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A Quantum Top Inside a Bose Josephson Junction
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We consider an atomic quantum dot confined between two weakly-coupled Bose-Einstein conden-
sates, where the dot serves as an additional tunneling channel. It is shown that the thus-embedded
atomic quantum dot is a pseudospin subject to an external torque, and therefore equivalent to a
quantum top. We demonstrate by numerical analysis of the time-dependent coupled evolution equa-
tions that this microscopic quantum top is very sensitive to any deviation from linear oscillatory
behavior of the condensates. For sufficiently strong dot-condensate coupling, the atomic quantum
dot can induce or modify the tunneling between the macroscopic condensates in the two wells.

In the field of ultracold atoms, whose most spectacu-
lar achievement on relatively large scales is Bose-Einstein
condensation (BEC), not only macroscopic systems are
of interest, but also to confine several or even single
atoms into optically created microtraps is becoming a po-
tentially important experimental tool of what might be
coined “nanobosonics.” In nanoelectronics the control of
electronic quantum dots is performed by biased conduct-
ing leads, attached to it. In nanobosonics the role of the
“leads” is played by finite superfluid reservoirs of given
particle number, which can be coupled to a particular
atom by optical transitions. Trapping and manipulating
single atoms @, E] opens up new perspectives in the co-
herent control of quantum states, and is of relevance for
quantum computational tasks B]

It has recently been demonstrated by Recati et al. M]
that an atomic quantum dot (AQD) (a single atomic
two-level system), optically coupled to a superfluid BEC
bath, can be mapped onto the spin-boson model. This
system then exhibits a dissipative quantum phase transi-
tion, characteristic of this model E] Here, we study such
a spin-boson model, but with a time-dependent bath: An
AQD located inside a Bose Josephson junction (BJJ),
i.e., a single bosonic atom coupled to two superfluid reser-
voirs. The setup under consideration is schematically de-
picted in Fig.[[l The Bose-Einstein condensate is trapped
by the double-well potential Vigp(r). The atom of the
dot, which is in a hyperfine state different from that of the
condensate, is confined by a very tight potential V,qp, to
which condensate atoms are insensitive, and which causes
a large gap for double occupation of the dot. The cou-
pling of the dot to the condensates in the wells is per-
formed in a tunable way via a Raman transition M] Due
to their coherent nature, the weakly-coupled condensates
exhibit quantum tunneling E] In the present paper, we
investigate the mutual influence of the induced conven-
tional Josephson oscillations between the two wells and
the AQD, which provides an additional tunneling chan-
nel. We demonstrate, by numerically solving the time-
dependent coupled evolution equations of AQD and con-
densates, that this additional channel can in certain cases

directly affect the macroscopic Josephson tunneling.
The Hamiltonian of our system consists of three parts

H = Hcond + Hdot + Hcoupl- (]-)

We will first describe these three parts in turn. The part
H_ong characterizes the double-well trapped BEC:

Heona = /dr {!I/*(r,t) {—%W + VBEC(T)} w(r,t)
sgart}, @)

where ¥(r,t) is the condensate wavefunction and m the
atomic mass. We assume that at low energies the inter-
particle interaction is given by the usual pseudopotential
V(r —r') = gé(r — '), where g = 4nh%as/m, and as
is the s-wave scattering length. The condensate is de-
scribed within Gross-Pitaevskii theory, sufficiently accu-
rate at the very low temperatures we are considering ﬂ]

For the present dilute bosonic gas of finite extent, the
quantum tunneling between the two wells is adequately

FIG. 1: [Color online] An atomic quantum dot between two
weakly-coupled condensates, trapped in a double-well poten-
tial Vgrc. The dot is a simple two-level system = single
atom present/not present and is created by the tight potential
Vaqn, located at the position of the top of the barrier. Atoms
can be exchanged between wells either by direct tunneling
(dashed arrows) or via the dot, coupled to the condensates by
a transfer matrix 7T'.


http://arXiv.org/abs/cond-mat/0608355v2

described within a two-mode approximation [&, [9]; one
expands Vg (r) around each minimum, and introduces
the local mode solution, ¢;2(r), for each well sepa-
rately. In first approximation the two modes can be
considered to be orthogonal, [ dr¢,(r)¢s(r) = 0. The
two-mode approximation then results in the following
ansatz for the total condensate wavefunction (¥ 2(t) =
Nl)g(t)ewl*z(t))i

(r,t) =W (t)p1(r) + Va(t)da(r). (3)

Since we are interested in tunneling events, i.e., in the
time dependence of the wavefunctions ¥; o(t), it is con-
venient to write H.ong in the form

Heong = Z E?|y71(t)|2 + Uz|![’z(f)|4
i=1,2

—r(UT (OP2(1) + V5 ()P (1),  (4)

whete BY = [ [~£2 | Vi(r) P +161(r) *Voe(r)] dr
are the zero-point energies in the wells 1 and 2, re-
spectively, the effective “on-site” interaction between the
particles is given by U; = g [|¢:i(r)|* dr, and finally
2
k== [135 (Vor(r)Vee(r) + ¢1(r)Vase (r)¢2(r)dr de-
notes the coupling matrix element [9].
The Hamiltonian of the dot itself is given by

Haot = /dr[—hécﬁ(r,t)d(r,t)
U (5)
+ %&T(r,t)m(r,t)&(r, H)d(r, t)].

We assume that the dot operator factorizes according
to d(r,t) = d(t)¢q(r), where ¢q(r) is the spatial wave
function of the atom on the dot normalized to unity,
J dr|pa(r)|* = 1. The repulsive interaction between the
dot atoms we consider to be much larger than any other
energy scales in the system, Ugqy — o0. The dot can then
be described as a two-state system, the two states being
that an atom is or is not trapped inside the dot. Finally,
the dot interacts with the condensate as follows

Heoupl = Gde / dr|@ (e, t))2d (v, t)d(r, t)
(6)
+ hQ / dr(W* (v, t)d(r,t) + h.c.).

Here, g4 is the dot-condensate interaction constant, and
the second term describes the coupling of the condensate
atoms to the lowest vibrational state in the AQD via a
Raman transition with characteristic Rabi frequency €.
Spontaneous emission is suppressed by a large detuning
from the excited electronic states, which is absorbed into
the effective dot energy hd [4].

To represent the evolution equations following
from the Hamiltonian (@) in a physically trans-
parent form, we introduce a new set of pa-
rameters Uiq = gac [ dr|oi(r)|?|¢a(r)]?, Ur2a =

gac [ dré1(r)oz(r)|¢a(r)|?, and T; = hQ [ dréi(r)¢a(r),
with Uyaq = Ujy, and T; = T, In the single-occupation
limit, the temporal wavefunction of the dot is just a su-
perposition of singly and non-occupied states, [¥;(t)) =
ao(t)]0) + a1 (t)|1), where |ag|? + |a1|?> = 1. The dot op-
erators then correspond to Pauli matrices: d(t) — 6_(t)
and df(t) — 6 (t), introducing the pseudo-spin ladder
operators 6+ = 3 (6, £1i6,) in terms of the Pauli matri-
ces 0g,y,.. We can thus write for the coupling term

1+46.(t)

Heowpt = 3 [Uial Wil + (U124} P2 + hoc.)] ——

i=1,2

F{TiWi6, (1) + hoe) (7)

One can now derive the coupled equations of motion for
the condensate (B]) and the spin s(t) = (Fy(t)|6|Pa(t)) =
(W46 (t)|Wq), from the total Hamiltonian Eq. (). The
equations for the condensate are

ih0Wy = [EY + UiN1(t) + Urana(t)] ¥
+(Ur2gna(t) — k)P + Ths_,

ih0Wy = [E3 + UsNa(t) + Uzana(t)] W2
+(Ur2ana(t) — £)¥1 + Tas_, (8)

while the dot equations are

thOis_ = [—h5 + U1g N, (t) + UQdNQ(t) + U12d!pl*!p2
+U124%5 W] s — (111 + Tos)s..,
1hois, = 2(T1![/1* + oW )s_ — 2(T1!p1 + ToWs)st. (9)

It is easily verified that the Eqgs. (@) can be written in the
vector form of a Bloch equation

hors = w(t) X s, (10)
where the time-dependent frequency vector reads

2T1 N1 (t) COs 91 (t) + 2T2 NQ (t) [0} 92 (t)
—2T1 Nl (t) sin 6‘1 (t) — 2T2 N2 (t) sin 6‘2 (t)
—hd + U1aN1(t) + U24Na(t) + wi2(t) cos ¢(t)

(1)
where wlg(t) = 2U12d Nl(t)Nz(t) and ¢(t) = eg(t) —
01(t). It follows that the AQD inside the BJJ is equiva-
lent to a quantum top. In the case of time-independent
w, Eq. (IQ) can be solved analytically. The presence of
Josephson tunneling between the condensates however
generally results in a time-dependent w = w(t), and the
equations need to be solved numerically [10].

For simplicity, in what follows we consider the case of
a fully symmetric system: EY = ES =0, U; = Uy = U,
Uig =Usq, Ty =T =T, Uiag = Uz14. In order to com-
pare our results with previous work on BJJ [9], we intro-
duce dimensionless parameters: t — 2kt, A = UNy/k,
where Ny = N1(0) + N3(0) is the initial total number
of particles in the condensates; note that the conserved

w(t) =
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FIG. 2: Results for weak coupling Tre; = 0.01 (No = 1500
throughout Figs. 2—4, as used in experiment [13]) and A = 10.
n(0) = 0 (Fig.2a — solid line), n(0) = 0.5 (Fig.2a — dashed
line). Fig. 2b displays the dot occupation for n(0) = 0; Fig. 2c
shows the precessional behaviour of w (in units of 2k), and
Fig. 2d the corresponding spin nutation for n(0) = 0.
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FIG. 3: Condensate in the self-trapped MST state, n(0) =
0.8, A = 10, T;e1 = 0.01. Relative population oscillations are
shown in Fig. 3a, and the dot occupancy in Fig. 3b. In Fig. 3c,
we display the projection of the frequency w (I0) on the x —y
plane in units of 2k, and in Fig. 3d the pseudospin.

quantity is Niot = Ni(t) + Na(t) + nq(t). For numeri-
cal convenience, we fix the dot energy at hé = 2x. In
addition, the interactions between AQD and condensate
Uia/(2k) and Uy24/(2k) are assumed to be vanishingly
small (Uyq < U, U2 < U), and w, ~ —hd = const. Our
main parameters are then the dimensionless strength of
coupling of dot to condensate Tye) = T'/k, quantifying the
relative importance of tunneling channels via dot and di-
rectly by conventional Josephson tunneling, respectively;
and A, measuring the relative importance of mean-field
interaction in and tunneling between the wells.

In the following, we present results for the fractional

population imbalance

Ny (t) — Na(t)

n(t) = =2, (12
the occupation of the dot n4(t) and the trajectories of
the pseudospin s on the Bloch sphere, as well as the
projection of the frequency-vector w on the x — y plane.

We first consider the situation when the dot does not
have a notable effect on the tunneling between the wells
(Figs. 2 and 3); we fix A = 10, and only change the initial
condition for the particle imbalance, n(0). The most sim-
ple situation is the stationary one of an initial population
imbalance n(0) = 0 and initial phase difference ¢(0) =0
(for definiteness in all figures ng(0) = 1, i.e., there is
initially exactly one atom in the dot). These conditions
result in an AQD coupled to a time-independent BEC [4],
i.e., to the problem of a spin in a constant magnetic field,
however without dissipation. The pseudospin generally
undergoes nutation (also if we put n(0) = 0.5 — Fig. 2a
— dashed line), as shown in Fig.2d, while the vector w
precesses, Fig. 2c. However, there is an exception to this
general behavior: For A = 1, n(0) = 0 there occurs a sim-
ple precession of the pseudospin [12] (not shown), while
the occupation of the dot exhibits linear oscillations. For
A # 1 the precession is lost, an effect due to the finite
number of particles in the system.

The fact that N is a finite quantity constitutes one
major difference to the system of a single spin coupled
to superconducting leads considered in [11]. Further-
more, while deviation from simple precessional behavior
also occurs in that system, the effective fractional pop-
ulation imbalance n(t) is essentially zero. Regimes re-
lated to large n(t) of order unity, to be discussed below,
are thus not accessible for the superconducting Joseph-
son junction — single spin system. In addition, the tun-
neling (quasi-)particles are treated as noninteracting in
the latter case. Here, by contrast, including interactions
between the fundamental bosons is crucial. In particu-
lar, as a consequence of interactions, and as discussed
in detail in [&, [9], depending on A and the initial con-
ditions, a condensate in a double-well potential can ex-
hibit a novel quantum state — macroscopic self-trapping
(MST), successfully observed experimentally [13]. MST
is only present for the self-interacting matter waves, and
is characterized by a nonzero time average of the popu-
lation imbalance n(t). The transition to the MST state
is a gradual crossover, and we observe that our quantum
top is very sensitive to this crossover. In the plots of
Fig. 2, far away from the self-trapped state, the coupling
strength T} does not influence in a qualitative way the
behavior of the quantum top. The pseudospin behavior
however drastically changes as we approach MST It ap-
pears that the AQD is sensitive to the deviation from
linear oscillatory behavior of the condensates occurring
in this regime. The linear oscillation of the dot occu-
pation is then destroyed (Fig.3b), and the pseudospin



FIG. 4: [Color online| Results for a m-junction. In Fig.4a,
self-trapped MST state with n(0) = 0.6, A = 1.25; decoupled
dot, Tye1 = 0 (black dashed line); Tver = 0.1 (thick red line),
Tret = 1 (thin wavy blue line); the pseudospin then nutates,
Fig. 4c (Tier = 0.1). The AQD induces strong modifications
both for small oscillations between wells and in the MST state,
Figs.4b and 4d; n(0) = 0.01, and Tye = 0 (dotted curve),
Tre1 = 1 (solid curve). Weak interaction coupling, A = 0.1 in
Fig. 4b, strongly coupled MST state, A = 1.1, in Fig. 4d.

undergoes multiple-frequency rotations (Figs. 3c and 3d).
In the MST state, the pseudospin can thus behave in a
rather irregular manner already for small values of the
relative coupling T}.;.

There is another potentially interesting regime, which
occurs when the effect of the dot on the tunneling be-
tween the wells becomes significant (Fig.4), i.e., with
increasing value of the coupling to the wells Ty. Con-
sider, for instance, a m-junction |9, ¢(0) = 7, n(0) = 0.6,
A = 1.25 (Fig. 4a, dashed line). The coupling to the dot
leads to small oscillations between the wells (results for
different Ty. are shown in Fig.4a), and the pseudospin
undergoes nutation, as apparent from Fig.4c. For weak
interactions (in the so-called Rabi regime [6,19]) and very
small particle imbalance, the effect of the dot becomes
more pronounced (Fig. 4b). When the coupling to the dot
is very weak, we observe the nutation of s and precession
of w. Increasing T, leads to significant modifications of
the tunneling picture (Fig.4b, solid line), with strongly
non-sinusoidal oscillations of the population imbalance.
Finally, we observe that, changing T} from small to large
values, the dot can switch the BJJ from the MST state
to a small population imbalance state (Fig. 4d).

In conclusion, we have shown that two weakly-coupled
condensates, with an AQD situated at the location of
the top of the barrier between them, can exhibit several
regimes of oscillatory behavior. The AQD behaves as a
quantum top whose behavior is very sensitive to the tun-
neling mode between the condensates. Even for small
couplings and stationary condensates the “spin” of the
dot nutates, an effect due to the finite number of parti-

cles in the system, which vanishes for an infinite system.
Nutation is a characteristic feature of the quantum top in
regimes far away from the MST state. Conversely, mov-
ing towards the self-trapped regime, we obtain strong de-
viations from nutational behavior, and the quantum top
motion becomes strongly irregular. However, when the
AQD itself modifies in a significant way the oscillations
between the wells, nutation can emerge also in a MST
state. Finally, the dot can act as a switch for the BJJ
from MST to small population imbalance oscillations.

We treated the condensate on a mean-field level. In
future studies, it would be of interest to study the in-
fluence of condensate quantum fluctuations on the AQD
[14], in the limiting case that the dot provides the domi-
nant tunneling channel between the condensates.
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