as is common with conventional, metric
heuristics that do not incorporate knowledge of free space
topology and therefore grossly underestimate the cost in such
a case. Additionally, the Voronoj lines have - as the centers
of maximum inscribing circles - the property of being at
the farthest distances possible from any obstacle. This is
conveyed to the planned paths, giving reserves to account
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Fig. 8. Combination of cost functions. The image shows where local cost
function is active for two different destination positions (red and blue).
Voronoj based cost function is active in the green area. The boundary
line is blurry, since local cost function is dependant on the orientation of
the starting configuration. Note that, starting from green regions, cost is
dominated by the necessity to maneuver around obstacles.

for control- and measurement errors.

Combination of cost functions

We combine the two cost functions into one by the
maximum operator. This procedure can be justified from the
admissibility principle for heuristics in the context of A*
search. A heuristic is called admissible, if it consistently
underestimates the cost to the target node. Consequently,
combining two heuristics via the maximum operator still
gives an admissible heuristic. Result of comparing both cost
functions can be seen in figure 8. It coincides with the
practical experience that in the vicinity of the target position,
cost is dominated by the necessity to maneuver in order to
reach the destination in right orientation, while cost at long
distances often is caused by the necessity to avoid obstacles.

V. CLOSED LOOP CONTROL

Control strategy is derived from the same non-holonomic
kinematic model (figure 9) as the search graph. An orbital
tracking controller is employed to minimise lateral offset
to the generated path, while longitudinal dynamics are sub-
jected to a separate controller.
The lateral dynamics of the vehicle displayed in figure 9
can be described in local coordinates s, d, and ∆ψ (cf.
figure 9). Expressing the dynamics with respect to covered
arc length sc of the planned path rather than time, with
d
dt

() = d
dsc

() · dsc

dt
the time-independent system becomes

d

dsc





sc

d

∆ψ



 =







1

sin∆ψ · 1−dκc(sc)
cos ∆ψ

tan δ
l

· 1−dκc(sc)
cos ∆ψ

− κc(sc)






. (1)

In combination with the feedback linearizing control law

δ = arctan(−lk0d − lk1∆ψ + lκc) (2)

with k0, k1 > 0 a stable linear error dynamics

d

dsc

[

d

∆ψ

]

=

[

0 1
−k0 −k1

] [

d

∆ψ

]

(3)

with respect to sc with the characteristic polynomial

λ2 + k1λ + k0 = 0 (4)

is given in the vicinity of the planned path. The controller
input (d,∆ψ, κ) is derived from the discrete representation
of the planned path (nodes) via interpolation.

As can be seen in the simulation result in figure 10, the
velocity-independent transient behavior (orbits) to different
initial errors d and ∆ψ for forward (blue) and backward
driving (red) is stable and velocity independent.
The longitudinal controller comprises of a linear proportional
velocity and a nonlinear stopping controller. The latter asserts
a constant deceleration until the vehicle arrives its final
position as soon as a certain deceleration threshold is ex-
ceeded. Via a min-operator the desired accelerations of both
controllers is combined and finally converted to accelerator
and brake pressure values by a straightforward split-range
strategy.

VI. EXPERIMENTS AND RESULTS

Due to the choice of heuristics, A* search gives good
and fast results for all practical path planning problems
in a static environment. The Voronoj heuristics guides the
search quickly towards the target even in difficult, maze like
environments where conventional, metric heuristics perform
poorly (figure 11). The local heuristic allows for efficiently
planning parking maneuvers even where little space is avail-
able, and hence, a lot of maneuvering is required. Figure 12
gives some examples for this case.

Fig. 9. Local coordinates of the one track model. Center of rear axle
is matched to the closest point on the path to yield matching distance d

and curvature at the matched point, κ(sc). ∆ψ is the difference between
vehicles orientation and orientation of the path’s tangent in the matched
point.
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Fig. 10. Velocity-independent transient behavior (orbits) to different initial
errors d and ∆ψ for forward (blue) and backward driving (red); the green
dots represent the knots of the planned path which are the input to the
controller

Fig. 11. Long distance navigation results. paths were planned from position
A to B, B to C and C to D subsequently.

Search time remains below 2 seconds if search is restricted
to an area of 200 m by 200 m. Though the environment
is assumed to be static, this is fast enough to cope with
slow changes in the environment by continous replanning.
Additionally, to avoid collision with fast moving objects, a
lower level process continously determines the free section
of the planned path and, if necessary, stops by changing the
control mode of the longitudinal control system. The lateral
controller follows the generated paths precisely enough to
implement all of the intended maneuvers. Speed was re-
stricted to 7 m/s for the experiments and the UC competition.

VII. SUMMARY

We have implemented a path planning system with a
downstream closed loop controller that is capable of solving
all of the following navigation problems: Precise parking
maneuvers, narrow turns and longer distance navigation
in unstructured environment. Designing search graph and
vehicle controller around the same kinematic model allowed
for easy integration and robust interaction of both systems.

The main contribution is the design of an obstacle sensitive
cost function, which is used to accelerate the search process.
It proved to be generally suited for all practically occuring

Fig. 12. Three subsequent backward parking maneuvers. Vehicle started
on the left.

path planning problems, taking into account not only the
vehicle’s kinematic constraints, but also the topology of its
free space. It has been designed to be applied on a grid-
like, discrete obstacle representation that, in case of the
ANNIEWAY robot, is obtained from an upstream sensor
system based on laser range measurements.

The complete system proved well suited to tackle the
challenges posed at the DARPA Urban Challenge of 2007.
Its suitability for planning both parking maneuvers and nav-
igation in the presence of many obstacles, even in difficult,
maze-like situations, easily surpasses the demands of the
Urban Challenge.
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