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Influence of vibrational modes on the electronic properties of DNA
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We investigate the electron (hole) transport through short double-stranded DNA wires in which
the electrons are strongly coupled to the specific vibrational modes (vibrons) of the DNA. We
analyze the problem starting from a tight-binding model of DNA, with parameters derived from
ab-initio calculations, and describe the dissipative transport by equation-of-motion techniques. For
homogeneous DNA sequences like Poly- (Guanine-Cytosine) we find the transport to be quasi-
ballistic with an effective density of states which is modified by the electron-vibron coupling. At
low temperatures the linear conductance is strongly enhanced, but above the ‘semiconducting’ gap
it is affected much less. In contrast, for inhomogeneous (‘natural’) sequences almost all states are
strongly localized, and transport is dominated by dissipative processes. In this case, a non-local
electron-vibron coupling influences the conductance in a qualitative and sequence-dependent way.

PACS numbers: 71.38.-k,05.60.-k,87.14.Gg,72.20.Ee

I. INTRODUCTION

Transport measurements on DNA display a wide range
of properties, depending on the measurement setup, the
environment, and the specific molecule, with behavior
ranging from insulating1 via semi-conducting2 to quasi-
metallic3. The variance of experimental results as well
as ab-initio calculations4 suggest that the environment
and its influence via the vibrational modes (vibrons) of
DNA are an important factor for the electronic transport
properties of DNA wires.

Numerous recent articles addressed the electronic
properties in a microscopic approach5,6,7,8. Typically,
the DNA is described within a tight-binding model for
the electronic degrees of freedom with parameters either
taken from ab-initio quantum chemistry simulations4,9,10

or motivated by a fit to experiments. The variance of
qualitatively different tight-binding models is large, rang-
ing from involved all-atomic representations to models
where each base pair is represented by only a single or-
bital.

Several suggestions in the past stressed the importance
of the environment and vibrational modes on the elec-
tron transfer11,12 and transport13,14. However, the vi-
brons have been treated so far only within very simple
models, where specifically only a local electron-vibron
coupling has been taken into account7. If the coupling
is sufficiently strong, this leads to the formation of po-
larons, i.e., a bound state of an electrons with a a lattice
distortion. While these approaches are sufficient to de-
scribe the transition from elastic (quasi-ballistic) to in-
elastic (dissipative) transport they ignore the fact that
the non-local electron-vibron coupling strength is com-
parable in magnitude to the local one4. Furthermore, as
the non-local electron-vibron coupling leads effectively
to a vibron-assisted hopping, the proper inclusion of this
coupling can be important for transport through the in-
homogeneous sequences of ‘natural’ DNA.

In this paper we study electron transport through
double-stranded DNA wires strongly coupled, both lo-
cally and non-locally, to vibrational modes of the DNA.
The DNA base pairs are represented by single tight-
binding orbitals, with energies differing for Guanine-
Cytosine (GC) and Adenine-Thymine (AT) pairs. The
vibrational modes are also coupled to the surrounding
environment (water or buffer solution) which we repre-
sent by a harmonic oscillator bath. This extension allows
for dissipation of energy and opens the possibility of in-
elastic transport processes. We address the influence of
specific DNA vibrational modes on transport in the frame
of equation-of-motion techniques, with parameters moti-
vated by ab-initio calculations4,10.

Our two main results are: 1) For homogeneous DNA
sequences like Poly- (Guanine-Cytosine) wires the vi-
brons strongly enhance the linear conductance at low
temperatures. At large bias the vibrons affect the
conductance only weakly, which remains dominated
by quasi-ballistic transport through extended electronic
states. 2) For inhomogeneous (‘natural’) sequences al-
most all states are strongly localized, and transport is
dominated by inelastic (dissipative) processes. In this
case, the presence of a non-local electron-vibron coupling,
leading to ‘vibron-assisted’ electron hopping’, influences
the conductance in a qualitative and quantitative way.

The paper is organized as follows: in the following sec-
tion we introduce the model and sketch briefly the tech-
niques used to derive the transport properties. In Sec-
tion III A we present our results for homogeneous DNA
wires, while in Section III B we discuss a specific inho-
mogeneous DNA sequence, that has been studied in re-
cent experiments. A summary is provided in Section IV.
Details of the applied technique can be found in the Ap-
pendix A.

http://arXiv.org/abs/cond-mat/0611745v2
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II. MODEL AND TECHNIQUE

Quantum chemistry calculations15,16 show that the
highest occupied molecular orbital (HOMO) of a DNA
base pair is located on the Guanine or Adenine, whereas
the lowest unoccupied molecular orbital (LUMO) is lo-
cated on the Thymine and Cytosine. Between HOMO
and LUMO there is an energetic gap of approximately
2 − 3 eV. Experimental evidence hints to the prevalence
of hole transport through DNA. Given the energetic and
spatial separation of HOMO and LUMO and considering
sufficiently low bias voltage we can represent in a minimal
model one base pair by a single tight-binding orbital.

We consider a DNA sequence with N base pairs, the
first and last of which are coupled to semi-infinite metal
electrodes. We further allow for a coupling to (in general
multiple) vibrational modes, that can be excited by local
and non-local coupling to the charge carriers on the DNA.
These modes in turn are coupled to the environment.
When later performing the numerical calculations we will
restrict ourselves to a single vibrational mode of the DNA
base pair, e.g., the ‘stretch’ mode4.

We thus arrive at the Hamiltonian H = Hel + Hvib +
Hel−vib + HL + HR + HT,L + HT,R + Hbath with

Hel =
∑

i

ǫia
†
iai −

∑

i,j;i6=j

tija
†
iaj

HT,L + HT,R =
∑

n,k,i

[

trinc†nrai + tr∗ina†
i cnr

]

Hvib =
∑

α

ωαB†
αBα

Hel−vib =
∑

α

∑

i

λ0 a†
iai(Bα + B†

α)

+
∑

α

∑

i,j;i6=j

λij a†
iaj(Bα + B†

α) . (1)

The index r = L, R describing left and right electrode.
The term Hel describes the electrons in the DNA chain
with operators a†

i , ai in a single-orbital tight-binding rep-
resentation with on-site energies ǫi of the base pairs and
hopping tij between neighbouring base pairs. Both on-
site energies and hopping depend on the base pair se-
quence, e.g., the on-site energy of a Guanine-Cytosine
base pair differs from the on-site energy of a Adenine-
Thymine base pair. For the hopping matrix elements
tij we used the values calculated by Siebbeles et al.10

who studied intra- and inter-strand hopping between
the bases in DNA-dimers by density functional theory
(DFT). They computed direction-dependent values for
all possible hopping matrix elements in such dimers.
Adapting these results to our simplified model of base
pairs we obtain the hopping elements denoted in table I
26. The number in the G row and the A column de-
notes the hopping matrix element from a GC base pair
to an AT base pair to its ‘right’ (to the 3’ direction), for
example.

5’-XY-3’(all in eV)

X� Y G C A T

G 0.119 0.046 -0.186 -0.048

C -0.075 0.119 -0.037 -0.013

A -0.013 -0.048 -0.038 0.122

T -0.037 -0.186 0.148 -0.038

TABLE I: Hopping integrals tij taken form Ref. 10 and
adapted to our model. The notation 5’-XY-3’ indicates the
direction along the DNA strand (see e.g. Fig. 1b in Ref. 17.)

The terms HL/R refer to the left and right electrodes.
They are modeled by non-interacting electrons, described

by operators c†k L/R, ck L/R, with a flat density of states ρe

(wide band limit). The chemical details of the coupling
between the DNA and the electrodes are not the focus
of this work. For our purposes it is fully characterized
by HT,L +HT,R, which leads to a level broadening of the
base pair orbitals coupled to the electrodes characterized
by the linewidths ΓL and ΓR.

The vibronic degrees of freedom are described by Hvib,
with bosonic operators Bα and B†

α for the vibron mode
with frequency ωα. Hel−vib couples the electrons on the
DNA to the vibrational modes, where λ0 and λij are
the strengths for the local and non-local electron-vibron
coupling, respectively. We further restrict the non-local
coupling terms to nearest neighbors, λij = λ1δi,j=i±1.
Note that the vibron modes and their coupling to elec-
trons is assumed independent of the base pairs involved,
an approximation that is reasonable for some modes of
interest, including the base pair stretch mode4. The
strength of the electron-vibron coupling for various vi-
brational modes has been computed in Ref. 4 for homo-
geneous dimers and tetramers of AT and GC pairs. Here
we consider also inhomogeneous sequences, for which the
electron-vibron couplings are not known. As a model
we take λ0 and λ1 as parameters, independent of the
base pairs involved, for which we choose values in rough
agreement with estimates for the ‘stretch’ mode of Ref. 4.
This should be sufficient for a qualitative discussion of
the effects that arise from the electron-vibron coupling
in DNA.

The vibrons are coupled to the environment, the mi-
croscopic details of which do not matter. We model it by
a harmonic oscillator bath Hbath, whose relevant proper-
ties are summarized by its linear (‘Ohmic’) power spec-
trum (or spectral function) up to a high-frequency cut-off
ωc

20. The coupling of the vibrons to the bath changes the
vibrons spectra from discrete (Einstein) modes to contin-
uous spectra with a peak around the vibron frequency.
Physically, the coupling to a bath allows for dissipation
of electronic and vibronic energy. This dissipation is cru-
cial for the stability of the DNA molecule in a situation
where inelastic contributions to the current dissipate a
substantial amount of power on the DNA itself.

As mentioned before we only consider a single vibra-
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tional mode when performing the numerical calculations.
This vibrational mode with resonance frequency ω0 cou-
pled to the bath is then described by a spectral density

D(ω) =
1

π

(
η(ω)

(ω − ω0)2 + η(ω)2
−

η(ω)

(ω + ω0)2 + η(ω)2

)

,

(2)

with a frequency dependent broadening η(ω) which arises
from the vibron-bath coupling. For the ’Ohmic’ bath
with weak vibron-bath coupling and cut-off ωc we con-
sider η(ω) = 0.05 ω θ(ωc − ω). Mathematically the
crossover from the discrete vibrational modes to a contin-
uous spectrum of a single mode is done by substituting
∑

α δ(ω − ωα) →
∫

dωD(ω).
For the strong electron-vibron coupling predicted for

DNA4, one expects polaron formation, with a polaron
size of a few base pairs. To describe these polarons (a
combined electron-vibron ‘particle’) theoretically we ap-
ply the Lang-Firsov unitary transformation with the gen-
erator function S to our Hamiltonian (see e.g. Ref. 18)

H̄ = eSHe−S ; S = −
∑

iα

λ0

ωα
a†

iai

[
Bα − B†

α

]
. (3)

After introducing transformed electron and vibron oper-
ators according to

āi = aiχ (4)

B̄α = Bα −
∑

i

λ0

ωα
a†

iai (5)

χ = exp

[
∑

α

λ0

ωα
(Bα − B†

α)

]

. (6)

The new Hamiltonian reads (with χχ† = χ†χ = 1)

H̄ =
∑

i

(ǫi − ∆)a†
iai −

∑

i,j;i6=j

tija
†
iaj

+
∑

r,k,i

[

trikc†kraiχ + tr∗ik a†
iχ

†ckr

]

+ HL + HR

+
∑

α

ωαB†
αBα +

∑

α

∑

i,j;i6=j

λij a†
iaj(Bα + B†

α) (7)

∆ =

∫

dωD(ω)
λ2

0

ω
. (8)

Here we neglected terms with vibron-mediated electron-
electron interaction19. This is a reasonable approxi-
mation for the low hole density in DNA. The purpose
of the Lang-Firsov transformation is to remove the lo-
cal electron-vibron coupling term from the transformed
Hamiltonian in exchange for the transformed operators
and the so-called polaron shift ∆, describing the lower
on-site energy of the polaron as compared to the bare
electron. However, the non-local coupling term remains
unchanged and has to be dealt with in a different way
than the local term (see below). There is an additional

electron-vibron coupling due to the vibron shift gener-
ator χ in the transformed tunnel Hamiltonian from the
leads. In this study we neglect effects arising from this
additional coupling. This is a valid approximation for
ΓL,R ≫ λ0 and the usual approximation taken in the
literature6,8.

We introduce the retarded electron Green function

Gret
kl (t) = −iθ(t)

〈{

ak(t)χ(t), a†
l χ

†
}〉

, (9)

where the thermal average is taken with respect to the
transformed Hamiltonian, which does not explicitely in-
clude the local electron-vibron interaction. By applying
the equation of motion (EOM) technique we can derive
a self-consistent calculation scheme for Gret

kl (t) (see Ap-
pendix A). From the Green function obtained by this
scheme we extract the physical quantities of interest,
like the density of states and the current. The EOM
technique for an interacting system generates correlation
functions of higher order than initially considered, result-
ing in a hierarchy of equations that does not close in itself.
Therefore, an appropriate truncation scheme needs to be
applied. In our case, we close the hierarchy on the first
possible level neglecting all higher order Green functions
beyond the one defined above. In particular, our approx-
imations are perturbative to first order in λ1 (for details
see Appendix A), restricting our study to relatively weak
non-local electron-vibron coupling strengths.

For a DNA chain with N bases the density of states is

A(E) = −
1

πN

N∑

i=1

Im
{
Gret

ii (E)
}

. (10)

In the wide-band limit, the retarded electrode self-
energies are constant and purely imaginary: ΣL

ij =

iΓLδi1δj1 and ΣR
ij = iΓRδiN δjN .

We evaluate the current using the relation21

I =
ie

h

∫

dǫ
(

tr
{[

fL(ǫ)ΓL − fR(ǫ)ΓR
] (

Gret(ǫ) − Gadv(ǫ)
)}

+ tr
{[

ΓL − ΓR
]
G<(ǫ)

} )

, (11)

where fL(ǫ) and fR(ǫ) are the Fermi distributions in the
left and right lead, respectively.

To compute the ‘lesser’ Green function G<(ǫ), we use
the relation18

G<(ǫ) = Gret(ǫ)
[
ΣL< + ΣR< + Σ<

vib(ǫ)
]
Gadv(ǫ) . (12)

While the lesser electrode self-energies, such as ΣL<, can
be determined easily within the above approximation for
any applied bias, we have to approximate the behavior of
the lesser self-energy due to the vibrons Σ<

vib. Extending
the known relation for the equilibrium situation we write

Σ<
vib(ǫ) = −feff(ǫ)

[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
, (13)

with an effective electron distribution feff = [fL(ǫ) +
fR(ǫ)]/2, multiplying the equilibrium expressions for
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Σret
vib , Σadv

vib . Combining all terms we obtain a concise
expression for the current, which can be separated into
‘elastic’ and ‘inelastic’ parts as

I =
2e

h

∫

dǫ [Tel(ǫ) + Tinel(ǫ)] [fL(ǫ) − fR(ǫ)] , (14)

where we identify the ‘elastic’ and ‘inelastic’ transmission
functions22,23

Tel(ǫ) = 2 tr
{
ΓRGret(ǫ)ΓLGadv(ǫ)

}
(15)

Tinel(ǫ) =
i

4
tr{(ΓR + ΓL)Gret(ǫ)

×
[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
Gadv(ǫ)} . (16)

Note that also the ‘elastic’ transmission depends on the
effects of vibrons, since the self-consistent evaluation of
the Green function is performed in the presence of vi-
brons and environment. The inelastic contribution can
also be termed ‘incoherent’, as typically the electrons will
leave the DNA at a lower energy than they enter it.

III. RESULTS

In this section we analyze the effect of vibrations on
the electronic properties of DNA, i.e., we determine the
density of states, the transmission and the current. As
explicit examples we consider homogeneous and inhomo-
geneous DNA sequences of 26 base pairs in the presence
of a single vibrational mode as described in the previous
section. For simplicity, we couple the left and right elec-
trodes symmetrically to the DNA, so ΓL = ΓR ≡ Γ, and
we choose Γ = 0.1 eV. We further assume that the bias
voltage Vb drops symmetrically across both electrode-
DNA interfaces.

A. Homogeneous Poly-(GC) DNA

For a homogeneous DNA consisting of 26 Guanine-
Cytosine base pairs we obtain a band-like density of
states displayed in Fig. 1. With the fairly small hopping
element of 0.119 eV (see Tab. I) for this finite system one
can still resolve the peaks due to single electronic reso-
nances, especially near the van-Hove-like pile up of states
near the band edges. All states are delocalized over the
entire system. The inset displays the elastic transmis-
sion, showing that the states have a high transmission of
Tel ∼ 0.5, with the states at the upper band edge show-
ing the highest values. Both density of states and elastic
transmission show a strong asymmetry, which is a direct
consequence of the non-local electron-vibron coupling in
this model.

To further elucidate this connection we take a closer
look at the upper and lower band edge of the density
of states (see Fig. 2). Without electron-vibron coupling
(solid curve) we see the electronic resonances of equal
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FIG. 1: (Color online) Density of states and transmission
of Poly-(GC) with 26 base pairs and the following param-
eters: base pair on-site energy ǫG = −0.35 eV, Fermi en-
ergy EF = 0 eV, vibrational energy ~ω0 = 0.01 eV, cutoff
~ωc = 0.03 eV, linewidth Γ = 0.1 eV and room temperature
kBT = 0.025 eV. The strong asymmetry of the curves with
respect to the band center is a consequence of the non-local
electron-vibron coupling λ1.
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FIG. 2: (Color online) Density of states of Poly-(GC) with 26
base pairs and parameters as in Fig. 1. The solid line shows
the purely electronic resonances. Inclusion of only a local
electron-vibron coupling λ0 reduces the weight at the origi-
nal electronic resonance in favor of ‘vibron satellites’ (dashed
line). The addition of a non-local electron-vibron coupling λ1

(dash-dotted line) introduces shifts of the resonance peaks to
the ‘outside’ (changing the effective band width) as well as a
strong asymmetry in the height of the resonances.

height, positioned at the energies corresponding to the
‘Bloch’-like states of this finite size tight-binding chain.
If we include only local electron-vibron coupling (dashed
line), vibron satellite states appear, and the spectral
weight of the original electronic resonances decreases,
consistent with the spectral sum rule. Note that the dis-
played vibron satellites are not satellites of the displayed
electronic states, but emerge from other states at higher
and lower energies. Indeed the difference in peak posi-
tions is not equal to ~ω0. Inclusion of the non-local cou-
pling λ1 shifts the original electronic resonance positions
(dashed-dotted line). In the present example, with posi-
tive sign of λ1, the resonances are shifted to the ‘outside’,
corresponding to an effective increase in bandwidth; for
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FIG. 3: (Color online) Zero-bias conductance and I-V -
characteristics for Poly-(GC) with 26 base pairs and parame-
ters as in Fig. 1. The inclusion of vibrons increases the zero-
bias conductance at low temperatures (kBT roughly below
~ω0) by several orders of magnitude. At room temperature,
however, the zero bias conductance is slightly reduced. Inset:
the I-V -characteristics shows a ‘semiconducting’ behavior at
room temperature. The non-local electron-vibron coupling
λ1 increases both the non-linear conductance in the gap and
around the threshold, leading to a slightly enhanced current.

the opposite sign of λ1 the resonances shift to the ‘inside’.
Furthermore, a distinct asymmetry of the resonances is
observed, i.e. the upper band edge states have a larger
peak height than the lower band edge states. This asym-
metry in the density of states comes with a corresponding
asymmetry in the elastic transmission, see Fig. 1 for the
overall view.

As shown in Fig. 3 the coupling to vibrons strongly
increases the zero-bias conductance at low temperatures,
whereas at high temperatures the conductance slightly
decreases (dashed and dash-dotted line). This effect has
been observed before, e.g. in Ref. 7. At low tempera-
tures, the conductance is increased since the density of
states at the Fermi energy is effectively enhanced due to
(broadened) vibronic ‘satellite’ resonances. The trans-
port remains ‘elastic’, i.e. electrons enter and leave the
DNA at the same energy (first contribution to the cur-
rent Eq. 14). At sufficiently high temperatures, however,
the back scattering of electrons due to vibrons reduces the
conductance in comparison to situation without electron-
vibron coupling (solid line).

The inset of Fig. 3 shows a typical I-V -characteristic
for the system. A quasi-semiconducting behavior is ob-
served, where the size of the conductance gap is deter-
mined by the energetic distance of the Fermi energy to
the (closest) band edge. After crossing this threshold,
the current increases roughly linear with the voltage until
at larger bias it saturates when the right chemical poten-
tial drops below the lower transmission band edge. Small
step-like wiggles due to the ‘discrete’ electronic states are
visible at low temperature (not shown), but are smeared
out at room temperature. The current is dominated by
the elastic transmission, as expected for a homogeneous
system.
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FIG. 4: (Color online) Density of states of an inhomoge-
neous DNA with sequence (5’-CAT TAA TGC TAT GCA
GAA AAT CTT AG-3’). We chose the following parame-
ters: GC on-site energy ǫG = −0.35 eV, AT on-site energy
ǫA = −0.86 eV , Fermi energy EF = 0 eV, vibron energy
~ω0 = 0.01 eV, cutoff ~ωc = 0.03 eV, linewidth Γ = 0.1 eV
and room temperature kBT = 0.025 eV. The density of states
is fragmented into ‘bunches’ of strongly localized states with
very low elastic transmission.

The non-local coupling has a quantitative effect on the
nature of the I-V -curve. The zero bias conductance as
well as the non-linear conductance around the threshold
are increased by close to a factor 1.2. This increase is di-
rectly related to the enhancement of the density of states
and elastic transmission around the upper band edge (see
Figs. 1 and 2).

B. Inhomogeneous DNA

Inhomogeneous DNA sequences show a transport be-
havior which differs significantly from that of the ho-
mogeneous Poly-(GC) sequence. As a specific example,
we analyze the sequence 5’-CAT TAA TGC TAT GCA
GAA AAT CTT AG-3’ (plus complementary strand),
which has been investigated experimentally by Porath et
al.24. The density of states is displayed in Fig. 4. Rather
than traces of bands it now shows discrete ‘bunches’ of
states due to the disorder in the sequence. All states
are strongly localized, extending over at most a few base
pairs25. The right-most (largest energy) bunch of states
is due to the GC base pairs. Two of these GC pairs are
the only base pairs that are directly coupled to the metal-
lic electrodes. Note that the equilibrium Fermi level is set
at EF = 0 eV, roughly 0.35 eV above these states. The
first states with mostly AT character are located around
−0.7 eV.

As to be expected the elastic transmission through
these localized states is extremely low. The largest con-
tribution to the elastic transmission stems from the AT-
like states around an energy ǫA = −0.86 eV (note that
the considered sequence is AT rich). But even these
states have an elastic transmission of less than 10−14 for
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the parameters we use. Consequently, the ‘elastic’ quasi-
ballistic transmission of electrons is completely negligible
for the considered sequence.

In spite of the localization of the electron states, a
rather significant current can be transmitted, as dis-
played in Fig. 5. It is due to the inelastic contributions
to transport, where electrons dissipate (or absorb) energy
during their motion through the DNA. Roughly speak-
ing, the transported electrons excite the vibrons which in
turn either dissipate their energy to the environment or
‘promote’ other electrons, thus increasing their probabil-
ity to hop to neighboring but energetically distant base
pairs. This inelastic transmission strongly depends on
the specific states (in contrast to the band-like transmis-
sion for the homogeneous sequence). As a consequence,
the inelastic transmission of different states can differ by
several orders of magnitude. Together with the bunched
density of states this leads to the step-like behavior for
the current displayed in Fig. 5. The first step centered
around Vb ∼ 0.7 V roughly corresponds to states with GC
character, whereas the second step corresponds to states
with mixed AT-GC character at −0.7 eV. Here, the GC
states display a larger inelastic transmission as can be
seen from the large non-linear conductance peak around
Vb ∼ 0.6 − 0.7 V (see inset of Fig. 5).

The non-local electron-vibron coupling λ1 for this
sequence leads to qualitative change of the I-V -
characteristics, depending on the details of the nature of
the states and therefore explicitly on the DNA sequence.
The current on the lowest bias plateau is increased rela-
tive to the case with only local electron-vibron coupling,
although the GC states do barely shift towards the Fermi
energy. However, the inelastic transmission of the states
is slightly increased (see inset), leading to an increased
current on the first plateau (dashed line).

In contrast, the conductance due to states with mixed
AT-GC nature is much reduced (almost by a factor of
two, see middle peak in the inset of Fig. 5) which leads
to a smaller increase of the current for the middle step.
Obviously, the transmission of these mixed states is re-
duced by the ‘vibron assisted electron hopping’. On the
other hand, the last step at ∼ 2V is almost unaffected.

While the changes of the I-V -characteristics due to
non-local electron-vibron coupling are relatively small
for the present sequence and model parameters, the ob-
served sensitivity of the inelastic transmission suggests
that other sequences could display much larger effects.
Furthermore, quantum chemistry calculations4 suggest
that the local and non-local electron-vibron couplings can
be of the order of ∼ 10 meV, i.e. larger than what we
considered here. Inhomogeneities in the electron-vibron
coupling, not covered in the present calculation, might
have a further impact.

The DNA sequence we considered was investigated in
transport experiments, and we should compare the ex-
perimental and theoretical results. As some important
factors are still not well determined, a quantitative com-
parison is not feasible. However, we observe both in
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FIG. 5: (Color online) I-V -characteristics and differential
conductance for an inhomogeneous DNA with sequence (5’-
CAT TAA TGC TAT GCA GAA AAT CTT AG-3’). Param-
eters are the same as in Fig. 4. The inclusion of a non-local
electron-vibron coupling λ1 leads to changes in the conduc-
tance, depending on the nature of the relevant state.
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FIG. 6: Current at a bias of Vb = 1V as a function of
electrode-DNA coupling Γ for the inhomogeneous DNA with
sequence (5’-CAT TAA TGC TAT GCA GAA AAT CTT AG-
3’). Other parameters are the same as in Fig. 4. The current
is a non-monotonous function of Γ and peaks around a value
Γmax where the imaginary part of the vibron self energy Σvib

is of the same size as Γ.

experiment and theory roughly a ‘semiconducting’ I-V -
characteristics with (sometimes) steplike features. The
size of the currents is roughly comparable, of the order
of ∼ 80 nA at a bias of Vb = 1 V. As the choice of the
position of the Fermi energy defines the size of the ‘semi-
conducting’ gap, this gap could be adjusted to fit the
experiment. On the other hand, the value of the current
for this sequence (with parameters derived from quan-
tum chemistry calculations) can not be simply scaled by
changing a single ‘free’ parameter like the electrode-DNA
coupling Γ.

For the case of the homogeneous sequence, the current
at a given bias (say, at Vb = 1 V) grows monotonically
with increasing Γ (as long Γ is smaller than the hop-
ping amplitude tij), as is expected from quasi-ballistic
Landauer-type transport. In contrast, for the inhomoge-
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neous sequence, the current is a non-monotonic function
of Γ, see Fig. 6. In particular, the current at the first
plateau (at Vb = 1 V) initially grows as we decrease Γ
from the value used in the above figures (Γ = 0.1 eV),
up to a point at which the imaginary part of the vibron
self energy Σvib is of the same size as Γ. This happens
around Γmax ∼ 0.01 eV. The current at Γmax is of order
of ∼ 500 nA. If Γ is decreased further, the current drops
rapidly from the maximal value.27 On the other hand, if
Γ is increased above the value Γ = 0.1 eV, the current
also drops initially, before at very large Γ quasi-ballistic
transport becomes dominant and the current increases
again (not shown in the figure).

Summarizing these results, we conclude that for the
given model parameters, i.e. for values of Γ in the large
range 1 − 200 meV, likely to be realistic for present-days
transport experiments in DNA, the current at the first
plateau lies in the range of 50 − 500 nA.

IV. SUMMARY

To summarize, we have presented a technique that al-
lows the computation of electron transport through short
sequences of DNA, including local and non-local cou-

pling to vibrations and a dissipative environment. Us-
ing an equation-of-motion approach we identify elastic
and inelastic contributions to the current. For homo-
geneous DNA sequences, the transport is dominated by
elastic quasi-ballistic contributions through a band-like
density of states (Fig. 1,2), which display an asymmetry
due to the non-local electron-vibron coupling. The cou-
pling to vibrations strongly enhances the zero-bias con-
ductance at low temperatures. The current at finite bias
above the ‘semiconducting’ gap, however, is only quan-
titatively modified by the non-local electron-vibron cou-
pling (Fig. 3). For inhomogeneous DNA sequences, the
transport is almost entirely due to inelastic processes,
the effectiveness of which is strongly sequence depen-
dent (Fig. 4). For the considered example sequence the
non-local electron-vibron coupling qualitatively modifies
the I-V -characteristics (Fig. 5). We also point out that
the current through inhomogeneous DNA sequences de-
pends non-monotonically on the electrode-DNA coupling
Γ (Fig. 6).
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APPENDIX A: EQUATION OF MOTION

Before applying the equation of motion we separate
the retarded electron Green function into two parts,

Gret
kl (t) = −iθ(t)

〈{

ak(t)χ(t), a†
l χ

†
}〉

= −iθ(t)
〈

ak(t)χ(t)a†
l χ

†
〉

︸ ︷︷ ︸

G
(1)
kl

(t)

−iθ(t)
〈

a†
l χ

†ak(t)χ(t)
〉

︸ ︷︷ ︸

G
(2)
kl

(t)

. (A1)

This is necessary, because for G
(1)
kl (t) and G

(2)
kl (t) self-

consistency equations can be derived via the equation-
of-motion technique (EOM) (The equation of motion ap-
plied to the retarded Green function Gret

kl (t) leads to an
equation containing not only the retarded Green func-
tion). The EOM technique for an interacting system
generates a hierarchy of correlation functions that does
not close in itself. Therefore, an appropriate truncation
scheme needs to be applied. Here we close the hierarchy
at the first possible level, i.e. we neglect all higher order
Green functions beyond the one defined above.

From the equation of motion we obtain the following

expression for G
(1)
kl (t) defined in Eq. (A1)

∑

j

[

(i
∂

∂t
− ǫk)δjk + tkj

]

G
(1)
jl (t)

= δ(t)
〈

aka†
l

〉

+ iθ(t)∆
〈

ak(t)χ(t)a†
l χ

†
〉

− iθ(t)







∑

j 6=k,α

λkj

〈

aj(t)
[
Bα(t) + B†

α(t)
]
χ(t)a†

l χ
†
〉

+
∑

α

λ0

〈

ak(t)Bα(t)χ(t)a†
l χ

†
〉

+
∑

α

∑

i,j;j 6=i

2 λij λ0

ωα

〈

ak(t)a†
i (t)aj(t)χ(t)a†

l χ
†
〉

+
∑

α

λ0

〈

ak(t)χ(t)B†
α(t)a†

l χ
†
〉

+
∑

n

V ∗
nk

〈

cn(t)a†
l χ

†
l

〉
}

(A2)

and a similar relation for G
(2)
kl (t).

The expressions
〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

and similar

higher order correlation function are approximated by
assuming

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̄
≈ Fα(t)

〈

aj(t)χ(t)a†
l χ

†
〉

H̄
.(A3)

The function Fα(t) is obtained by considering a Hamil-
tonian H0 without electron-vibron coupling and cal-
culating the same higher order correlation function

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H0

, where now the average is taken

with respect to H0. Then the electronic and vibronic
correlators factorize,

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H0

=
〈

aj(t)a
†
l

〉

Hel
0

〈
Bα(t)χ(t)χ†

〉

Hvib
0

,

(A4)

where Hel
0 and Hvib

0 are the electronic and vibronic parts
of H0.

After some straight-forward algebra (cf Ref. 19) we ob-
tain

〈
Bα(t)χ(t)χ†

〉

Hvib
0

= Fα(t)
〈
χ(t)χ†

〉

Hvib
0

(A5)

and consequently

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H0

= Fα(t)
〈

aj(t)χ(t)a†
l χ

†
〉

H0

.(A6)

Because the strength of the electron-vibron coupling in
H̄ is proportional to λ1, this approximation is valid for
not too large values of λ1.

Expressions like
〈

a†
l χ

†ak(t)a†
i (t)aj(t)χ(t)

〉

are treated

in a mean-field like manner:
〈

ak(t)a†
i (t)aj(t)χ(t)a†

l χ
†
〉

≈
〈

ak(t)a†
i (t)

〉 〈

aj(t)χ(t)a†
l χ

†
〉

−
〈

aj(t)a
†
i (t)

〉 〈

ak(t)χ(t)a†
l χ

†
〉

. (A7)

Using the above approximations we obtain after
Fourier transformation and crossover to the continuous
sprectrum

∑

j

[(E − ǫk)δjk + tkj ] G
(1)
jl (E)

=
〈

aka†
l

〉

− ∆G
(1)
kl (E)

+

∫

dωD(ω)

{

−
∑

i

∑

j 6=i

〈

aja
†
i

〉 2λijλ0

ω
G

(1)
kl (E)

+
∑

i

∑

j 6=i

〈

aka†
i

〉 2λijλ0

ω
G

(1)
jl (E)

+
∑

j 6=k

λkjλ0

ω

[∫

dteiEt [F1(t, ω) − 1] G
(1)
jl (t)

]

+
λ2

0

ω

[∫

dteiEtF1(t, ω)G
(1)
kl (t)

] }

+
∑

j

ΣL
kjG

(1)
jl (E) +

∑

j

ΣR
kjG

(1)
jl (E) (A8)

with

F1(t, ω) = (N(ω) + 1) e−iωt − N(ω)eiωt , (A9)
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and ΣR/L are the right and left electrode self-energies. A

similar relation holds for G
(2)
kl (E).

We can now identify

(E − ǫk)δjk + tjk + i0+ =
[
Gret

0 (E)
]−1

jk
, (A10)

where Gret
0 (E) is the retarded Green function for the iso-

lated DNA without electron-vibron interaction. The va-
lidity of this equation can easily be seen by computing
the equation of motion for Gret(t) for the isolated DNA
without electron-vibron coupling.


