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Chapter 1

Introduction

Simulations of quantum systems on classical computers quickly reach the lim-
its of current computational resources. The reason for this is the exponential
growth of the dimensions of the Hilbert space of a quantum system with
the number of particles. A well known example for this phenomenon is the
Ising model, where the coupling of n spins creates a Hilbert space spanned
by 2n base vectors [1]. In 1982 Feynman suggested that this property of
quantum mechanical systems could be used as an advantage [2]. Projecting
mathematical problems onto the vast number of eigenstates of a quantum
system could enable us to increase computational speed exponentially. At
that time the notion of quantum computation remained of purely theoretical
interest, until in 1994 the first practical algorithm was proposed by Peter
Shor [3]. He showed that a quantum computer can factorize a large number
in polynomial time. The equivalent calculation on a classical computer has
an exponential time increase. This proved the potential of quantum com-
putation, and created an evergrowing interest in the physical realization of
it.

The basic building block of the quantum computer is the qubit, a two
state quantum system. To be able to build a quantum computer, we need
full control of the quantum state of each single qubit and controlled coupling
of two qubits. Additionally the system should be scalable, such that as
soon as we have shown reliable one and two qubit operations, there is no
fundamental limit to increase the number of qubits. Many physical systems
have been proposed. The first experimental demonstration of Shors algorithm
has been achieved using NMR technology to manipulate organic molecules in
solution [4]. However, these systems have been proven to be fundamentally
limited to a few qubits. Others systems where single qubit operations and
two qubit coupling have been demonstrated are atoms in ion traps [5, 6],
nuclear spins [7, 8] and optical lattices [9, 10].
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6 Chapter 1. Introduction

Since the breakthrough experiment of Nakamura et al. [11] in 1999 there
has also been much interest in superconducting devices as the fundamental
building block of a quantum computer. Superconducting circuits have been
used in many important technological applications. The Josephson effect,
Cooper-pair tunneling through an insulator sandwiched between supercon-
ductors, has been used to establish a voltage standard [12]. Based on the
same effect the superconducting quantum interferometer device (SQUID)
serves as high precision measurement for magnetic flux [13]. The basic archi-
tecture for a quantum computer based on superconducting circuits has been
developed in 1997 [14]. Since then controlability of a single qubit has been
shown [15, 16], and coupling of two qubits has been demonstrated [17, 18].

In the context of quantum computation the coupling of a qubit to a
transmission line has been been studied. A transmission line oscillator can
be used to addres, couple and measure qubits [19, 20]. But beyond quantum
computation there are other interesting applications possible. It has been
shown that a qubit can be used to readout the photon number distribution of
an oscillator with high accuracy [21] and recently a scheme has been proposed
to use qubits as a single photon measurement device for photons in the GHz
range [22]. Many superconducting circuits that resemble systems known
from quantum optics have been developed, e.g. a driven qubit can pump an
oscillator and create a laser like photon distribution [23, 24]. This area of
research is called circuit quantum electrodynamics (CQED).

In a recent experiment by Astafiev et al. [25] an effective single-atom
maser has been build by coupling a superconducting single-electron transistor
(SSET) to a transmission-line. A SSET is essentially a charge qubit with an
applied transport voltage. The SSET serves as an effective artificial atom
which can be pumped via the transport voltage. There is a large interest in
studying single-atom masers to prove fundamental predictions from quantum
optics like thresholdless pumping and sub-Poissonian photon statistics [26,
27]. Single-atom masers have been build before. However in these cases
it was an atomic beam where different atoms subsequently interact with a
microwave cavity [28]. This is fundamentally different from the experimental
achievement of Astafiev et al. where the artificial atom is coupled constantly
to the oscillator. The experimental results of the SSET-maser have not yet
been full explained. Many sources of noise, creating random fluctuations in
the system parameters, couple to a SSET. Thus it is necessary to describe
noise in a large parameter range. A study of a single-atom laser for a broad
range of noise frequencies is also of fundamental interest for quantum optical
systems.

Superconducting devices have also been used as anharmonic oscillators
in the quantum regime. For example the bistability of a driven anharmonic
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oscillator has been used as a bifurcation amplifier [29]. Many schemes have
been proposed to use the anharmonicity of the inductive coupling of a su-
perconducting qubit to the magnetic flux of a transmission-line to produce
squeezing [30, 31]. For optical frequencies the most common squeezing mech-
anism is parametric down conversion, or parametric driving. Here a nonlinear
crystal splits incoming photons into pairs of photons of lower energy. How-
ever, it is experimental difficult to generate photons of the same energy and
a nonlinear crystal creates strong dissipation [32]. A driven SQUID can be
used as an parametric oscillator in the GHz regime. Here all parameters are
easy to control and a large quality factor can be achieved.

The parametric oscillator and the single-atom maser are two examples for
quantum optical systems which can be build using superconducting circuits.
This offers us the possibility to think about fundamental effects and new
applications for quantum optics in the GHz regime. Of great interest are
the development of reliable sources of single and entangled photons [33], and
photon detectors.

About this thesis

Overview: The major topic of this work is the artificial-atom maser,
consisting of a SSET coupled to a transmission line. We will show how pop-
ulation inversion can be created in the SSET, this in turn can be used to
pump the transmission-line oscillator. For a quantitative analysis we will
use three different techniques. First we will start with a master equation
derived from a real-time diagrammatic expansion of the time evolution of
the density matrix. Then we will discuss the system using a phenomeno-
logical rate equation. In the end we will use a new technique based on the
polaron transformation, which allows us to describe the influence of noise in
a broad parameter range. In these three cases we keep the system in a regime
where it is similar to the quantum optical maser. However, it is also possible
to use the specific properties of the SSET to achieve new effects. We will
show how the gap structure of the superconducting density of states can be
used to create a strongly squeezed photon distribution in the transmission
line oscillator. Apart from the SSET-maser we discuss the parametric oscil-
lator, another system that has been studied in quantum optics, which can
be build using superconducting circuits. Tunneling between the dynamical
states of the parametric oscillator shows unique properties, which are a result
of oscillations of the wave function in the classically forbidden region.

Chapter 2: In this chapter we discuss the basic design of superconduct-
ing devices. There are two major energy scales, the charging energy and the
Joesphson energy. The properties of the devices depends on the dominance
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of one or the other energy. In the charging regime we get the SSET, while a
anharmonic oscillator can be build in the flux regime.

Chapter 3: In this work we study the effect of fluctuations on a quantum
system. We use specific quantum systems, but the techniques are generally
applicable. In chapter 3 we explain the real time diagrammatic expansion
and briefly contrast it with the phenomenological Lindblad form that is of-
ten used to describe the influence of fluctuations in quantum optics. Our
method is more rigorous and allows us to properly define the limits of our
approximations. We want to be able to treat noise in a broad frequency range
and we develop a diagramtic method that allows us to describe coupling of a
quantum system to low-frequency noise. Additionally we discuss a quantum
system that is coupled to several different noise sources. For fluctuations that
happen on a timescale much larger than the time evolution of the quantum
system, we can use a quasistatic approach that will also be introduced.

Chapter 4: Here we discuss the major system to be studied in this
work, the artificial single-atom maser, created by coupling a SSET to a
transmission-line. It has attracted a lot of interest because it is a flexi-
bly tunable maser. This system can be build in the strong coupling limit
and allows us to study the fundamental properties of a single-atom maser.
We first analyze it in the strong coupling regime where the properties of the
system are described by a dressed state approach. Here we use the real-time
diagrammatic technique to calculate the rates in a quantitatively correct way.
Then we study the system in the weak coupling regime, where a Lindblad
approach is more appropriate. We quantify the approximations that are nec-
essary to bring the equations of motion into Lindblad form. In the end we
study the system in the presence of low-frequency noise, and apply the new
techniques developed in chapter 3.

Chapter 5: In chapter five we will discuss photon-number squeezing,
which means the production of non-classical light. We propose a method
for the SSET-maser that uses the specific properties of the superconducting
density of states to produce a strongly squeezed distribution in an oscillator.

Chapter 6: Effects of fundamental interest can be experimentally stud-
ied in superconducting devices. In chapter 6 we discuss such an effect in the
parametric nonlinear oscillator. This system can be produced by periodic
driving of a SQUID. Here it should be possible to observe dynamical tunnel-
ing, which means tunneling between dynamic eigenstates of a driven system.
We show that the dynamical tunneling between the classically stable states
of a parametric oscillator has interesting properties, that are fundamentally
different from the well known tunneling through a potential barrier.

Chapter 7: We conclude this thesis with a short summary of the results
and an outlook towards further possible studies.



Chapter 2

Mesoscopic Devices

In the last decade, microfabrication techniques have advanced at a rapid pace.
Today it is possible to build nanostructures with extremely high precision. As
the size of electrical circuits decreases, the importance of quantum mechanical
effects increases. For example, single-electron charging devices are based on
the quantization of charge [34, 35]. A small electrode, called the island,
is coupled via tunnel junctions to leads. Each electron on the island will
increase the island energy by e2/C, where C is the capacitance of the tunnel
junctions. This energy is called charging energy. For very small capacitances,
this energy difference will be significant and a Coulomb gap arises [36, 37],
which can be exploited to transfer single charges from one island to another
in a controlled way [38, 39], or to control a current by means of a single charge
on a gate [40]. Today single-charge devices are used in many applications
like high-precision measurements [41] and metrology [42].

Another quantum effect that has created a large interest in the field of
nanoelectronics is the Josephson effect. The coherent tunneling of Cooper-
pairs though a tunnel junction, called Josephson junction, connecting two
superconducting leads is the only nonlinear, nondissipative effect known in
electrodynamics. A widely used application based on the Josephson effect
is the superconducting quantum interferometer (SQUID) [13], which can be
used as a magnetometer. There has also been intense research aimed at
developing superconducting digital electronics [43, 44]. Josephson junction
based quantum computers have been proposed [14], and there has been a
steady development towards their experimental realization [11, 15, 17].

In this chapter we will discuss circuits that employ single-electron tunnel-
ing and the Josephson effect to achieve unique functionalities. A very simple
superconducting device is depicted in fig. 2.1. This is a charge qubit with
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10 Chapter 2. Mesoscopic Devices

Figure 2.1: A Josephson charge qubit in its simplest design, formed by a super-
conducting single charge box. The gate voltage U is coupled to the island via
the capacitance CG, the tunnel junction has the capacitance C and the Josephson
coupling strength is given by EJ .

the Hamiltonian,

H = EC(N −NG)2 −EJ cosφ , (2.1)

where EC = e2/2(C + CG) is the charging energy scale of the island, NG =
CGU is the gate charge, EJ is the Josephson coupling strength and φ is the
conjugate variable of the island charge [N, eiφ] = eiφ.

The Hamiltonian depends on two relevant energy scales, one is the charg-
ing energy EC , the other one is the Josephson energy EJ . These energies
determine the regime of our device. The charging regime EC > EJ will be
discussed in the next section. Here , the single-electron effects are domi-
nant. We will discuss the properties of the superconducting single-electron
transistor (SSET), which is a single-electron charging device that has inter-
esting features because of the additional Josephson coupling across the tunnel
junctions. This introduction will help us to understand the interaction of the
SSET with a radiation field, which will be analyzed in chapter 4 and chap-
ter 5. In the second section we discuss the flux regime EJ > EC where the
nonlinearity of the Josephson coupling will be of prime importance. Super-
conducting flux devices are similar to nonlinear oscillators. This can be of
great interest to study fundamental properties of quantum systems, which
we will do in chapter 6.

2.1 Charge Regime

In this section we will discuss the superconducting single-electron transistor
(SSET), which consists of a superconducting island connected via tunnel
junctions to superconducting leads (see fig. 2.2). The Hamiltonian is given
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by

H = EC(N −NG)2 − 1

2
eV N̄ − 2EJ cos φ cos φ̄ , (2.2)

where V is the transport voltage, U is the gate voltage, and the gate charge is
NG = (C2−C1)V/2+CGU . We have two charge variables in our Hamiltonian,
N = N1 − N2 counts the charges on the island, while N̄/2 = (N1 + N2)
counts the number of charges that have passed through the whole system.
We assume that the Josephson coupling across both junctions is given by EJ .
Charge and phase have the standard relation

[N, eiφ] = eiφ , [N̄ , eiφ̄] = eiφ̄ . (2.3)

The SSET is similar to the normal conducting single-electron transistor
(SET), however there are several new features in the I-V curve due to the
Josephson coupling across the junctions. This will be discussed in the next
section. In the second section we will discuss the effect of an external
impedance on the SSET.

2.1.1 The JQP Cycle

There are two possibilities for charge transfer in the SSET, coherent Cooper-
pair tunneling and incoherent quasiparticle tunneling. In this section we will
discuss the features in the I-V cureve of the SSET caused by these two effects.

In a normal conducting SET, a single charge can tunnel if an external
energy source, the transport voltage, compensates the energy change of the
island. In a superconducting system, we need additional energy to break a
Cooper-pair. Thus in the SSET we need the energy 2∆ + EC for a tunnel
event, where ∆ is the size of the gap in the density of states of the super-
conductor. If the transport voltage becomes larger than 4∆ + EC , there is
enough energy for quasiparticles to tunnel on and off the island and we have
a current that grows linearly with the voltage.

Coherent Cooper-pair tunneling plays an important role as long as charge
states that differ by one Cooper-pair are almost degenerate. The interessting
feature for the SSET is that current can flow in combinations of Cooper-
pair and quasiparticle tunneling for voltages smaller then 4∆ + EC . This
effect is known as Josephson Quasiparticle (JQP) cycle. A large amount of
theoretical studies of the JQP cycle have been performed [45, 46, 47] and
experimentally confirmed [48].

To tune the SSET to the JQP cycle, we create a resonance across one of
the junctions such that the energies of the charge states |N, N̄〉 and |N +
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Figure 2.2: The SSET consists of a superconducting island coupled via tunnel
junctions to superconducting leads. The left and the right junction have the ca-
pacitance C1 and C2, respectively. We apply a transport voltage V and the island
is coupled to the gate voltage U via the capacitance CG. The transport voltage
determines the energy that drops across the island and the gate voltage adjusts the
energies on the island. If we bring two charge state differing by one Cooper-pair
into resonance and have a voltage drop larger 2∆+EC across the island, a current
can flow. This is called the JQP cycle. At the DJQP cycle we create Cooper-pair
resonances across both junctions.

2, N̄ + 2〉 are equivalent. Across the other junction we choose a voltage drop
larger than twice the gap plus the charging energy, eV > 2∆ + EC . We can
do this because we apply two independent voltages, as shown in fig. 2.2. The
transport voltage V gives us the voltage drop across the whole island, and
the gate voltage U can be used to adjust the energies on the island.

Without the Josephson coupling the energy of the island is given by

EN,N̄ = EC(N −NG)2 − 1

2
eV N̄ . (2.4)

We can create Cooper-pair resonance across the right or left junction. As an
example we will discuss the resonance condition for the charges N = 0, 2,

E0,N̄ = E2,N̄+2 ,

E2,N̄ = E0,N̄+2 .

With an overall voltage drop from left to right, the first condition means
that the the left junction is at resonance, the second condition puts the right
junction at resonance. We can solve these equations and get

eV/EC = ±4(NG − 1) . (2.5)
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A diagram where we can see the values for the gate and transport voltage
that allow the JQP cycle can be seen in fig. 2.2.

For a small energy gap ∆ there can be an additional charge transport
cycle. It is called double-JQP (DJQP) cycle and refers to a situation where
we have Cooper-pair resonances across both junctions. The energy consider-
ations for the DJQP cycle can be written as

EN−1,N̄ = EN+1.N̄ , (2.6)

EN,N̄ = EN+2,N̄ . (2.7)

Those two equations, fully determine our two parameters V and U . Hence,
the DJQP peak is given by a point, not a line in the diagram shown in fig.
2.2.

2.1.2 Effect of an External Impedance

The SSET is a mesoscopic system which can generally not be considered
isolated from its electromagnetic environment. By applying external voltage,
we automatically couple the system to the electromagnetic fluctuations in the
leads to the tunnel junctions. The fluctuations are characterized by a spectral
function J(ω) which in turn is given by the effective impedance seen from
the quantum system Zt(ω),

J(ω) = e2ωReZt(ω) . (2.8)

An extensive discussion of the effects of an external impedance on a SET can
be found in Ref. [49]. We will now summarize the results for the effective
impedance obtained from a lumped circuit model of a very general circuit
[50].

In fig. 2.3 we see a SSET where we have added an impedance at every
voltage sources and additionally we consider two stray capacitances, coupling
the gate voltage to the leads. The effective impedance as seen by the our
quantum system can be calculated using standard network theory. For the
case shown if fig. 2.3 it is given by

Zt =
1

iωC̄ + Ȳ
, (2.9)

with the total capacitance

C̄ =
CΣ [(C1 + Cs1)C

2
σ + C1Cs1(C2 + Cs2)]

C2
σ(CG + C2) + C2

2Cs1
, (2.10)
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Figure 2.3: The SSET with an impedance added at every voltage source. Ad-
ditionally we added two stray capacitances that connect the gate charge to the
leads.

where C2
σ = C2CG + C2Vs2 + CGCs1. The effective admittance is given by

Ȳ =
CΣ

y1

y1 + iωy2

y3 + iωy4

, (2.11)

with the coefficients

y1 = (C2 + CG)C2
σ + C2

2Cs1 , (2.12)

y2 = C2
2C

2
s1Z1 + C4

σZ2 + (C2
σ + C2Cs1)

2ZG ,

y3 = (C2 + CG)2Z1 + C2
2Z2C

2
GZG ,

y4 = y1(Z1Z2 + Z1ZG + Z2ZG) .

It should be noted that the overall structure of the effective impedance is
actually rather simple. If all impedances are ohmic and independent of the
concrete relation of different impedances and capacitances, the overall shape
is given by a maximum for zero frequency and a decay with larger frequen-
cies. Only the addition of a inductance can give additional peaks for certain
resonance frequencies.

This shows that we can describe the basic physics of a system coupled to
the electromagnetic environment by a much simpler configuration. We set

Cs1 = Cs2 = 0 , (2.13)

Z1 = Z2 = 0 .
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Figure 2.4: A dc-SQUID consists of two tunnel junctions included in a supercon-
ducting loop. We apply a magnetic flux φe and a bias current I.

This simplifies the effective impedance to

Zt =
1

iωC + Z−1
, (2.14)

with a normalized impedance Z = (CG/CΣ)2ZG, and the normalized capac-
itance C = (CΣ/CG)(C1 + C2). Our external circuit can contain an ohmic
resistor R and an inductance L. This yields

ReZt(ω) =
R

(ω/ωR)2 + (1 − (ω/ωL)2)
, (2.15)

where ωR = 1/RC and ωL = 1/(LC)2. This is the model we will use in this
work to describe the effect of an external impedance.

2.2 Flux Regime

In this section we will discuss superconducting devices in the flux regime,
EJ > EC . For small charging energy the charge states are not well separated
anymore. Instead the system behaves similar to an anharmonic oscillator.
The specific design we want to look at in this section is the dc-SQUID (see
fig. 2.4). The Hamiltonian is given by

H = ECN
2 − 2EJ cos (φe/2) (1 − cosφ) +

Iφ

e
, (2.16)
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where EC is the charging energy, φe is an external magnetic flux and EJ

is the Josephson coupling strength, which we assumed to be equal for both
junctions. The phase φ and the charge N are the conjugate variables of our
system with the standard commutation relation. For EJ ≫ EC and I = 0
we can assume that we have eigenstates that are well localized at the bottom
of the minima of cosφ. Expanding around one of the minima yields

H = ECN
2 + EJ cos (φe/2)φ2 − EJ

12
cos (φe/2)φ4 . (2.17)

We can redefine our variables charge and phase as momentum and coordinate,
respectively. This gives us

H =
1

2
p2 +

1

2
ω2 cos (φe/2) q2 +

1

4
γ cos (φe/2) q4 , (2.18)

where we defined p =
√

2ECN and q = φ/
√

2EC . We see that our system
takes the form of an anharmonic oscillator, with frequency ω =

√
4ECEJ

and anharmonicity γ = −EJE
2
C/3. This allows us to study the properties of

an anharmonic oscillator in well controlled quantum system.
A specific problem that has attracted a significant amount of interest in

the classical regime is the parametrically driven oscillator [51]. The same
problem system has been extensively studied in quantum optics as well
[32, 52, 53, 54], but it is difficult to actually produce parametric driving for
optical frequencies. This problem can be solved by using superconducting
devices. Here is is possible to produce a well controlled parametric oscillator
in the quantum regime. A small oscillatory variation of the phase φe in the
Hamiltonian 2.18 yields

H =
1

2
p2 +

1

2
ω2 cos(π + F cos(ωF t))q

2 +
1

4
γ cos(π + F cos(ωF t))q

4 . (2.19)

We expand for small driving amplitude,

H =
1

2
p2 +

1

2
(ω2 + F cos(ωF t))q

2 +
1

4
γq4 , (2.20)

where we have assumed that the driving frequency ωF is close to twice the
eigenfrequency ω of the oscillator and performed a rotating wave approxi-
mation. This is a Hamiltonian of a parametrically driven oscillator. The
driving varies the frequency of the oscillator in time. Driven close to twice
the eigenfrequency it is a bistable system. The oscillator has two stable os-
cillatory states, that are equivalent but shifted in phase by π. This creates
an interesting bistability which we will study in section 6.



Chapter 3

The Master Equation

In this work we study systems at the cross road of single charge nanostruc-
tures and quantum optics. Therefore we have to describe quantum systems
with a small number of degrees of freedom coupled to another system contain-
ing a macroscopic number of degrees of freedom. This describes for example
a quantum dot coupled via a tunnel junction to a lead or an atom coupled
to phonons. We will call the system containing a macroscopic number of
degrees of freedom the reservoir. The quantum system can absorb and emit
energy from and to the many degrees of freedom of the reservoir. Quan-
tum system and reservoir together will be called the complete system. The
reservoir causes fluctuations in the variables of the quantum system, which
we will describe as noise. It can be characterized by a spectral density that
gives us a distribution of fluctuation frequencies,

S(ω) =
µλ2

ω2 + λ
, (3.1)

where µ is the strength of our coupling to the reservoir, and 1/λ is the decay
time of reservoir correlations.

We use an approach where we derive an effective equation of motion for
the density matrix of the quantum system from a microscopic description
of the complete system. We call this equation the master equation. Our
derivation is based on a diagrammatic expansion of the time evolution of the
density matrix which is the standard approach for single charge devices. If we
have a broad and smooth spectral density, µ ≪ λ, the effect of the reservoir
can be described by an average transition rate Γn→m between the states |n〉
and |m〉 of the quantum system [55, 56]. In the opposite limit, noise that is
much slower than the time evolution of the quantum system, µ≫ λ, creates
an adiabatic change in the fluctuating variable. The intermediate regime
between these two cases is a noise frequency distribution that is peaked for

17
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small frequencies but still has a significant width. We will show in section
3.2.6 how standard methods fail in the description of the intermediate regime.
Then we propose a different approach in section 3.3 that allows us to describe
noise for a wide range of parameters.

In quantum optics, a phenomenological rate equation is often used. Such
an equation is called Lindblad master equation. The Lindblad form preserves
all physical proberties of the density matrix. A derivation based on a micro-
scopic model recovers the Lindblad form for a flat spectral density, µ ≪ λ,
but there are also other possibilities to get a Lindblad equation from first
principles. We will briefly discuss the Lindblad form and its relation to the
microscopic description in this chapter. In chapter 4 we will discuss the dif-
ferent methods in more detail for a single-charge device, the superconducting
single-electron transistor (SSET) coupled to a transmission-line oscillator.

We can describe all properties of a system with a density matrix. For
our systems we will always use the reduced density matrix ρ = TrR̺, where
̺ describes the complete system and the trace is taken over the degrees of
freedom of the reservoir. The time evolution of the full density matrix is
given by

˙̺ = −i[HT , ̺] , (3.2)

where HT is the Hamiltonian of the total system, and can be written as

HT = HQ +HC +HR . (3.3)

The three parts of this Hamiltonian are the Hamiltonian of the quantum
system HQ, the coupling of the system to the reservoir HC and the Hamil-
tonian of the reservoir HR. For all further purposes we will use this kind of
Hamiltonian.

In the next section we will introduce the basic tools needed to understand
the derivation of the effective equation of motion for the reduced density
matrix. Then we will discuss in more detail the explicit derivation for the
coupling of a quantum system to a bosonic and fermionic reservoir. We will
also show the limits of the expansion in the coupling Hamiltonian HC . This
limit can be overcome through the polaron transformation, which will be
discussed in section 3.3. After that we will look at the impact of having
several different reservoirs coupled to a quantum system. For very slow
fluctuations a quasistationary approximation has to be used. This will be
discused in the last section of this chapter.
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3.1 Basic Elements

We will now discuss how to derive an effective equation of motion for the
reduced density matrix. We will start with a discussion of the Lindblad form,
or the Lindblad operator [57], which is the form of the effective equation of
motion in the dispersive limit that preserves all properties of the density
matrix.

Then we will discuss an approach where we expand the time evolution of
the density matrix in the lowest nonzero order. The derivation of the master
equation will follow the approach outlined by H. J. Carmichael [58]. In the
third subsection we will discuss a different approach to derive the master
equation. We use a diagrammatic description of the time evolution of the
reduced density matrix [55]. This method gives us the possibility to estimate
the convergence of our expansion.

3.1.1 Lindblad Equation

In our work we always derive an effective equation of motion for the density
matrix as an expansion of the time evolution of the total system. However,
there is also another way to derive the basic form of the master equation,
simply by considering the properties of the density matrix.

In quantum mechanics, the Lindblad equation or master equation in the
Lindblad form is the most general type of Markovian master equation, de-
scribing non-unitary (dissipative) evolution of the density matrix ρ that is
trace preserving and completely positive for any initial condition. Marko-
vian means that the reservoir relaxes on a time scale much faster than the
time evolution of the reduced density matrix. Non-Markovian processes can
produce Markovian master equations, but they will only preserve positivity
(and not complete positivity) and thus they will not be of Lindblad form
[59]. Complete positivity allows us to mix and match Lindblad terms and
system Hamiltonians without breaking positivity.

The Lindblad form master equation is given by

ρ̇ = −i[ρ,HQ] +
∑

nm

γn

2

[

2Q†
nρQn −QnQ

†
nρ− ρQnQ

†
n

]

, (3.4)

where Qn are operators acting on the quantum system. It is not strictly
necessary for a master equation to have Lindblad form. A derivation of the
master equation based on first principles can break positivity, but these are
due to approximations. Therefore the errors in positivity should not be larger
than the neglected terms in the derivation. We will show an explicit example
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later where we can see the limits of the derivation of the master equation
from first principles.

3.1.2 Standard Derivation of the Master Equation

In this section we will derive the master equation by expanding the time
evolution of the total system up to second order in system-reservoir coupling.
The approach we use here is used in most derivations commonly found in the
literature. However, as we will discuss throughout this section, it lacks a
mechanism to control for the convergence of our expansion. That is why
we will introduce a diagrammatic expansion of the time evolution in section
3.1.3. The diagrammatic technique gives us the possibility to estimate the
size of higher order contributions.

We assume that the coupling between the system and the reservoir is
weak. This means in the time evolution we have rapid motion generated by
HQ and HR and slow motion generated by the interaction HC . To study
the effects of the coupling it is necessary to separate the effects of the rapid
motion and the slow motion by transforming eq. (3.2) into the interaction
picture. In the interaction picture the equation of motion has the form

˙̺I(t) = −i[HC,I(t), ̺I(t)] , (3.5)

̺I(t) = U †
0(t)̺U0(t) , HC,I(t) = U †

0(t)HCU0(t) .

The time evolution U0(t) is defined as

U0(t) = UQ(t)UR(t) , (3.6)

where UQ(t) = ei HQt is the time evolution operator of the quantum system
and UR(t) = ei HRt is the time evolution operator of the reservoir. We now
integrate eq. (3.5) formally to give

̺I(t) = ̺(0) − i

∫ t

0

dt′[HC,I(t
′), ̺I(t

′)] , (3.7)

and substitute the result ̺I(t) inside the commutator in (3.5):

˙̺I = −i[HC,I(t), ̺(0)] −
∫ t

0

dt′[HC,I(t), [HC,I(t
′), ̺I(t

′)]] . (3.8)

Here we have simply cast eq. (3.3) into a form which will help us identify
reasonable approximations, but so far it is still exact.

We can assume that at some initial time t = 0, no correlations exist
between the quantum system and the reservoir. But over time, correlations
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will develop due to the coupling. This coupling HC is the small parameter in
our expansion and therefore it is reasonable to expand the complete density
matrix in orders of HC . We can write the complete density matrix as

̺I(t) = ρI(t)R0 +O(HC) , (3.9)

where R0 is the reservoir density operator at t = 0. This approximation
corresponds to the fact that we have a macroscopic reservoir that is essen-
tially not influenced by the quantum system and therefore stays in its initial
distribution. Whereas the influence of the reservoir on the quantum system
can be very significant.

We see that approximation (3.9) is difficult to quantify exactly. In prin-
ciple one would have to expand the time evolution of ̺I again in HC to be
able to analyze higher orders in our expansion correctly. This is a prob-
lem we are going to solve in section 3.1.3 by using the real-time diagramtic
method, which allows us to efficiently keep track of all the components of
our expansion.

We simplify eq. (3.5) using the approximation (3.9) and trace over the
reservoir. This gives us

ρ̇I(t) = −
∫ t

0

dt′TrR[HC,I(t), [HC,I(t
′), ρI(t

′)R0]] , (3.10)

where we have assumed that the reservoir operators coupling to the quantum
system have zero mean value in the initial state R0, which means that

TrR[HC,I(t), R0] = 0 . (3.11)

In eq. (3.10) we see that the future evolution of ρI(t) depends on its past
history trough the integration over ρI(t

′). Now we will discuss in greater
detail under which condition we can make the Markovian assumption, that
means replacing ρI(t

′) by ρI(t) in the integral. To do so it is necessary to
be more specific about the form of the coupling Hamiltonian. We chose the
form

HC =
∑

i

QiRi , (3.12)

where Qi are operators acting in the Hilbert space of the quantum system
and Ri are operators acting in the Hilbert space of the reservoir. In the
interaction picture this Hamiltonian takes the form

HC,I(t) =
∑

i

U †
Q(t)QiUQ(t)U †

R(t)RiUR(t) , (3.13)

=
∑

i

Qi,I(t)Ri,I(t) .
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It is straightforward to calculate an explicit expression for eq. (3.10) by using
this Hamiltonian,

ρ̇ = −
∑

i,j

∫ t

0

dt′ ([Qi,I(t)Qj,I(t
′)ρI(t

′) −Qj,I(t
′)ρI(t

′)Qi,I(t)]〈Ri,I(t)Rj,I(t
′)〉R

+ [ρI(t
′)Qj,I(t

′)Qi,I(t) −Qi,I(t)ρI(t
′)Qj,I(t

′)]〈Rj,I(t
′)Ri,I(t)〉R) , (3.14)

where 〈Rj,I(t
′)Ri,I(t)〉R = TrRR0Rj,I(t

′)Ri,I(t) is the correlator of the op-
erators Rj,I(t

′) and Ri,I(t). The Markov approximation is valid as long as
the correlators in the integral decay very rapidly on the timescale on which
ρI(t

′) varies. This timescale will be determined by the end result of the mas-
ter equation. Then it is possible to retroactively check our assumptions for
self consistency.

To find an accessible result for the master equation, we now assume that
the Markovian condition is fullfilled and transform eq. (3.14) from the inter-
action picture into the Schrödinger picture:

ρ̇ = −i[HQ, ρ] (3.15)

−
∑

i,j

∫ t

0

dt′
(

[Qie
−iHQ(t−t′)Qje

−iHQ(t′−t)ρ− e−iHQ(t−t′)Qje
−iHQ(t′−t)ρQi]Ci,j(t, t

′)

+ [ρe−iHQ(t−t′)Qje
−iHQ(t′−t)Qi −Qiρe

−iHQ(t−t′)Qje
−iHQ(t′−t)]Cj,i(t

′, t)
)

,

where Ci,j(t, t
′) = 〈Rj,I(t

′)Ri,I(t)〉R is the correlator of the reservoir operators.
If the reservoir Hamiltonian is not explicitly time dependent, we can assume
that the correlator is only a function of the time difference Ci,j(t, t

′) = Ci,j(t−
t′). For uncorrelated bath fluctuations, the correlator takes the form Ci,j(t) ∝
δ(t).

In section 3.2 we will discuss the case where the coupling to the reservoir
has the property Ci,j ∝ δij̄ , where Rj̄ = R†

i and Qj̄ = Q†
i . This yields

ρ̇ = −i[HQ, ρ] (3.16)

−
∑

i

∫ t

0

dt′
(

[Qie
−iHQ(t−t′)Q†

ie
−iHQ(t′−t)ρ− e−iHQ(t−t′)Q†

ie
−iHQ(t′−t)ρQi]Ci(t− t′)

+ [ρe−iHQ(t−t′)Q†
ie

−iHQ(t′−t)Qi −Qiρe
−iHQ(t−t′)Q†

ie
−iHQ(t′−t)]C†

i (t
′ − t)

)

+ h.c. ,

where Ci(t− t′) = 〈R†
i,I(t

′)R†
i,I(t)〉R.

The spectral density of our reservoir is given by the Fourier transform of
the correlator.

Si(ω) =

∫ ∞

−∞

dtCi(t)e
iωt . (3.17)
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For uncorrelated noise the spectral density will be perfectly flat and eq. (3.16)
will be of Lindblad form. If the noise is long correlated, the correlator will
become a time independent constant. In this case, the approximation made in
eq. (3.9) will break down. As we have noted before, the approximation given
by eq. (3.9) is not well defined and it is difficult to clearly establish that it
is valid. This is the reason why we will introduce a diagrammatic expansion
of the time evolution in orders of the coupling to the reservoir. This will
allow us to clearly specify higher order terms and check the convergence of
the expansion.

3.1.3 Expansion on Keldysh-Contour

In this section we show a diagramtic approach for the expansion of the time
evolution of the density matrix. Our total Hamiltonian HT is divided into
three parts. The quantum system HQ, the reservoir HR and the coupling
between quantum system and reservoir which is contained in the Hamiltonian
HC . It is our goal to derive an equation of motion for a reduced density matrix
for the quantum system where we trace out the degrees of freedom of the
reservoir. We start with the equation of motion of the average value of an
operator A,

〈A(t)〉 = Tr [̺(t0)UT (t0, t)AUT (t, t0)] , (3.18)

where the trace is taken over all states (including the states of the quantum
system) and UT (t, t0) is the time evolution operator for the Hamiltonian HT ,
from time t0 to t. The density matrix ̺(t0) is the density matrix of the total
system.

We assume that the coupling between heat bath and reservoir is weak,
so it makes sense to transform the whole equation of motion into the fast
oscillating frame given by the quantum system HQ and the reservoir HR.
We define an operator in the resulting interaction picture as AI(t, t0) =
U0(t0, t)AU0(t, t0) where U0 is defined by eq. (3.6). This transforms the
equation of motion to

〈A(t)〉 = Tr [̺(t0)UT (t0, t)U0(t, t0)AU0(t0, t)UT (t, t0)] , (3.19)

where it is straightforward to show that the time evolution given by UI(t, t0) =
U0(t0, t)UT (t, t0) can be written as

UI(t, t0) = Te
−i

R t
t0

HC,I(t′)dt′
, (3.20)

UI(t0, t) = T̄ e
i

R t
t0

HC,I(t′)dt′
,
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Figure 3.1: The expansion of the time evolution in diagrammatic representation
on the Keldysh contour. Each Hamiltonian HC is represented by a vertex. The
cross at time t represents the projection operator ρ̂.

where T (T̄ ) denote the (anti-)chronological time ordering operator and we
assumed t > t0. We now choose the operator A in eq. (3.19) as ρ̂qq′ = |q〉〈q′|,
so we get

ρqq′(t) =
∑

q̄q̄′

ρq̄q̄′(t0)〈q̄|TrR [ρRUI(t0, t)ρ̂qq′,I(t)UI(t, t0)] |q̄′〉 . (3.21)

This equation essentially gives us the time evolution of the matrix elements
ρq̄q̄′ from t0 to the matrix element ρqq′ at the time t. Expanding the time
evolution operators yields

ρqq′(t) =
∑

q̄q̄′

ρq̄q̄′(t0)〈q̄|TrR

∞
∑

m=0

(−i)m

∫ t

t0

dt′1

∫ t′1

t0

dt′2 . . . (3.22)

∫ t′m−1

t0

dt′mTK (HC,I(t
′
1)HC,I(t

′
2) . . . HC,I(t

′
m)ρ̂qq′,I(t)) |q̄′〉 ,

where TK represents the time sorting along the Keldysh contour, as shown
in fig. 3.1. The Keldysh contour has two branches. The upper branch
represents the time evolution from t0 to t, and the lower branch represents
the opposite direction. In our case the time t is determined by the projection
operator ρ̂. All operators to the left of ρ̂ will be on the upper branch, all
operators to the right will be on the lower branch. We can symbolically write
the expansion of the time evolution as

ρ(t) = ρ(t0)Π(t0, t) , (3.23)

where Π(t0, t) is the time evolution superoperator.
Each of the vertices along the curve in fig. 3.1 represents a Hamiltonian

HC , and the lines between the dots represents the free time evolution of the
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Figure 3.2: A third order diagram. The dots correspond to an operator pair Qi,Ri.
This diagram has been projected onto a base of eigenstates |qi〉 of the quantum
system.

quantum system UQ. We specify the coupling Hamiltonian in the same way
we did it in section 3.1.2,

HC =
∑

i

QiRi . (3.24)

It should be noted that we can flexibly choose what the vertices along the
Keldysh contour can represent. For a Hamiltonian consisting of a sum of
operators, it is reasonable to specify for each vertex along the the Keldysh
contour which operator it represents. This corresponds to an expansion of
the contour we have drawn in fig. 3.1 into the components of the coupling
Hamiltonian.

In fig. 3.2 we show a third order diagram where we labled the vertices
in such a way that it is clear to which operator of HC they refer. Addi-
tionally we projected the whole diagram onto a base of eigenstates of the
quantum system |qi〉, signified by the letters along the lines. So the three
dots give us the matrix element 〈q̄|Qi|q1〉〈q1|Qk|q2〉〈q3|Qj |q̄′〉 and the correla-
tor 〈Ri(t1)Rk(t3)Rj(t2)〉. The time evolution along the lines of the Keldysh
contour is given by

e−iEq̄e−iEq1 (t3−t1)e−iEq2 (t−t3)eiEq3 (t−t2)eiEq̄′ (t2−t0) . (3.25)

This is a specific example for the three components expressed by a Keldysh
contour diagram (Matrix element, correlator, time evolution) which give us
the integrand in eq. (3.22).

3.2 Bosonic and Fermionic Reservoirs

In this section we will discuss the derivation of a master equation for a
quantum system coupled to a bosonic or fermionic reservoir. We will use the
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expansion of the equation of motion of the density matrix on the Keldysh
contour, which we described in section 3.1.3. Throughout this section we will
always assume that only one reservoir is coupled. However, the theory we
show here works for coupling to several reservoirs as well. The only difference
is that in the diagrammatic expansion on the Keldysh contour one has to use
an index to show which vertex belongs to which reservoir.

We will discuss the Hamiltonian of our total system in the first subsection.
Then we will show a method that will allow us to add certain diagrams to
infinite order and derive the final master equation. In the third subsection
we will discuss the form of the master equation in the Markov and in the
stationary limit. A summary of the rules for the calculation of a diagram
will be given in the forth subsection. After that we will explicitly calculate
the rates for bosonic and fermionic coupling in second order. In the last
subsection we will give an example for diverging higher order terms. For this
example we can also find a parameter range where we get a Lindblad form
master equation.

3.2.1 Model Hamiltonian

In this section we will discuss the coupling of a quantum system to a bosonic
and fermionic reservoir. Our total Hamiltonian is given by

HT = HQ +HC,b/f +HR,b/f , (3.26)

where we distinguish between the bosonic and fermionic reservoir through
the indices b and f , respectively.

The bosonic coupling and reservoir Hamiltonians are given by

HC,b = Qb

∑

i

T b
i (b†i + bi) , (3.27)

HR,b =
∑

ωib
†
ibi ,

where bi is the annihilation operator of a mode with the frequency ωi and
Qb is an operator acting on the quantum system. A physical realization of
this kind of Hamiltonian would be fluctuations in the gate charge of a charge
qubit [50]. In this case the coupling operator would be the charge counter
Qb = N (see section 2.1).

The fermionic coupling and reservoir Hamiltonian is given by

HC,f =
∑

i,k

T f
i,k(ci,1 c

†
k,2Qf + c†i,1ck,2Q

†
f ) , (3.28)

HR,f =
∑

1,2

∑

i

ǫi,1/2c
†
i,1/2ci,1/2 .
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Figure 3.3: Expansion diagrams for bosonic or fermionic coupling operators. The
operators are sorted in pairs of annihilation and creation operators. The line
connecting two vertices show that these two operators form a correlator. The
arrow points from annihilation to creation operator. Each line connecting two
vertices is called a contraction.

More specifically this Hamiltonian describes two fermionic reservoirs that can
exchange particles. Here ci,1 (ci,2) is the annihilation operator of reservoir
1 (reservoir 2). The relevant physical model for this kind of coupling is
tunneling through a tunnel junction. The operator Qf acts on the quantum
system. For a junction this would correspond to the charge transfer operator
Qf = eiφ.

We use the same techniques used in section 3.1.3 and expand the equation
of motion for the density matrix in orders of the elements of the coupling
Hamiltonian HC,b/f . Similar to the diagram shown in fig. 3.2, we get di-
agrams representing higher order correlators of the bosonic and fermionic
annihilation and creation operators. We use the Wick theorem to expand
the correlators, such that in the end only pairwise correlators of the form
〈bi(t)b†i (t′)〉, 〈b†i(t)bi(t′)〉 remain. The resulting diagrammatic expansion of
the time evolution can be seen in fig. 3.3. All correlators consisting only of
annihilation or creation operators will become zero. Each pairwise correla-
tor will be called contraction and is represented by an arrow connecting two
vertices. The arrow points from annihilation to creation operator.

3.2.2 Dyson Equation

We now take a closer look at the diagrams contained in the time evolution
superoperator Π(t0, t). As shown in fig. 3.4, there are certain diagrams where
the contractions are only connected by free time evolution. This means that
the lines connecting the two operators cross at no point. An example for
this is the diagram shown in fig. 3.4b). We will call this type of diagram
separable. In contrast to that any line drawn vertically through the diagram
in fig. 3.4a) will cross a contraction. This type of diagram will be called
inseparable.

We define the selfenergy as the sum of all all inseparable diagrams. What
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this means in diagramtic language can be seen in fig. 3.5. Here we see exam-
ples for inseparable second, 4th and 6th order diagrams. The selfenergy is
a good way to efficiently show all diagrams contained in the time evolution
Π(t0, t). Every diagram in the time evolution is either separable or insepa-
rable, therefore we can expand the time evolution in terms of the selfenergy,
where the different parts of the selfenergy are connected by free time evolu-
tion. The graphical representation of the expansion can be seen in fig. 3.6.
In exactly the way shown in fig. 3.6, we can rewrite the time evolution in
the following way

ρ(t0)Π(t0, t) = ρ(t0)Π0(t0, t) +

∫ t

t0

dt1

∫ t

t0

dt2ρ(t0)Π(t0, t2)Σ(t2, t1)Π0(t1, t0) ,

= ρ(t0)Π0(t0, t) +

∫ t

t0

dt1

∫ t

t0

dt2ρ(t2)Σ(t2, t1)Π0(t1, t0) . (3.29)

The free time evolution Π(t0, t) is given by

ρ(t0)Π0(t0, t) = UQ(t0, t)ρ(t0)UQ(t, t0) . (3.30)

We can project the free time evolution on the base of the quantum system. In
that case the free time evolution of the matrix element ρq̄q̄′(t0) to the matrix
element ρqq′(t) is given by

Π0(t0, t) = 〈q|UQ(t0, t)|q̄〉〈q̄′|UQ(t, t0)|q′〉 = δqq̄δq̄′q′e
i(Eq−Eq′ )(t−t0) , (3.31)

where Eq is the energy of the state |q〉. We now take the time derivative of
eq. (3.29). This give us

ρ̇(t) = −i[HQ, ρ(t)] +

∫ t

t0

dt′ρ(t′)Σ(t′, t) . (3.32)

This is the final master equation. One should note that this equation is still
exact. The second order diagrams are the lowest non-zero contribution to the
selfenergy. If we keep only second order terms, eq. (3.32) will be equivalent
to the master equation we derived previously, given by eq. (3.15). However,
in contrast to the derivation of the master equation performed in section
3.1.2, we have now established a method to estimate the size of higher order
contributions. In section 3.2.6 we will discuss a specific case where we will
us the diagrammatic technique to analyze the convergence of our expansion.

3.2.3 Diagrammatic Rules

In fig. 3.1 we see the expansion of a general coupling Hamiltonian along the
Keldysh contour. For the specific cases chosen in this chapter, defined in eq.
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Figure 3.4: An example for a separable and an inseparable 4th Order diagram.
a) An inseparable diagram. No vertical line can be drawn between the leftmost
and rightmost vertex without crossing a contraction. b) A separable diagram.
The diagram has two parts that are only connected by free time evolution. We
can draw a vertical line between the leftmost and rightmost contraction without
crossing a contraction.

Figure 3.5: The selfenergy is the sum of all insperable diagrams.

Figure 3.6: The time evolution Π can be rewritten using the selfenergy Σ.
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(3.27) and eq. (3.28), we can calculate the trace over the reservoir using the
Wick theorem. This means we contract our trace to pairs of annihilation and
creation operators (see fig. 3.3).

In our convention, a contraction for the tunnel junction (fermionic cou-
pling) gives the contribution

γf,±
qq′→q̄q̄′(t, t

′) = 〈q|Qf |q′〉〈q̄|Q†
f |q̄′〉

∑

i,k

|T f
i,k|2〈Tγ

{

(ci,Lc
†
k,R)(t)(c†i,Lck,R)(t′)

}

〉 ,

(3.33)

where q,q′ are the ingoing and outgoing state of the operator Qf and q̄,q̄′ are

the in and outgoing states of the operator Q†
f . The arrow points into the

same direction as the arrow in the diagram. An example for such an element
is shown in fig. 3.7. The sign ± is chosen in the following way: If t > t′ we
get a +, for t < t′ we get −. This becomes relevant if we rewrite the sum
into an integral by introducing the density of states. This give us

γf,±
qq′→q̄q̄′(t, t

′) =
1

(2π)2
〈q|Qf |q′〉〈q̄|Q†

f |q̄′〉 (3.34)

× |T f |2
∫

dω

∫

dω′NL(ω)NR(ω′)f±
L f

∓
R e

−i(ω−ω′)(t−t′) .

Here we introduced the density of states in the left lead NL and the density of
states in the right lead NR. For all systems we will assume that the coupling
T f

i,k is energy independent, so we can write T f
i,k = T f . However it should

be noted that any energy dependence can be taken into account within our
formalism. Furthermore we have f+ = f , where f is the Fermi distribution
and f− = 1 − f .

Similarly we get for bosonic coupling

γb,±
qq′→q̄q̄′(t, t

′) = 〈q|Qb|q′〉〈q̄|Qb|q̄′〉
∑

i,k

|T b
i |2〈Tγ

{

bi(t)b
†
i (t

′)
}

〉 . (3.35)

Again we can change the sum into an integral and get,

γb,±
qq′→q̄q̄′(t, t

′) = 〈q|Qb|q′〉〈q̄|Qb|q̄′〉|T b|2 1

2π

∫ ∞

−∞

dωN(ω)n̄±(ω) , (3.36)

where N(ω) is the density of states of the bosonic heat bath, coupling is
energy independent and

n̄±(ω) =
±1

e±~ω/kBT − 1
. (3.37)
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Figure 3.7: A sixth order diagram where the contraction shown in black corre-
sponds to γqq′→q̄q̄′(t1, t2).

Additionally to these elements we get a free time evolution for each free
path along the Keldysh contour. We summarize the diagrammatic rules in
time space:

1. Each contraction running from vertex 1 to vertex 2 gives rise to
γ

f/b,±
qq′→q̄q̄′(t1, t2). ± corresponds to t ≷ t′, q/q̄(q′/q̄′) are the incoming

(outgoing) states at each vertex. To each vertex we can attach at most
one contraction.

2. Each element of the Keldysh contour running from vertex 2 to vertex
1 gives rise to 〈q|UQ(t1, t2)|q̄〉, where q is the outgoing state at vertex
2 and q̄ is the incoming state at vertex 1.

3. The prefactor is given by (−1)a+b+c, where a is the number of con-
tractions, b the number of vertices on the lower part of the Keldysh
contour, and c the number of crossings of fermionic contractions.

3.2.4 Markov Approximation and the Stationary Limit

We can write the Master equation in the closed form

ρ̇(t) = −i[HQ, ρ(t)] +

∫ t

t0

dt′ρ(t′)Σ(t′, t) . (3.38)

The result of the master equation depends on the history of the density
matrix through the integral over ρ(t′) in the second term on the right hand
side of this equation.

We can replace ρ(t′) by ρ(t) in the integral in two cases. The first case
is the Markov approximation where we assume that the time scale of the
density matrix is much slower then the decay time of the selfenergy. The
second case is the stationary result, where we are only interested in the limit
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ρ̇ = 0. In this section we will discuss both cases. To do so it is helpfull to
define a time independent transition rate,

Γq̄q̄′→qq′ =

∫ t

t0

Σq̄q̄′→qq′(t
′, t) . (3.39)

For both cases, we assume that the selfenergy decays quickly on the relevant
time scales. Therefore we can choose t0 = −∞ and t = 0 in eq. (3.39).
Additionally we note that we can always write Σ(t′, t) = Σ(t′ − t) as long as
the reservoir Hamiltonian is not explicitly time dependent.

Now we can define a criteria for the application of the Markov equation.
The selfenergy Σ(t) has a characteristic decay time given by τ . The condition
for the application of the Markov approximation can be expressed as

Γq̄q̄′→qq′ ≪ τ . (3.40)

This is the case because the relevant time scale for the time evolution of ρ is
determined by the size of the rates in eq. (3.38).

If the reservoir is not explicitly time dependent, there is always a station-
ary result for equation 3.38. Stationary means that the density matrix has
become time independent, ρ̇ = 0. In this case we can replace ρ(t′) with the
stationary result ρ(0). Here we have chosen t0 = −∞.

Both, the Markov approximation and the stationary limit allow us to
write the master equation as

ρ̇qq′ = −i〈q|[HQ, ρ]|q′〉 +
∑

q̄q̄′

Γq̄q̄′→qq′ρq̄q̄′ . (3.41)

For the stationary assumption, we should solve eq. 3.41 only for ρ̇qq′ = 0.
This is the type of master equation we will use for all further calculations in
this work. The Markov approximation is valid for the systems we study.

3.2.5 Second Order Results

In this section we will explicitly calculate the second order results for both,
fermionic and bosonic coupling. We assume that we have a density of states
which allows the Markov approximation, or alternatively that we are only
interested in the stationary results. The master equation is given by eq.
3.41. In fig. 3.8 we show the selfenergy in the second order approximation.
To calculate the transition rates we have to add up the contributions of all
second order diagrams.

In section 3.2.4 we have seen that the time dependency of each contraction
(see eq. (3.34), (3.36)) is of the form e−iω̄(t−t′), where ω̄ = ω (ω̄ = ω − ω′ )
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Figure 3.8: The selfenergy in the second order approximation. All second order
diagrams are shown.

in the bosonic (fermionic) case. The free time evolution adds another factor
of the form ei∆E(t−t′), where the energy difference ∆E has to be determined
for each diagram individually. This means that the overall time dependence
of the selfenergy is of a rather simple form. In the Markov approximation or
in the stationary case we can choose t0 → ∞ and t = 0, therefore the time
integral reduces to

∫ 0

−∞

dt′ ei(∆E−ω̄)t′ = πδ(∆E − ω̄) + i
P

∆E − ω̄
, (3.42)

where P indicates the Cauchy principle value. The delta function can be
used to to evaluate one of the integrals in eq.. 3.34 and 3.36. For a transition
between diagonal elements of the density matrix Γqq→q̄q̄, there are always two
diagrams that correspond to opposite signs in the exponential function such
that for these transitions the imaginary part will disappear.

Figure 3.9: Two diagrams that correspond exactly to changing the sign of the time
integration.
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The final result in the fermionic case is given by

Γf
qq′→q̄q̄′ =

1

2

[

Qf
q′q̄′

†
Qf

q̄q +Qf
q′q̄′Q

f
q̄q

†
]

(I(Eqq̄) + I(Eq′q̄′) + i [Ii(Eqq̄) − Ii(Eq′q̄′)])

− δq′ q̄′

2

∑

n

[

Qf
qnQ

f
nq̄

†
+Qf

qn

†
Qf

nq̄

]

(I(Eqn) − iIi(Eqn))

− δqq̄

2

∑

n

[

Qf
qnQ

f
nq̄

†
+Qf

qn

†
Qf

nq̄

]

(I(Eq′n) − iIi(Eq′n)) , (3.43)

I(Enm) =
1

e2R

∫

dω [1 − f(ω)] f(ω − Enm)NL(ω)NR(ω − Enm) ,

Ii(Enm) =
1

e2R

∫ ∫

dωdω′ P

Enm − (ω′ − ω)
(1 − f(ω)) f(ω)NR(ω)NL(ω′) ,

Enm = En −Em , Qf
qq′ = 〈q|Qf |q′〉 , Qf

qq′
†
= 〈q|Qf †|q′〉 ,

where (e2R)−1 = |T f |2NL(0)NR(0) gives us the effective resistance of the
tunnel junction. Here we used the normalized density of states NL,R(ω) =
NL,R(ω)/NL,R(0).

The bosonic rate is given by

Γb
qq′→q̄q̄′ =

1

2
Qb

q′ q̄′Q
b
q̄q

[

N+
r (Eqq̄) +N+

r (Eq′q̄′) +N−
r (Eqq̄) +N−

r (Eq′q̄′) (3.44)

+ i
(

N+
i (Eqq̄) −N+

r (Eq′q̄′) +N−
i (Eqq̄) −N−

i (Eq′q̄′)
)]

− 1

2
δq′q̄′

∑

n

[

Qf
qnQ

f
nq̄

]

[

N+
r (Eqn) +N−

r (Eqn) − i
(

N+
i (Eqn) +N−

i (Eqn)
)]

− 1

2
δqq̄

∑

n

[

Qf
qnQ

f
nq̄

]

[

N+
r (Eq′n) +N−

r (Eq′n) − i
(

N+
i (Eq′n) +N−

i (Eq′n)
)]

,

N±
r (E) = κb

N (±E)n̄±(±E) ,

N±
i (E) = κb

∫

dω
P

E ± ω
N (ω)n̄± ,

where κb = |T b|N(0) is the effective coupling strength to the bosonic reser-
voir, and we used the normalized density of states N (ω) = N(ω)/N(0).

The rates simplify significantly if we can neglect the offdiagonal parts of
the density matrix. This is possible as long as the width of the spectrum of
the quantum system, defined by HQ, is much larger then the transition rates.
Under this condition the rates become

Γf
qq→q̄q̄ =

[

Qf
qq̄

†
Qf

q̄q +Qf
qq̄Q

f
q̄q

†
]

I(Eqq̄) , (3.45)

Γb
qq→q̄q̄ = Qb

qq̄Q
b
q̄q

[

N+
r (Eqq̄) +N−

r (Eqq̄)
]

,
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where q 6= q̄. From the properties of the diagrams we know that by changing
the vertex at time t in the diagrams shown in fig. 3.8 from the upper to the
lower branch changes the sign of the result. But as long as the ingoing and
outgoing states for each vertex stay the same, this is the only change. From
this we obtain

Γf,b
qq→qq = −

∑

q̄ 6=q

Γf,b
qq→q̄q̄ . (3.46)

This is a direct consequence of the preservation of probability. With eq. 3.46
we can write the master equation in the form of a balance equation

ρ̇qq(t) =
∑

q̄

(

Γf,b
q̄q̄→qqρq̄q̄ − Γf,b

qq→q̄q̄ρqq

)

. (3.47)

This equation has a very simple form and is much easier to solve then a
complete master equation involving all matrix elements. In section 4.2 and
chapter 5 we will be able to use the balance equation to describe our system.

3.2.6 Divergence of Higher Orders

The condition for convergence of the expansion on the Keldysh contour are
not immediately obvious. Generally one can say that the correlation time
τ of the noise should be much smaller then the coupling strength. In this
section we will discuss a specific case where we will see the divergence of
higher order diagrams.

One bosonic contraction gives us the contribution γb,±
qq′→q̄q̄′(t, t

′). If the
temperature is larger than the characteristic frequencies of the density of
states we can expand n̄± in orders of kBT . This is the classical regime
where we can express temperature, density of states and coupling strength
as one spectral density of the system κbN(ω)n̄±(ω) ≈ S(ω). In section 4.4 a
Lorentzian shaped spectral density will be of interest. Hence we choose

S(ω) =
µλ2

ω2 + λ2
, (3.48)

where µ is the strength of our coupling to the reservoir, and λ is the width
of the noise spectral density. We can now write the contribution (3.36) of a
contraction as

γb,±
qq′→q̄q̄′(t, t

′) = 〈q|Qb|q′〉〈q̄|Qb|q̄′〉 (3.49)

× 1

2π

∫

dωS(ω)e−iω(t−t′) .
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For our purposes it is better to transform the spectral density into time space.
We get the proportionality

γb
qq′→q̄q̄′(t, t

′) ∝ µ2e−λ|t−t′| . (3.50)

The correlator will decay on the timescale 1/λ. This means we can estimate
the size of a second order diagram (one contraction) by µ2/λ. One should
note that the contribution of this diagram will be large only if it is evaluated
at energies which are within the range of λ. In the same way we can estimate
a fourth order diagram as being proportional to µ4/λ3.

What we see here is that there are two possibilities for the expansion on
the Keldysh contour to converge. One is that the relevant energy differences
are larger then λ. The other one is that the decay rate of the noise correlator
is larger than the coupling strength, µ < λ. For the simple derivation of
the master equation we have shown in section 3.1.2 it would not be possi-
ble to establish these convergence criteria, because the approximations are
hidden in eq. 3.9. If we approach the regime where our expansion becomes
exact, µ≪ λ, the prefactor in the second order result (3.44) becomes energy
independent. In this case our master equation is of Lindblad form.

3.3 Polaron Transformation

In this section we will derive the master equation for a bosonic reservoir,
where we take the coupling to the reservoir into account to all orders. Instead
of expanding the time evolution in the coupling to the reservoir, we will
expand in a small parameter of the quantum system. This type of calculation
can be done for a large number of systems, but we will choose a rather specific
case, which is directly relevant to the broader subject of this work. In section
4.4 we will use this Ansatz to analyze the effects of low frequency noise.

We study a two state system with fluctuating energy splitting. The com-
plete Hamiltonian of this system is given by

HT = HQ +HC +HR , (3.51)

HQ = ∆Eσz + gσx ,

HC =
1

2
σz

∑

i

Ti

(

bi + b†i

)

,

HR =
∑

i

ωib
†
ibi .

We use a pseudospin description such that the operators σi act on the eigen-
states of the system | ↑〉, | ↓〉. The energy difference between the two states
is given by ∆E and they are coupled with strength g.
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Figure 3.10: The expansion of the time evolution in diagrammatic representation
along the Keldysh contour. The operator σ+aY

† is represented by a white vertex
and the operator σ−a

†Y is represented by a black vertex. The cross at time t
represents the projection operator ρ̂.

We will be able to treat the coupling to the heat bath exactly by using
the polaron transformation

Uz = exp

(

1

2
σz

∑

i

Ti

ωi

(

b†i − bi

)

)

. (3.52)

This transformation removes the couplingHC from the total Hamiltonian and
generates an unimportant energy shift in the reservoir Hamiltonian. How-
ever, the coupling between reservoir and quantum system is now contained in
the coupling between the two states. Our transformed Hamiltonian is given
by

H̄T = UzHTU
†
z = H̄Q + H̄C + H̄R , (3.53)

H̄Q = ∆Eσz ,

H̄C = g
(

σ+Y
† + σ−Y

)

,

where Y = exp
(

∑

i
Ti

ωi
(b†i − bi)

)

is the polaron operator. We cast the Hamil-

tonian into the form of a quantum system H̄Q, coupled by H̄C to a reservoir
H̄R.

It is our goal to derive an equation of motion for the reduced density
matrix of the quantum system where we trace out the degrees of freedom of
the reservoir. After proceding with the steps discussed in section 3.1.3, we
can write the time evolution of the density matrix in the form

ρqq′(t) =
∑

q̄q̄′

ρq̄q̄′(t0)〈q̄|TrR

∞
∑

m=0

(−i)m

∫ t

t0

dt′1

∫ t′1

t0

dt′2 . . .

∫ t′m−1

t0

dt′m

TK

(

H̄C,I(t
′
1)H̄C,I(t

′
2) . . . H̄C,I(t

′
m)ρ̂qq′,I(t)

)

|q̄′〉 , (3.54)
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where TK represents the time sorting along the Keldysh contour, as shown
in fig. 3.10. Here the operator σ+aY

† is represented by a white vertex, and
the operator σ−a

†Y is represented by a black vertex.
To evaluate the trace over the reservoir states we have to calculate aver-

ages of the form 〈Y (t′1)Y
†(t′2) . . . Y (t′m)〉 with an arbitrary number of Y and

Y † operators. For these type of operators we can not simply use the Wick
theorem. However we can use the Feynman disentangling method, which al-
lows us to derive a helpfull simplification for averages of products of operators
exp(φn), where φn is an arbitrary linear combination of bosonic annihilation
and creation operators. We get

〈eφ1eφ2 . . . eφm〉 = e〈(
Pm

n=1 φn)
2
〉/2e

Pm
i<j [φi,φj ] . (3.55)

Using eq. (3.55) it is straightforward to show that averaging products over
the reservoir is only none-zero if there is the same number of Y and Y †

operators. Therefore we only have to consider diagrams which correspond to
averages of the form

〈TKΠne
φne−φn′ 〉 = e〈

P

n(φn−φn′)〉
2

e−
P

n>n′ TK [φn,φn′ ] (3.56)

× e
P

n>m TK [φn,φm]e
P

n′>m′ TK [φn′ ,φm′ ] ,

where φn =
∑

i
Ti

ωi
(b†(tn) − b(tn)). We group all eφn to the e−φn′ closest to

each other on the real time axis,

〈TKΠne
φne−φn′ 〉 = Πn〈TKe

φneφn′ 〉Πn>m (F (tn, t
′
n, tm, t

′
m) + 1) , (3.57)

= Πn〈TKe
φneφn′ 〉 + Πn〈TKe

φneφn′ 〉F (t2, t2′ , t1, t1′) . . . ,

where we defined the function

F (tn, tn′ , tm, tm′) = e〈TK (φn+φn′ )(φm+φm′)〉 − 1 , (3.58)

such that it is possible to formally divide our diagrams into separable and in-
separable diagrams (see fig. 3.11). We will call the function F (tn, tn′, tm, tm′)
connector, because it connects two pairwise correlators. Now we can use the
standard Dyson equation (see section 3.2.2) and sum up all the inseparable
diagrams into the selfenergy Σ(t′, t). Taking the time derivative of eq. 3.54
we get the standard master equation

ρ̇ = −i[H, ρ] +

∫ t

t0

Σ(t′, t)ρ(t′)dt′ , (3.59)

where the selfenergy contains all inseparable diagrams of the polaron expan-
sion.
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Figure 3.11: The dots corresponding to the operators σ+aY
† and σ−a

†Y are con-
nected in a way that allows us to distinguish separable from inseparable diagrams.
We connect the conjugate operators that are closest to each other on the real time
axes with wiggly lines. Each pair of connected vertices corresponds to the cor-
relator 〈Y (t1)Y (t2)〉. Then we connect the wiggly lines with dashed lines. Each
dashed line stands for the connector F (tn, tn′ , tm, tm′).

Figure 3.12: Two inseparable diagrams of the 4th order. a) This diagram converges
in the same way as inseparable diagrams for the coupling to a bosonic or fermionic
reservoir. b) To estimate the size of this diagram we have to analyze the connector
F (tn, tn′ , tm, tm′), which corresponds to the dashed line connecting the wiggly lines.
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To guarantee convergence of this series, it is necessary to estimate the
order of magnitude of higher order diagrams. For certain types of diagrams
(see fig. 3.12a)) the rules of convergence are equivalent to those established
in section 3.2. Therefore it is only necessary that the correlators 〈Y (t)Y †(0)〉
decay fast enough to guarantee convergence. However, for the diagrams
shown in fig. 3.12b) it is necessary to analyze the connector F (tn, tn′, tm, tm′)
in more detail. This will be done for a specific type of noise in section 4.4.2.

3.4 Multiple Sources of Noise

In the previous section we discussed a two state system coupled to a bosonic
bath via a polaron operator. In this section we will discuss the same system,
however we will add a fermionic reservoir. The total Hamiltonian becomes

H̄T = H̄Q + H̄C + H̄R , (3.60)

H̄Q = ∆Eσz ,

H̄C = H̄g +HC,f ,

H̄g = g
(

σ+Y
† + σ−Y

)

,

HC,f =
∑

i,k

T f
i,k(ci,1 c

†
k,2Qf + c†i,1ck,2Q

†
f ) ,

H̄R = HR,b +HR,f ,

HR,b =
∑

ωib
†
ibi ,

HR,f =
∑

1,2

∑

i

ǫi,1/2c
†
i,1/2ci,1/2 .

The operator Qf acts on the quantum system, but we assume that it is
unaffected by the polaron transformation. As we have shown before, the
master equation can be derived using a standard real time diagrammatic
approach. We are interested in the time evolution of the reduced density
matrix ρ = TrR̺, where we take the trace of the reservoir degrees of freedom.

We want to consider a case where the transitions caused by the two Hamil-
toniansHg and Hf

C happen at vastly different timescales. The fermionic tran-
sitions shall be much faster than the polaron transitions between the states
| ↑〉 and | ↓〉. Thus we have to consider the influence of the quasiparticle
tunneling on the polaron coupling between the two states of HQ in our cal-
culation. This can be done by summing up the appropriate diagrams in the
expansion of the time evolution of the density matrix. But we will choose a
more intuitive way. We start with a transformation of the total Hamiltonian
into the interaction picture with the unitary operator U0(t, t0). Exactly like
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we did in section 3.1.3, we use the index I for operators in the interaction
picture. Then we transform our system a second time into an interaction
picture by using the unitary operator

Uf (t, t0) = Te
−i

R t
t0

Hf
C,I(t′)dt′

, (3.61)

Uf (t0, t) = T̄ e
i

R t
t0

Hf
C,I(t′)dt′

,

where T (T̄ ) denotes the (anti-)chronological time operator and we assumed
t > t0. Operators in the second interaction picture are given by

AĪ(t, t0) = Uf(t0, t)AI(t)Uf (t, t0) . (3.62)

We can now write down the time evolution of the density matrix,

ρ(t) = Tr
(

̺(t0)e
i

R t
t0

HC,Īdt′
ρ̂Ī(t)e

−i
R t
t0

HC,Īdt′

)

, (3.63)

= ρ(t0)Π(t0, t) ,

where Π(t0, t) is the propagator acting on the reduced density matrix ρ and
describes the propagation of ρ from the time t0 to t. The propagator can be
expanded in the style of a Dyson equation (see section 3.2.2) ,

ρ(t) = ρ(t0)Π
f(t0, t) (3.64)

+

∫

dt1

∫

dt2ρ(t0)Π(t0, t2)Σ(t2, t1)Π
f(t1, t) ,

where Σ is the self-energy containing the sum of inseparable diagrams, and
Πf is the propagator of the system containing quasiparticle tunneling. This is
the only essential difference to the derivation in section 3.2.2 in our approach
so far, where Πf would have to be replaced by the free evolution of the density
matrix described by the Hamiltonian HQ.

The derivation of the master equation for fermionic coupling has been
discussed in section 3.2, so we know that we can expand the quasiparticle
propagator into a Dyson type equation as well. After taking the time deriva-
tive of the resulting equation, we arrive at

ρ̇(t) = −i[H, ρ] +

∫ t

t0

ρ(t′)Σf(t′, t)dt′

+

∫

ρ(t′)Σ(t′, t)dt′ . (3.65)

This equation is actually still exact. All diagrams are contained in the self-
energies Σf (t, t′) and Σ(t′, t), the only thing we essentially did is sorting all



42 Chapter 3. The Master Equation

Figure 3.13: a) The selfenergy Σf contains all diagrams that contain only fermionic
contractions. b) The selfenergy Σ contains the diagrams of the polaron operator,
with the time evolution of the fermionic system.

diagrams containing only fermionic contractions into an extra selfenergy. All
other diagrams are contained in Σ(t, t′). We can see the graphical represen-
tation of the selfenergies in fig. 3.13.

The difference in timescale for the relevant processes becomes relevant if
we try to actually evaluate the diagrams contained in Σ(t′, t). If the processes
contained in Σf (t′, t) are much faster then those containing polaron lines, we
are able to evaluate the master equation without Σ(t′, t). This will enable
us to find an explicit solution for the time evolution Πf (t0, t), which in turn
can be used to evaluate Σ(t′, t). We will discuss an explicit case where this
is possible in section 4.4.

3.5 Quasistatic Noise

So far in this chapter we have treated noise sources that fluctuate on a time
scale faster then the time evolution of the quantum system. This allowed
us to average over the reservoir quantities and calculate an effective noise
strength that is seen by the quantum system. However, it is also possible
to treat noise in the opposite limit of very slow fluctuations. This is called
the quasistationary approach. Here we assume the fluctuating quantity to
be constant during the time evolution of the system, and then we average
our result in the stationary limit over this variable.

To give a clear example, we will consider a quantum system with a Hamil-
tonian HQ(G) that depends on the variable G. This variable is our slowly
fluctuating quantity. We can additionally couple our system to many addi-
tionally sources of noise. If we want to know the average value of an operator
Ô, we take the average of the operator for the stationary results for the quan-
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tum system at a constant value of G. This average will be a function of G,

〈Ô〉 = 〈Ô〉(G) . (3.66)

Then we average over the variable G,

Ō =

∫

dGP (G)〈Ô〉(G) , (3.67)

where P (G) is the probability distribution of G.
One of the most well-known sources of quasistationary noise is the so

called 1/f noise. It is known that in many systems 1/f noise is related to
many fluctuators coupled to the quantum system. Thus for 1/f noise, we can
assume that the quantity G is in itself a function of many random variables
that are determined by the slowly changing state of the fluctuators

G =
∑

i

Gi . (3.68)

For such a kind of distribution the Central Limit Theorem is valid [60]. This
means we know that the probability distribution P (G) has a Gaussian form.
The results for an operator average is therefore given by

Ō =
1√
π ΓG

∫

dGe−(G/ΓG)2〈Ô〉(G) , (3.69)

where ΓG determines the noise strength.





Chapter 4

Artificial Single-Atom Maser

Absorption and emission of radiation by atoms has been studied for nearly a
century and has yielded a wealth of applications. The foundation was laid by
the concept of stimulated emission in a two level quantum system [61]. Early
on it was predicted that this effect could be used to amplify radiation and
produce a source of coherent electromagnetic waves [62]. Continuous output
was achieved by addressing a third quantum level in the atom. Optical
pumping of such multilevel systems can achieve population inversion, which
today is the main method of laser driving. In this context, the expression
population inversion refers to a system that is in an excited state with a higher
probability than in a low energy state. The first experimental realization of
stimulated emission was achieved in the regime of microwaves [63] and is
called maser.

Today the study of the interaction of radiation and mater still yields
many new and interesting results like lasing without population inversion
[64] and the single-atom (micro) maser [28]. But there are also new applica-
tions that have generated great interest in this field. Quantum computation
has brought forth many well controlled quantum systems. In the interaction
with radiation these quantum systems act like an artificial atom. The fact
that the parameters of this artificial atoms are either experimentally con-
trollable or can even be tuned independently, makes this a promising area
of research. New applications like ’on-chip’ single photon sources [65], that
are necessary for quantum information processing [33], and microwave single
photon detection [22] might become possible.

In this chapter we will discuss a specific artificial atom coupled to a radia-
tion field. The physical realization of the radiation field can be a LC-circuit,
a transmission-line oscillator or a high frequency mechanical oscillator, and
the artificial atom is given by a superconducting single-electron transistor
(SSET). This system has attracted attention because it is a quantum elec-

45
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Figure 4.1: The SSET is tuned such that the Cooper-pair tunnels in the left
junction with Josephson coupling EJ and the quasi-particles tunnel in the right
junction with a rate ∝ V/eR. An oscillator with frequency ω is capacitively coupled
to the SSET with coupling strength g. Photons in the oscillator decay with a rate
∝ κ.

tronic realization of a three state micro maser [66] and it has been exper-
imentally realized [25]. We will focus our study on issues that are new to
quantum circuit electrodynamics (CQED). A part of this chapter will deal
mainly with a strong coupling limit that can be achieved for coupling be-
tween a transmission-line and a artificial atom. We will also discuss the
lasing properties in direct relation to the experimental tunable parameters
and additionally we analyze the effects of slow noise.

The SSET consists of two superconducting leads coupled by tunnel junc-
tions to a superconducting island (see fig.4.1). A gate voltage U shifts the
electrostatic energy of the island and controls, together with the transport
voltage V , the current through the device. The Josephson coupling EJ

of the junctions should be weak compared to the charging energy scale,
EC = e2/2CΣ (CΣ is the total capacitance of the island), and the super-
conducting energy gap ∆. It leads to coherent Cooper pair tunneling, with
pronounced consequences when two charge states differing by one Cooper
pair are nearly degenerate. In addition, quasiparticles tunnel incoherently
(with rate ∝ V/eR) when the energy difference between initial and final
states is sufficient to create a quasiparticle excitation, i.e., when it exceeds
twice the gap (assumed equal for electrodes and island), |∆E| ≥ 2∆. At the
threshold tunneling sets in with a sharp step. This system has been discussed
in detail in section 2.1. However, there we mainly focused on the coherent
part of the system. A description of the SSET needs to take into account
the coupling to macroscopic reservoirs. The effect of these reservoirs will be
described using the methods shown in chapter 3.

We tune the SSET close to the JQP cycle where current is transported
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by a combination of Cooper-pair and quasiparticle tunneling. As we have
discussed before, the SSET can be tuned such that resonant Cooper-pair
tunneling is possible either across the right or left junction (or across both
in the case of the DJQP-cycle, see section 2.1.1). In this chapter we con-
sider the case of strong Cooper-pair tunneling across the left junction and
quasiparticle tunneling across the right junction. This allows us to treat the
Josephson coupling EJ and the quasiparticle coupling between island and
lead as independent variables.

In the first section we will introduce the Hamiltonian of the system, ex-
plain how lasing is achieved and introduce the quantities we will calculate.
We will then discuss three different approaches to analyzing an oscillator
driven by a SSET. First we will use the diagrammatic method described in
section 3.2 to derive our master equation. This is the approach most gener-
ally used to analyze single-electron devices and it allows us to analyze the
system in a quantitative precise way. The limits of the expansion on the
Keldysh contour for this approach have been discussed in section 3.2.6. In
the second section of this chapter we will use the standard approach known
from quantum optics. We can derive analytical solutions which are valid for
a large parameter range. In the last section, we will use the polaron transfor-
mation to analyze strong noise effects on the SSET-maser (see section 3.3 for
a discussion of the master equation). This enables us to overcome the limits
discussed in section 3.2.6 and allows us to treat a broad range of possible
noise spectra. We will discuss the charge noise stemming from coupling to
an impedance along the lines of P (E)-theory (a detailed discussion of P (E)
theory can be found in Ref. [49] ).

4.1 Basic Elements

In this section we will introduce the basic quantities needed to describe,
understand and analyze the SSET-maser. We will start with a discussion of
the complete Hamiltonian, then we will explain how to achieve population
inversion in the SSET. In the end we will discuss the physical quantities
which we will use throughout the chapter to analyze our system.

4.1.1 The Hamiltonian

We will now discuss the Hamiltonian of our system. In this discussion we will
separate our total Hamiltonian into several different parts. This will make it
easier to address the relevant parts of the system in later sections where we
perform transformations and approximations.
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The coherent part of the system is given by

HQ = HSSET +Hg +Hω , (4.1)

HSSET = EC(N −NG)2 −EJ cos (φL) − eV NR ,

Hg = g(N − 1)(a+ a†) ,

Hω = ωa†a .

We use a simplified description of the SSET, given by HSSET, that takes al-
ready into account that we have Cooper-pair tunneling across the left junc-
tion and quasiparticle tunneling across the right junction. The charging en-
ergy of the island is given by EC , which we assume to be of of the order of the
superconducting gap ∆. At the same time EC is larger than EJ , and larger
than the temperature of the quasiparticles in the lead. Hence the number
of charge states accessible to the island is severely restricted. For all further
calculations we will restrict our analysis to the charge states N = 0, 1, 2. The
charges on the island are counted by N and NR counts the charges tunnel-
ing through the right junction. The charge counter NR needs to be taken
into account if we calculate the tunneling rates of quasiparticles across the
right junction. Each charge tunneling from the island to the right lead will
gain the energy eV . The island energy can be shifted by the gate charge
eNG = CRV + CGU . A more detailed discussion of the SSET can be found
in section 2.1. For our choice of parameters the current through the SSET
has a maximum for NG = 1, because the charge states |N = 0〉 and |N = 2〉
are exactly degenerate. This resonance is called the JQP-cycle (see section
2.1.1). It is convenient to define the gate charge as δNG = NG − 1, because
δNG directly defines how far away we are from the JQP-cycle. The coupling
of the two charge states by Josephson tunneling leads to the formation of the
states

| ↑〉 = cos ξ|N = 0〉 − sin ξ|N = 2〉 , (4.2)

| ↓〉 = sin ξ|N = 0〉 + cos ξ|N = 2〉 ,

where tan 2ξ = EJ/4δNGEC . These are eigenstates of the Hamiltonian HQ

with the energies E↑/↓ =
(

4ECδNG ±
√

16ECδN
2
G + E2

J

)

/2. Because we

confine our system to three charge states, the state |N = 1〉 is not coupled
by Cooper-pair tunneling to any other state, and is an eigenstate of HSSET

with the energy E1 = ECδN
2
G.

The oscillator is described by the Hamiltonian Hω where a is the annihi-
lation operator of a photon. Its eigenstates are given by the photon number
states |n〉. These states are sometimes also called Fock states. As shown in
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fig. 4.1 we consider capacitive coupling between oscillator and SSET. There-
fore we have the island charge coupling to the oscillator displacement. This
is described by Hg. Without loss of generality we have chosen the oscillator
to be at its equilibrium position for N = 1. The coupling term can lead
to transitions in the oscillator which either annihilate or create a photon.
Through the charge variable it couples transversely and longitudinally to the
SSET. We get an effective coupling between the states | ↑〉 and | ↓〉,

ḡ = g〈↑ |N − 1| ↓〉 =
gEJ

∆E
, (4.3)

where ∆E = E↑ − E↓ =
√

16ECδN2
G + E2

J . The coupling to the oscillator is
most effective if ∆E = ω, because Hg couples the degenerate states | ↑〉|n〉
and | ↓〉|n+ 1〉. Additionally the coupling to the SSET leads to an effective
shift of the point of origin of the oscillator depending on the state of the
SSET,

g̃ = g〈↑ |N − 1| ↑〉 =
gδNG

∆E
,

g〈↓ |N − 1| ↓〉 = −g̃ . (4.4)

We couple the quantum system to several macroscopic reservoirs. These
reservoirs describe quasiparticle tunneling, given by Hqp, fluctuations in the
gate charge, given by Hλ, and linear dissipation in the oscillator, given by
Hκ. The complete coupling Hamiltonian is given by

HC = Hqp +Hλ +Hκ , (4.5)

Hqp =
∑

i,k

T qp
i,k ci,D c

†
k,Re

−iφR/2 + h.c. ,

Hλ = N
∑

i

T λ
i (bλi + bλi

†
) ,

Hκ =
∑

i

T κ
i (a†bκi + abκi

†) ,

where bλi (bκi ) is the annihilation operator for the mode i in the bosonic
reservoirs coupled to the oscillator (SSET) and ci,D (ci,R), is an annihilation
operator for the quasiparticles on the dot (in the right lead).

In defining our coherent quantum system and the coupling to macroscopic
reservoirs we used definitions equivalent to those introduced in chapter 3.
Accordingly our total Hamiltonian is given by

HT = HQ +HC +HR , (4.6)

where HR contains the reservoir Hamiltonians for the quasiparticles and the
bosonic reservoirs.



50 Chapter 4. Artificial Single-Atom Maser

Figure 4.2: The possible transitions between the states of the SSET. We show
an energy diagram for the states | ↑〉 and | ↓〉. The state |N = 1〉 does not
change with NG and is therefore drawn outside of the diagram. Red arrows show
the transitions caused by quasiparticle tunneling. a) Directly at resonance all
transition rates are of the same order. b) If we tune away from the JQP-cycle the
rates change drastically. The rates drawn with full arrows are much stronger than
those drawn as dashed arrows. The green arrow connecting | ↑〉 and | ↓〉 shows the
effect of coupling to the oscillator.

4.1.2 Population Inversion

To understand how it is possible to pump an oscillator coupled to the SSET
it is sufficient to discuss the SSET without the coupled oscillator. We will
show in this section how we can achieve population inversion in the SSET.
This means we can tune the SSET such that it is in the excited state | ↑〉
with a larger probability than in the low energy state | ↓〉.

Since we only need to describe the SSET, the total Hamiltonian is given
by

HT = HQ +HC +HR , (4.7)

HQ = HSSET ,

HC = Hqp . (4.8)

The tunneling Hamiltonian Hqp leads to incoherent transitions between the
eigenstates of the quantum system described by HSSET. We assume that
kBT ≪ eV, EC and therefore charges can only be transferred from the island
to the right lead. The energy for this process is provided by the transport
voltage. Each of the tunneling events corresponds to a decrease of the island
charge N by one. The energy dependence of the transition rates, which we
can calculate using either the Fermi’s golden rule or the diagrammatic tech-
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nique (see section 3.2.5), is weak. Therefore the magnitude of the transition
rates is mostly determined by the matrix element of the tunneling operator.

We separate the transition rates into two classes. The rates that take the
system from the state | ↑〉 to the state | ↓〉,

Γqp
↑→1 = sin2 ξ I(E↑ − E1 + eV ) , (4.9)

Γqp
1→↓ = sin2 ξ I(E1 − E↓ + eV ) ,

and the rates that take the system in the opposite direction

Γqp
↓→1 = cos2 ξ I(E↓ − E1 + eV ) , (4.10)

Γqp
1→↑ = cos2 ξ I(E1 − E↑ + eV ) .

These rates can be obtained using the explicit definition Qf = eφR/2 in the
rates (3.45). The function I(E) has been defined in eq. (3.43) and corre-
sponds to the normal current across the superconducting junction for our
specific system,

I(E) =
1

e2R

∫

dω [1 − f(ω)] f(ω − E)N (ω)N (ω − E) .

(4.11)

The normalized density of states in a superconducting lead is given by

N (E) = Θ(|E| − ∆)
|E|√

E2 − ∆2
, (4.12)

where we assume that the leads and the island have the same gap. This
specific density of states and in turn the normal current have interesting
properties which we will use to generate a squeezed photon distributions in
chapter 5.

For δNG = 0 the charge states |N = 0〉 and |N = 2〉 are exactly degener-
ate and therefore we have cos ξ = sin ξ = 1/

√
2. From this it follows that the

rates taking the system from | ↓〉 to | ↑〉 are of the same order as the rates tak-
ing the system in the opposite direction (see fig. 4.2a)). For δNG > 0 we get
cos ξ > sin ξ. This means for the rates that Γqp

↓→1 > Γqp
↑→1 and Γqp

1→↑ > Γqp
1→↓.

It is clear from these transition probabilities that for δNG > 0 the system
is most likely to be in the state | ↑〉. As can be seen in the diagram in fig.
4.2b) this is an effect which is equivalent to population inversion in a laser,
and in the same vein we can use it to drive an oscillator out of equilibrium.
Capacitive coupling of an oscillator to the SSET will generate a connection
between the states | ↑〉 and | ↓〉. The cycle of transitions shown in full arrows
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seen in figure 4.2b) will then pump energy into the oscillator because the
system will most likely move from the most populated state | ↑〉 trough the
intermediate states | ↓〉 and |1〉 back to the state | ↑〉. The energy difference
between the state | ↑〉 and | ↓〉, ∆E = E↑−E↓, is the energy which is pumped
into the oscillator in each cycle.

For δNG < 0 one can also use this process in the opposite direction and
take energy out of the oscillator. In this work we mainly focus on lasing, but
in section 4.2, we will also show explicit results for the cooling case.

4.1.3 Relevant Quantities

In this whole chapter we will analyze the stationary result for the density ma-
trix using a master equation approach. In many cases we can calculate either
numerical or analytical results for the complete density matrix. Essentially
all information about the stationary properties of the system is contained in
this result. However, instead of looking at the density matrix itself, we will
calculate several quantities that will give us an immediate idea about the
physics of our system.

The most simple quantity we will analyze is the average number of pho-
tons 〈n〉 = 〈a†a〉. If the dissipation rate of the oscillator has been indepen-
dently determined it is easily possible to measure the average photon number,
either measuring the intensity of the radiation leaking from a transmission-
line oscillator, or by measuring the amplitude of a mechanical oscillator.
However the average photon number does not tell us anything about the
shape of the photon distribution. We can equally have a certain average
photon number through thermal and lasing effects, despite the fact that
these are very different mechanisms.

To distinguish between different distributions, we calculate the Fano-
Factor,

F =
〈n2〉 − 〈n〉2

〈n〉 . (4.13)

The Fano-Factor has the property that it becomes one if the photons in
the oscillator are Poisson distributed. This represents the classical coherent
state, which normally emerges in a laser. For distributions which are more
narrow than the Poisson distribution the Fano-Factor will be smaller one.
These distribution are called squeezed or sub-poissonian and are interssting
for many application [67]. A broad thermal distribution will lead to a Fano-
Factor F ≈ n̄+1, where n̄ is the number of thermal photons in the oscillator.

An important feature that distingushes our system from the quantum op-
tic equivalent is that we have a current flow through the SSET. The current
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Figure 4.3: Diagramtic representation of the average
∑

i,k T
qp
i,k 〈(ci,D c†k,Re

−iφR/2)(t)〉. We see that we can relate the current dia-
gram to the selfenergy.

can be easily measured and can be used to gain information about the oscil-
lator. We can calculate it using the same diagrammatic technique introduced
in section 3.2. Counting the electrons tunneling through the right junction is
enough to calculate the current through the whole system because of current
conservation.

The current is related to the time derivative of the number of particles
that have tunneled through the right junction NR,

I(t) = e
d

dt
〈NR(t)〉 = ie〈[HT , NR] (t)〉 . (4.14)

The operator NR commutes with all parts of the Hamiltonian but the tun-
neling part. This leaves us with

I(t) = −ie
∑

i,k

T qp
i,k

(

〈(ci,D c†k,Re
−iφR/2)(t)〉 − 〈(c†i,D ck,Re

iφR/2)(t)〉
)

. (4.15)

The diagrams for the expectation values in eq. (4.15) have a vertex at time
t. It has the same structure as the other tunneling vertices from Hqp and
by attaching this vertex to the upper or lower propagator we can relate the
rightmost irreducible part of the diagram to the self-energy Σ. The relevant
part of the selfenergy contains all diagrams that connect vertices on different
branches of the Keldysh contour. We will call this part of the selfenergy Σ̄.
The current can now be written as

I(t) = e
∑

qq′q̄

∫ t

t0

dt′ρqq′(t
′)Σ̄qq′→q̄q̄(t

′, t) . (4.16)

In the stationary limit or the Markov approximation we can relate the current
to the tunneling rates,

I = e
∑

qq′q̄

ρqq′Γqq′→q̄q̄ . (4.17)
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This is the equation we will use to evaluate the current for our system.

4.2 Dressed-State Approach

We want to study the properties of an oscillator coupled to a superconducting
single-electron transistor. The SSET has been discussed in section 2.1 and
a simplified Hamiltonian of the coherent part of the system is given by eq.
(4.7). The coupling of the oscillator can be of differing origin, but here we
choose capacitive coupling (see fig. 4.1), which effectively means that we
have linear coupling between oscillator displacement and SSET charge.

We can now use the techniques introduced in section 3.2 to find a master
equation for the density matrix. Solving the master equation in the station-
ary limit will allow us to calculate the relevant properties of the system (see
section 4.1.3). In the first subsection we will discuss the strong coupling
regime. Here we can ignore the offdiagonal elements of the density matrix
and reduce the master equation to a simple balance equation. In the second
subsection we will derive analytical solutions for the stationary properties
for exact resonance between the oscillator and the SSET. Then we study the
effect of charge noise in the strong coupling regime. In the last subsection
we will solve the complete master equation, and compare the results to the
strong coupling case.

4.2.1 Strong Coupling Results

In this section we will neglect the effect of voltage fluctuations, T λ
i = 0,

and study the system only with quasiparticle tunneling and dissipation in
the oscillator. The strength of the rates is determined by V/eR and κ,
respectively. As described before, with the addition of the oscillator the
states | ↑〉 and | ↓〉 are coupled by the effective coupling ḡ. As long as the
spectrum of eigenenergies of our system is broader than the relevant rates we
can neglect all offdiagonal elements of the density matrix. For all calculations
in this section we assume that

ḡ, EJ ≫ V/eR, κ. (4.18)

In this limit the master equation is given by a simple balance equation

ρ̇i =
∑

j

(Γj→iρj − Γi→jρi) , (4.19)
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Figure 4.4: The average photon number 〈n〉, the Fano-Factor F and the current
I as a function of the frequency ω and the gate charge δNG. We see maxima in
the photon number for the resonance condition ∆E = mω, where m = 1, 2, . . ..
At resonance, the Fano-Factor has a minimum and the current has a maximum.
For the parameters: EJ/EC = 0.18, ∆/EC = 2.2, eV/EC = 7, g/EC = 0.01,
κ/(EC/e

2R) = 0.1.

where ρi = 〈i|ρ|i〉, is the probability of the system to be in the state i and
the rates are given by the golden rule rates (see section 3.2.5),

Γj→i = Γqp
j→i + Γdiss

j→i , (4.20)

Γqp
j→i = |〈i|e−iφR/2|j〉|2I(Ej − Ei + eV ) ,

Γκ
j→i =

κ

ω

Ej −Ei

1 − exp (−[Ej − Ei]/kBT )

{

|〈i|a|j〉|2 Ej > Ei

|〈i|a†|j〉|2 Ej < Ei
,

where we assumed a linear density of states for the dissipation in the os-
cillator. We can numerically calculate the eigenstates as a combination of
the Fock states of the oscillator |n〉 and the eigenstates of the SSET island
|N = 1〉, | ↑〉, | ↓〉. Eq. (4.19) can be solved numerically in the stationary
case ρ̇i = 0. We are interested in the average excitation of the oscillator
〈n〉 = 〈a†a〉 and the width of the distribution around this average, which is
determined by the Fano-Factor F = (〈n2〉 − 〈n〉2)/〈n〉. The current can be
determined as shown in section 4.1.3.

Results for n̄ = 0 can be seen in fig. (4.4). As expected we observe
maximal excitation if the oscillator is at resonance with the energy difference
∆E. The Fano-Factor at these positions becomes especially small, which
shows us that the density distribution has a sharp peak around the average
value of the photon number n. Directly at resonance the Fano-Factor can be
smaller than one, which means that we have a squeezed distribution. But
as we will show analytically in section 4.2.2 squeezing is destroyed even for
rather small temperatures. Around the resonances we see that the Fano-
Factor has maxima. This is the case because driving starts to increase the
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Figure 4.5: The average photon number 〈n〉, the Fano-Factor F and the current I
as a function of δNG. For the parameters: eV/EC = 7, ω/EC = 0.4, g/EC = 0.01,
kBT/ω = 20, κ/(EC/e

2R) = 0.1.

number of photons close to resonance but no lasing distribution has been
created. The current has its maximum for small δNG, exactly at the JQP
peak, but it has additional maxima at the photon resonances.

One can observe higher order resonances, ∆E = mω, for m = 1, 2, . . ..
However the condition (4.18) is in fact not enough for the higher order results
to be correct. The correct condition is given by

ḡ
√

〈n〉
(

ḡ
√

〈n〉
ω

)m−1

, EJ ≫ V/eR, κ, (4.21)

where m is the corresponding order of the resonance. Only if this condition
is fulfilled the off-diagonal matrix elements of the density matrix can be
neglected.

An example with non-zero temperature can be seen in figure 4.5. Here
it makes sense to look at a range of δNG that includes cooling. For positive
δNG we can again see the increase of the photon number on top of the
thermal photons. While for negative δNG the number of photons decreases
significantly at resonance. For δNG = 0 we see the pure thermal distribution
where the average photon number is given by the number of thermal photons.
The Fano-Factor shows behavior similar to the zero temperature case, only
that it is much larger overall as a result of the broad thermal distribution. At
δNG = 0 we get as expected F = n̄ + 1. The current has a maximum at the
JQP-cycle, δNG = 0, and at the photon resonance. For the cooling resonance
the current shows only a small increase, because the thermal energy of the
oscillator is rather small in our example.
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Figure 4.6: The charge states |N = 0〉 and |N = 2〉 are coupled by the Josephson
effect EJ to form the basis states | ↑〉 and | ↓〉. Tuned to resonance with the
oscillator (∆E ≈ ω) they form the eigenstates |±, n〉 of the coherent part of the
Hamiltonian.

4.2.2 Analytical Solution

We will constrict our analytical analysis to the vicinity of the resonances.
Close to a resonance we can find an explicit expressions for the states |i〉,
which are needed to calculate the transition rates (4.20). The charge state
|N = 1〉 does not couple to the oscillator and therefore the product states
|N = 1〉|n〉 are eigenstates of the Hamiltonian HQ. In the vicinity of the
resonances multiples of the frequency of the oscillator ω are close to the
energy difference ∆E and the frequency detuning is given by δωm = ω −
∆E/m. The states | ↓〉 and | ↑〉 are coupled by ḡ. The total coupling strength
is also determined by n, that means by the Fock states of the oscillator which
couple to the SSET. This gives us

|+, n〉m = sin ηm| ↑〉|n〉 + cos ηm| ↓〉|n+m〉 , (4.22)

|−, n〉m = cos ηm| ↑〉|n〉 − sin ηm| ↓〉|n+m〉 ,
tan 2ηm = 2ḡ

√
n/δωm .

These eigenstates are called dressed states. The charge states are coupled by
the Josephson coupling, and the resulting states are coupled to the photon
states through ḡ. This is illustrated in fig. 4.6.

We will start with an analysis of the system directly at resonance, such
that sin η = cos η = 1/

√
2. We have now two sets of states |±, n〉m and

|1, n〉 = |N = 1〉|n〉. The quasiparticle tunneling can only lead to transitions
between even and odd charges, this means it will cause transitions between
the two sets. Dissipation can not change the charge of a state and therefore
will only cause transitions within each set. We can plug the states (4.22)
into the expression for the transition rates (4.20). The transitions caused by
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quasiparticle tunneling are given by

Γqp
±,n→1,n =

1

2
Γqp
↑→1 , (4.23)

Γqp
±,n−m→1,n =

1

2
Γqp
↓→1 ,

Γqp
1,n→±,n =

1

2
Γqp

1→↑ ,

Γqp
1,n+m→±,n =

1

2
Γqp

1→↓ ,

where we have neglected the dependence of the energies on ḡ. This can be
done because the voltage eV is much larger than ḡ. The transitions between
the eigenstates caused by dissipation can be calculated exactly. However we
will use an approximation for the rates which will make it easier to solve the
balance equation (4.19). If we assume that 〈n〉 is large we can approximate
the dissipation rates to

Γκ
1/±,n→1/±,n−1 = (n̄ω + 1)nκ , (4.24)

Γκ
1/±,n→1/±,n+1 = n̄ω (n + 1)κ ,

where n̄ω = n̄+(ω) (see eq. 3.37). Using the rates given by eq. (4.23) and
eq. (4.24) we can write the balance equation (4.19) as

ρ̇±,n =
1

2
Γqp

1→↑ρ1,n +
1

2
Γqp

1→↓ρ1,n+m + (n̄ω + 1)(n+ 1)κρ±,n+1 + κn̄ωnρ±,n−1

−
(

1

2
Γqp
↑→1 +

1

2
Γqp
↓→1 + (n̄ω + 1)nκ+ n̄ω(n+ 1)κ

)

ρ±,n , (4.25)

ρ̇1,n =
∑

±

(

1

2
Γqp
↑→1ρ±,n +

1

2
Γqp
↓→1ρ±,n−m

)

− 1

2

(

Γqp
1→↓ + Γqp

1→↑

)

ρ1,n

+ (n̄ω + 1)κ ((n + 1)ρ1,n+1 − nρ1,n) + n̄ωκ (nρ1,n−1 − (n+ 1)ρ1,n) .

From this equation we can not extract an analytical solution for the density
matrix, but we can now find a solution for the average oscillator excitation
〈n〉. To do this we multiply eq. (4.25) by n and sum over all n. The resulting
equations are

ṅ1 =
∑

±

(

1

2
Γqp
↑→1n± +

1

2
Γqp
↓→1(n± +mρ±)

)

− 1

2

(

Γqp
1→↓ + Γqp

1→↑

)

n1 − κ(n1 − n̄ωρ1) ,

ṅ± =
1

2
Γqp

1→↑n1 +
1

2
Γqp

1→↓(n1 −mρ1) − κ(n± − n̄ωρ±) − 1

2

(

Γqp
↑→1 + Γqp

↓→1

)

n± ,

(4.26)
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Figure 4.7: We compare analytical and numerical solutions for the average photon
number 〈n〉 and the Fano-Factor F . black line: analytical solution, red-dashed:
numerical solution. a)〈n〉 as a function of κ. The photon number decreases like
κ−1. For this plot we have chosen δNG = 0.1. b) The Fano-Factor F as a function
of δNG. We see that the Fano-Factor becomes smaller than one for large δNG.
For this plot we have chosen κ/(EC/e

2R) = 0.1. Both plots used the parameters:
EJ/EC = 0.18, ∆/EC = 2.2, eV/EC = 7, g/EC = 0.01.

where ni =
∑

n nρi,n, ρi =
∑

n ρi,n and 〈n〉 = n+ + n− + n1.
We know that for sufficiently low dissipation the density matrix ρi,n is

peaked around 〈n〉 ≫ 1, therefore we have neglected ρi,1. A similar set of
equations can be derived for ρi, simply by summing the equations (4.25) over
n. In the stationary limit we get a set of linear equations which can be easily
solved for n+,n− and n1. At resonance the equation for the average number
of photons becomes

〈n〉m = mΓ2
D/κΓT + n̄ω , (4.27)

Γ2
D = Γqp

↓→1Γ
qp
1→↑ − Γqp

↑→1Γ
qp
1→↓ ,

ΓT =
(

Γqp
↓→1 + Γqp

↑→1 + 2(Γqp
1→↓ + Γqp

1→↑)
)

.

We see that the photon number is inversely proportional to the dissipation
rate κ, and independent of the oscillator coupling g. The dependence of
the quasiparticle rates on the energy difference between the states | ↑〉, | ↓〉
and |N = 1〉 is small. Therefore it is reasonable to approximate the normal
current in eq. (4.10) and (4.9) by

I0 = I(eV ). (4.28)

With this simplification we can write the average photon number as

〈n〉m =
mI0 cos 2ξ

3κ
. (4.29)

In fig. 4.7a) we compare the analytical results for the average number
of photons with results obtained from a numerical solution of the master
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equation. We have chosen δNG in a way that 〈n〉 is large enough to fulfill all
approximations we have made to derive equations (4.26). As can be expected
in that case the numerical and analytical results fit perfectly.

We can now use the same method to calculate higher moments of the
photon number n. If we multiply equations (4.25) with n2 and sum over all
n it is straight forward to derive an approximate equation for 〈n2〉. From this
we can calculate the Fano-Factor analytically. This equation is compared to
numerical results in fig. 4.7. We see that the analytical result is slightly off,
but captures the essential features.

The equation for the Fano Factor is not very instructive, so we give here
only an approximation for two special cases. As δNG increases we have
Γqp
↓→1,Γ

qp
1→↑ ≫ Γqp

↑→1,Γ
qp
1→↓. If we additionally assume small dissipation we get

F ≈ 1

2

(

1 +
(Γqp

↑→1
2
+ 4Γqp

1→↓
2
)m

Γqp
↑→1 + 2Γqp

1→↓

)

+ n̄ω . (4.30)

Here we see that at the first order resonance (m = 0), low temperatures
n̄ω ≈ 0 and strong driving, the Fano-Factor will always be smaller than
one. In fig. 4.7b) we see that for large δNG this fits well with numerical
results. However, already a small number of thermal photons will destroy
the sub-poissonian distribution in this system.

Now we look at the Fano-Factor at the first order resonance for n̄ = 0
and small κ,

F ≈ 1 +
Γqp
↓→1Γ

qp
1→↑

Γ2
D

+
(Γqp

↓→1 + Γqp
↑→1)(Γ

qp
↑→1 + 2Γqp

1→↑)

Γ2
T

−
Γqp
↑→1

ΓT
. (4.31)

Using the approximation given by eq. (4.28), we can write this as

F ≈ 1

2
+

1

4
cos−1 2ξ +

1

36
cos 2ξ . (4.32)

Here we see again that for strong driving, ξ → 0, our Fano-Factor can be
smaller than one at the first order resonance. As we approach δNG = 0 we
have ξ → π/4 and here the Fano-Factor will diverge because the number of
photons goes to zero and our approximations do not hold anymore.

In fig. 4.8 we compare the analytical results for the first and second order
resonance with fully numerical results. We have chosen a large temperature,
so that we can see an effect in the cooling regime as well. One should keep
in mind that we keep the oscillator always at resonance. The average photon
number fits very well for the first order resonance. But the Fano-Factor
is already problematic in the first order, because it diverges as 〈n〉 goes to
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Figure 4.8: The average photon number 〈n〉 and the Fano-Factor F as a function of
δNG. black line: numerical results for the first order resonance, red line: numerical
results for the second order resonance, black-dashed: analytical results for the first
order resonance, red-dashed: analytical results for the second order resonance.
For the parameters: EJ/EC = 0.18, ∆/EC = 2.2, eV/EC = 7, g/EC = 0.01,
κ/(EC/e

2R) = 0.1, kBT/ω = 20.

zero. In our calculation we explicitly assumed a large photon number and a
sharp peak in the density matrix. Therefore it is clear that our analytical
calculation can not fully describe the physics in the cooling regime.

For the second order resonance the average photon number also shows
some significant divergence from the analytical prediction. The reason for
this is that the frequency of the oscillator is rather small and in this case
our approximations for the eigenstates (4.22) are not correct anymore. For
coupling of the order of the frequency we have to consider the fact that,
additionally to coupling the states | ↑〉 and | ↓〉, the oscillator-SSET coupling
creates a shift in the point of origin of the oscillator depending on the state
of the SSET. In this case, the photon number states in eq. (4.22) have to be
replaced by the appropriate coherent states. This means that the selection
rule which creates the photon driving is not effective anymore, because the
states | ↑〉, | ↓〉 couple to an admixture of many photon states.

If we are not directly at resonance, the quasiparticle tunneling rates Γqp
i→j

depend on the photon number n. Therefore we can not simply sum the eq.
(4.25) over n. However, to get an approximate idea of how the width of the
resonance peaks scales with the system parameters we can exchange n→ 〈n〉
in the eigenstates (4.22). Using this approach we can solve eq. (4.26) and
see how the frequency detuning δω scales for a fixed average photon number,

δω = ḡ

√

2I0m cos 2ξ − 6κ〈n〉
κ〈n〉(cos 4ξ + 7)

. (4.33)

The detuning δω becomes zero if 〈n〉 = 〈n〉m and is linearly dependent on
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the coupling ḡ of the oscillator to the SSET. Comparison of eq. (4.22) with
numerical results shows that the replacement of the photon number n by the
average photon number in the eigenstates is a rather rough approximation.
However, in the numerical results we also see the linear dependence of the
width of the peak on the coupling constant.

4.2.3 Voltage Fluctuations

In this section we will discuss the effect of fluctuations in the gate charge
on the system. We will stay in the strong coupling limit, such that we can
describe the system with a simple balance equation (4.19). With the addition
of charge noise the rates in the balance equation are given by

Γj→i = Γqp
j→i + Γκ

i→j + Γλ
i→j , (4.34)

Γλ
j→i =

λ

∆E
|〈j|N |i〉|2 Ej − Ei

1 − exp (−[Ej −Ei]/kBT )
.

The charge noise in a SSET can lead to transitions between the states
| ↑〉, | ↓〉 and pure dephasing. However, in the strong coupling limit we can
neglect the off-diagonal elements of the density matrix and therefore pure
dephasing does not have much of an impact.

Using the dressed states as defined by eq. (4.22) at the first order res-
onance we can calculate the matrix element for several possible transitions.
At resonance the matrix element for transitions within a set of states with
the same quantum number n is given by

〈+, n|N |−, n〉 = cos2 ξ − sin2 ξ , (4.35)

If we go to the regime δNG > 0 to pump the oscillator this matrix elements
becomes approximately cos2 ξ. We can compare this matrix element with the
matrix element for a transition changing the photon quantum number,

〈+, n|N |−, n〉 = sin ξ cos ξ . (4.36)

We see that for pumping this matrix element is suppressed by sin ξ. Therefore
the transitions caused by charge fluctuations do not affect the number of
photons as long as we are in the strong coupling regime.

In fig. 4.9 we can see results for a numerical solution of the balance
equation in the stationary case. The frequency is kept constant and the gate
charge δNG and strength of the voltage fluctuations λ is being varied. As
expected, even for voltage fluctuations larger then the quasiparticle pumping,
the resonance peak hardly changes. The current shows the typical peak at the
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Figure 4.9: The average number of photons 〈n〉 and the current I as a function
of the gate charge δNG and the charge noise strength λ. The photon number
hardly changes and the peak in the current becomes broader. For the parameters:
EJ/EC = 0.18, eV/EC = 7, κ/(EC/e

2R) = 0.1, ω/EC = 0.4.

resonance on top of the decaying JQP current. The change in the current is
also small. The only noticeable issue is the change in the peak width for very
strong voltage fluctuations. This is the case because charge noise broadens
the JQP peak. Even if we are out of resonance and Cooper-pair tunneling
becomes less likely charge transfer can happen via incoherent Cooper-pair
tunneling that occurs due to voltage fluctuations. We will discuss this in
more detail in the sections 4.3 and 4.4. For smaller coupling g the dephasing
caused by charge noise plays a significant role and we will be able to analyze
the effect analytically. In this section and section 4.3 we can only treat voltage
fluctuations described by a flat spectral density. Otherwise the expansion in
the coupling between reservoir and quantum system would diverge. This has
been shown in section 3.2.6. However, in section 4.4 we will use the polaron
transformation to discuss several different spectral densities.

4.2.4 Solving the Complete Master Equation

So far we have used the dressed state approach only in the limit of strong
coupling. However we can also find the stationary density matrix for the
complete master equation. In this section we will again neglect voltage fluc-
tuations and only consider dissipation in the oscillator and quasiparticle tun-
neling.

The full rates for this case are essentially given by eq. (3.44) and eq.
(3.43), where we have to adapt the operators to the actual coupling operators
in our Hamiltonian HC . We solve the master equation numerically and the
results can be seen in fig. 4.10. In contrast to the strong coupling case we
see that the higher orders disappear because the coupling is smaller than the
incoherent transition rates. We will discuss this effect in section 4.3.4.
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Figure 4.10: The photon number 〈n〉, the Fano-Factor F and the current I as a
function of the gate charge δNG and the oscillator frequency ω. We take into
account all elements of the density matrix. For higher order resonances the
effective coupling becomes much smaller than the quasiparticle tunneling rates
and their signature vanishes. For the parameters: EJ/EC = 0.18, eV/EC = 7,
κ/(EC/e

2R) = 0.1, g/EC = 0.01, (e2R)−1 = 0.004.

The dressed state approach is most usefull in a strong coupling regime
where we can reduce the master equation to a simple balance equation. How-
ever if we go into a regime where transition rates and coupling between os-
cillator and SSET are of similar order, there are different methods which will
allow us to describe our system more effectively. In the next section we will
use an approach better suited for the weak coupling regime.

4.3 Lindblad Approach

In this section we will use a simplified master equation to analyze the SSET-
maser. We will start by transforming the complete Hamiltonian of the system
(4.6) into the base of the charge qubit | ↑〉, | ↓〉. In the composite base of
qubit and photon number states we will derive a simplified master equation
in the second subsection. This master equation has Lindblad form, but is
limited to a coupling strength g that is smaller then the decay rates of the
relevant bath correlators.

Voltage fluctuations can cause dissipation and dephasing. We will sep-
arate these effects and study them independently in the third and fourth
subsection. To study dissipation it is necessary to solve the master equation
numerically. In the case of pure dephasing we are able to derive an analytical
solution that gives us good insights into the properties of our system.
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4.3.1 The Hamiltonian in the Charge Qubit Base

The three relevant states that describe the SSET are given by | ↑〉,| ↓〉 and
|N = 1〉. However the state |N = 1〉 is only connected to the other states
via the incoherent quasiparticle transitions. We will describe this transitions
within the framework of the master equation and reduce the Hamiltonian to
the states | ↑〉, | ↓〉,

HSSET =
1

2
∆Eσz , (4.37)

where σi are the Pauli-matrices acting on the states | ↑〉, | ↓〉, and ∆E =
√

16E2
CδN

2
G + E2

J . All other parts of the Hamiltonian have to be transformed
as well. Essentially we can do this by transforming the operators coupling
to the SSET. For the Hamiltonian Hqp this means

eiφR/2 = P1↑ sin ξ + P1↓ cos ξ + P↑1 cos ξ + P↓1 sin ξ , (4.38)

where Pij = |i〉〈j|. Charge noise and the oscillator couple to the system via
the charge variable. As has been discussed in section 4.2.3, charge noise can
only cause transitions between the states | ↑〉 and | ↓〉. This means that
we can neglect the coupling to the state |N = 1〉. Accordingly the charge
variable transforms to

N = cos 2ξσz + sin 2ξσx . (4.39)

As it is known from quantum computing at the symmetry point δNG = 0
charge noise creates only dissipation, cos 2ξ = 0. If we tune away from
symmetry we get additionally pure dephasing. We operate close to the regime
where our eigenstates correspond to the charge states, such that dephasing
is the more important component of the charge noise.

After these transformations the Hamiltonian of the complete system is
given by

HT = HQ +HC +HR . (4.40)

The coherent part of the system is given by

HQ = HSSET +Hg +Hω , (4.41)

where the coupling between SSET and oscillator is now given by

Hg = g(cos 2ξσz + sin 2ξσx)(a+ a†) . (4.42)
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Coupling to the reservoirs is contained in

HC = Hqp +Hκ +HR +HD . (4.43)

Dissipation in the oscillator remains unaffected by our transformation into
the qubit base. Quasiparticle tunneling, relaxation and pure dephasing are
given by

Hqp =
∑

i,k

T qp
i,k ci,D c

†
k,R (P1↑ sin ξ + P1↓ cos ξ + P↑1 cos ξ + P↓1 sin ξ) + h.c. ,

HD =
1

2
σz

∑

i

TD
i

(

bDi + bDi
†
)

, (4.44)

HR = sin 2ξσx

∑

i

TR
i

(

bRi + bRi
†
)

.

We will study dephasing and dissipation independently. Therefore the Hamil-
tonian Hλ has been divided into pure dephasing HD and dissipation HR.
Within our formalism we can consider any source of dephasing, not only
voltage fluctuations. However, if we want to focus on the dephasing effects
of voltage fluctuations we have to replace TD

i by cos 2ξTD
i . It should be

noted, that for strong driving the eigenstates of the charge qubit are similar
to the charge states. This means that cos 2ξ → 1. Therefore, in the interest-
ing region where we have lasing, there will not be much difference between
these two possibilities.

4.3.2 The Master Equation in Lindblad Form

As discussed in chapter 3 we expand the time evolution of the density matrix
in orders of HC . Then we add up all inseparable diagrams into the selfenergy
Σ(t′, t),

ρ̇ = −i[HQ, ρ] +

∫ t

t0

dt′ρ(t′)Σ(t′, t) . (4.45)

In section 4.22 we have projected this equation onto the eigenstates of HQ

but this not necessary. One can use any kind of base. However if the basis
states are not the eigenstates of HQ, then the time evolution of the states
along the Keldysh contour is not diagonal anymore.

We project eq. 4.45 onto the product base of SSET and photon states,

{| ↑〉, | ↓〉, |1〉} ⊗ |n〉 . (4.46)
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Figure 4.11: A second order diagram corresponding to the transition Γ↑,n−1→1,n−1.
The time evolution along the Keldysh contour leads to a rotation of the basis
states. If g

√
n is smaller then the decay rate of the diagrams, the rotation can be

neglected.

For this case we can find a parameter range where we can approximate the
time evolution along the Keldysh contour as diagonal. The time evolution
will not change the states as long as the correlation time is much smaller
then 1/g

√
n. This means the contribution of the diagram has to decay faster

then the time given by 1/g
√
n (see fig. 4.11).

Projecting eq. (4.45) onto the composite base helps us to derive a simple
second order approximation in the Markovian limit. The coupling operators
for the bosonic reservoirs allow only a transition with the energy difference
∆E. Therefore we can immediately write down the relevant terms in a
Lindblad form. For the quasiparticle tunneling we will ignore the energy
difference between the rates caused by the charging energy. The master
equation is given by

ρ̇ = −i[HQ, ρ] + Lqpρ+ Lκρ+ LRρ+ LDρ . (4.47)

The master equation includes four Lindblad operators. We have an operator
describing the quasiparticle tunneling,

Lqpρ =
I0
2

ΣN=0,1(2P
†
N+1,NρPN+1,N (4.48)

− PN+1,NP
†
N+1,Nρ− ρPN+1,NP

†
N+1,N) ,

where the prefactor I0 has been defined in eq. (4.28). Qubit dissipation is
described by

LRρ =
R sin2 2ξ

2
(n̄∆E + 1) (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (4.49)

+
R sin2 2ξ

2
n̄∆E (2σ+ρσ− − σ−σ+ρ− ρσ−σ+) ,
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where n̄∆E = n̄+(∆E), and pure dephasing is described in

LDρ = D (σzρσz − ρ) . (4.50)

The dissipation in the oscillator is given by,

Lκρ =
κ

2
(n̄ω + 1)

(

2aρa† − a†aρ− ρa†a
)

(4.51)

+
κ

2
n̄ω

(

2a†ρa− aa†ρ− ρaa†
)

.

We can calculate the prefactors in the Lindblad operators by evaluating the
spectral density of the respective bath at the relevant energy differences.
However for our purposes it is enough to treat the prefactors as a parameter.
In section 4.4 we will discuss the connection of the prefactor for dephasing
to the noise spectral density in more detail.

4.3.3 Numerical Results

We can solve the master equation numerically in the stationary limit and
calculate all stationary properties of the system. To simplify our calculation
we can apply a rotating wave approximation and consider only those density
matrix elements which will play a significant role for small coupling. We will
first discuss the Hamiltonian of the quantum system and the terms we can
neglect in the oscillator-SSET coupling,

Hg = g(cos 2ξσz + sin 2ξσx)(a
† + a) , (4.52)

= g̃σz(a
† + a) + ḡσx(a

† + a) .

The second term of the coupling Hamiltonian connects the states | ↑〉|n〉 and
| ↓〉|n + 1〉. These two states can be degenerate, therefore the second term
has to be kept. The first term connects states that have the energy difference
ω, therefore we can neglect it as long as g̃

√

〈n〉 ≪ ω. In the same spirit we
can perform a rotating wave approximation in our master equation and only
consider the offdiagonal matrix elements ρ↓,n+1/↑,n.

In figure 4.12 we compare the results of a full solution of the master equa-
tion with the results in the rotating wave approximation. As the coupling
between the oscillator and the SSET increases we see that the results start to
diverge. The maximum in the peak in the photon number is shifted slightly
to a larger gate charge δNG for the full solution. This is the Bloch-Siegert
shift [68]. However, the shape of the peak remains the same. For all further
calculation we will choose the effective coupling in such a way that we are
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Figure 4.12: The average photon number 〈n〉 and the Fano-Factor F as a function
of the gate charge δNG. We compare a full solution of the master equation and and
a rotating wave approximation. black: g/EC = 0.002, red: g/EC = 0.003. lines:
rotating wave approximation, dots: full solution. For the parameters: eV/EC =
6.5, ω/EC = 0.4, EJ/EC = 0.2, I0/EC = 0.0325, κ/EC = 0.00005.

Figure 4.13: The average photon number 〈n〉 the Fano-Factor F and the current
I as a function of the gate charge δNG. We calculate these quantities for several
different values of charge noise strength R. black: R/EC = 0.03, red: R/EC =
0.04, blue: R/EC = 0.05, green: R/EC = 0.06. For the parameters: ω/EC = 0.4,
EJ/EC = 0.2, g/EC = 0.004, I0/EC = 0.0325, κ/EC = 0.00005.
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inside the regime where the rotating wave approximation is valid, and the
Bloch-Siegert shift remains small.

We study dephasing and dissipation separately. In the next section we will
find a fully analytical solution for pure dephasing but without dissipation. To
analyze dissipation we need numerical results. In fig. 4.13 we see the average
photon number, the Fano-Factor and the current for several different values
of R. In contrast to our results in section 4.2.3 dissipation caused by charge
noise has a strong impact on the photon number. This is because we are
looking at the situation where g is of the same order of magnitude as R.
Accordingly the Fano-Factor decreases only slightly at resonance for strong
noise. Interestingly the size of the current at resonance hardly changes. The
peak in the current caused by the photon resonance is reduced, but the overall
current increases because of the broadening of the JQP peak. The net effect
of this is that the current at resonance stays the same.

4.3.4 Analytical Results

In this section we study the effect of pure dephasing. Without relaxation in
the SSET the master equation is given by

ρ̇ = i[HQ, ρ] + Lqpρ+ Lκρ+ LDρ . (4.53)

It is our goal to derive an effective equation for the probability distribution
of the number of photons in the oscillator ρn = 〈n|TrSSETρ|n〉. We do this
by tracing out the degrees of freedom of the SSET in eq. (4.53),

ρ̇n = 〈n|TrSSET {i[HQ, ρ] + Lqpρ+ LDρ} |n〉 (4.54)

+ 〈n|LκTrSSETρ|n〉 .

where we see that the dissipation in the oscillator only depends on ρn.

For the parameters that are usually used, the dissipation rate in the os-
cillator is generally much smaller than the quasiparticle rates in the SSET
[25]. This means that we have two widely separated timescales in our prob-
lem. Therefore we can treat ρn as constant on the time scale of the artificial
atom. From this, we can calculate the effect of the first term in eq. (4.54) on
the photon number distribution. The transitions between the states of the
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artificial atom are given by

ρ̇1,n/1,n = I0 sin2 ξρ↑,n/↑,n + I0 cos2 ξρ↓,n/↓,n (4.55)

− I0ρ1,n/1,n ,

ρ̇↑,n/↑,n = −i g
√
n+ 1

(

ρ↑,n/↓,n+1 − ρ∗↑,n/↓,n+1

)

+ I0 cos2 ξρ1,n/1,n − I0 sin2 ξρ↑,n/↑,n ,

ρ̇↓,n+1/↓,n+1 = i g
√
n + 1

(

ρ↑,n/↓,n+1 − ρ∗↑,n/↓,n+1

)

+ I0 sin2 ξρ1,n/1,n − I0 cos2 ξρ↓,n+1/↓,n+1 ,

ρ̇↑,n/↓,n+1 = −(I0/2 +D)ρ↑,n/↓,n+1 − iδωρ↑,n/↓,n+1

− ig
√
n + 1

(

ρ↑,n/↑,n − ρ↓,n+1/↓,n+1

)

.

Using the fact that ρn = ρ↑,n/↑,n + ρ↓,n/↓,n + ρ1,n/1,n we can form a closed set
of equations.

d

dt









ρ↑,n−1/↑n−1

ρ↑,n−1/↓,n

ρ↓,n/↑,n−1

ρ↓,n/↓,n









= M









ρ↑,n−1/↑n−1

ρ↑,n−1/↓,n

ρ↓,n/↑,n−1

ρ↓,n/↓,n









+









β1ρn−1

0
0

β2ρn









, (4.56)

M =









α1 −iḡ√n iḡ
√
n 0

−iḡ√n −D − I0/2 − iδω 0 iḡ
√
n

iḡ
√
n 0 −D − I0/2 + iδω −iḡ√n

0 iḡ
√
n −iḡ√n α2









,

α1 = −I0(cos 4ξ + 7)

4(cos 2ξ + 3)
,

α2 =
I0(cos 4ξ + 7)

4(cos 2ξ − 3)
,

β1 =
2I0 cos4 ξ

3 + cos 2ξ
,

β2 =
2I0 sin4 ξ

3 − cos 2ξ
.

This set of equations can be solved in the stationary case and we get a master
equation for the density matrix of the oscillator,

ρ̇n =
(

Γ+
n + κn̄ωn

)

ρn−1 (4.57)

−
(

Γ+
n+1 + Γ−

n + n̄ω(n+ 1) + (n̄ω + 1)n
)

ρn

+
(

Γ−
n+1 + κ(n̄ω + 1)(n+ 1)

)

ρn+1 ,
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Figure 4.14: The probability distribution ρn as a function of the photon number
n. For low temperatures the distribution is sharply peaked. As the temperature
increases the distribution becomes broader. black: n̄ω = 0, red: n̄ω = 10, blue:
n̄ω = 40. For the parameters: δω = 0, eV/EC = 6.5, g/EC = 0.002, EJ/EC = 0.2,
I0/EC = 0.0325, κ/EC = 0.00005.

where Γ+
n = ΓT,n cos4 ξ is the rate increasing the number of photons, Γ−

n =
ΓT,n sin4 ξ is the rate decreasing the number of photons and

ΓT,n =
I0ḡ

2n

3ḡ2n+ I0((2D+I0)2+4δω2)(cos 4ξ+7)
32(2D+I0)

. (4.58)

We can solve this equation for all temperatures,

ρn = ρ0Π
n
m=0

Γ+
m + κn̄ωm

Γ−
n + κ(n̄ω + 1)m

, (4.59)

where ρ0 is a normalization constant. We can simplify the density matrix for
n̄ = 0,

ρn = ρ0Πi
α

β + i
, (4.60)

α =
I0 cos4 ξ

3κ
,

β =
I0 sin4 ξ

3κ
+
I0 ((2D + I0)

2 + 4δω2) (cos 4ξ + 7)

96ḡ(2D + I)
.

From this result for the stationary distribution, we can calculate all stationary
quantities. The average photon number is given by,

〈n〉 =
e−α

(

(1 + β)α1+β + eα(β − α) (−Γ[2 + β] + (1 + β)Γ[1 + β, α])
)

β(1 + β) (Γ[β] − Γ[β, α])
,

(4.61)
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and the Fano Factor,

F =
e−α

[

−(β + β2)2α2β + eα(−Γ[2 + β] + β(1 + β)Γ[β, α])
]

β(1 + β)(Γ[β] − Γ[β, α])
(4.62)

×
[

−eααΓ[2 + β] + β(1 + β)(αβ(α− β) + eααΓ[β, α])
]

(1 + β)α1+β + eα(β − α)(−Γ[2 + β] + (1 + β)Γ[1 + β, α])
,

where Γ(x) is the Gamma function and Γ(x, y) is the Incomplete Gamma
function. We can also calculate the current. For our system the current is
given by

I = e
(

ρ1I0 + ρ↑I0 sin2 ξ + ρ↓I0 cos2 ξ
)

, (4.63)

where ρi =
∑

n ρi,n/i,n. Our solution of eq. (4.96) gives us ρ↑,n and ρ↓,n as
a function of ρn and we can use the relation ρn = ρ1,n/1,n + ρ↓,n/↓n + ρ↑,n/↑,n

to calculate ρ1,n/1,n. It is straight forward to calculate an analytical solution
for the current using these equations.

In fig. 4.14 we see the density matrix as a function of the photon number
n. For large temperatures we get a broad distribution with a long tail, that
corresponds to the thermal distribution. At n̄ω = 0 we have a sharply peaked
distribution. From eq. (4.60) is is simple to estimate this peak,

nmax = α− β = nsat − δ , (4.64)

nsat =
I0 cos 2ξ

3κ
,

δ =
I0∆E

2(cos 4ξ + 7)

24E2
J g

2

4δω2 + (I0 + 2D)2

4(I0 + 2D)
. (4.65)

For nmax ≫ 1 this result corresponds very well to the average photon number.
We see that for strong coupling we will achieve saturation with the number
of photons being nsat. This is exactly the result obtained in section 4.2.2,
see eq. (4.27). In section 4.2.4 we have seen that the photon number in the
oscillator is reduced if I0 becomes larger than the effective coupling between
oscillator and SSET. For I0 ≫ ḡ, D the reduction δ of the saturation photon
number nsat is proportional to I2

0 . At the same time nsat grows only linearly
with I0. Therefore large I0 is destroying the lasing effect.

In the same limit we can calculate an approximation for the Fano-Factor
which is given by

F =
α

α− β
=
I0 cos4 ξ

3κnmax
. (4.66)
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Figure 4.15: The average photon number 〈n〉, the Fano-Factor F and the current
I as a function of the gate charge δNG. black: D = 0.05, red: D = 0.1, blue: D =
0.15. dashed: analytical solution, lines: numerical solution. For the parameters
eV/EC = 6.5, g/EC = 0.004, EJ/EC = 0.2, I0/EC = 0.0325, κ/EC = 0.00005.

If we are at resonance, δω = 0, the coupling between oscillator and SSET
is strong, nmax ≈ nsat, and we have tuned far aways from the JQP-cycle,
ξ → 0, the Fano-Factor given by eq. (4.66) approaches one. We see that this
stands in contrast to our results in section 4.2.2 where we have shown that
for strong coupling the Fano-Factor can be smaller than one. Here we see
limits of the approximations we made in this chapter.

In fig. 4.15 we see a comparison of our analytical results and numerical
results. The average photon number and the current fit perfectly. For the
Fano-Factor we have only a small discrepancy. As we increase the dephasing,
the photon number and the peak in the current decrease. Accordingly the
Fano-Factor increases. With decreasing photon number the peak becomes
slightly broader. Additionally to the broadening we see that the maximum
of the peak shifts to a smaller detuning δNG. This is an effect directly related
to the capacitive coupling of SSET and oscillator. We will discuss it in more
detail in section 4.4.4. If we assume that the only source of dephasing are
voltage fluctuations we have to replace D by D cos2 2ξ in our result. The
effect of this would be that the dephasing increases with increasing δNG and
the maximum in the peak in 〈n〉 would shift even further to small δNG.

4.4 Low-Frequency Noise

A solid state system is always coupled to many sources of noise. Well stud-
ied examples are two level fluctuators [69], phonon coupling [70], and voltage
fluctuations caused by an external impedance [50]. We discussed the de-
scription of noise at length in chapter 3. Fluctuations are described by their
spectral density, which gives us a distribution of fluctuation frequencies. If
we have fluctuations with a smooth distribution we can calculate the aver-
age effect on the quantum system using standard methods, as discussed in
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section 3.2. For noise much slower than the time evolution of the quantum
system we can use a quasistatic approach, as discussed in section 3.5. The
intermediate regime between these two cases is a noise frequency distribution
that is peaked for small frequencies but still has a significant width. We will
use the term low frequency noise to describe this intermediate regime.

Low frequency voltage noise can be a major factor in our artificial atom.
The noise can couple through the transport voltage V and the gate charge
NG. The spectral density of voltage noise is determined by the impedance
of the leads, coupling to the quantum system. We have discussed the form
of the effective impedance in section 2.1.2. For large resistance in our leads,
voltage fluctuations at small frequencies will be dominant. If there is an
additional inductance we get resonances for certain frequencies determined by
the inductance and the normalized capacitance. In this section we will focus
on low frequency voltage noise, where the characteristic noise frequency is
smaller then the qubit energy splitting ∆E. This means that the longitudinal
noise coupling is dominant.

In the first subsection we will discuss the polaron transformation which
we will perform to be able to treat low frequency noise in a large parameter
range. The polaron transformation changes the Hamiltonian of the system
and this in turn changes the master equation. In the second subsection
we will discuss strong low frequency voltage fluctuations. We will show for
which type of spectral density our expansion is valid. Then we will introduce
the energy broadening due to quasiparticle tunneling. The strong dephasing
effects of quasiparticle tunneling for the SSET-maser allows us to describe
weak noise within the same approach we used to describe strong low fre-
quency noise. After that we will derive analytical results in the classical
limit for large temperatures. In the fifth subsection we will discuss the case
of small temperature which is quantitatively different from the classical limit.
In the last two sections we will discuss two special kinds of noise, one being
the purely resistive impedance and the other is the LC-oscillator.

4.4.1 Master Equation

In this section we will discuss an approach which will allow us to describe low
frequency noise well beyond the limits of the standard master equation. It is
in principle possible to take all components of the Hamiltonian into account,
but for the relevant parameter range this is actually not necessary. We will
choose the coupling strength g comparable to the experimental values [25].
This allows us to use the rotating wave approximation. Additionally we
only have to consider pure dephasing in the SSET because we focus on low
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frequency noise. The total Hamiltonian is given by,

HT = HQ +HC +HR , (4.67)

HQ = HSSET +Hg +Hω ,

Hg = ḡ(aσ+ + a†σ−) ,

HC = Hqp +Hκ +HD .

To be able to describe low frequency noise we will treat the respective cou-
pling nonperturbatively. Instead we will perform a perturbation expansion
in the coupling between oscillator and SSET. To do so we use the polaron
transformation,

Uz = exp

[

1

2
σz

∑ TD
i

ωD
i

(

bDi
† − bDi

)

]

. (4.68)

The resulting Hamiltonian is given by

H̄T = UzHTU
†
z = H̄Q + H̄C + H̄R , (4.69)

H̄Q = HSSET +Hω ,

H̄C = Hqp +Hκ + H̄g ,

The transformed reservoir Hamiltonian H̄R contains an irrelevant energy shift
and the dephasing is now contained in the coupling between SSET and os-
cillator. The new part of the coupling Hamiltonian H̄C is given by

H̄g = ḡ
(

AY † + A†Y
)

, (4.70)

where A = aσ+ and the polaron operator Y is given by

Y = exp

[

∑

i

TD
i

ωD
i

(

bDi
†
+ bDi

)

]

. (4.71)

The polaron transformation effects the quasiparticle tunneling Hqp as well.
However, for each quasiparticle transition we gain the energy eV . The trans-
port voltage is much larger than the fluctuations of the energy levels of the
SSET. Therefore we can neglect the influence of dephasing on the quasipar-
ticle tunneling.

The coupling Hamiltonian consists of three parts and accordingly we get
a master equation of the form

ρ̇ = −i[H̄Q, ρ] + Lqpρ+ Lκρ+ Lχρ . (4.72)
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where Lqp and Lκ are the Lindblad operators describing the quasiparticle
tunneling and dissipation in the oscillator, respectively. The derivation of
these terms has been discussed in section 4.3.2. It should be noted that the
product base of SSET and oscillator states is the eigenbasis of H̄Q. Therefore
Lqp and Lκ can be derived as second order expansions of Hqp and Hκ on the
Keldysh contour without any additional approximations.

The Lindblad operator Lχ represents the coupling between oscillator and
SSET,

Lχρ =
χ↑

2

(

2AρA† − A†Aρ− ρA†A
)

+
χ↓

2

(

2A†ρA− AA†ρ− ρAA†
)

. (4.73)

We can derive it by expanding the time evolution of the density matrix on
the Keldysh contour up to second order. An expansion of polaron operators
has been discussed in section 3.3. The operators have to be disentangled in
separable and inseparable diagrams, which we can add up in the form of a
Dyson equation. We will discuss higher order terms in section 4.4.2, where
we will see for which kind of spectral density our expansion is valid. The
prefactors χ↑/↓ are directly linked to the properties of the reservoir,

χ↑ =

∫

dt〈Y (t)Y †(0)〉e−I0|t|/2eiδωt , (4.74)

χ↓ =

∫

dt〈Y (t)Y †(0)〉e−I0|t|/2e−iδωt .

We have to evaluate the correlators of the polaron operators at the energy
difference ±δω, because the operator A can only cause transitions between
the states | ↑〉|n〉 and | ↓〉|n + 1〉. As a result of the quasiparticle tunneling
we get an additional energy broadening I0/2. This has been discussed in
general in section 3.4 and we will discuss it for our specific system in section
4.4.3. The result for the polaron correlator 〈Y (t)Y (0)〉 is well known from
P (E)-Theory [49],

〈Y (t)Y (0)〉 = exp

(

1

π

∫ ∞

0

dω
J(ω)

ω2

[

(cosωt− 1) coth
βω

2
− i sinωt

])

,

(4.75)

where J(ω) is the spectral function of the reservoir. Voltage fluctuations
caused by the coupling to an external impedance are a major source of noise
for a SSET. By analyzing the phase-phase correlation function [49] it is pos-
sible to connect the spectral function to the impedance,

J(ω) = e2ωReZt(ω) . (4.76)
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Independent of the exact form and coupling of the impedance it always con-
sists of an effective resistance R, an effective capacitance C and an effective
inductance L. As we have discussed in section 2.1 we have to consider the
impedance as seen from the quantum system. This gives us

ReZt(ω)

RK
=

r

(ω/ωR)2 + (1 − (ω/ωL))2)
, (4.77)

where ωR = 1/RC, ωL = 1/(LC)1/2, r is the normalized resistance R/RK

and RK is the resistance quantum. It should be noted here that we can use
this description to model a broad range of spectral densities. It is therefore
not strictly necessary that our dephasing is caused by voltage fluctuations.

4.4.2 Noise Spectra

In section 3.3 we have presented a diagrammatic expansion of the time evo-
lution of the density matrix for coupling to a bosonic reservoir via a polaron
operator. The Lindblad operator Lχ (4.73) is the result of a second order
expansion. In this section we will analyze higher order diagrams, to see for
which kind of spectral density our second order approximation is valid.

We will discuss a spectral density peaked at low frequencies. This is
exactly the type of spectral density where we have shown in section 3.2.6
that an expansion of the coupling to the bath diverges. We choose a system
with no inductance. Here the effective impedance becomes

ReZt(ω)

RK
=

r

(ω/ωR)2 + 1
. (4.78)

This is a Lorentzian function peaked at ω = 0 with width ωR. For large
resistance r the function will be high and narrow. In that case we can expand
the exponent in eq. (4.75) in orders of βω,

〈Y (t)Y (0)〉 = exp

[

2

∫ ∞

0

dω
S(ω)

ω2
(cosωt− 1)

]

, (4.79)

where in the limit kBT ≫ ωR the spectral density is given by

S(ω) =
ω2

Rr kBT

ω2 + ω2
R

. (4.80)

We can identify this spectral density with our choice in section 3.2.6; the
height is given by the product of the temperature kBT and the resistance r,
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Figure 4.16: A fourth order diagram. The wiggly lines correspond to 〈Y (t′)Y †(t1)〉
and 〈Y (t2)Y

†(t)〉. The dashed line corresponds to F (t′, t1, t2, t).

µ = r kBT , and the width is determined by the RC cut-off frequency, λ = ωR.
A direct expansion in the coupling would diverge as soon as we get

r kBT > ωR . (4.81)

This is different for the polaron expansion. We can evaluate eq. (4.75) for
r kBT ≫ ωR and get

〈Y (t)Y (0)〉 = exp
(

r kBTωRt
2
)

. (4.82)

For diagrams with overlapping contractions to converge it is enough if the
correlator has a decay rate larger than the coupling strength. This means we
get convergence for

ḡ
√

〈n〉 <
√

kBTrωR . (4.83)

The height of our noise spectral density increases linearly with r and the
width decreases linearly with r. From this we could get the impression that
we can describe noise for any value of the external resistance. This would
also mean that we can describe noise with a delta function shaped spectral
density. However, as we have shown in section 3.3, there are additional
inseparable diagrams for the expansion of polaron operators on the Keldysh
contour. An example for one of those diagrams is shown in fig. 4.16. This
type of diagram has to be considered, and it will give us a limit for the
minimal width of the spectral density.

The time dependent part of the diagram shown in fig. 4.16 is given by
∫ t

t0

dt2

∫ t2

t0

dt1

∫ t2

t0

dt′〈Y (t′)Y †(t1)〉〈Y (t2)Y
†(t)〉 × F (t′, t1, t2, t) . (4.84)
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We already know the results for the pairwise correlators and it is straight
forward to find an explicit form for the connector,

F (t′, t1, t2, t) = exp

[

−
∫ ∞

0

dω
S(ω)

ω2
cosω(T1 − T2) sinω∆t1 sinω∆t2

]

− 1 ,

(4.85)

where we have defined ∆t1 = t1 − t′, ∆t2 = t − t2, T1 = (t′ + t1)/2 and
T2 = (t + t2)/2 (see fig. 4.16 for an illustration of these timescales). The
relevant times scale for ∆ti is given by the decay time of the relevant pairwise
correlators, 1/

√
r kBTωR and the width of the spectrum is defined by ωR. We

are interested in the limit of the expansion for r kBT ≫ ωR. Accordingly we
have

ωR ≪
√

r kBTωR ⇒ ωR

r kBT
≪ 1 . (4.86)

In this limit we can expand the exponent to the first order in ∆ti,

F (t′, t1, t2, t) = e−2∆t1∆t2
R ∞
0 S(ω) cos[ω(T1−T2)] − 1 , (4.87)

= e−r kBTωR∆t1∆t2e−ωR(T2−T1) − 1 .

Here we see that the decay time for the function F (t′, t1, t2, t) is essentially
given by ωR, because on this time scale the exponential function will become
one. Therefore the whole diagram is of the order of ḡ4/r kBTω

2
R. If we

compare this scale with the first order diagram, which we want to keep, we
get the expansion parameter

1 ≫ ḡ

r kBTωR

ḡ

ωR

. (4.88)

As expected, the shape of the spectral density can not be arbitrarily narrow
in energy space. This result is not limited to a Lorentzian spectral density,
but is valid in similar form for all spectral densities centered around zero.

4.4.3 Energy Broadening

In section 3.4 we discussed the effect of a fermionic reservoir on the rest of
the system. In this section we will choose our parameter range such, that the
quasiparticle tunneling is larger then the rates for photon transitions. This
will allow us to find an explicit expression for the propagator Πqp, which
represents the time propagation of the reduced density matrix for a quantum
system coupled to a quasiparticle reservoir.
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Figure 4.17: A second order diagram corresponding to the transition between the
state | ↑〉|n−1〉 and | ↓〉|n〉. The time evolution along the Keldysh contour is given
by Πqp.

To do this, we solve the master equation containing only the Lindblad op-
erator representing quasiparticle transitions (see eq. (4.48)). From the first
two terms in eq. (4.72) we can derive an explicit expression, for the propa-
gator Πqp which is needed to calculate the Lindblad operator corresponding
to Σ(t′, t) in eq. (3.65).

The Hamiltonian H̄g allows transitions between the states | ↑〉|n〉 and
| ↓〉|n+1〉. We will only keep second order diagrams in the polaron expansion.
A example for such a diagram can be seen in fig. 4.17. We see that we need
the propagator Πqp

↑,n/↓,n+1→↑,n/↓,n+1(t
′, t), where we assume that the density

matrix element ρ↑,n/↓,n+1 is not coupled to any other matrix elements. This is
reasonable because the rotating wave approximation applies. The propagator
is given by

ρ↑,n/↓,n+1(t) = eiδω(t−t′)− 1
2
I0|t−t′|ρ↑,n/↓,n+1(t

′) . (4.89)

Using this time evolution we can calculate the prefactor for the Lindblad
operator given by eq. (4.74).

The decay of the second order diagram shown in fig. 4.17 corresponds to
the decay rate of the polaron correlator 〈Y (t)Y (0)〉. We model the noise as
a coupling to an external impedance. If the impedance becomes small, the
decay rate of the polaron correlator decreases as well. This would mean that
our expansion on the Keldysh contour would diverge for small impedance
because the decay time of the correlator becomes smaller than the coupling
ḡ
√

〈n〉. However the energy broadening introduces an additionally decay
rate, given by I0/2. Therefore even for small coupling the expansion on the
Keldysh contour will not diverge as long as I0/2 ≫ ḡ

√

〈n〉. This condition
correspond well to the parameter range used in the experimental realization
of the SSET-maser [25].
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4.4.4 Analytical Solution in the Classical Limit

For large temperatures and large resistance we can expand the exponent of
the correlator 〈Y (t)Y (0)〉 in orders of βω. If we only keep the lowest order
the correlator simplifies to

〈Y (t)Y (0)〉 = exp

(
∫ ∞

0

dωS(ω)
sin2(ωt/2)

(ω/2)2

)

, (4.90)

where the spectral density is defined as

S(ω) =
r kBT

(ω/ωR)2 + 1
. (4.91)

The integral can be solved exactly and we get

〈Y (t)Y (0)〉 = exp

[

kBTπr

2ωR

(

1 − e−ωR|t| − ωR|t|
)

]

. (4.92)

The fact that the correlator is now symmetric in time allows us to simplify
the corresponding Lindblad operator to

Lχρ =
χ

2

[(

2AρA† −A†Aρ− ρA†A
)

+
(

2A†ρA−AA†ρ− ρAA†
)]

, (4.93)

where χ = χ↑ = χ↓.

Exactly as we did in section 4.3.4 we want to derive an effective equation
for the probability distribution of the number of photons in the oscillator
ρn = 〈n|TrSSETρ|n〉. We do this by tracing out the degrees of freedom of the
SSET in eq. (4.72),

ρ̇n = 〈n|TrSSET {Lqpρ+ Lχρ} |n〉 + 〈n|LκTrSSETρ|n〉 . (4.94)

The transitions between the states of the artificial atom are given by

ρ̇1,n = I0 sin2 ξρ↑,n + I0 cos2 ξρ↓,n − I0ρ1,n , (4.95)

ρ̇↑,n = I0 cos2 ξρ1,n + χ(n+ 1)ρ↓,n+1 −
(

I0 sin2 ξ + χ(n + 1)
)

ρ↑,n ,

ρ̇↓,n = I0 sin2 ξρ1,n + χnρ↑,n−1 −
(

I0 cos2 ξ + χ(n + 1)
)

ρ↓,n ,

where we used the abbreviation ρi,n = ρi,n/i,n for the diagonal elements of
the density matrix. Using the relation ρn = ρ1,n + ρ↑,n + ρ↓,n we can form a
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closed set of equations ,

d

dt

(

ρ↑,n−1

ρ↓,n

)

=

(

α1,n χn
χn α2,n

)(

ρ↑,n−1

ρ↓,n

)

+

(

β1ρn−1

β2ρn

)

,

α1,n = −I0(cos 4ξ + 7)

4(cos 2ξ + 3)
− χn , (4.96)

α2,n =
I0(cos 4ξ + 7)

4(cos 2ξ − 3)
− χn ,

β1 =
2I0 cos4 ξ

3 + cos 2ξ
,

β2 =
2I0 sin4 ξ

3 − cos 2ξ
.

(4.97)

This set of equations can be solved in the stationary case and we get an
equation for the effect of the artificial atom on the oscillator

ρ̇n =
(

Γ+
n + κn̄ωn

)

ρn−1 (4.98)

−
(

Γ+
n+1 + Γ−

n + κn̄ω(n+ 1) + κ(n̄ω + 1)n
)

ρn

+
(

Γ−
n+1 + κ(n̄ω + 1)(n+ 1)

)

ρn+1 ,

where Γ+
n = ΓT,n cos4 ξ is the rate increasing the number of photons, Γ−

n =
ΓT,n sin4 ξ is the rate decreasing the number of photons and

ΓT,n = 8I0χn/ [I0(cos 4ξ + 7) + 24χn] . (4.99)

For δNg > 0 we have a net increase of the number of photons, because
cos ξ > sin ξ. The rate ΓT,n is directly proportional to χ. Eq. (4.98) can
be solved for all n̄ω, but we will focus here on the case n̄ω = 0. Under this
condition we get for the density matrix

ρn = ρ0Π
n
i=0

α

β + i
, (4.100)

α =
I0 cos4 ξ

3κ
,

β =
I0 sin4 ξ

3κ
+
I0(cos 4ξ + 7)

24χ
,

where ρ0 is a normalization constant.
The result for the density matrix has exactly the same form as it had for

the case discussed in section 4.3. Therefore the results for the average photon
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number 〈n〉, the Fano-Factor F and the current I have the same form as the
results given by eq. (4.61), (4.62) and (4.63), respectively. In the same spirit
we can calculate a simplified expression for the photon number and the Fano
Factor. We get

nmax = α− β = nsat − δ , (4.101)

nsat =
I0 cos 2ξ

3κ
,

δ =
I0(cos 4ξ + 7)

24
χ−1 .

This corresponds very well to the average photon number if nmax ≫ 1. We
see that for strong coupling we get again saturation, with the number of
photons being nsat. In the same limit, we can calculate an approximation for
the Fano-Factor which is given by

F =
α

α− β
=
I0 cos4 ξ

3κnmax

. (4.102)

That is equivalent to the result for the Fano-Factor in section 4.3.4. We
can actually show that for a broad spectral density the stationary photon
distribution ρn (4.100) we obtained in this section, is equivalent to eq. (4.60),
the result obtained in section 4.3.4. One should note, that for a complete
description of charge noise with a broad spectral density, we would have to
include transversal coupling to the reservoir. However here we only want
to demonstrate the equivalent of two descriptions of dephasing. We use the
explicit results for the correlator (4.92) to estimate χ for a broad spectral
density r kBT ≪ ωR. In this case we get

〈Y (t)Y (0)〉 = exp (−r kBT |t|) , (4.103)

= exp (−D|t|) ,
where D is the strength of the effective dephasing. Using this correlator it is
very simple to calculate the factor χ explicitly,

χ =

(

gEJ

∆E

)2
2(D + I0/2)

δω2 + (D + I0/2)2
. (4.104)

From this we get an average photon number and photon distribution exactly
equivalent to eq. (4.64) and eq. (4.60), respectively. We see that because
I0 ≫ χ, the size of the coupling determines the number of photons. This
means we should see the maximum of the photon number close to the point
of the maximum of the coupling. From d∆E χ = 0 we get

∆E =
1

4

(

3ω +
√

ω2 − 2(2D + I0)2
)

. (4.105)
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Figure 4.18: The average photon number 〈n〉 as a function of the gate charge
δNG. A comparison of three different noise spectra for D = ΓG/2 = 0.09. black:
a flat spectral density, red: a narrow spectral density, blue: quasistatic noise. For
the parameters: EJ/EC = 0.2, g/EC = 0.004, ω/EC = 0.4, I0/EC = 0.0325,
κ/EC = 0.00005.

The maximum in the photon number shifts to smaller qubit energy splitting
∆E < ω. This corresponds well to the results we can observe in fig. 4.15.

Now we analyze the exact opposite limit of a narrow but high distribution,
corresponding to r kBT ≫ ωR. In this case the correlator has a Gaussian form
and is given by eq. (4.82). We define the effective strength of the dephasing
as D =

√
r kBTωR. In this case we can also obtain an explicit expression for

the prefactor

χ =

(

gEJ

∆E

)2

G(δω)L(δω) , (4.106)

G(δω) =

√
πeδω2/2D2

2D
,

L(δω) =

[

e−
iI0δω

4D2 erfc

(

I0 − 2 iδω

4D

)

+ e
iI0δω

4D2 erfc

(

I0 + 2 iδω

4D

)]

eI2
0/16D2

,

where G(δω) is a direct result of the Gaussian shape of the correlator (4.82),
L(δω) is an additionally function which we get because of the energy broad-
ening e−I0|t|/2 and erfc(x) is the complementary error function. For strong
dephasing the shape of χ is mostly determined by the shape of the Gaussian
function G(δω) and the effective coupling between SSET and oscillator ḡ.
For the broad spectral density the maximum in the photon number is not
directly at resonance, δω = 0, because of the decay of the coupling ḡ with
the energy splitting ∆E. This is the case for a narrow spectral density as
well. From d∆E ḡ

2G(ω − ∆E) = 0 we get

∆Emax =
1

2

(

ω +
√
ω2 − 16D2

)

. (4.107)
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Here we see again that the maximum is shifted to smaller ∆E. However the
shift is stronger than for the broad spectral density (4.105).

The average photon number 〈n〉 as a function of the gate charge δNG for
different types of noise spectra is shown in fig. 4.18. We show results for a
broad spectral density, for a narrow spectral density and for quasistatic noise.
To calculate the quasistatic result we take the result for the average photon
number, choose D = 0, and take a Gaussian average as shown in section 3.5.
The width of the quasistatic distribution has been chosen in such a way that
it coincides with the width of the polaron correlator for a narrow spectral
density. It should be noted that the effective dephasing strength D can not
be directly compared for the broad and narrow noise spectra. For D = 0 the
maximal number of photons would be much larger than our results in fig.
4.18 and the width of the peak would be determined by I0/2. As predicted
by eq. (4.105) and eq. (4.107) the maxima in the photon number is shifted to
smaller δNG and this effect is stronger for low frequency noise. The photon
number is strongly suppressed for quasistatic noise, but the peak is also much
broader then for the other kinds of noise. Interestingly for quasistatic noise
the maxima in the photon number is directly at resonance, ∆E = ω. This is
the case because the average photon number without noise has a very sharp
peak at resonance.

4.4.5 General Analytical Solution

If we are not considering the classical limit we have χ↑ 6= χ↓. We can inco-
operate this into the derivation of the distribution of the density matrix. Eq.
(4.96) becomes

d

dt

(

ρ↑,n−1

ρ↓,n

)

=

(

α1,n χ↓n
χ↑n α2,n

)(

ρ↑,n−1

ρ↓,n

)

+

(

β1ρn−1

β2ρn

)

,

α1,n = −I0(cos 4ξ + 7)

4(cos 2ξ + 3)
− χ↓n , (4.108)

α2,n =
I0(cos 4ξ + 7)

4(cos 2ξ − 3)
− χ↑n ,

β1 =
2I0 cos4 ξ

3 + cos 2ξ
,

β2 =
2I0 sin4 ξ

3 − cos 2ξ
.
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This set of equations can be solved in the stationary case and we get an
equation for the effect of the artificial atom on the oscillator

ρ̇n =
(

Γ+
n + κn̄n

)

ρn−1 (4.109)

−
(

Γ+
n+1 + Γ−

n + κn̄(n+ 1) + κ(n̄+ 1)n
)

ρn

+
(

Γ−
n+1 + κ(n̄ + 1)(n+ 1)

)

ρn+1 ,

where Γ+
n = ΓT,nχ

↑ cos4 ξ, is the rate increasing the number of photons,
Γ−

n = ΓT,nχ
↓ sin4 ξ is the rate decreasing the number of photons and

ΓT,n =
8
(

I0(cos 4ξ + 7) + 4(cos 2ξ − 3)(χ↓ − χ↑)n
)

(cos 4ξ + 7) (I0(cos 4ξ + 7) + 4(cos 2ξ + 3)χ↓n− 4(cos 3ξ − 3)χ↑n)
.

(4.110)

Eq. (4.109) can be solved in the stationary limit. The rates in eq. (4.109)
differ from the effective increase and decrease rates in sections 4.3.4 and 4.2.2.
The rate ΓT,n (4.110) depends on the photon number in a way that makes it
impossible to cast ρn into the simple form used in eq. (4.100). For n̄ω = 0
the explicit form for the density matrix is given by

ρn = ρ0Π
n
i=0

α1 + α2i

β1 + β2i
, (4.111)

α1 =
1

8
I4
0χ

↑ cos4 ξ(cos 4ξ + 7) ,

α2 =
1

2
I3
0 (χ↓ − χ↑)χ↑ cos4 ξ(cos 2ξ − 3) ,

β1 =
1

64
I4
0 (cos 4ξ + 7)

(

7κ+ (3 − 4 cos 2ξ)χ↓ + (κ+ χ↓)
)

,

β2 =
1

16
I3
0

(

κ(7 + cos 4ξ)(χ↑(3 − cos 2ξ) + χ↓(3 + cos 2ξ))

+8χ↓(χ↓ − χ↑)(3 + cos 2ξ) sin4 ξ
)

.

Adding a term that grows with the index i in the enumerator has a similar
effect then adding a temperature in ρn (see e.g. eq. (4.96)).

The size of α2 depends on the difference χ↑−χ↓. For χ↓ > χ↑ the constant
α2 becomes negative and approaches zero for χ↑ → 0. For χ↑ = 0 we have
α1 = 0 and the photon number is obviously zero as well. The effect of having
different rates χ↑ and χ↓ can be analyzed close to a point where these two
rates are rather similar

χ↑ = χ+ δ̄ , (4.112)

χ↓ = χ− δ̄ ,

δ̄ ≪ χ .
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Using this approximation we can again find the maximum of ρn and expand
it to first order in δ̄. We get

nmax,δ̄ = nmax +
I0 cos 2ξ (7κ2(cos 4ξ + 7) − 16χ(χ− κ cos 2ξ))

144κχ2
δ̄ , (4.113)

where nmax is given by eq. (4.101).
For this result to be valid we have to have a large number of photons,

therefore it is necessary that χ ≫ κ. This means that the correction we
get from unequal rates is negative if χ↓ > χ↑ and it is positive if χ↓ < χ↑.
This is exactly as we would expect it, as it is the rate χ↑ that increases the
number of photons in the oscillator. By tuning our system to δNG > 0 we
create population inversion in the SSET. Therefore the number of photons
will mostly depend on the size of χ↑, the rate for a transition from the state
| ↑, n〉 to | ↓, n+ 1〉.

4.4.6 Strong Resistive Noise

In this section we will analyze the system for purely resistive noise. Resistive
impedance has been already discussed in section 4.4.6 for large temperatures.
The impedance defined by eq. (4.78) becomes very broad as a function of
frequency for small resistance R ≪ RK . Additionally the noise strength is
reduced. The effect of such a type of noise is essentially covered by our results
for pure dephasing in section 4.3.4. For large resistance the impedance is a
very narrow function of frequency and we can approximate it by (π/C)δ(ω).
This means that the relevant correlator becomes

〈Y (t)Y (0)〉 = exp
(

−ǫC
[

it+ kBTt
2
])

, (4.114)

where ǫC = e2/2C is the charging energy of the effective impedance. For the
prefactors in the Lindblad operator Lχ (4.73) we get

χ↑ = ḡ2G(δω − ǫC)L(δω + ǫC) , (4.115)

χ↓ = ḡ2G(δω + ǫC)L(δω − ǫC) .

The energy shift ±ǫC , shows that in every transition described by Lχ the
quantum system transfers an extra amount of energy, given by the charging
energy ǫC , to the environment. This is the major difference to the prefactor
in the classical limit (4.93) where we implicitly assumed the temperature to
be larger then the charging energy, kBT ≫ ǫC .

In fig. 4.19 we see how the peak in the photon number shifts to larger
detuning for a sufficiently large ǫC . Fig. 4.19a) shows the coupling constant
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Figure 4.19: The prefactor χ↑ and the prefactor divided by the effective coupling
between oscillator and SSET χ↑/ḡ2, as a function of the detuning δω. We have
chosen a large charging energy, ǫC = EC . black line: r = 0.1, red line: r = 0.4, blue
line: r = 0.7. For the parameters: EJ/EC = 0.2, g/EC = 0.004, I0/EC = 0.0325,
κ/EC = 0.00005, kBT/EC = 0.35.

Figure 4.20: The average number of photons 〈n〉, the Fano-Factor F and the
current I as a function of the gate charge δNG. We have have chosen a small
charging energy, ǫC/EC = 0.05. black: r=0.06, red: r=0.21, blue: r=5. For the
parameters: EJ/EC = 0.2, g/EC = 0.004, I0/EC = 0.0325, κ/EC = 0.00005,
kBT/EC = 0.35.
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χ↑ as a function of δNG. For small resistance we get the expected sharp peak
at resonance. As resistance increases the hight of the peak drops significantly.
The small temperature in this particular case leads to a coupling constant
that is strongly suppressed for ∆E < ω, as there is no additional energy
available from the reservoir. For large resistance we see the peak of the
resonance shift to larger detuning. This is the case, because we now need
the energy ω + ǫC to create a photon. The charging energy is absorbed by
the environment. If we compare figures 4.19a) and 4.19b) one can see the
effect of the decay of ḡ with ∆E. This can have a significant influence on
the average photon number, as we have discussed in section 4.4.4.

The classical case can be seen in fig. 4.20. Here ǫC is smaller then the
temperature and a shift to larger detuning is not visible. Overall, we see a
decay in the photon number with increasing resistance. At the same time the
peak shifts, as predicted, to smaller δNG. The Fano-Factor shows the typical
behavior for lasing, and the minimum corresponds to the maximum of the
photon number. The current has an extra peak at the photon resonance,
but the JQP current does not change as it did for dissipation in the SSET,
discussed in section 4.3.3.

4.4.7 Coupling to a Single Mode

In this section we will study the coupling of the SSET to one single envi-
ronmental mode. Such a mode might come from a resonance in the lead
impedance or might be associated with a molecule in one of the tunnel bar-
riers.

The environmental mode is modeled by putting an inductance L into
the external circuit. This means that the effective impedance defined in eq.
(4.77) becomes

ReZt(ω)

RK
=

π

2C
[δ(ω − ωL) + δ(ω + ωL)] . (4.116)

The integral in eq. (4.75) can be solved by replacing ω with ωL. We can
expand the correlator in Bessel functions

〈Y (t)Y (0)〉 = exp

(

ǫC
ωL

coth [βωL/2]

)

(4.117)

×
∞
∑

k=−∞

Ik

(

ǫC
ωL sinh [βωL/2]

)

exp (kβωL/2) exp(−ikωL) .
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Using the ascending series of the modified Bessel function

Ik(z) =
(z

2

)2
∞
∑

l=0

(z2/4)

l!k + l!
, (4.118)

we can rewrite the sum in eq. 4.117 as the sum over l = m+n and k = n−m,

〈Y (t)Y (0)〉 = exp(−[η+ + η−])
∑

m,n

ηm
+ η

−
e

m!n!
e−i(n−m)ωLt , (4.119)

η± =
ǫC
ωL

±1

e±βωL − 1
.

Together with the energy broadening I0/2 the Fourier transform of this cor-
relator is given by

χ↑ = ḡ2 exp(−[η+ + η−])
∑

m,n

ηm
+ η

n
−

m!n!

2I0/2

(δω − (n−m)ωL)2 + (I0/2)2
,

(4.120)

where χ↓ is given by replacing δω with −δω in χ↑.
We see that for small resistance we get a sum of Lorentzian peaks at

multiples of the resonance frequency of the environmental mode. The peaks
are Poisson distributed. For small temperatures, η+ → 0, we have a Pois-
son distribution where the peak is determined by ǫC/ωL. If we have ǫC ≫
ωL the overall distribution is strongly suppressed because of the prefactor
exp(−[η+ +η−]). In this case we will have only a small number of photons in
the oscillator. For the opposite case, ǫC ≪ ωL, the largest Lorentzian peak
is directly at the normal resonance condition ω = ∆E.

In fig. 4.21 we show the case ǫC < ωL and as predicted the largest
peak in the photon number can be found for ∆E = ω. We have chosen a
significant temperature such that there is a peak for ∆E = ω−ωL, where the
extra energy is provided by the reservoir. For small resistance, three clearly
distinct peaks are visible in the photon number and in the current. As the
resistance increases the number of photons decreases and as each individual
peak becomes broader, it becomes difficult to distinguish them.

We can see results for ǫC > ωL in fig. 4.22. As expected the total number
of photons is strongly suppressed in comparison to fig. 4.21. Again we have
chosen a significant temperature such that we have a peak at ∆E = ω− ωL.
It is interesting to note that this peak is larger then the regular peak at
∆E = ω. This is an effect due to the decay of the coupling constant ḡ.
Because of the strong suppression of the photon resonances, the peaks in the
current are hardly visible. As the resistance increases we see that lasing is
suppressed very quickly.
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Figure 4.21: The average number of photons 〈n〉, the Fano-Factor F and the
current I as a function of the gate charge δNG. We have have chosen the induc-
tive frequency ωL/EC = 0.1. black: r=0.001, red: r=0.003, blue: r=0.009. For
the parameters: ǫC/EC = 0.05, EJ/EC = 0.2, g/EC = 0.004, I0/EC = 0.0325,
κ/EC = 0.00005, kBT/EC = 0.35.

Figure 4.22: The average number of photons 〈n〉, the Fano-Factor F and the
current I as a function of the gate charge δNG. We have have chosen the inductive
frequency ωL/EC = 0.1. black: r=0.001, red: r=0.003, blue: r=0.009. For the
parameters: ǫC/EC = 0.2, EJ/EC = 0.2, g/EC = 0.004, I0/EC = 0.0325, κ/EC =
0.00005, kBT/EC = 0.35.



Chapter 5

Photon-Number Squeezing

In driven oscillator systems, depending on the type of driving, different
nonequilibrium photon (or phonon) populations can be produced, and indeed
for many applications the production of specific photon number distributions
is crucial. Quantum cryptography and linear optical quantum computation
require a supply of single photons [33, 71], while for quantum measurements
it may be of advantage to use strongly squeezed photon distributions [67].
A well-known optical system where squeezed distributions can be created is
the micromaser [72]. Here we describe how highly squeezed photon number
distributions, close to a pure Fock state (see fig. 5.1), can be produced in
superconducting quantum circuits.

Recent experiments with superconducting qubits coupled to electromag-
netic resonators (“circuit QED”) confirmed concepts developed in the field of
cavity QED but also demonstrated extensions, e.g., to the regime of strong
coupling [73, 20]. A Josephson qubit, ac-driven to perform Rabi oscillations
in resonance with an oscillator, depending on the detuning either cools the os-
cillator or produces a laser-like enhancement of the photon numbers [24, 23].
Similarly a superconducting single-electron transistor (SSET) biased at the
Josephson quasiparticle (JQP) cycle, where the current is carried by a com-
bination of inelastic quasiparticle and coherent Cooper-pair tunneling, can
be used to drive an oscillator [25, 74, 75]. We discussed this at length in
chapter 4. Squeezing of the photon number distribution has been predicted
in section 4.2.1 but we have shown analytically in section 4.2.2 that it is only
a weak effect that will be destroyed by a small temperature. In this sec-
tion we show that the gap structure of the quasiparticle tunneling rate (see
inset of fig. 5.1), which abruptly cuts-off transitions increasing the photon
number, in combination with an anharmonicity of the oscillator, can produce
strongly squeezed photon number states. Our mechanism bears similarities
to schemes where squeezed photon distributions are created by controlling

93
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Figure 5.1: A strongly squeezed distribution ρn of photon number states in a
Josephson junction-L-C oscillator driven by a SSET obtained for δNG = 0.1,
eV = 5.6, ∆ = 2.2, g = 0.01, ω = 0.4, Ω = 0.001, EJ = 0.1, κ/(EC/e

2R) =
0.004 (all energies in units of EC). Inset: Energy dependence of the quasiparticle
transition rate and energy differences for two transitions, ∆En = E1,n−E−,n +eV .
Due to the anharmonicity of the oscillator they lie above and below the threshold.

the mechanism of pumping [76]. We find a stronger effect by exploiting the
sharp step in the tunneling rates. Our mechanism differs more fundamen-
tally from parametric down-conversion [30, 31], a squeezing mechanism well
known from quantum optics. We will discuss the parametric oscillator as an
example for dynamical tunneling in more details in section 6.

In the first subsection we will discuss for which choice of parameters we
can produce a strongly squeezed distribution. This will be done in the limit
of strong coupling, similar to the regime discussed in section 4.2.1. We will
then discuss how stable the squeezing effect is, if we increase the incoherent
quasiparticle tunneling and if we consider 1/f noise. In the third subsection
we will discuss a method to produce the necessary anharmonicity by using
inductive coupling, and calculate results for this case in the last subsection.

5.1 Strong Coupling

The system consists of a SSET coupled to an anharmonic superconducting
(see fig. 5.2) or nanomechanical oscillator. The SSET is formed by a super-
conducting island coupled via low-capacitance tunnel junctions to two super-
conducting leads. The SSET is tuned to the regime of the JQP cycle, where
the current is carried by a combination of Cooper pair transfer through one
junction onto the island followed by two consecutive quasiparticle tunneling
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Figure 5.2: A SSET with Josephson coupling EJ and quasiparticle tunneling rate
proportional to V/eR is controlled by the transport voltage V and the gate voltage
U . It is coupled with strength g to an anharmonic oscillator. The oscillator’s
dissipation is characterized by the parameter κ. The sign of the anharmonicity
can be controlled by the flux Φ.

processes through the other junction. The energy for this process is provided
by the voltage source. We discussed this system without anharmonicity in
the oscillator in several different limits in chapter 4. In this section we will
stay in the limit of strong coupling that has been studied in section 4.2.

The charge on the SSET is coupled capacitively, with strength character-
ized by g, to an anharmonic oscillator. This oscillator can be realized, e.g.,
by a circuit combining a capacitor, an inductor, and a non-linear element
such as a Josephson junction [29], as shown in fig. 5.2. It is also possible
to use nanomechanical oscillators with a positive anharmonicity (as studied,
e.g., in Ref. [77]).

Thus the coherent dynamics of the coupled SSET and oscillator is de-
scribed by the Hamiltonian

HQ = EC(N −NG)2 − EJ cos (φL)

+ g (N − 1)
(

a† + a
)

+ ωa†a+ Ω
(

a†a
)2
. (5.1)

which is equivalent to eq. (4.1) only that we add an anharmonicity to the
oscillator and the voltage difference across the right junction will be included
in the quasiparticle tunneling rates. The anharmonicity Ω is weak, with
Ω〈n2〉 ≪ ω〈n〉. .

We tune the gate charge close to one of the symmetry points, |δNG| ≪ 1,
where δNG = NG − 1, such that only the charge states N = 0, 1, 2 are of
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importance. The two even states, N = 0, 2, are Josephson coupled to form
the basis states | ↑〉, | ↓〉 ,defined by eq. 4.2 with energies

E↑/↓ = (1 + δN2
G)EC ± 1

2

√

E2
J + 16δN2

GE
2
C . (5.2)

The odd state |N = 1〉 has energy E1 = ECδN
2
G.

The SSET is coupled to the anharmonic oscillator with bare energy
Eosc(n) = ωn + Ωn2. We assume the system to be operated in the regime
of vacuum Rabi oscillations where the energy difference of the SSET states
∆E = E↑−E↓ is close to ω . For weak detuning δω = ω−∆E the eigenstates
of HQ are, similar to the dressed states defined by (4.22),

|+, n〉 = sin η| ↑〉|n〉 + cos η| ↓〉|n+ 1〉 , (5.3)

|−, n〉 = cos η| ↑〉|n〉 − sin η| ↓〉|n+ 1〉 .
(5.4)

The rotation with tan η = 2ḡ
√
n+ 1/δE(n) depends on the effective detun-

ing, δE(n) = δω + Ω(2n + 1), and effective coupling, ḡ = g〈↑ |(N − 1)| ↓〉.
In addition, the states |N = 1〉|n〉 with a single excess charge on the island
are approximate eigenstates. The energies of these states are given by

E±,n = E↑ + Eosc(n− 1) +
1

2
δE(n) ± 1

2

√

4ḡ2n+ δE(n)2 ,

E1,n = E1 + Eosc(n) . (5.5)

In addition to the coherent dynamics, governed by HQ, the system evolves
due to incoherent quasiparticle tunneling in the SSET and dissipative pro-
cesses in the oscillator. These effects are described in the frame of a Liouville
equation for the reduced density matrix of the composite system. Assum-
ing the transition rates to be weak compared to the energy spacings we can
use the rotating wave approximation and neglect off-diagonal elements. The
probability of the system to be in the state |i〉 evolves then according to the
master equation

ρ̇i =
∑

j

(Γj→iρj − Γi→jρi) . (5.6)

The transition rates Γi→j = Γqp
i→j + Γκ

i→j account for the two dissipative
processes. Both have been discussed earlier and are given by eq. (4.20). At
low T we need to consider only transitions where energy is gained, ∆Ei→j >
0. Due to the gap in the DOS the rate vanishes for ∆Ei→j < 2∆, but
jumps to a finite value if ∆Ei→j ≥ 2∆. For an anharmonic oscillator this
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Figure 5.3: Energy differences ∆E1,n→±,n versus photon number n for the pa-
rameters δω, Ω and ḡ as used in fig. 5.1. Also shown is a cycle of transitions,
which increases the number of photons. Dashed arrows correspond to the rate
Γqp

1,n→±,n and solid arrows to the rate Γqp
±,n→1,n+1. Vertical transitions are due to

the dissipation decreasing the number of photons.

energy difference depends on the photon number n. Hence, with varying n
the threshold may be passed, beyond which the transitions vanish abruptly
(as shown in fig. 1.)

If the transport voltage V is large compared to the gap, the number of
photons in the oscillator increases for positive δNG, until a balance between
driving and dissipation – which is proportional to n – is reached. The dis-
tribution of photon numbers is peaked around an average value nmax ∝ γ/κ
(see eq. (4.27) and eq. 4.64), and the Fano factor F = (〈n2〉 − 〈n〉2)/〈n〉 is
slightly smaller than one (see eq. (4.30) and eq. (4.31)). In this situation
one observes some photon number squeezing, however it is weak and easily
destroyed by temperature. For negative detuning δNG the SSET, similar as
an ac-driven qubit, can serve to cool the oscillator.

The energy differences for the transitions are given by

∆E1,n→±,n = E↑ − E1 − eV +
1

2
δE(n+ 1) (5.7)

± 1

2

√

4ḡ2(n+ 1) + [δE(n+ 1)]2 .

With decreasing voltage an increasing number of transitions are pushed be-
yond the threshold at ∆Ei→j = 2∆. The most interesting case is shown
in fig. 5.3, where the cycle stops beyond a certain number of photons. We
describe now how to tune the system to this situation.

Strong squeezing requires that the energy difference ∆E1,n→−,n increases
with growing photon number n (as is the case in fig. 5.3). This is the case if

Ω >
1

2

(

δω +
√

2ḡ2 + δω2
)

, (5.8)
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Figure 5.4: Average photon number 〈n〉 and Fano factor F versus oscillator fre-
quency ω and gate charge δNG for transport voltage (in units of EC) eV = 5.6,
g = 0.01, Ω = 0.0005, EJ = 0.1, and κ/(EC/e

2R) = 0.02.

independent of n. We can see that for negative detuning, δω < 0, an anhar-
monicity smaller than ḡ is sufficient.

Squeezing can be observed below a certain threshold for the transport
voltage. For large n there is a limiting value for ∆E1,n→−,n which has to be
larger than −2∆; otherwise the rate never gets cut-off. From this we get a
condition for the voltage

1

2

(

δE(1) −
√

4ḡ2 + [δE(1)]2
)

< eδV < −ḡ2/2Ω , (5.9)

with eδV = eV − 2∆ + E1 − E↑. The left hand inequality, in addition
guarantees that excitations are created if we start at n = 0. If both conditions
(5.8) and (5.9) are met, the rates are cut-off at

ncut =
eδV (eδV − δω + Ω)

ḡ2 + 2eδVΩ
. (5.10)

In order to have a significant effect of the cut-off, we also require that
nmax > ncut.

We can optimize the system by choosing negative detuning, δω < 0,
precisely in a way that the system is in resonance at the cut-off, δE(ncut) = 0.
This means

δω = Ω[1 − 2(eδV )2/ḡ2] . (5.11)

In this case we get ncut = (eδV )2/ḡ2.
To cover a wider range of parameters we solved numerically for the sta-

tionary distribution of eq. (5.6) in the product base of the charge states
N = 0, 1, 2 and many photon number states (n ≤ 200) sufficient to guaran-
tee convergence. Fig. 5.4 shows the average photon number and Fano factor.
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The maxima in 〈n〉 and minima in F correspond to ω = δE or higher order
resonances. The results resemble those of section 4.2.1; the main difference
is the strong squeezing in the upper right corner of fig. 5.4 (b), where the
conditions (5.8) and (5.9) are fulfilled.

Fig. 5.1 shows the probability distribution for the oscillator states p(n) =
Tr(ρ|n〉〈n|) for parameters satisfying eq.. (5.8), (5.9) and (5.11). In this case,
due to the cut-off, the Fano factor is particularly small, F ≈ 0.01. The rates
are cut at n = 7, leading to a sharp maximum of ρn at n = 6 followed by a
sudden drop. Note that even above the drop ρn does not vanish completely,
since the transition rates (4.20) evaluated with the exact quantum states still
allow for weak transitions.

So far we considered low temperatures, lower than all characteristic fre-
quencies. With increasing temperature, as long as the gap in the density of
states and the step in the quasiparticle transition rates remain sharp, mostly
the transitions in the oscillator are modified. However, their effect is weak
as long as κ is small, and the strong squeezing persists even for kT ≈ ω.
Additional sources of noise, like charge noise generate transitions between
the states |±, n〉 with almost no consequences on the squeezing. This has
been discussed in section 4.2.3. In the next section we will discuss the effect
of 1/f noise on squeezing. This type of noise can cause slow fluctuations in
the transport voltage V , and this in turn will cause fluctuations in the cut-off
ncut.

The cut-off effect can bee seen in a simple way by measuring the current
through the SSET. As we have seen before in chapter 4 the current has a
maximum at the same position as the number of photons. However as the
number of photons decreases the current decreases as well. The photon cut-
off (5.10) depends on the transport voltage V . As the voltage decreases the
number of photons will decrease step by step, and the same step structure
can be seen in the current (see fig. 5.5).

We see that strongly squeezed photon number distributions can be pro-
duced in a solid state anharmonic oscillator coupled to a SSET. It requires
an oscillator with frequency in the GHz range, a positive quartic term, and
low dissipation, such that the inequalities ω > g > I0 ≫ κ are satisfied.
For the example presented in fig. 5.4 a Q-factor of the order of 104 is suffi-
cient. Nanomechanical oscillators, with Q ≈ 105 have been produced [78],
but reaching the GHz range is difficult. Circuits formed of a Josephson
junction and L-C elements can satisfy the requirements and have the ad-
vantage of tunable anharmonicity and frequency, which allows selecting the
squeezed photon number state. Furthermore, these circuits can be coupled
to superconducting qubits, which allows measuring the oscillator state as a
state-dependent frequency shift [20].
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Figure 5.5: The average photon number 〈n〉 and the current as a function of the
transport voltage V . As the voltage decreases we cut-off the rates increasing the
photon number, Γqp

1,n→−,n. Accordingly we see a step structure in the photon
number and the current. For the parameters: δNG = 0.1, ∆ = 2.2, g = 0.01,
ω = 0.4, Ω = 0.001, EJ = 0.1, κ/(EC/e

2R) = 0.02 (all energies in units of EC).

5.2 Stability of Squeezing

In chapter 4 we discussed the major effects of noise on the SSET-maser. We
will now revisit those results in the context of stability of the squeezing effect.

In a realistic system we have many different sources of noise, which cause
dissipation and dephasing. These effects can destroy the squeezing effect.
In the previous section we only took into account the dissipation in the
oscillator. Transmission-line oscillators can be produced with very high Q-
factors and as long as ncut ≪ nmax the squeezing mechanism will work. The
strength of charge noise has to be compared to the coupling between oscillator
and SSET. As long as g is larger than the dephasing strength D, we have seen
that the effect on the number of photons is minimal. The dissipation caused
by charge noise will mostly create transitions between the states |±, n〉 (see
eq. (4.35) and discussion thereafter). However as one can see in the diagram
in fig. 5.3 it is the cut-off of the transition Γ1,n→−,n that creates the squeezing
effect. Additional transitions between |±, n〉 will not reduce this effect in any
way.

For the whole discussion in section 5.1 we have chosen the limit g ≫ I0.
In this limit the squeezing is very effective, but additionally we nee I0 ≫ κ,
to have a large nmax. This imposes a strong limit for the dissipation in the
oscillator. In section 5.4 we will discuss a specific coupling of SSET and
oscillator that will allow us to create the squeezing effect even for I0 ∼ g,
however for the system as we have outlined it so far strong quasiparticle
tunneling will destroy the effect. In fig. 5.6 we show how increasing the
current decreases the number of photons. At the same time the Fano-Factor
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increases, as the squeezing effect is destroyed.
An additional important type of noise in solid state systems is 1/f noise.

We assume that 1/f noise will couple through the transport voltage. Note
that the effect of coupling through the gate charge δNG would be very similar.
We can treat 1/f noise as quasistatic and average our results for a specific
voltage V over a gaussian distributed fluctuation. This has been explained
in detail in section 3.5. The results can be seen in fig. 5.7. We create the
cut-off in the transition rates by using the photon number dependent energy
difference ∆E1,n→±,n. The photon number dependence is related to the an-
harmonicity Ω. If the anharmonicity is of the same order as the strength of
the 1/f noise, the squeezing effect will be washed out.

5.3 Inductive Coupling

In the previous section we discussed strong squeezing for an oscillator with
a small anharmonicity strongly coupled to the SSET. But the general ef-
fect can be used in many different designs. We will now try to outline an
implementation of the squeezing scheme which can be used with weak cou-
pling, that automatically produces the necessary anharmonicity. This can
be done by coupling a SSET inductively to a transmission-line. The current
oscillating in a transmission-line creates a magnetic field. This field couples
to a loop which is part of an effective Josephson junction. The effective
Josephson junction in turn is created by three Josephson junctions inside
two loops (see fig. 5.8). Each of the loops is coupled to an external field φe,
φa and additionally one of the loops is coupled to the flux emanating form
the transmission-line φq. However, apart from this our system works like a
standard SSET (see section 2.1).

The quantized current in the transmission-line Iq creates an quantized
flux

φq =
µ0 e

2 IqS

2π2r
, (5.12)

where S is the total effective area of the loop, r is the total distance between
loop and transmission-line and µ0 is the magnetic constant. We assume that
only one of the transmission-line modes is excited. If the loop is placed at
the antinode where the flux is largest, we get Iq(x) = −iĪq(a† − a), where Īq
is the current amplitude. This yields,

φq = −iφ0(a
† − a), φ0 =

µ0 e
2 S

2π2r
Īq . (5.13)
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Figure 5.6: The average photon number 〈n〉 and the Fano-Factor as a function
of the quasiparticle coupling strength (e2R)−1. The coupling strength is directly
proportional to the current through the SSET. As the current increases the average
photon number decreases and the Fano-Factor increases. For the parameters:
δNG = 0.1, eV = 5.6, ∆ = 2.2, g = 0.01, ω = 0.4, Ω = 0.001, EJ = 0.1,
κ/(EC/e

2R) = 0.004 (all energies in units of EC).

Figure 5.7: black dots: A strongly squeezed distribution ρn of photon number
states in a Josephson junction-L-C oscillator driven by a SSET obtained for δNG =
0.1, eV = 5.6, ∆ = 2.2, g = 0.01, ω = 0.4, Ω = 0.001, EJ = 0.1, κ/(EC/e

2R) =
0.004 (all energies in units of EC). red dots: 1/f Noise with strength ΓG = 0.0002,
blue dots: 1/f Noise with strength ΓG = 0.0005.
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Figure 5.8: The system consists of an island coupled by a junction and an effective
junction to leads. The effective junction consists of two loop with three Josephson
junctions. Two junctions have the Josephson coupling strength EJ and one has
the Josephson coupling strength EJC . In each loop we have an external flux φe

and φa, respectively, and in the loop close to the transmission-line we have a flux
φq, which is the result of current oscillations the stripline.

The Hamiltonian of our system takes the form

H = EC(N −NG)2 − EJ cos(φ+ φe/2) − EJ cos(φ− φe/2)

−EJC cos(φ− φe/2 + φa + φq) + ωa†a , (5.14)

where EC is the charging energy, NG is the gate charge and N counts the
charge on the island and is the conjugate variable to φ. We choose φe = 2π,
φa = π and EJC = 2EJ . Expanding for small φq yields,

H = EC(N −NG)2 + EJ cosφ+
1

2
πφqEJ sinφ

+
1

2
π2φ2

qEJ cos φ+ ωa†a . (5.15)

For our system the only important charge states are |N = 0〉, |N = 1〉
and |N = 2〉. Of these states, Cooper-pair tunneling does not connect the
charge state |N = 1〉 to any other relevant charge state. Therefore we can
transform the system into the base of the qubit states | ↑〉, | ↓〉 defined by eq.
4.2. The energy of |N = 1〉 still has to be taken into account, but only for the
quasiparticle tunneling rate. This is the same transformation we performed
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in section 4.3.1. This gives us

H =
1

2
∆Eσz + i

πφ0EJ

4
σy(a

† − a) + ωa†a (5.16)

+
π2φ2

0EJ

8
(sin 2ξσz + cos 2ξσx)(2a

†a + 1 − a†
2 − a2) ,

where ∆E =
√

E2
J + (4ECNG)2 and tan 2ξ = EJ/4δNGEC . In this step we

shifted the energies by −(1 + δN2
G)EC . We are interested in the behavior of

the system close to the resonance ω = ∆E and therefore we only keep the
energy conserving terms. In section 4.3.3, we have discussed in more detail
the validity of the rotating wave approximation. We get

HQ = (∆E/2 + γa†a)σz + g(a†σ− + aσ+) + ωa†a , (5.17)

where γ = (π2φ2
0EJ sin 2ξ)/8 and g = πφ0EJ/4. This is the Hamiltonian we

will use to discuss squeezing in the week coupling regime.

5.4 Weak Coupling

In section 4.3.2 we have discussed the derivation of the master equation for
the weak coupling limit. Instead of projecting the master equation onto
the eigenbase of the quantum system we use the product base of SSET and
oscillator. The eigenstates of the SSET are given by | ↑〉, | ↓〉 and |N = 1〉
and the oscillator states are given by the Fock states |n〉. The product state
| ↑ / ↓〉|n〉 has the energy E↑/↓,n = ±(∆E/2 + γn) + ωn, where we assume
∆E ≫ γ〈n〉. The odd charge state forms a product state |N = 1〉|n〉 with
energy E1,n = EC + ωn. For the derivation of the master equation it is now
crucial to take into account the photon number dependence of the energies.

The transition from the state |N = 1〉|n〉 to | ↑〉|n〉 has the smallest
energy difference and this energy difference is decreasing with the number of
photons. This means that for a certain number of photons it will be smaller
then twice the gap ∆. We have discussed in section 5.1 that the quasiparticle
tunneling has a sharp step structure, and breaks of for energies smaller 2∆.
This cut-off photon number in the weak coupling regime is given by

ncut =
1

γ
(eV − 2∆ − EC − ∆E/2) (5.18)

Apart from the gap cut-off, the energy dependence of the quasiparticle cur-
rent (4.11) is not particularly strong and we assume all transition rates to be
proportional to the current at the gap energy I0 = I(2∆), but for the tran-
sition from |N = 1〉|n〉 to | ↑〉|n〉 we include an appropriate Theta-function,
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which cuts off the transitions for n > ncut. This gives us a Lindblad operator
of the form

Lqpρ =
cos2 ξ I0

2

∑

n

[

(2P †
↓,nρP↓,n − P↓,nP

†
↓,nρ− ρP↓,nP

†
↓,n (5.19)

+ Θ(n− ncut)(2P
†
↑,nρP↑,n − P↑,nP

†
↑,nρ− ρP↑,nP

†
↑,n)
]

+
sin2 ξ I0

2

∑

n

[

(2P↓,nρP
†
↓,n − P †

↓,nP↓,nρ− ρP †
↓,nP↓,n)

+ (2P↑,nρP
†
↑,n − P †

↑,nP↑,nρ− ρP †
↑,nP↑,n)

]

,

where P↑/↓,n = |n〉〈n| ⊗ |N = 1〉〈↑ / ↓ |.
Apart form this change in the Lindblad operator representing quasiparti-

cle transitions our master equation corresponds to the weak coupling master
equation 4.53. We can now calculate analytical results exactly in the same
way it has been done in section 4.3.4. Tracing over the degrees of free-
dom of the SSET yields eq. (4.54). We assume that the artificial atom
equilibrates much faster then the oscillator and we can therefore assume
ρn = 〈n|TrSSETρ|n〉 to be constant on the time scale of the artificial atom.
The transitions between the states of the artificial atom without dissipation
are given by

ρ̇1,n/1,n = I0 sin2 ξρ↑,n/↑,n + I0 cos2 ξρ↓,n/↓,n (5.20)

− I0
(

sin2 ξ + Θ(ncut − n) cos2 ξ
)

ρ1,n/1,n ,

ρ̇↑,n/↑,n = −i g
√
n + 1

(

ρ↑,n/↓,n+1 − ρ∗↑,n/↓,n+1

)

+ I0Θ(ncut − n) cos2 ξρ1,n/1,n − I0 sin2 ξρ↑,n/↑,n ,

ρ̇↓,n+1/↓,n+1 = i g
√
n+ 1

(

ρ↑,n/↓,n+1 − ρ∗↑,n/↓,n+1

)

+ I0 sin2 ξρ1,n/1,n − I0 cos2 ξρ↓,n+1/↓,n+1 ,

ρ̇↑,n/↓,n+1 = −(I0/2 +D)ρ↑,n/↓,n+1 − iδωρ↑,n/↓,n+1

+ −ig
√
n+ 1

(

ρ↑,n/↑,n − ρ∗↓,n+1/↓,n+1

)

. (5.21)

Using the fact that ρn = ρ↑,n/↑,n + ρ↓,n/↓,n + ρ1,n/1,n we can form a closed set
of equations similar to eq. (4.55) and solve it in the stationary case,

ρ̇n =
(

Γ+
n + κn̄ωn

)

ρn−1 (5.22)

−
(

Γ+
n+1 + Γ−

n + κn̄ω(n+ 1) + κ(n̄ω + 1)n
)

ρn

+
(

Γ−
n+1 + κ(n̄ω + 1)(n+ 1)

)

ρn+1 ,



106 Chapter 5. Photon-Number Squeezing

where Γ+
n = ΓT,nΘ(n − ncut) cos4 ξ, is the rate increasing the number of

photons, Γ−
n = ΓT,n sin4 ξ is the rate decreasing the number of photons and

ΓT,n =











I0ḡ2n

3ḡ2n+
I0((2D+I0)2+4(δǫ−ω)2)(cos 4ξ+7)

32(2D+I0)

n ≤ ncut

I0ḡ2n

ḡ2n(2−cos 2ξ)+
I0((2D+I0)2+4(δǫ−ω)2) sin2 ξ

4(2D+I0)

n > ncut

. (5.23)

The only difference to our calculation in section 4.3.4 is, that we added a
photon dependent cut-off in the quasiparticle tunneling rate. We can solve
eq. (5.22) and get a resulting density matrix given by eq. 4.59. For δNG > 0
the shape of ρn is essentially given by a superposition of a thermal distribution
and the distribution of a poisson distribution. Close to the resonance ∆E = ω
and for I0 ≫ κ the average photon number, in the limit of ncut → ∞ is given
by nmax (4.64). The average number of photons has a maximum for ∆E = ω,
increases with decreasing κ and D and saturates with increasing strength of
the coupling g to nsat + n̄ (4.27).

To get strong squeezing we have to choose

ncut ≪ nmax , (5.24)

such that the distribution gets squeezed against the cut-off (see fig. 5.9).
This condition determines the maximum size of κ and D, and the minimal
size of g. It is obviously helpfull to tune the system to resonance, ∆E = ω.

In fig. 5.9 we see an example for a strongly squeezed distribution, where
we solved the master equation numerically in the rotating wave approxima-
tion. We have included a dephasing rate D which is of the same order than
the coupling of SSET and oscillator, and the Q factor of the oscillator is in a
realistic range, Q ≈ 104. For this particular example we have chosen a quasi-
particle tunneling larger than the coupling of SSET and oscillator, I0 > g.
In contrast to the squeezing scheme proposed in section 5.1 squeezing is not
destroyed for this parameter range. From this result we see that squeezing
can be achieved for realistic parameters.

To better understand how dephasing, quasiparticle tunneling, and dis-
sipation affect the squeezing we will now analyze two cases which can be
solved analytically. For our further discussion we will assume that we are at
resonance ∆E = ω.

Small dissipation κ and small temperature allows us to assume Γ−
ncut

≫
κ(n̄+ 1)ncut. Thus the distribution can be approximated by

ρn = ρ0

{ (

cos4 ξ
sin4 ξ

)n

n ≤ ncut

n̄ω

1+n̄ω
n > ncut

, (5.25)
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Figure 5.9: The probability distribution ρn as a function of the photon number
n. For the parameters: ncut = 20, ∆E = ω, I0 = 0.0325, EJ = 0.1, κ = 0.00005,
g = 0.025, D = 0.001 and n̄ = 1 (all energies have been normalized with EC).
Inset: the distribution for the same parameters with ncut → ∞. The position
where we cut of the distribution for the large picture is shown with a dashed line.

where the normalization constant ρ0 is given by

ρ0 =

[

cos4
(

(cos4 ξ/ sin4 ξ)ncut − 1
)

cos4 ξ − sin4 ξ
+ n̄ω

(

n̄ω

1 + n̄ω

)ncut
]−1

.

(5.26)

For cos ξ ≫ sin ξ the density matrix at the cut of point becomes

ρncut ≈
[(

cos4 ξ

sin4 ξ

)ncut

+ n̄ω

(

n̄ω

1 + n̄ω

)ncut
]−1(

cos4 ξ

sin4 ξ

)ncut

.

(5.27)

Here we see that for small temperatures, n̄ω → 0, we will get a pure photon
number state at n = ncut. The temperature has always this kind of effect, so
we will consider the next case directly for the optimal case n̄ω = 0.

For strong driving, cos4 ξ ≫ sin4 ξ, it is only disspation in the oscillator
that decreases the photon number. Assuming cos4 ξ ≈ 1 yields for for the
density matrix

ρn = ρ0

(

I0ḡ
2

κ

)n

Πn
i=0

(

3ḡ2 i+ I0(2D + I0)(cos 4ξ + 7)/32
)−1

Θ(ncut − i) .

(5.28)
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If ncut is not to large we can assume that I2
0 ≫ ḡ2ncut. At the cut-off the

distribution becomes

ρncut =
ḡ − Ī0κ

ḡ
(

ḡ
Ī0κ

)ncut

− Ī0κ

(

ḡ

Ī0κ

)ncut

, (5.29)

where Ī0 = (2D + I0)(cos 4ξ + 7)/32. A pure photon number state will be
achieved if ḡ2 ≫ Ī0κ and squeezing will be destroyed for a large quasiparticle
tunneling rate I0. This is the case because I0 adds an additional source of
dephasing, as discussed in section 4.3.4. However, as long as dissipation in
the oscillator is small we can produce strong squeezing, even for I0 > g.

We see that strongly squeezed photon number distributions can be pro-
duced in a transmission-line oscillator inductively coupled to a SSET. It
requires an oscillator with low dissipation and a SSET with small dephasing,

such that the inequalities ω > g ≫
√

Ī0κ are satisfied. For the example
presented in fig. 5.9 a Q-factor Q = 104 is sufficient. In contrast to the
squeezing scheme proposed in section 5.1 the quasiparticle tunneling can be
larger than the coupling g. Instead of using a transmission-line oscillator it
is also possible to use a L-C tank circuit. Inductive coupling between a L-C
tank circuit and a superconducting qubit has been demonstrated [24].



Chapter 6

Dynamical Tunneling

Nonlinear micro- and mesoscopic vibrational systems have attracted much
interest in recent years. In such systems damping is often weak, and even a
comparatively small resonant field can lead to bistability, i.e., to coexistence
of forced vibrations with different phases and/or amplitudes. Quantum and
classical fluctuations cause transitions between coexisting vibrational states.
The transitions are not described by the conventional theory of metastable
decay, because the states are periodic in time and the systems lack detailed
balance. Experimentally, classical transition rates have been studied for such
diverse vibrational systems as modulated trapped electrons [79], Josephson
junctions [29], nano- and micromechanical oscillators [80, 81, 77], and trapped
atoms [82], and the results are in agreement with theory [83, 51].

Superconducting quantum devices might give us the possibility to reach
and study the quantum regime[84]. A well known non-classical effect is tun-
neling through a potential barrier. However, tunneling can not only occur
between states separated by a potential barrier but also between coexisting
classically stable periodic states. This effect is called dynamical tunneling. In
the quantum regime it should become important for weak dissipation. It was
first studied for a resonantly driven oscillator, where a semiclassical analysis
[85] made it possible to find the tunneling exponent in a broad parameter
range [86]. It has been predicted in many systems [87, 88] but until now
only chaos assisted dynamical tunneling has been measured [89, 90]. In this
chapter we will study dynamical tunneling in a parametric oscillator. The
parametrically driven oscillator is another example for a system that has been
studied in quantum optics [32, 52, 53, 54], and can be experimentally realized
using superconducting devices [29, 91]. We have discussed a superconducting
device that can be used to study the quantum regime of a parametric oscilla-
tor in section 2.2. Dynamical tunneling between the two stable states of the
parametric oscillator has interesting properties, which differ fundamentally
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from tunneling through a potential barrier in coordinate space. Using high
precision measurement techniques developed for superconducting qubits [73]
might give us the possibility to measure this unique effect for the first time.

In the parametrically driven oscillator the coexisting classical periodic
states have period 2τF , where τF is the modulation period. Such period-
2 states are identical except that the vibrations are shifted in phase by π.
Therefore the corresponding quantum states (Floquet states) are degenerate.
Tunneling should lift this degeneracy, as for a particle in a symmetric static
double-well potential. Earlier the tunneling matrix element was found [92]
for modulation at exactly twice the oscillator eigenfrequency ω. Recently
the tunneling exponent was obtained in a general case where the modulation
frequency ωF = 2π/τF is close to 2ω [93].

In this chapter we show that tunneling between period-2 states of a para-
metrically modulated oscillator displays unexpected features. We find that
the tunneling matrix element oscillates with varying ωF − 2ω, periodically
passing through zero. These oscillations are accompanied by, and are due to
spatial oscillations of the wave function in the classically forbidden region.

Q

P

g

-2.0 -1.0 0.0
1.0

2.0
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0.0
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Figure 6.1: The scaled effective Hamiltonian of the oscillator in the rotating frame
g(Q,P ), for µ = 0.5. The minima of g(Q,P ) correspond to the period-2 vibrations.
The eigenvalues of ĝ give scaled oscillator quasienergies.

For resonant modulation, |ωF − 2ω| ≪ ωF , and for a small amplitude
of the modulating field F the oscillator dynamics is well described by the
rotating wave approximation (RWA) [94]. The scaled RWA Hamiltonian ĝ
as a function of the oscillator coordinate Q and momentum P in the rotating
frame is independent of time. In a broad parameter range it has a symmetric
double-well form shown in fig. 6.1. The minima correspond to the classical
period-2 states, in the presence of weak dissipation. Respectively, of utmost
interest are tunneling transitions between the lowest single-well quantum
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states of g.
We will discuss the rotating wave Hamiltonian in more detail in the next

section. Then we will proceed to calculate the tunneling amplitude between
the two wells. In the last section we will analyze the system beyond the
rotating wave approximation.

6.1 The Duffing Oscillator

A simple model of a nonlinear oscillator that describes many experimental
systems, see e.g. section 2.2, is a Duffing oscillator. The Hamiltonian of a
parametrically modulated Duffing oscillator has the form

H0 =
1

2
p2 +

1

2

(

ω2 + F cosωF t
)

q2 +
1

4
γq4 . (6.1)

For ωF close to 2ω and for comparatively small F ,

δω =
1

2
ωF − ω, |δω| ≪ ω, F ≪ ω2, (6.2)

even where the oscillator becomes bistable its nonlinearity remains relatively
small, |γ〈q2〉| ≪ ω2. For concreteness we set γ > 0; the results for γ < 0 can
be obtained by replacing δω → −δω in the final expressions.

To describe a weakly nonlinear oscillator it is convenient to make a canon-
ical transformation from q and p to the slowly varying coordinate Q and
momentum P ,

U †qU = Cpar [P cos(ωF t/2) −Q sin(ωF t/2)] , (6.3)

U †pU = −CparωF [P sin(ωF t/2) +Q cos(ωF t/2)] /2,

where Cpar = (2F/3γ)1/2 and

[P,Q] = −iλ , λ = 3γ~/FωF . (6.4)

The dimensionless parameter λ plays the role of ~ in quantum dynamics
in the rotating frame [93]. This is equivalent to a transformation of the
quantum Hamiltonian with the unitary operator UR(t) = e−iωa†at/2, where a
is the annihilation operator of the oscillator.

The transformed oscillator Hamiltonian has the form (F 2/6γ) ĝ, where
ĝ ≡ g(Q,P ),

g(Q,P ) =
1

4

(

P 2 +Q2
)2

+
1

2
(1 − µ)P 2 − 1

2
(1 + µ)Q2 . (6.5)
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The terms ∝ exp(±inωF t) with n ≥ 1 in ĝ have been disregarded.
The time-independent operator ĝ is the scaled oscillator Hamiltonian

in the rotating frame. Its eigenvalues multiplied by F 2/6γ give oscillator
quasienergies, or Floquet eigenvalues. Formally, ĝ is a Hamiltonian of an
auxiliary stationary system with variables Q,P , and the eigenvalues of ĝ
give the energies of this system. The operator ĝ depends on one parameter

µ = 2ωF δω/F . (6.6)

For µ > −1, g(Q,P ) has two minima located at P = 0, Q = ±(µ + 1)1/2.
For µ ≤ 1 the minima are separated by a saddle at P = Q = 0, as shown in
fig. 6.1. When friction is taken into account, the minima become stable states
of period-2 vibrations. The function g(Q,P ) is symmetric as a consequence of
the time translation symmetry: the change (P,Q) → (−P,−Q) corresponds
to shifting time in eq. (6.3) by the modulation period τF .

6.2 Tunneling in the Rotating Wave Approx-

imation

We assume the effective Planck constant λ to be the small parameter of the
theory, λ ≪ 1. Then the low-lying eigenvalues of ĝ form doublets. Splitting
of the doublets is due to tunneling between the wells of g(Q,P ). Since
g(Q,P ) = g(−Q,−P ) is symmetric, the problem of level splitting seems to
be similar to the standard problem of level splitting in a double-well potential
[95]. As in this latter case, we will analyze it in the WKB approximation.

The major distinction of the present problem comes from the difference
between the structure of g(Q,P ) and the standard double well potential.
The momentum P (Q; g) as given by equation g(Q,P ) = g has 4 branches,
with both real and imaginary parts in the classically forbidden region of Q.
This leads to new features of tunneling and requires a modification of the
quasiclassical approximation.

We will consider splitting δg of the two lowest eigenvalues of ĝ. Because
of the symmetry, the corresponding wave functions ψ±(Q) are

ψ±(Q) =
1√
2

[ψl(Q) ± ψl(−Q)] , (6.7)

where ψl(Q) is the “single-well” wave function of the left well of g(Q,P ) in
fig. 6.1. It is maximal at the bottom of the well Ql0 = −(1 + µ)1/2 and
decays away from the well. To the leading order in λ, the corresponding
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lowest eigenvalue of ĝ is gmin + gq, where gmin = −(1+µ)2/4 is the minimum
of g(Q,P ) and gq = λ(µ+ 1)1/2 is the quantum correction.

The wave function ψl(Q) is particularly simple for µ < 0. In the classically
forbidden region between the wells, |Q| < |Ql0|, it has the form

ψl = C [−i∂P g]
−1/2 exp[iS0(Q)/λ], (6.8)

where S0(Q) is given by the equation g(Q, ∂QS0) = gmin + gq,

S0(Q) =

∫ Q

Ql0+Lq

P−(Q′) dQ′, (6.9)

P±(Q) = i
[

1 +Q2 − µ± 2
(

Q2 − µ̃
)1/2
]1/2

,

µ̃ = µ− gq, Lq = λ/g1/2
q ≡ λ1/2(µ+ 1)−1/4.

We keep here only the contribution from the branch P−(Q), because P−(Q)
is zero on the boundary of the classically forbidden range Ql0 + Lq. For
−µ ≫ λ and |Ql0 + Lq| > |Q| the action S0(Q) is purely imaginary. The
wave function ψl(Q) monotonically decays with increasing Q.

The prefactor in the wave function (6.8) is determined by the complex
classical speed of the oscillator

∂P g = 2P−(Q)
(

Q2 − µ̃
)1/2

. (6.10)

The normalization constant C in Eq. (6.8),

C = [(µ+ 1)/π]1/4 exp(−1/4), (6.11)

is obtained by matching, in the range Lq ≪ Q − Ql0 ≪ |Ql0|, Eq. (6.8) to
the tail of the Gaussian peak of ψl(Q), which is centered at Ql0.

We are most interested in the parameter range µ ≫ λ where tunneling
displays unusual behavior. For such µ the momentum P−(Q) becomes com-
plex in the range |Q| < µ̃. This means that the decay of the wave function
is accompanied by oscillations. To correctly describe them we had to keep
corrections ∝ gq in eq. (6.9).

We first rewrite eq. (6.9) in the form

P−(Q) ≈ i

[

1 − (Q2 − µ̃)1/2 − gq/2

1 − (Q2 − µ̃)1/2

]

. (6.12)

eq. (6.12) applies for Q−Ql0 ≫ Lq. It is seen that P−(Q) has two branching
points inside the classically forbidden region. The closest to Ql0 is the point
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Qbr = −µ̃1/2. The WKB approximation breaks down for small Q + µ̃1/2.
The wave function in this region can be shown to be proportional to Airy
function Ai[−(Q + µ̃1/2)(2µ̃1/2/λ2)1/3]. Therefore ψl oscillates with Q for
positive Q+ µ̃1/2.

In contrast to the standard WKB theory of the turning point, the pref-
actor in ψl contains two factors that experience branching at −µ̃1/2, see
eq. (6.8), (6.10). The full solution in the oscillation region can be obtained
by going around −µ̃1/2 in the complex plane following the prescription [95].
For λ2/3 ≪ Q+ µ̃1/2 it gives

ψl ≈ 2C|∂P g|−1/2 exp [−ImS0(Q)/λ] cos Φ(Q),

Φ(Q) = Φ1(Q) + Φ2(Q). (6.13)

The term ImS0(Q) in the amplitude of the wave function (6.13) is deter-
mined by eq. (6.9). The phase Φ(Q) has two terms. The term Φ1(Q) comes
from the exponential factor in the WKB wave function (6.8),

Φ1(Q) = λ−1

∫ Q

−µ̃1/2

ReP−(Q) dQ, (6.14)

where ReP−(Q) is given by eq. (6.12) in which we set (Q2 − µ̃)1/2 → i(µ̃ −
Q2)1/2; therefore ReP−(Q) > 0. It is simple to write Φ1 and ImS0(Q) in
explicit form.

The term Φ2(Q) in eq. (6.13) comes from the prefactor in ψl(Q), eq. (6.8),

Φ2(Q) ≈ 1

2
arcsin

(

µ−Q2

1 + µ−Q2

)1/2

− π

4
. (6.15)

Decay and oscillations of the wave function described by eq. (6.13) are
compared in fig. 6.2 with the results of a numerical solution of the Schrödinger
equation ĝψ = gψ. The left-well wave function was obtained numerically as a
sum of the two lowest-eigenvalues solutions, cf. eq. (6.7). In this calculation
the basis of 120 oscillator Fock states was used. A good agreement between
analytical and numerical results is seen already for not too small λ = 0.09.

The above solution allows us to find the tunnel splitting δg = g− − g+ of
the symmetric and antisymmetric states (6.7). Following the standard ap-
proach for a symmetric double-well potential [95] we multiply the Schrödinger
equations for the involved states ĝψl = glψl and ĝψ± = g±ψ± by ψ∗

± and ψ∗
l ,

respectively, integrate over Q from −∞ to 0 and subtract the results. This
gives

δg = −λ2
{

2(1 − µ)ψl(0)ψ′
l(0) − λ2 [ψl(0)ψ′′′

l (0) + ψ′
l(0)ψ′′

l (0)]
}
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Figure 6.2: The wave function of the ground state in the left well ψl(Q) in the
oscillation region for λ = 0.09 and µ = 0.5. The solid line shows explicit expressions
(6.13)-(6.15), the dashed line shows numerical results. Inset: ψl(Q) near its second
zero with higher resolution.

or, with account taken of eq. (6.13),

δg =
16λ1/2(µ+ 1)5/4

(πµ)1/2
e−A/λ cos [2Φ1(0)] , (6.16)

A = (µ+ 1)1/2 + µ ln
(

µ−1/2
[

1 + (µ+ 1)1/2
])

,

2Φ1(0) = π(µλ−1 − 1)/2 (µ≫ λ).

Clearly, δg may be positive or negative, that is, the symmetric state may
have a lower or higher quasienergy than the antisymmetric state.

The dimensional splitting (F 2/6γ)|δg| gives twice the matrix element of
tunneling between period-2 states of the oscillator. This matrix element
has an exponential factor exp(−A/λ) [93]. In addition, it contains a factor
oscillating as a function of the scaled frequency detuning µ/λ = 6ω2

F (ωF −
2ω0)/3γ~. The oscillation period is ∆(µ/λ) = 4. These oscillations are shown
in Fig. 6.3.

The oscillations of δg result from the wave function oscillations in the
classically forbidden region. This can be seen from the analysis of ψl(Q)
near the positive-Q boundary of the oscillation region, Q = µ̃1/2. The wave
function for Q−µ̃1/2 ≫ λ is a combination of the WKB waves with imaginary
momenta P±(Q) ≈ i[1±(Q2−µ̃)1/2]. The coefficients in this combination can
be found in a standard way [95]. They are determined by the phase Φ(µ̃1/2).
Only the wave with P−(Q) contributes to the tunneling amplitude, since P+

remains imaginary in the right well of g(Q,P ). For Φ(µ̃1/2) = (4n − 3)π/4
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Figure 6.3: Scaled matrix element of tunneling between period-2 states as a func-
tion of the scaled detuning of the modulation frequency from twice the oscillator
eigenfrequency. The solid lines show explicit expression (6.16), the dashed lines
show the result of numerical calculations. Inset: a higher-resolution plot of |δg|/2.
The data refer to λ = 0.09.

this wave has zero amplitude, leading to δg = 0. By noting that Φ(µ̃1/2) =
2Φ1(0)−π/4, we immediately obtain from eq. (6.16) that δg = 0 for µ = 2nλ
with integer n, in agreement with fig. 6.3

The occurrence of spatial oscillations of the ground state wave function of
the scaled Hamiltonian ĝ does not contradict the oscillation theorem, because
ĝ is not a sum of the kinetic and potential energies and is quartic in P .
The motion described by the Hamiltonian g(Q,P ) is classically integrable.
Respectively, the quantum problem is different from dynamical tunneling in
classically chaotic systems [89, 90];

The effect is also qualitatively different from photon-assisted/suppressed
tunneling in systems with stationary double-well potentials: our oscillator
has a single-well potential, the bistability is a consequence of resonant mod-
ulation, and the Hamiltonian ĝ is independent of time. At the same time
there is a remote similarity between the oscillations of the tunneling matrix
element for period-2 states and for electron states in a double-well potential
in a quantizing magnetic field [96]. The approach we used can be also ex-
tended to a resonantly driven Duffing oscillator, where the RWA Hamiltonian
has a structure similar to eq. (6.5) [86, 83].

Tunnel splitting can be observed by preparing the system in one of the
period-2 states and by studying interstate oscillations, cf. Refs. [89, 90]. This
requires that the tunneling rate (F 2/6γ) δg exceeds the dissipation in the
oscillator, which is given by ωF/4Q, where Q is the oscillator quality factor.
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The splitting sharply increases with increasing λ. Our RWA numerical results
indicate that δg still oscillates with µ for λ = 0.25−0.3 and is well described
by eq. (6.16) for µ & 2λ, but even in this parameter range measurements
remain challenging. However, as we will see in the next section it is possible
to increase the size of the oscillations by moving beyond the rotating wave
approximation.

6.3 Complete Solution

In the previous section we used the rotating wave approximation (RWA),
which applies if the driving frequency is much larger than the system level
splitting. However, as we will see, for a parametrical oscillator small driving
frequency enhances the size of the tunneling matrix element. This will make
it much easier to measure dynamical tunneling between the period-2 states.
Calculating the tunneling matrix element requires the diagonalization of the
complete time dependent Hamiltonian. However, if the corrections to the
RWA are small we can use a perturbation theory approach, which we will
develop in this section.

The complete transformed oscillator Hamiltonian has the form

H̃0 = U †
RH0UR − i~U †

RU̇R = K (g + h(t)) , (6.17)

where K = F 2/6γ is the normalization constant and g (6.5) has been dis-
cussed in section 6.1. We have an additional time dependent term

h(t) = h(1)(Q,P, t) + h(2)(Q,P, t) + h(3)(Q,P, t) . (6.18)

The three terms are the time dependent parts corresponding to F cosωF t q
2/2,

−1
2

(

ω2
F

4
− ω2

0

)

q2 and γq4/4 in the rotating frame,

h(1)(t) =
(

P 2 +Q2
)2

cosϕ (6.19)

+
1

2

(

P 2 −Q2
)

cos 2ϕ− 1

2
{P,Q}+ sin 2ϕ ,

h(2)(t) = −1

2
µ
(

P 2 −Q2
)

cosϕ+
1

2
{P,Q}+ sinϕ ,

h(3)(t) =
1

6

[

2
(

P 4 −Q4
)

cosϕ+
1

2

(

P 4 − 3
{

P 2, Q2
}

+
+Q4

)

]

+
1

6

[

−2
(

P {P,Q}+ P +Q {P,Q}+Q
)

sinϕ

−
(

P {P,Q}+ P −Q {P,Q}+Q
)

sin 2ϕ
]

,
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where ϕ = ωF t and {X, Y } = XY +Y X. The Hamiltonian H̃0(Q,P ) is sym-
metric, H̃0(Q,P ) = H̃0(−Q,−P ). This is a consequence of the time transla-
tion symmetry. The change of the sign (P,Q) → (−P,−Q) corresponds to
the shift in time by the modulation period t→ t+2π/ωF , see eq. (6.3). The
eigenstates can be found by solving the Schrödinger equation

i~
∂ψ

∂t
= K (ĝ + h(t))ψ . (6.20)

The Schrödinger equation can be solved numerically. We will use the Eigen-
states of ĝ as the base for our expansion of the wave function,

ĝ|n〉 = g0
n|n〉 , (6.21)

ψǫ(t) =
∑

Cǫn(t)|n〉 ,

Cǫn(t) =
∑

s

Cǫnse
−iǫ t/~−isϕ .

The solution consists of sets of states which are essentially equivalent, but
they are shifted in energy by ωF and in time by t→ t+2π/ωF . Each of these
sets will correspond exactly to the eigenstates of ĝ for ~ωF/K → ∞. From
the previous section we know that the two states with the lowest energy are
the symmetric and the anti-symmetric superposition of the intrawell ground
states of the left and right well. By adding or subtracting these two states
we can extract the intrawell state from the numerical solution.

In fig. 6.4 we compare the intrawell function calculated in the RWA with
the complete solution of eq. (6.20). The driving frequency for this particular
solution has been chosen such that h(t) clearly has an impact on the form of
the wave function. However, we see that the time dependency of the wave
function is not very strong. The basic features stay the same at all times. One
should note especially that the wave function is still clearly located in one
of the wells in exactly the same way as the time independent wave function.
It is only the shape of the function which changes. So it makes still sense
to consider tunneling between the two wells in a regime where corrections to
the RWA have to be taken into account.

For large driving frequencies we can try to find corrections to the eigen-
states of ĝ in the form of a perturbation theory. Using the expansion given
by eq. (6.21), the Schrödinger equation (6.20) can be written in the form,

(

ǫ

K
− g2

n +
~sωF

K

)

Cǫns =
∑

m

∑

s1

〈n|h1(ϕ)|m〉Cǫms1e
−i(s1−s)ϕ ,

where A = 1
2π

∫ 2π

0
dϕA(ϕ). The small parameter of our perturbation theory

is given by K/~ωF ≪ 1. We try to find corrections to Cǫns in the form
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Figure 6.4: The time dependent wave function for λ = 0.5, µ = 0.6 and K/~ωF =
0.1. The black curve in the front is the wave function for the same parameters but
for the rotating wave approximation, K/~ωF → 0.

Cǫns =
∑

i C
i
ǫns where i stands for the order of the expansion parameter.

From the form of the wave function (6.21) it is immediately clear that

C0
ǫns = δnn0δs0 , ǫ

0 = Kg0
n . (6.22)

where we also expand ǫ in orders of K/~ωF , ǫ =
∑

i ǫ
i. The first order

correction for the wave function is given by

C1
ǫns =

K

~sωF
〈n|h(ϕ)|n0〉eisϕ , (6.23)

and for the energy we get

ǫ1 =
K2

~ωF

∑

m

∑

s1

1

s1

〈n0|h(ϕ)|m〉e−is1ϕ × 〈m|h(ϕ)|n0〉eis1ϕ . (6.24)

Comparison of our perturbation approach and numerical calculations show
that the first order corrections give us a good approximation of the exact
solution for K/~ωF < 0.1.

A major feature of the tunneling between wells of the potential g(Q,P )
are the oscillations of the tunnel splitting as a function of µ. This is an effect
which comes from the oscillations of the ground state wave function. As can
be seen in fig. 6.4, a small driving frequency changes the shape of these oscil-
lations and therefore it should also change the energy splitting between the
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Figure 6.5: The energy splitting between the symmetric and antisymmetric ground
state for λ = 0.5 and K/~ωF = 0.1. red: The numerical solution. blue: The first
order perturbation theory solution. black: The result obtained for the rotating
wave approximation, K/~ωF → 0.

symmetric and anti-symmetric combination of the two intrawell ground state
wave functions. From eq. (6.24) we can see that the change of the tunnel-
splitting is determined by the overlap, created by h(t), of the RWA ground
state wave function with states closer to the top of the barrier. For those
states the tunnel splitting is larger than for the ground state. This suggests
that the coupling created by h(t) will also increase the tunnelsplitting of the
ground state wave function.

In fig. 6.5 we compare the result for the tunnel splitting in the RWA,
with a calculation for small driving frequency. We have chosen the size for
λ such that the characteristic oscillations of the tunneling have disappeared
in the RWA. Both, the results of a numerical solution of the Schrödinger
equation and results obtained from the perturbation theory are shown. We
see that the perturbation theory is slightly different from the full calculation
but it shows the same qualitative behavior. As we have suggested before,
decreasing the driving frequency increases the tunnel splitting. Effectively
it shifts the oscillations in δg to smaller µ compared to the RWA results.
This shows that we can use a decrease of the driving frequency to increase
the visibility of the oscillations. By tuning the driving frequency it might
be possible to create a tunnel splitting that is large enough to allow us to
measure the effect in a high-Q oscillator.



Chapter 7

Conclusion

We studied two quantum optical systems that can be realized using super-
conducting devices. One system is the single-atom maser, that can be build
by coupling a SSET to a transmission-line oscillator. The other system is the
parametric oscillator, which can be build using a periodically driven SQUID.
We have shown that interesting new effects which substantially differ from
standard quantum optics can be found in these systems. In chapter 5 we have
shown that the specific properties of the superconducting density of states
can be used to create a strongly squeezed distribution in an oscillator. In
chapter 6 we discussed dynamical tunneling between the vibrational states
of a parametric oscillator, and showed that the wave function oscillates in
the classically forbidden region. This leads to interference effects that can be
observed in the total tunnelsplitting.

In chapter 3 we have developed techniques to describe quantum optical
systems. Then we applied these techniques to the SSET-maser in chapter 4.
Each technique is suited for a particular parameter regime. The real time
diagrammatic expansion was used in section 4.2, followed by the Lindblad
master equation in section 4.3 and the polaron transformation in section 4.4.

The real-time diagrammatic expansion has been used in the strong cou-
pling limit. Here it is possible to describe the system using a balance equa-
tion. Lasing is clearly visible if the SSET and oscillator are in resonance.
We where able to derive analytical results for the average number of photons
and the Fano-Factor. Studying voltage fluctuations showed that they do not
effect the lasing properties as long as they remain smaller than the coupling
strength to the oscillator. The major effect is the widening of the JQP peak
in the current.

Following on from the real-time diagrammatic expansion we discussed a
weak coupling limit using a Lindblad approach to describe the system. We
include the relevant elements of the Hamiltonian and the density matrix and
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showed that a rotating wave approximation is valid. In the weak coupling
regime charge noise effects are much more interesting. We separated the
study of relaxation and dephasing in the SSET. The dissipation effects de-
crease the number of photons. Interestingly the current increase from the
widening of the JQP cycle keeps the peak in the current constant. For pure
dephasing in the SSET we where able to obtain an analytical solution for
the problem. The complete stationary density matrix can be calculated and
a comparison to numerical results shows that our approximations hold. We
see that dephasing reduces the number of photons significantly as soon as its
strength becomes of the order of the coupling. Strong quasiparticle tunneling
increases the number of photons only up to a point. For very strong tun-
neling the dephasing it creates becomes dominant and the photon number
starts to decay.

To describe low frequency noise we introduced the polaron transformation
and the relevant master equation in the Lindblad form. We discussed the
validity of our approximations for low frequency noise and for a broad spectral
density. We checked that for a large range of parameters our calculations are
valid. For the master equation in the polaron transformation we are able to
calculate analytical results as well. We showed that the results for a broad
distribution of noise frequencies obtained in the polaron transformation are
equivalent to the results for pure dephasing that we calculated before. In
section 4.4.4 we compare results for quasistatic noise, for low frequency noise
and for a broad distribution of frequencies. We see that the peak in the
average photon number shifts significantly to a smaller energy splitting for
slow noise. Then we show numerical results for ohmic noise and for coupling
to a single mode.

Leading on from the topics studied in this thesis there are at least two
interesting extensions. Low frequency noise has been studied in section 4.4 for
longitudinal coupling to the reservoir. It is possible to extend our analysis
to transversal coupling. This is not only of interest for the SSET-maser
but for many quantum optical systems. In section 5.3 we discussed the
Hamiltonian for a SSET coupled inductively to a transmission-line. This is
another interesting possibility which invites further studies as the inductive
coupling between a SSET and an oscillator is strongly anharmonic.
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