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Nonlocal Andreev reflection at high transmissions
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We analyze non-local effects in electron transport across three-terminal normal-superconducting-
normal (NSN) structures. Subgap electrons entering S-electrode from one N-metal may form Cooper
pairs with their counterparts penetrating from another N-metal. This phenomenon of crossed An-
dreev reflection – combined with normal scattering at SN interfaces – yields two different con-
tributions to non-local conductance which we evaluate non-perturbatively at arbitrary interface
transmissions. Both these contributions reach their maximum values at fully transmitting interfaces
and demonstrate interesting features which can be tested in future experiments.

At sufficiently low temperatures Andreev reflection
(AR) [1] dominates charge transfer through an inter-
face between a normal metal and a superconductor (NS):
An electron propagating from the normal metal with en-
ergy below the superconducting gap ∆ enters the super-
conductor at a length of order of the superconducting
coherence length ξ, forms a Cooper pair together with
another electron, while a hole goes back into the nor-
mal metal. As a result, the net charge 2e is transferred
through the NS interface which acquires non-zero subgap
conductance [2].

In hybrid NSN structures with two N-terminals, elec-
trons may penetrate into a superconductor through both
NS interfaces. Provided the superconductor size (dis-
tance between two NS interfaces) L strongly exceeds ξ,
AR processes at these interfaces are independent. If,
however, the distance L is smaller than or comparable
with ξ, two additional non-local processes come into play
(see Fig. 1). Firstly, an electron with subgap energy
propagating from one N-metal can penetrate through the
superconductor into another N-electrode with the prob-
ability ∼ exp(−L/ξ). Secondly, an electron penetrating
into the superconductor from the first N-terminal may
form a Cooper pair by “picking up” another electron from
the second N-terminal. In this case a hole will go into
the second (not the first!) N-metal and, hence, AR turns
into a non-local effect. The probability of this process
– usually called crossed Andreev reflection (CAR) [3, 4]
– also decays as ∼ exp(−L/ξ) and, in combination with
direct electron transfer between normal electrodes, de-
termines non-local conductance in hybrid multi-terminal
structures which can be directly measured in experiment.

CAR has recently become a subject of intensive in-
vestigations both in experiment [5, 6, 7] and in theory
[8, 9, 10, 11, 12] (see also further references therein). Al-
though a non-local conductance was observed in all these
experiments, an unambiguous and detailed interpretation
of the existing experimental data still remains a chal-
lenge, to a certain extent because in addition to the above
processes a number of other physical effects may consid-
erably influence the observations. Among such effects we
mention, e.g, charge imbalance (relevant close to the su-

FIG. 1: Two elementary processes contributing to non-local
conductance of an NSN device: (1) direct electron transfer
and (2) crossed Andreev reflection.

perconducting critical temperature [5, 7]) as well as zero-
bias anomalies in the Andreev conductance due to both
disorder-enhanced interference of electrons [13, 14, 15]
and Coulomb effects [15, 16, 17]. CAR is also sensitive
to magnetic properties of normal electrodes. Although
theoretical investigation of the above physical effects is
certainly of interest and may help to account for some ex-
perimental observations, we believe that, beforehand, it
is important to reach quantitative understanding of CAR
in simpler situations when (at least some of) the above
effects can be disregarded.

As in most cases metallic interfaces are not fully trans-
parent, AR is usually combined with normal electron
scattering at such interfaces. The relative “weights” of
these two processes are determined by interface trans-
mission. In the case of multi-terminal hybrid structures
normal reflection, tunneling, local AR and CAR combine
in a complicated and non-trivial manner. For instance,
it was demonstrated [8, 9] that in the lowest order in the
interface barrier transmission and at T = 0 CAR con-
tribution to cross-terminal conductance is exactly can-
celled by that from elastic electron cotunneling [18], while
no such cancellation is expected in higher orders in the
transmission [10]. However, complete theory of non-local
phenomena in question which would fully describe an in-
terplay between all scattering processes to all orders in
the interface transmissions and set the maximum scale
of the effect remains unavailable. Such a theory requires
non-perturbative methods and is the main subject of the
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FIG. 2: Schematics of our NSN device.

present work.
The model and formalism. Consider three-terminal

NSN structure depicted in Fig. 2. We will assume that all
three metallic electrodes are non-magnetic and ballistic,
i.e. the electron elastic mean free path is large. Transmis-
sions D1 and D2 of two SN interfaces (with cross-sections
A1 and A2) may take any value from zero to one. The
distance between the two interfaces L as well as other ge-
ometric parameters are assumed to be much larger than
√

A1,2, i.e. effectively both contacts are metallic con-
strictions. In this case the voltage drops only across SN
interfaces and not inside large metallic electrodes. Hence,
nonequilibrium (e.g. charge imbalance) effects related to
the electric field penetration into the S-electrode can be
neglected. In what follows we will also ignore Coulomb
effects [15, 16, 17].

For convenience, we will set the electric potential of
the S-electrode equal to zero, V = 0. In the presence of
bias voltages V1 and V2 applied to two normal electrodes
(see Fig. 2) the currents I1 and I2 will flow through SN1

and SN2 interfaces. These currents can be evaluated with
the aid of the quasiclassical formalism of nonequilibrium
Green-Eilenberger-Keldysh functions ĝR,A,K [19]. In the
ballistic limit the corresponding equations take the form
[

ετ̂3 + eV (r, t) − ∆̂(r, t), ĝR,A,K(pF , ε, r, t)
]

+

+ivF∇ĝR,A,K(pF , ε, r, t) = 0,
(1)

where [â, b̂] = âb̂− b̂â, ε is the quasiparticle energy, pF =
mvF is the electron Fermi momentum vector and τ̂3 is
the Pauli matrix. The functions ĝR,A,K also obey the
normalization conditions (ĝR)2 = (ĝA)2 = 1 and ĝRĝK +
ĝK ĝA = 0. Here and below the product of matrices is
defined as time convolution.

The matrices ĝ and ∆̂ have the standard form

ĝR,A,K =

(

gR,A,K fR,A,K

f̃R,A,K g̃R,A,K

)

, ∆̂ =

(

0 ∆
−∆∗ 0

)

, (2)

where ∆ is the BCS order parameter. The current den-
sity is related to the Keldysh function ĝK as

j(r, t) = −
eN0

4

∫

dε
〈

vF Sp[τ̂3ĝ
K(pF , ε, r, t)]

〉

, (3)

FIG. 3: Quasiclassical trajectories contributing to local (a)
and non-local (b and c) currents.

where N0 = mpF /2π2 is the density of state at the Fermi
level and angular brackets 〈...〉 denote averaging over the
Fermi momentum directions.

The above equations should be supplemented by ap-
propriate boundary conditions. In order to match quasi-
classical Green functions at the N- and S-sides of SN1 in-
terface (respectively ǧN1

and ǧS) we will make use of Za-

itsev boundary conditions [20] for matrices ǧ =
(

ĝR ĝK

0 ĝA

)

:

ǧa = ǧ+
N1

− ǧ−N1
= ǧ+

S − ǧ−S , (4)

ǧa[R1(ǧ
+)2 + (ǧ−)2] = D1ǧ

−ǧ+, (5)

where ǧ± = ǧ+
N1

+ ǧ−N1
± ǧ+

S ± ǧ−S , ǧ±S = ǧS(±px) (see
Fig. 3a), R1(px1

) ≡ 1−D1(px1
), px1

is the component of
pF normal to the SN1 interface. Green functions at SN2

interface are matched analogously. Deep inside metallic
electrodes S, N1 and N2 the Green functions should ap-
proach their equilibrium values ĝR,A = ±(ετ̂3− ∆̂)/ΩR,A

in a superconductor and ĝR,A = ±τ̂3 in normal metals,
ΩR,A =

√

(ε ± iδ)2 − ∆2. For the Keldysh functions far

from interfaces we have ĝK = ĝR
(

h+ 0
0 h

−

)

−
(

h+ 0
0 h

−

)

ĝA,

where h± = tanh[(ǫ± eV )/2T ]. Voltage in above expres-
sion equals to V = 0, V1 and V2 respectively in S, N1 and
N2 electrodes. The parameter ∆ is chosen to be real.

Relevant trajectories. Electron trajectories which con-
tribute to the current I1 through SN1interface are shown
in Fig. 3. Trajectories presented in Fig. 3a do not enter
the terminal N2 and yield the standard BTK contribu-
tion [2] to I1. In addition there exist trajectories (Fig.
3b,c) involving all three electrodes. They fully account
for all scattering processes – both normal and AR – to all
orders in the interface transmissions and determine non-
local conductance of our NSN device. As follows from
Fig. 3b,c for each direction of px one can distinguish
four different contributions to non-local conductance cor-
responding to different trajectory combinations.

Note that applicability of the above quasiclassical for-
malism with boundary conditions (5) to hybrid structures
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with two (or more) barriers is, in general, a non-trivial
issue [21] which requires a comment. Electrons scattered
at different barriers may interfere and form bound states
(resonances) which cannot be correctly described within
a formalism employing Zaitsev boundary conditions [20].
In our geometry, however, any relevant trajectory reaches
each interface only once whereas the probability of multi-
ple reflections at both interfaces is small in the parameter
A1A2/L4 ≪ 1. Hence, resonances formed by multiply
reflected electron waves can be neglected, and our for-
malism remains adequate for the problem in question.

Quasiclassical Green functions. The above equations
can be conveniently solved introducing parameterization
of the matrix Green functions ĝR,A,K by four Riccati am-
plitudes and two “distribution functions” [22]. This pa-
rameterization allows to transform Eq. (1) to a set of
decoupled equations. It is also important that non-linear
Zaitsev boundary conditions (4), (5) can be rewritten
in terms of Riccati amplitudes and “distribution func-
tions” in a rather simple form [22]. Integration of the
resulting equations along the trajectories shown in Fig.
3 is straightforward. Finally we arrive at the following
expression for the Keldysh Green function gK

N1
at SN1

interface (on the N-metal side)

gK
N1

= gK
1,a(V1) + gK

1,b+c(V1) + gK
12,b+c(V2). (6)

Here gK
1,a(V1) comes from the trajectories of Fig. 3a re-

sponsible for the BTK current at SN1 interface, while two
other terms come from the trajectories of Fig. 3b,c which
also involve N2-electrode. The term gK

1,b+c(V1) yields a
correction to the BTK term which will be discussed later.
The last contribution gK

12,b+c(V2) accounts for non-local
conductance of our device. For positive px1

> 0 we have

gK
12,b+c(V2) = 2D1D2

1 − tanh2 iLΩ/vF

P (R1, R2)

×

(

θcR1R2|a|
4 tanh

ε + eV2

2T
+ θbR2|a|

2 tanh
ε − eV2

2T

+ θcR1|a|
2 tanh

ε − eV2

2T
+ θb tanh

ε + eV2

2T

)

, (7)

where we defined Ω ≡ ΩR, P (R1, R2) = |1 − R1R2a
2 −

Q[ε(1+R1R2a
2)+∆a(R1+R2)]|2, Q = Ω−1 tanh iLΩ/vF ,

a = (Ω − ε)/∆, θb and θc equal to unity for trajectories
of respectively Fig. 3b and 3c and to zero otherwise. As
expected, Eq. (7) identifies four different contributions
entering with the corresponding amplitudes and reflec-
tion coefficients. Note that only one out of these con-
tributions survives in the case of reflectionless interfaces.
In contrast, for weakly transmitting barriers (R1,2 → 1)
and ε < ∆ all four terms enter with equal prefactors.

As for the function g̃K , at SN1 interface it does not
depend on V2 for positive px1

> 0. The values of gK and

FIG. 4: (Color online) Differential non-local conductance at
T = 0 as a function of voltage for D1 = 0.5, D2 = 0.8 and
different L. Inset: the same for eV < ∆.

g̃K for negative px1
< 0 are easily recovered by means of

the relation gK(−pF ,−ε, r, t) = g̃K(pF , ε, r, t).
Non-local conductance. Substituting the results (6),

(7) into Eq. (3) we obtain

I1 = I11(V1) + I12(V2), (8)

I2 = I21(V1) + I22(V2). (9)

Here I11 and I22 consist of the standard BTK currents
[2, 20] and CAR terms to be specified later and

I12(V ) = I21(V ) = −
GN12

2e

∫

dε

[

tanh
ε + eV

2T
− tanh

ε

2T

]

× (1 −R1|a|
2)(1 −R2|a|

2)
1 − tanh2 iLΩ/vF

P (R1,R2)
, (10)

where D1,2 ≡ 1 − R1,2 = D1,2(pF γ1,2) and pF γ1(2) is
normal to the first (second) interface component of the
Fermi momentum for electrons propagating straight be-
tween the interfaces,

GN12
=

8γ1γ2N1N2D1D2

Rqp2
F L2

(11)

is the non-local conductance in the normal state, N1,2 =
p2

FA1,2/4π define the number of conducting channels of
the corresponding interface, Rq = 2π/e2 is the quantum
resistance unit. Eq. (10) represents the central result
of our paper. This expression fully determines non-local
conductances of our NSN device at arbitrary transmis-
sions of SN interfaces.

The differential non-local conductance evaluated with
the aid of Eq. (10) at T = 0 is presented in Fig. 4 at
sufficiently high interface transmissions. We observe that
this quantity increases sharply around eV ∼ ∆ and ap-
proaches the L-independent (normal) limit at eV ≫ ∆.
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In the limit T, V1,2 ≪ ∆ only subgap quasiparticles con-
tribute and the differential conductance becomes voltage-
independent. We have I12 = −G12V2, where

G12

GN12

=
D1D2(1 − tanh2 L∆/vF )

[1 + R1R2 + (R1 + R2) tanhL∆/vF ]2
. (12)

The value G12 (12) gets strongly suppressed with de-
creasing D1,2 and increasing L, as also seen in Fig. 4.
Note, that the dependence of G12 on L reduces to purely
exponential at all L only in the lowest nonvanishing or-
der in the transmission of at least one of the barriers,
e.g., G12 ∝ D2

1D
2
2 exp(−2L∆/vF ) for D1,2 ≪ 1, whereas

in general this dependence is slower than exponential
at smaller L and approaches the latter only at large
L ≫ vF /∆.

For a given L the non-local conductance reaches its
maximum in the case of reflectionless interfaces D1,2 = 1.
Interestingly, in this case for small L ≪ vF /∆ the con-
ductance G12 identically coincides with its normal state
value GN12

at any temperature and voltage. This re-
sult can easily be understood bearing in mind that for
D1,2 = 1 only trajectories indicated by horizontal lines
in Fig. 3b,c contribute to G12. For L → 0 there is
“no space” for CAR to develop on these trajectories and,
hence, CAR contribution to G12 vanishes, whereas di-
rect transfer of electrons between N1 and N2 remains
unaffected by superconductivity in this limit.

The situation changes provided at least one of the
transmissions is smaller than one. In this case scattering
at SN interfaces mixes up trajectories connecting N1 and
N2 terminals with ones going deep into and coming from
the superconductor. As a result, CAR contribution to
G12 does not vanish even in the limit L → 0 and G12

turns out to be smaller than GN12
.

Finally, we would like to briefly address the non-local
correction to G11 which arises from the CAR process de-
scribed by the term gK

1,b+c(V1) in Eq. (6). At T, V1,2 ≪ ∆

we have I11 = G11V1, where G11 = GBTK
1 + δG11. Here

GBTK
1 is the standard BTK term

GBTK
1 =

8N1

Rq

〈

|vx1
|

vF

D2
1(px1

)

[1 + R1(px1
)]2

〉

, (13)

and for the non-local term we obtain

δG11

GN12

=
2(1 + R2)(1 − tanh2 L∆/vF )

[1 + R1R2 + (R1 + R2) tanhL∆/vF ]2

+
D1

[

(1 + R2 tanhL∆/vF )2 + 3(R2 + tanhL∆/vF )2
]

D2[1 + R1R2 + (R1 + R2) tanhL∆/vF ]2
.

(14)

As compared to the BTK conductance (13) the CAR
correction (14) contains an extra small factor A2/L2

and, hence, in many cases can be neglected. On the
other hand, since CAR involves tunneling of one electron

through each interface, for small D1 ≪ 1 and D2 ≈ 1 we
have δG11 ∝ D1, i.e. for D1 < (A2/L2) exp(−2L∆/vF )
the CAR contribution (14) may well exceed the BTK
term GBTK

1 ∝ D2
1 .

In summary, we have developed a theory of non-local
electron transport in ballistic NSN structures with arbi-
trary interface transmissions. Non-trivial interplay be-
tween normal scattering, local and non-local Andreev re-
flection at SN interfaces yields a number of interesting
properties of non-local conductance which can be tested
in future experiments.
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this work.
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