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We study the electronic structure in the vicinity of a vortex in a two-band superconductor in
which the quasiparticle motion is ballistic in one band and diffusive in the other. This study is
based on a model appropriate for such a case, that we have introduced recently [Tanaka et al., Phys.
Rev. B 73, 220501(R) (2006)]. We argue that in the two-band superconductor MgB2, such a case
is realised. Motivated by the experimental findings on MgB2, we assume that superconductivity
in the diffusive band is “weak,” i.e., mostly induced. We examine intriguing features of the order
parameter, the current density, and the vortex core spectrum in the “strong” ballistic band under
the influence of hybridization with the “weak” diffusive band. Although the order parameter in the
diffusive band is induced, the characteristic length scales in the two bands differ due to Coulomb
interactions. The current density in the vortex core is dominated by the contribution from the
ballistic band, while outside the core the contribution from the diffusive band can be substantial,
or even dominating. The current density in the diffusive band has strong temperature dependence,
exhibiting the Kramer-Pesch effect when hybridization is strong. A particularly interesting feature
of our model is the possibility of additional bound states near the gap edge in the ballistic band,
that are prominent in the vortex centre spectra. This contrasts with the single band case, where
there is no gap-edge bound state in the vortex centre. We find the above-mentioned unique features
for parameter values relevant for MgB2.

PACS numbers: 74.20.-z, 74.50.+r, 74.70.Ad, 74.81.-g

I. INTRODUCTION

One can learn a great deal about the pairing mech-
anism of a superconductor from the electronic proper-
ties in the presence of inhomogeneity, such as vortices
and impurities. Although multiple-band superconductiv-
ity was first studied almost 50 years ago,2 the structure
of a vortex in multiband superconductors has not been
well understood, especially when impurities are present.
The best material that has been discovered so far for
studying multiband superconductivity is MgB2.

3 The
consensus is that superconductivity is driven by electron-
phonon interactions, and that it can be well described
by a two-band model, with the “strong” σ band (energy
gap ∆σ ≈ 7.2 meV) and the “weak” π band (∆π ≈ 2.3
meV).4,5,6,7,8,9,10,11,12,13 The two energy gaps vanish at a
common transition temperature Tc (Refs. 14,15,16) and
there is evidence of induced superconductivity in the π
band.7,17,18,19

The one unusual aspect of this material as a multiband
superconductor is the effect of impurities. The standard
theory2,20,21 tells us that interband scattering by non-
magnetic impurities should reduce Tc and the gap ratio.
Mazin and co-workers,22,23 however, have shown theo-
retically that this does not apply to MgB2, due to dif-
ferent symmetries of the σ and π orbitals, and hence
negligible interband scattering. Moreover, impurities
or defects, in particular those at Mg-sites which tend
to occur more easily than at B-sites, affect only the π

band strongly. Indeed, many experiments have shown
that the σ and π bands are essentially in the ballistic
and diffusive limit, respectively.22,23,24,25,26,27,28,29,30,31

Even in samples in which the σ band is influenced
by impurities substantially, two-gap superconductivity
is retained.16,31,32,33,34,35,36,37,38,39,40,41 The question of
whether or not the two gaps merge in dirty samples has
not yet been settled.40,41,42,43

Due to induced superconductivity and possibly also
owing to these peculiar effects of impurities, the elec-
tronic structure around a vortex in MgB2 has been found
to exhibit intriguing properties. Eskildsen et al.,17 by
tunneling along the c axis, have probed the vortex core
structure in the π band. The local density of states
(LDOS) was found to be completely flat as a function
of energy at the vortex core, showing no sign of bound
states. Also the ‘core size’ (∼50nm) as measured by a de-
cay length of the zero-bias LDOS turned out to be much
longer than expected from Hc2 (∼10nm).17,44 Moreover,
the existence of two effective coherence lengths in MgB2

has been suggested by the µSR measurement of a vor-
tex lattice.45 There has been, however, no experiment
directly probing the σ band in the vortex state, and the
electronic structure around a vortex in the σ band is yet
to be determined.

Theoretically, the vortex structure in a two-band su-
perconductor has been studied in terms of two clean
bands46 and two dirty bands.47 Neither of these mod-
els, however, applies to many MgB2 samples, which have
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the clean σ and dirty π bands. Recently, we have for-
mulated a unique model for a multiband superconductor
with both a clean and a dirty band.1 We have studied
the effects of induced superconductivity and impurities
in the weak diffusive band on the electronic properties in
the strong ballistic band around a vortex. A particularly
intriguing feature found in this model is the possibility
of bound states near the gap edge in the ballistic band in
the vortex core, in addition to the well-known Caroli-de
Gennes-Matricon bound states.48 Such bound states do
not exist in a single ballistic band, and they arise solely
from coupling to the diffusive band. Our model has also
been applied to study the Kramer-Pesch effect49 in cou-
pled clean and dirty bands.50 It has been found that the
Kramer-Pesch effect is induced in the dirty band, which
is absent when there is no coupling with the clean band.
Thus, hybridization of ballistic and diffusive bands can
lead to unusual properties of a multiband superconduc-
tor, and the vortex core structure is an example in which
the effects of induced superconductivity and impurities
manifest clearly.

In this work, we make an extensive study of the
electronic structure in the vicinity of a vortex in a strong
ballistic band, under the influence of hybridization with
a weak diffusive band. Our model is based on coupled
Eilenberger and Usadel equations, which are solved
directly and numerically. We assume that interband
scattering by impurities is negligible and that the two
bands are coupled only by the pairing interaction, as
justified for typical MgB2 samples. Unique features
of the order parameter, the current density, and the
vortex core spectrum are examined in detail. In par-
ticular, we study the development of the gap-edge
bound states as various physical parameters are varied.
Although this work has been motivated by the impurity
effects16,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41

and the STM measurement of the vortex state in
MgB2,

17,44 our model is general and applicable to any
superconductor in which ballistic and diffusive bands
are coupled mainly by the pairing interaction.

The paper is organized as follows. The formulation
and computational details are given in Secs. II and III,
respectively. Results are presented in Sec. IV and they
are summarised and discussed in Sec. V. Throughout the
paper we use units with ~ = c = 1.

II. THEORETICAL DESCRIPTION

Both the ballistic and diffusive limits of superconduc-
tivity can be described within one unified theory, the qua-
siclassical theory of superconductivity.51,52,53,54,55,56,57

The central quantity of this theory, containing all the
physical information, is the quasiclassical Green function,
or propagator, ĝ(ǫ,pFα,R). Here ǫ is the quasiparticle
energy measured from the chemical potential, pFα the
quasiparticle momentum on the Fermi surface of band α,
and R is the spatial coordinate. The hat refers to the 2×2

matrix structure of the propagator in the Nambu-Gor’kov
particle-hole space. In the ballistic case, the equation of
motion for ĝ is the Eilenberger equation, and in the diffu-
sive case the Usadel equation. Our model is appropriate
for any two-band superconductor with a clean and a dirty
band (generalisation to several bands is straightforward).
However, having in mind MgB2, for definiteness we call
the two bands σ and π bands, respectively.

In the clean σ band, ĝσ(ǫ,pFσ,R) satisfies the Eilen-
berger equation,51,52

[

ǫτ̂3 − ∆̂σ, ĝσ

]

+ ivFσ · ∇ĝσ = 0̂, (1)

where vFσ is the Fermi velocity and ∆̂σ the (spatially
varying) order parameter. The three Pauli matrices in
Nambu-Gor’kov space are denoted by τ̂i, i = 1, 2, 3, and
[..., ...] denotes the commutator. Throughout this work,
we ignore the variation of the magnetic field in the vortex
core, assuming a strongly type-II superconductor (this is
justified for example for MgB2).

For the π band we assume that it is in the diffusive
limit. In the presence of strong impurity scattering,
the momentum dependence of the quasiclassical Green
function is averaged out, and the equation of motion for
the resulting propagator ĝπ(ǫ,R) reduces to the Usadel
equation,53

[

ǫτ̂3 − ∆̂π , ĝπ

]

+ ∇D

π
(ĝπ∇ĝπ) = 0̂, (2)

with the diffusion constant tensor D. Both ballistic and
diffusive propagators are normalized according to51

ĝ2
σ = ĝ2

π = −π21̂. (3)

A two-band superconductor with a ballistic and a dif-
fusive band can exist only if interband scattering by im-
purities is weak. We neglect in the following interband
scattering by impurities, and assume that the quasipar-
ticles in different bands are coupled only through the
pairing interaction. Self-consistency is achieved through
the coupled gap equations for the spatially varying order
parameters in each band,

∆α(R) =
∑

β

VαβNFβFβ(R), (4)

where α, β ∈ {σ, π}, and ∆̂α = τ̂1 Re ∆α−τ̂2 Im ∆α. The
coupling matrix Vαβ determines the pairing interaction,
NFβ is the Fermi-surface density of states on band β, and

Fσ(R) ≡
∫ ǫc

−ǫc

dǫ

2πi
〈fσ(ǫ,pFσ,R)〉pF σ

tanh

(

ǫ

2T

)

,

Fπ(R) ≡
∫ ǫc

−ǫc

dǫ

2πi
fπ(ǫ,R) tanh

(

ǫ

2T

)

. (5)

Here fα is the upper off-diagonal (1,2) element of the ma-
trix propagator ĝα, and ǫc is a cutoff energy. The Fermi
surface average over the σ-band is denoted by 〈· · · 〉pF σ

.
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Note that within our model the precise form of the
Fermi surface in the π band is not relevant, as in the diffu-
sive limit all necessary information is contained in the dif-
fusion constant tensor D. For simplicity we have assumed
in our calculation an isotropic tensor Dij = Dδij . The
diffusion constant defines the π-band coherence length
ξπ =

√

D/2πTc. For the σ-band Fermi surface we as-
sume a cylindrical shape, as motivated by the Fermi sur-
face of MgB2. This allows us to treat the σ band as
quasi-two-dimensional, vFσ = vFσp̂r, with cylindrical
coordinates (pr, pφ, pz) and the unit vector p̂r in direc-
tion of pr. We define the coherence length in the σ band
as ξσ = vFσ/2πTc. It will be used as length unit through-
out this paper.

The numerical solution of the (nonlinear) system of
Eqs. (1)–(3) is greatly simplified by using the Riccati
parameterization of the Green functions, both for the
ballistic case58,59,60,61 and for the diffusive case,62

ĝα = − iπ

1 + γαγ̃α

(

1 − γαγ̃α 2γα

2γ̃α γαγ̃α − 1

)

, (6)

with γ̃σ(ǫ,pFσ,R) = γ∗
σ(−ǫ∗,−pFσ,R) and γ̃π(ǫ,R) =

γ∗
π(−ǫ∗,R). The transport equation for γσ(ǫ,pFσ,R) is

given by,58,59,60,61

∆σ + 2ǫ γσ + ∆∗
σγ2

σ + ivFσ∇γσ = 0. (7)

and for γπ(ǫ,R) it is62

∆π +2ǫ γπ +∆∗
πγ2

π−iD

(

∇2γπ − 2γ̃π(∇γπ)2

1 + γπγ̃π

)

= 0. (8)

We solve Eqs. (1)–(5) self-consistently. After self-
consistency has been achieved for the order parameters,
the (for the σ band, angle-resolved) LDOS in each band
can be calculated by

Nσ(ǫ,pFσ,R)/NFσ = − Im gσ(ǫ,pFσ,R)/π,

Nπ(ǫ,R)/NFπ = − Im gπ(ǫ,R)/π, (9)

where gα is the upper diagonal (1,1) element of ĝα.
The current density around the vortex has contribu-

tions from both π and σ bands,

j(R) = jσ(R) + jπ(R). (10)

The corresponding expressions are

jσ(R)

2eNFσ
=

∫ ∞

−∞

dǫ

2π
〈vFσIm gσ〉pF σ

tanh
( ǫ

2T

)

,

jπ(R)

2eNFπ
=

D

π

∫ ∞

−∞

dǫ

2π
Im [f∗

π∇fπ] tanh
( ǫ

2T

)

, (11)

where e = −|e| is the electron charge.

III. COMPUTATIONAL DETAILS

A. Gap equations

The first step is to write Eqs. (4) and (5) in a form
that is independent of the cut-off energy ǫc and the cut-
off dependent interaction matrix Vαβ . We diagonalize the

interactions by

NF

∑

β=π,σ

√
nαVαβ

√
nβY(k)

β = Y(k)
α λ(k), (12)

where NF = NFσ + NFπ and nα = NFα/NF . The band
index runs over α = (σ, π), and thus we need two basis
functions for a complete system, denoted by k = 0, 1. We
expand the order parameter and the anomalous Green
functions in terms of the eigenvectors

→

Y
(k)

=

(

Y(k)
σ

Y(k)
π .

)

(13)

The eigenvectors are orthonormal. We also introduce the
vectors

→

∆ =

( √
nσ∆σ√
nπ∆π

)

,
→

F=

( √
nσFσ√
nπFπ

)

. (14)

Using the expansion

→

∆=
∑

k=0,1

∆(k)
→

Y
(k)

,
→

F=
∑

k=0,1

F (k)
→

Y
(k)

, (15)

with ∆(k) =
→

Y
(k)∗→

∆ and F (k) =
→

Y
(k)∗→

F , the gap equations
are given by

∆(k)(R) = λ(k)F (k)(R) . (16)

Without restriction we can choose the largest eigenvalue
to be λ(0). It can be eliminated together with the cutoff
frequency in favor of the transition temperature between
the normal and superconducting states, Tc. Although
both coupling constants λ(0) and λ(1) are cutoff depen-
dent, the parameter Λ defined by

Λ =
λ(0)λ(1)

λ(0) − λ(1)
(17)

is cutoff independent. We parameterize the two coupling
constants by the two cutoff independent quantities Tc

and Λ.
Near Tc, the subdominant order parameter ∆(1) is of

higher order in (Tc − T ) than ∆(0) is. The bulk gaps on
the two Fermi surface sheets are thus determined near Tc

by ∆(0) only, and are given by

∆σ =
Y(0)

σ√
nσ

∆(0) , ∆π =
Y(0)

π√
nπ

∆(0) . (18)

We define the ratio of the bulk gaps on the two bands
near Tc,

ρ :=
∆π

∆σ
=

Y(0)
π

Y(0)
σ

√

nσ

nπ
. (19)

We also introduce the notation n :=
√

nσ/nπ. Then the
matrix of eigenvectors is given by

(

Y(0)
σ Y(1)

σ

Y(0)
π Y(1)

π

)

=
1

√

n2 + |ρ|2

(

n −ρ∗

ρ n

)

. (20)
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B. Homogeneous solutions

In the homogeneous case, at zero temperature

lim
T→0

Fα = ∆α ln
2ǫc

|∆α|
, (21)

where ǫc is the usual BCS cutoff frequency of the order
of the Debye frequency. Using the BCS formula

ln
2ǫc

πTc
=

1

λ(0)
− γ (22)

(γ ≈ 0.577 is Euler’s constant), we obtain the zero-
temperature gap equations

(

γ + ln
|∆0

α|
πTc

)

∆0
α = − 1

Λ

∑

β

Y(1)
α Y(1)∗

β

√

nβ

nα
∆0

β , (23)

where ∆0
α denotes the bulk order parameter at zero tem-

perature on band α. From this we can derive an equation
for the ratio ρ0 = ∆0

π/∆0
σ (assuming that the gap ratio

ρ is real),

ρ − ρ0

n2 + ρ2
= Λ

ρ0

n2 + ρ0ρ
ln |ρ0| , (24)

and for the dominant zero-temperature gap

∆0
σ/Tc = π e−γe−[ρ0ρ/(n2+ρ0ρ)] ln |ρ0|. (25)

Equation (24) is a quadratic equation for ρ, which is read-
ily solved analytically in terms of ρ0, n and Λ:

ρ =
2n2ρ0(1 + Λ ln |ρ0|)

(n2 − ρ2
0) +

√

(n2 + ρ2
0)

2 − (2nρ0 Λ ln |ρ0|)2
. (26)

The four material parameters ρ0, n, Λ, and Tc com-
pletely specify the bulk behaviour of the system. We
illustrate in Fig. 1 how the dominant bulk gap to Tc ra-
tio at zero temperature is affected by ρ0, nπ/nσ = 1/n2,
and Λ. In (a), ∆0

σ/Tc determined by Eqs. (25) and (26)
is shown as a function of ρ0, for nπ = nσ and various
values of Λ. In (b) we compare ∆0

σ/Tc as a function of
nπ/nσ for several values of ρ0, and for Λ = −0.1 and
0.1. It can be seen in Fig. 1(a) that for a fixed nπ/nσ,
∆0

σ/Tc exhibits nonlinear behaviour as a function of ρ0

depending on the value of Λ, while the BCS value (1.764)
is recovered at ρ0 = 0 and 1. For Λ < 0 this ratio is al-
ways larger than the BCS value, and it is always larger
for Λ < 0 than for Λ > 0, for fixed ρ0 and nπ/nσ. When
Λ > 0, ∆0

σ/Tc can be smaller than the BCS value for a
certain range of ρ0. The effect becomes even more pro-
nounced for larger nπ/nσ. For a fixed ρ0, as shown in
Fig. 1(b), ∆0

σ/Tc increases almost linearly with increas-
ing nπ/nσ, with larger slope for larger ρ0. Here again,
the enhancement of ∆0

σ/Tc is always stronger for Λ < 0
than for Λ > 0. For nπ/nσ = 0 there is only one band
and the ratio reduces to the BCS value.

0 0.2 0.4 0.6 0.8 1

∆π
0/∆σ

0   (=ρ
0
)

1.5

1.75

2

2.25

2.5

2.75

∆ σ0 /T
c

Λ=−1.2
Λ=−0.8
Λ=−0.4
Λ=0
Λ=0.4
Λ=0.8
Λ=1.2

0 0.5 1 1.5 2
nπ/nσ

1.7

1.8

1.9

2

2.1

2.2

∆ σ0 /T
c

ρ0=0.1
ρ0=0.3
ρ0=0.5

Λ=−0.1

Λ=0.1

Λ=−0.1

Λ=−0.1

Λ=0.1

Λ=0.1

(a) (b)

FIG. 1: (Color online) The bulk |∆σ|/Tc in the zero-
temperature limit as given by Eqs. (25) and (26): (a) as a
function of ρ0 = ∆0

π/∆0

σ for nπ = nσ and various values of
Λ, and (b) as a function of nπ/nσ for various sets of ρ0 and
Λ. For a fixed nπ/nσ, |∆σ|/Tc shows nonlinear behaviour as
a function of ρ0, where the BCS value is recovered at ρ0 = 0
and 1. The bulk gap is enhanced as nπ/nσ increases, and this
effect is larger for larger ρ0 and for smaller Λ.

In fact, the enhancement of the bulk zero-temperature
gap by stronger Coulomb interactions in the subdomi-
nant channel can be estimated for small |Λ| analytically
from Eqs. (25) and (26), which give

(

∂

∂Λ

∆0
σ

Tc

)

Λ=0

= −
(

∆0
σ

Tc

)

Λ=0

(

nρ0 ln |ρ0|
n2 + ρ2

0

)2

, (27)

and ∆0
π(Λ) = ρ0∆

0
σ(Λ). More generally, at low T for

given ρ0 and n, the homogeneous gap over Tc ratio in-
creases with decreasing Λ in both bands. The slope at
ρ0 = 1 in Fig. 1(a) is independent of Λ and is given by
−πe−γ/(1 + n2). An expansion for small ρ0 or for small
nπ/nσ gives for both cases

∆0
σ

Tc
≈ πe−γ

(

1 − nπ

nσ
(1 + Λ ln |ρ0|) ln |ρ0|ρ2

0

)

. (28)

We now discuss the relation between the gap ratios
near Tc, given by ρ, and at T = 0, given by ρ0. When
Λ = 0, we have ρ = ρ0. For small |Λ| or small ρ0/n we
obtain from Eq. (26) the approximate relation

ρ ≈ ρ0 + Λρ0 ln |ρ0| . (29)

For |ρ0| < 1 it follows that when the Coulomb repulsion
dominates in the second channel (Λ < 0), the magnitude
of the gap ratio at Tc is increased with respect to that
at zero temperature, |ρ| > |ρ0|; for effective attraction in
the subdominant channel (Λ > 0), |ρ| < |ρ0|.

In Fig. 2 we show the solutions of the homogeneous
gap equations for both σ and π bands as a function of
temperature for various values of Λ, for fixed ρ0 = 0.3
and n = 1. In the left-hand and right-hand panels of
Fig. 2 the order parameters in the two bands and the
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0 0.2 0.4 0.6 0.8 1
T/T

c

0

0.5

1

1.5

2

2.5

3
∆ π(T

)/
T

c, ∆
σ(T

)/
T

c
Λ=-0.9
Λ=-0.7
Λ=-0.5
Λ=-0.3
Λ=0
Λ=0.3
Λ=0.5
Λ=0.7
Λ=0.8306

0 0.2 0.4 0.6 0.8 1
T/T

c

0

0.2

0.4

0.6

0.8

∆ π(T
)/

∆ σ(T
)

FIG. 2: (Color online) Energy gaps ∆π(T ) and ∆σ(T ) (left-
hand panel) and the ratio ∆π(T )/∆σ(T ) (right-hand panel)
in the homogeneous case as a function of temperature T for
various values of Λ, for fixed ρ0 = 0.3 and n =

p

nσ/nπ = 1.
There is a second transition temperature associated with the
π band for Λ ≥ Λc (see text).

ratio of the two are plotted, respectively, as a function
of temperature. As discussed above, when Λ = 0 (thick
lines), the ratio |∆π(T )/∆σ(T )| stays constant and equal
to ρ = ρ0, while for Λ < 0 (> 0) ρ is larger (smaller) than
ρ0.

If the order parameter in the π band has a zero slope
at Tc, i.e., ρ = 0 (see, e.g., the lowest curves in Fig. 2),
then for positive Λ there is a second superconducting
transition2 associated with the π band at temperature

Tcπ(ρ = 0) = Tce
−1/Λ (Λ > 0). (30)

In this case the order parameter in the π band stays zero
above Tcπ; below Tcπ both order parameters are nonzero,
and the zero-temperature gap ratio is ρ0 = e−1/Λ so that
the relation Tcπ/Tc = ρ0 holds. For negative Λ there is no
second transition in the π band, and superconductivity is
purely induced for all temperatures. For small absolute
values of ρ, the order parameter in the π band is given
approximately by

∆π(T )

∆σ(T )
≈ ρ

1 − Λ
∣

∣

∣
ln T

Tc

∣

∣

∣

(|ρ| ≪ 1). (31)

This equation is correct for T > Tcπ as long as
|∆π(T )/∆σ(T )| stays small. For ρ 6= 0 the order param-
eter in the π band is nonzero in the entire temperature
range [see Fig. 2(a)], being purely induced for Λ < 0, and
for T > Tcπ when Λ > 0. It follows from Eq. (31) that
for Λ < 0, |∆π(T )/∆σ(T )| is reduced from |ρ| as temper-
ature decreases, while for Λ > 0 it increases from |ρ| for
Tcπ < T < Tc [see also Fig. 2(b)].

For a given ρ0, the critical Λ, above which a sec-
ond transition in the π band can be observed, is given
by Λc = −1/ ln |ρ0|. In the case of Fig. 2 this yields
Λc ≈ 0.8306. We find that for Λ > Λc there is a π phase
difference between the order parameters in the two bands
for T > Tcπ (the gap ratio becomes negative), and for

1.7

1.8

1.9

2

2.1

2.2

∆ σ0 /T
c

1.4

1.6

1.8

2

2.2

-1 -0.5 0 0.5 1
ρ
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-1
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∆ π0 /T
c

Λ=−1
Λ=−0.75
Λ=−0.5
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Λ=1.5

nπ=nσ nπ=nσ

(a) (b)

(c) (d)

FIG. 3: (Color online) The ∆0

σ/Tc (top) and ∆0

π/Tc (bottom)
as a function of the gap ratio at Tc, ρ = limT→Tc ∆π/∆σ,
obtained from Eqs. (25) and (26), for Λ < 0 [(a) and (c)]
and Λ > 0 [(b) and (d)]. While for −1 ≤ Λ ≤ 0 there is a
unique solution, for Λ > 0, for sufficiently small ρ there are
three solutions. This indicates possible first-order transitions
as a function of temperature, if Λ for a given ρ is larger than
a critical value.

T < Tcπ a more complicated picture arises, with three
solutions that compete, and possible first-order phase
transitions. This is demonstrated in Fig. 3, in which
the zero-temperature bulk gap to Tc ratio in the σ (top)
and π (bottom) band is plotted as a function of the gap
ratio at Tc, ρ = limT→Tc

∆π/∆σ, obtained from the so-
lution of Eqs. (25) and (26). Results are shown for the
effective subdominant coupling Λ ranging from repulsive
(left) to attractive (right). For −1 ≤ Λ ≤ 0 there is a
unique solution for the bulk gaps at zero temperature for
a given ρ (left-hand panels). However, as can be seen in
the right-hand panels, when Λ > 0, there are three pos-
sible solutions to the gap equations for sufficiently small
ρ. As these zero-temperature solutions are associated
with the same single solution near Tc, this indicates that
first-order phase transitions can occur as temperature is
varied. This behaviour is not the topic of this paper,
however, and we assume for the remainder of the paper
that Λ < Λc for a given ρ0 (or ρ0 > ρc = e−1/Λ for a
given Λ).

C. Choice of material parameters

For MgB2, if estimated from the ab initio values
of the electron-phonon coupling strengths5,9,10 and the
Coulomb pseudopotentials,9,63 Λ varies depending on
which calculations are used, while some calculations yield
very small Λ. But using Eq. (26), one can fix Λ from the
observed values of ρ0 and ρ – although for the latter, some
data points have relatively large error bars. From the ex-
periments of Refs. 8, 14,15,16, and 38, we find roughly
−0.3 < Λ < 0.3. Among these, the measurement of Ref. 8
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has a data point at the highest temperature, T ≃ 0.96Tc,
and Λ estimated using this point is close to zero. There-
fore, we assume that for MgB2, Λ is small and can be
either positive or negative.

The strength of induced superconductivity in the π
band is specified in our model by Λ and ρ0, the latter of
which is about 0.3 in MgB2. Results are presented mainly
for ρ0 = 0.1, 0.3, 0.5. The nπ/nσ in MgB2 has been de-
termined experimentally to be nπ/nσ ≈ 1 − 1.2.17,64,65

We show results for nπ/nσ = 1 and 2, and discuss the
effects of the π-band density of states.

Finally, there is another material parameter in our
model, that is the ratio of the coherence lengths in the
two bands, ξπ/ξσ. Note in this regard that in defining

the π-band coherence length ξπ =
√

D/2πTc, we have
used the energy scale Tc rather than ∆π . This is mo-
tivated by the fact that, as discussed above, supercon-
ductivity in the π band is assumed to be mostly induced
by the σ band. Consequently, for the variation of the π-
band order parameter determined by the self-consistency
equation, Eq. (4), the energy scale Tc is relevant. How-
ever, the quasiparticle motion in the π band is governed
by the Eilenberger transport equation supplemented with
an appropriate impurity self-energy Σi,π of the order of
1/τπ, where τπ is the π-band quasiparticle lifetime due to
elastic intraband impurity scattering. To determine un-
der which conditions the diffusive approximation can be
used in the π band, the relative size of the π-band gap,
∆π, and the π band impurity self-energy, Σi,π, matters.
Thus, the condition for the π band to be diffusive so that
the Eilenberger equation supplemented with Σi,π reduces
to the Usadel equation is

1/τπ > ∆π. (32)

In practise it turns out that the diffusive approximation
applies quite well already when 1/τπ is only larger, not
much larger, than ∆π. Using the above definitions for ξσ

and ξπ and with the diffusion constant D = 1
3τπv2

Fπ, this
yields

ξπ

ξσ
<

vFπ

vFσ

√

2πTc

3∆π
. (33)

Strong electron-phonon coupling in the σ band renor-
malizes the Fermi velocity as vFσ/Z,66 where Z is
the renormalization factor and is about 2 in the zero-
frequency limit.67 Taking the ab initio Fermi velocities,
vFπ/vFσ = 5.8/4.4,68 as the unrenormalized values, and
using ∆π/Tc ≈ 0.6 as found in several experiments, we es-
timate ξπ/ξσ < 5 for MgB2. As discussed in Sec. IVC 1,
an estimate from the experiment of Ref. 17 yields a value
between 1 and 3 for MgB2. To keep the discussion gen-
eral, the effects of the coherence length ratio on the vor-
tex core structure are illustrated for ξπ/ξσ = 1, 2, 3, 5.

Throughout this work, cylindrical symmetry is as-
sumed for the two-dimensional σ band, and an isotropic
diffusion tensor for the three-dimensional π band. Up to
this point, the energy gaps (homogeneous order param-
eters) in the two bands have been denoted as ∆π and
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FIG. 4: (Color online) (a) Order parameters |∆π(x)| and
|∆σ(x)| and (b) the ratio |∆π(x)/∆σ(x)| as a function of co-
ordinate x along the path y = 0 for various values of Λ, for
ξπ/ξσ = 3, ρ0 = 0.3, T/Tc = 0.1, n = 1. The Coulomb re-
pulsion (which reduces Λ) renormalizes the recovery lengths
of the order parameters in the two bands differently.

∆σ. In the following, ∆π and ∆σ represent the spatially
varying order parameters.

IV. RESULTS

A. Order parameter

1. Effects of the Coulomb interaction in the diffusive band

Negative Λ means that the effective Coulomb interac-
tion dominates over the effective pairing interaction in
the second pairing channel. In this case, Coulomb in-
teractions are responsible for the fact that the π band
cannot maintain superconductivity on its own, and it
superconducts only due to its proximity to the super-
conducting σ band. We first examine the effects of the
Coulomb interaction on the order parameters. We con-
sider a vortex that extends in z direction, with the vortex
centre situated at x = y = 0 for each z. In Fig. 4, we
show the order parameter magnitudes as a function of
coordinate x along the path y = 0 for three values of
Λ, appropriate for attractive, repulsive and no effective
interaction in the second pairing channel. Figure 4(a)
shows |∆π(x)| and |∆σ(x)|, and Fig. 4(b) their ratio. The
Coulomb repulsion renormalizes the recovery lengths of
the order parameters (the characteristic length scale over
which the order parameter recovers to the bulk value) in
both bands. Although superconductivity in the π band
is mostly induced by that in the σ band, it is clear from
Fig. 4 that the length scales in the two bands can differ
considerably if Λ 6= 0. For Λ = 0 there is only one length
scale and hence the same recovery length in both bands.
When Λ < 0 (> 0), |∆π(x)| is enhanced (suppressed)
around the vortex core, resulting in a shorter (longer) re-
covery length compared to the case with Λ = 0. On the
other hand, the sign of Λ has opposite effects on |∆σ(x)|,
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FIG. 5: (Color online) (a) Order parameters |∆π(x)| and
|∆σ(x)| and (b) the ratio |∆π(x)/∆σ(x)| as a function of co-
ordinate x along the path y = 0 for various density of states
ratios nπ/nσ, and fixed ξπ/ξσ = 3, ρ0 = 0.3, T/Tc = 0.1,
Λ = −0.1. The π-band density of states renormalizes the
recovery lengths of the order parameters, and the bulk mag-
nitudes of the order parameters are larger for larger nπ/nσ.

although these effects are relatively small for the parame-
ter set for Fig. 4. In fact, ∆σ (its length scale and magni-
tude) can be affected by the π-band Coulomb interaction
significantly for larger ρ0 and ξπ/ξσ.1

As demonstrated in Fig. 1, the bulk gap over Tc ratios
in both bands are enhanced by stronger Coulomb repul-
sion in the diffusive band, an effect also seen in Fig. 4(a).
As shown in Eq. (27), this renormalization of the magni-
tude of the bulk gap has the same sign for both bands,
and is very different from the renormalization in the core
region seen in Fig. 4(a), that has opposite sign for the
two order parameters. The latter effect can be seen most
dramatically when plotting the ratio |∆π(x)/∆σ(x)|, as
we do in Fig. 4(b). For Λ 6= 0 the ratio increases by up
to a factor of 2 for Λ = −0.1, and decreases by about the
same factor for Λ = 0.2. When Λ = 0, |∆π(x)/∆σ(x)|
stays constant and equal to ρ0 = ρ. This results from
the fact that in this case λ(1) = 0 in Eq. (16), leading to
∆(1)(x) = 0 so that Eq. (18) holds for all x.

2. Effects of the density of states in the diffusive band

Figure 5 demonstrates the effects of the Fermi-surface
density of states in the diffusive band on the order pa-
rameters for a typical set of material parameters and for
T/Tc = 0.1. In Fig. 5(a) we show the order parame-
ter magnitudes and in (b) their ratio. It can be seen
in Fig. 5(a) that the bulk gap over Tc ratios increase
with increasing density of states ratio nπ/nσ, a behavior
consistent with Fig. 1(b) and with Eqs. (25) and (28).
From Fig. 5(a) we see that a larger nπ/nσ also enlarges
the core area in both bands. At higher temperature
(not shown), nπ/nσ has less effect on the order param-
eters. The effects of the π-band Coulomb interaction
described in the last section manifest more drastically
in both bands for larger nπ/nσ. When comparing the
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FIG. 6: (Color online) (a) Order parameter in the π band
|∆π(x)| as a function of coordinate x along the path y =
0 for various values of ρ0 and ξπ/ξσ, for T/Tc = 0.1 and
nπ/nσ = 1; for (a) Λ = −0.1 and (b) Λ = 0.1. For Λ > 0,
|∆π(x)| is depleted around the vortex core for larger ξπ/ξσ,
and this effect is larger for larger ρ0. When the Coulomb
repulsion dominates (Λ < 0), for small ρ0 (e.g., 0.1), |∆π(x)|
is enhanced near the vortex centre for larger ξπ/ξσ.

shapes of the order parameter profiles in the σ band and
the π band in Fig. 5(a), there is a qualitative difference
between the cases nπ/nσ = 0.5 and nπ/nσ = 2. Never-
theless, Fig. 5(b) shows that despite the different shapes
of the order parameter profiles in the two bands for dif-
ferent values of nπ/nσ, the spatial variation of the ratio

|∆π(x)/∆σ(x)| is almost independent of nπ/nσ. This is
for Λ 6= 0 a nontrivial and rather interesting finding.

3. Effects of the coherence length and gap ratios

In Fig. 6 we illustrate how the order parameter profile
in the π band changes as ρ0 and ξπ/ξσ are varied. We
compare the two cases of (a) Λ = −0.1 and (b) Λ = 0.1,
leaving T/Tc = 0.1 and nπ/nσ = 1 fixed. As can be
seen in Fig. 6(b), for Λ > 0, |∆π(x)| is depleted in the
core area as ξπ/ξσ increases, and this effect is larger for
larger ρ0. On the other hand, when the Coulomb re-
pulsion is dominant in the π band (Λ < 0), as shown
in Fig. 6(a), the profile of |∆π(x)| changes in a peculiar
way as ξπ/ξσ varies. For relatively small ρ0 [e.g., 0.1 in
Fig. 6(a)], |∆π(x)| is enhanced around the vortex core for
larger ξπ/ξσ, while for ρ0 = 0.3 |∆π(x)| hardly changes
for different values of ξπ/ξσ. For larger ρ0(> 0.3) (not
shown), however, the core region becomes larger with in-
creasing ξπ/ξσ – in a similar way as for Λ > 0, though
not so drastically. This lets us conclude that for the case
ρ0 ≈ 0.3 in Fig. 6(a) a cancellation between two oppo-
site tendencies is at work, that renders |∆π(x)| seemingly
insensitive to the parameter ξπ/ξσ. As to |∆σ(x)|, simi-
larly as |∆π(x)| in Fig. 6(b), the core area is enlarged for
larger ξπ/ξσ, more noticeably for larger ρ0, and for both
positive and negative Λ [see Fig. 8(b) below].

As discussed above, even though superconductivity is
induced in the π band due to coupling with the σ band,
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FIG. 7: (Color online) (a) The ratio |∆π(x)/∆σ(x)| as a func-
tion of coordinate x along the path y = 0 for various values
of ρ0 and ξπ/ξσ, for T/Tc = 0.1 and nπ/nσ = 1; for (a)
Λ = −0.1 and (b) Λ = 0.1. For negative (positive) Λ, the
ratio is larger (smaller) than ρ0 around the vortex core, and
the area of the enhancement (depletion) is larger for larger
ξπ/ξσ. As ρ0 increases, the ratio changes more drastically as
x approaches zero.

the characteristic length scale of the order parameter can
be quite different in the two bands. This is demonstrated
in Fig. 7 for various sets of ρ0 and ξπ/ξσ. Here the order
parameter ratio |∆π(x)/∆σ(x)| is plotted as a function
of x. In agreement with our discussion of Fig. 4(b), this
ratio is in the vortex core larger than ρ0 for negative,
and smaller than ρ0 for positive Λ. When Λ < 0, despite
the peculiar change of the |∆π(x)| profile as a function
of ξπ/ξσ depending on the value of ρ0, |∆π(x)/∆σ(x)| is
always larger than ρ0 in the core area, as can be seen
in Fig. 7(a). The main conclusion of Fig. 7 is that the
enhancement for Λ < 0 and depletion for Λ > 0 of
|∆π(x)/∆σ(x)| is increasing with ξπ/ξσ and ρ0.

In Fig. 8 we compare the influence of the material pa-
rameters ρ0 and ξπ/ξσ on the order parameter profiles
in the vortex core. In Fig. 8(a) we vary ρ0 for fixed
ξπ/ξσ = 3, and in (b) we vary ξπ/ξσ for fixed ρ0 = 0.3.
As shown in Fig. 1, in general the bulk gap to Tc ratio in
the σ band changes in a nonmonotonous way as a func-
tion of ρ0. In the case of the parameter set for Fig. 8(a),
however, the bulk |∆σ|/Tc increases with increasing ρ0

for the values of ρ0 shown (for a fixed ξπ/ξσ). At the same
time, as the coupling of the two bands becomes stronger,
the recovery length of |∆σ| increases [Fig. 8(a)] and the
length scales in the two bands are more different [see also
Fig. 7(a)]. For a fixed ρ0 the σ-band order parameter has
a larger core area as ξπ/ξσ increases [Fig. 8(b)]. The |∆σ|
profile changes in a similar way with varying ξπ/ξσ when
Λ > 0. Also seen in Fig. 8(b) is that the insensitivity of
the |∆π| profile due to the cancellation effect for Λ < 0
discussed above, combined with the enhanced depletion
of |∆σ|, yields a seemingly paradoxical picture, namely
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FIG. 8: (Color online) Order parameters |∆π(x)| and |∆σ(x)|
as a function of coordinate x along the path y = 0 for T/Tc =
0.1, Λ = −0.1, nπ/nσ = 1; for (a) various values of ρ0 for
ξπ/ξσ = 3 and (b) different values of ξπ/ξσ for ρ0 = 0.3. For
a fixed ξπ/ξσ, as ρ0 increases, the core area is enhanced in
both bands. For a fixed ρ0, for larger ξπ/ξσ the core area is
enlarged in the σ band.
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FIG. 9: (Color online) The ratio |∆π(x)/∆σ(x)| as a function
of position x along the path y = 0 for ξπ/ξσ = 3 and nπ/nσ =
1, for various values of ρ0 and T/Tc; for (a) Λ = −0.1 and
(b) Λ = 0.1. The difference between the length scales in the
two bands and its temperature dependence are enhanced as
ρ0 increases, especially for Λ < 0. As temperature is raised,
the difference between the recovery lengths of the two order
parameters becomes smaller.

that an increase in ξπ (for fixed ξσ) results in a larger
core area in the σ band instead of the π band.

4. Temperature dependence

The ratio |∆π(x)/∆σ(x)| as a function of coordinate x
is plotted in Fig. 9 for various values of ρ0 and T/Tc, for
(a) Λ = −0.1 and (b) Λ = 0.1. The enhancement (deple-
tion) and its temperature dependence of this ratio in the
core area are larger for larger ρ0 for negative (positive)
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FIG. 10: (Color online) Order parameters (a) |∆σ(x)| and (b)
|∆π(x)| as a function of x along the path y = 0 for ρ0 = 0.3,
ξπ/ξσ = 3, nπ/nσ = 1, Λ = −0.1. The ‘weak’ π band makes
the temperature dependence of the |∆σ| profile more drastic
than in the single-band case.

Λ. This effect is considerable when the Coulomb repul-
sion dominates in the π band [Fig. 9(a)]. As temperature
becomes higher, however, the difference between the re-
covery lengths of the two order parameters is reduced, as
can be seen in Fig. 9 (see also Fig. 10).

Figure 10 shows the temperature dependence of (a)
|∆σ(x)| and (b) |∆π(x)| for a typical set of material pa-
rameters. By coupling to the weak π band, the sup-
pression of |∆σ| and the widening of its core region with
increasing temperature are more drastic compared with
the single-band case. The π-band order parameter is less
affected by temperature for low enough T/Tc. For higher
temperature, however, the profile of the order parameters
in the two bands are similar.

The temperature dependence of the core area of the
order parameter can be characterised by the vortex ‘core
size’ defined by69

ξ−1
c =

∂∆(r = 0)

∂r

1

∆(r = ∞)
, (34)

where r is the radial coordinate measured from the vortex
centre. In a clean single-band superconductor, the order
parameter exhibits the Kramer-Pesch (KP) effect,49 i.e.,
shrinkage of the vortex core as T is lowered, approaching
zero in the zeo-temperature limit50,69,70,71. In an s-wave
superconductor, however, the core size as defined above
saturates as temperature approaches zero, when there
are nonmagnetic impurities.50,71 This can be understood
by the broadening of the vortex core bound states that
carry the supercurrent around the vortex centre. This
broadening removes the singular behaviour in the spatial
variation of the order parameter in the vortex centre,
and the vortex core shrinking ceases when kBT becomes
smaller than the energy width of the zero-energy bound
states situated at the vortex centre (in quasiclassical ap-
proximation one can neglect the small splitting of these
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FIG. 11: (Color online) The core size ξc defined by Eq. (34)
in the two bands for ρ0 = 0.3, ξπ/ξσ = 3, and nπ/nσ =
1, for (a) Λ = 0.1 and (b) Λ = −0.1. The Kramer-Pesch
effect is induced in the π band, although absent in a single
diffusive band (dashed-dotted curves). As seen from (a), the
core radius ξc is larger in the π band than that in the σ band
when Λ > 0. However, the opposite is true for Λ < 0, as
shown in (b).

bound states due to the Caroli-deGennes minigap).

Recently, our model of coupled clean and dirty bands1

has been applied to study the KP effect in a two-band
superconductor, and it has been shown that, by coupling
to the clean band, the KP effect is induced in the dirty
band.50 The calculation in Ref. 50 corresponds to positive
Λ in our formulation.

In Fig. 11 we plot ξc/ξσ in the σ and π bands as
a function of temperature for ρ0 = 0.3, ξπ/ξσ = 3,
and nπ/nσ = 1, for (a) Λ = 0.1 and (b) Λ = −0.1.
Points are data obtained by self-consistent calculation,
and curves are guides to the eye. Single-band results are
also shown for clean (dotted curves) and dirty (dashed-
dotted curves) superconductors, which exhibit the core
shrinkage and saturation as T → 0, respectively. In the
two-band case, the core size in the dirty π band (dashed
curves) tends to zero in the zero-temperature limit, as
the core size in the clean σ band (full curves) does. For
Λ > 0, shown in Fig. 11(a), the core size in the π band
is always larger than the core size in the σ band. There
is the KP effect in the π band also when the Coulomb
repulsion is dominant [see Fig. 11 (b)]. However, here the
core size defined by Eq. (34) is always smaller in the π
band than in the σ band. Surprisingly, with dominating
Coulomb interactions, the KP effect is better developed
rather in the diffusive band than in the ballistic band.
Only at very low temperature the core size extrapolates
to zero in the σ band, whereas this happens in the π
band already below T ∼ 0.5Tc. We suggest that the KP
effect can be used to study the strength of Coulomb inter-
actions in the effective pair interaction matrix. Finally,



10

0

2

4

6

−3 −2 −1  0  1  2  3

N
π(

ε,
 r

)/
N

F
π

ε/Tc

ξπ/ξσ = 1,  ρ0 = 0.3,  T/Tc = 0.1,  nπ/nσ=1,  Λ = 0

r/ξσ = 40

r/ξσ = 0

FIG. 12: (Color online) The π-band LDOS Nπ(ǫ, r) as a func-
tion of energy ǫ at various distances r from the vortex centre
(r/ξσ from 0 to 40 with an increment of 5). The parameter
values are ξπ/ξσ = 1, ρ0 = 0.3, T/Tc = 0.1, nπ/nσ = 1, and
Λ = 0. The Nπ(ǫ, r) shows no sign of localized states in the
vortex core, consistent with the experiment on MgB2 (Ref.17).

when Λ = 0 (not shown), the order parameters in the
two bands have the same length scale and the same ξc.

B. Spectral properties of diffusive band

In Fig. 12 we show an example for the LDOS Nπ(ǫ, r)
as obtained from Eq. (9) in the diffusive π band as a
function of energy ǫ at various distances r from the vortex
centre. At the vortex centre, Nπ(ǫ, r = 0) as a function
of ǫ is completely flat, showing no sign of localized states.
This is consistent with the experiment on MgB2,

17 which
probed the π-band LDOS by tunneling along the c axis.
Far away from the vortex core, the bulk BCS density of
states is recovered. For a fixed ρ0, the BCS density of
states is recovered at larger distances for larger ξπ/ξσ;
while for a fixed ξπ/ξσ, the LDOS recovers to the bulk
density of states further away for smaller ρ0.

Experimentally the vortex ‘core size’ obtained from
tunneling spectroscopy can be defined as a measure of
the decay of the zero-bias LDOS as one moves away from
the vortex centre. Note that this definition of the vortex
core size is very different from that defined in Eq. (34)
and shown in Fig. 11: the two quantities in fact differ by
a large amount as we discuss in the following. Figure 13
shows the zero-bias LDOS in the π band Nπ(ǫ = 0, r)
as a function of r for (a) varying ξπ/ξσ, (b) varying ρ0,
(c) varying Λ, and (d) varying T/Tc; for the combina-
tion of the remaining parameters nπ/nσ = 1, ξπ/ξσ = 3,
ρ0 = 0.3, T/Tc = 0.1, Λ = −0.1. For a fixed ρ0, the core
size defined as a decay length of the zero-bias LDOS in-
creases substantially with increasing ξπ/ξσ, as shown in
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FIG. 13: (Color online) The zero-bias LDOS Nπ(ǫ = 0, r) as a
function of distance r from the vortex centre for nπ/nσ = 1;
(a) ρ0 = 0.3, T/Tc = 0.1, Λ = −0.1 for various values of
ξπ/ξσ; (b) ξπ/ξσ = 3, T/Tc = 0.1, Λ = −0.1 for various val-
ues of ρ0; (c) ρ0 = 0.3, ξπ/ξσ = 3, T/Tc = 0.1 for various
values of Λ; (d) ρ0 = 0.3, ξπ/ξσ = 3, Λ = −0.1 for vari-
ous temperatures. By comparing with the experimental data
(Ref. 17) we estimate ξπ/ξσ ∼ 2 for MgB2, taking ρ0 = 0.3.

Fig. 13(a). On the other hand, for a fixed ξπ/ξσ, the core
size becomes considerably larger for weaker coupling to
the σ band, i.e., smaller ρ0, as presented in Fig. 13(b).
It can be seen in Fig. 13(c) that the LDOS profile in the
π band is barely changed for different values of Λ. The
Fermi-surface density of states nπ/nσ also has little ef-
fect on the π-band LDOS (not shown). As illustrated in
Fig. 13(d), the LDOS is hardly affected by temperature
over a rather large temperature range; however, the de-
cay length increases notably for temperatures close to Tc.
Fig. 13 is a central result of our calculations, as it can be
used directly as reference for comparison with scanning
tunneling experiments, in order to determine either of
the material parameters ξπ/ξσ or ρ0. In particular, the
parameter ξπ/ξσ is otherwise difficult to access experi-
mentally.

The decay length of the LDOS can be very different in
the two bands. The length scale of the zero-bias LDOS
in the σ band is ξσ and thus shorter than that in the π
band for small enough ρ0 or large enough ξπ/ξσ. The
existence of two coherence length scales in MgB2 has
been suggested;17,44,45 i.e., a ‘core size’ (∼50 nm) much
larger than that expected from Hc2 (∼10 nm). Theoreti-
cally, two apparent length scales in the LDOS have been
found also in the case of two clean bands46 and two dirty
bands.47,72 The difference in the decay lengths comes
from the fact that, although superconductivity is induced
in the π band, quasiparticle motion is governed by the
effective coherence length resulting from the Usadel equa-
tion (2),

√

D/2∆π (that is longer than ξπ =
√

D/2πTc).
Our model of a clean and a dirty band is suitable for

describing MgB2, and the values of ρ0, nπ/nσ and Λ for
Fig. 13(a) are appropriate for modelling MgB2. Using
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FIG. 14: (Color online) The σ-band LDOS Nσ(ǫ, r) as a func-
tion of energy ǫ at various distances r from the vortex centre
(r/ξσ from 0 to 10 with an increment of 1). The parameter
values are ξπ/ξσ = 3, ρ0 = 0.3, T/Tc = 0.1, nπ/nσ = 1,
and Λ = −0.1. Coupling to a diffusive band results in bound
states at the gap edge in the clean band, in addition to the
well-known Caroli-de Gennes-Matricon bound states.

the ab initio value68 of vFσ and including the renormal-
ization factor as mentioned above, ξσ ≃ 6.8nm for MgB2

(Tc = 39 K). By comparing Fig. 13(a) with the zero-bias
LDOS measured in the experiment of Ref.17 [Fig. 3(a) in
Ref. 17], for this parameter set, we find ξπ/ξσ is about 2
for MgB2. As discussed in detail in the next section, there
can be bound states near the gap edge in the ‘strong’
ballistic σ band, which arise from coupling to the ‘weak’
diffusive π band. Such bound states exist for parameter
values relevant for MgB2, e.g., for ξπ/ξσ = 2, ρ0 = 0.3,
and for various temperatures, nπ/nσ, and Λ [see, e.g.,
Fig. 15].

C. Spectral properties of ballistic band

1. Total LDOS

We turn now to the spectral properties of the vor-
tex core originating from the clean σ band. We plot
in Fig. 14 the total (angle-averaged) LDOS Nσ(ǫ, r) =
〈Nσ(ǫ,pFσ, r)〉pF σ

in the ballistic σ band as a function
of energy ǫ at various distances r from the vortex cen-
tre. The spectra show the well-known Caroli-de Gennes-
Matricon (CdGM) bound-state bands48,74 at low ener-
gies. In the single-band case [see Fig. 15(a)], at the
gap edge the spectrum is suppressed and there is nei-
ther coherence peak nor bound state in the vortex centre
spectrum.60,75,76 The new feature found in our model is
the additional bound states at the gap edge, as can be
seen clearly in Fig. 14, which arise from coupling to a
diffusive band. While the CdGM bound states disperse
strongly as a function of position, the extra bound states
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FIG. 15: (Color online) The Nσ(ǫ, r) as a function of energy ǫ
at various distances r from the vortex centre (r/ξσ from 0 to
10 with an increment of 1) for T/Tc = 0.1; (a) the single-band
case, (b) ξπ/ξσ = 5, ρ0 = 0.2, (c) ξπ/ξσ = 2, ρ0 = 0.3, and
(d) ξπ/ξσ = 5, ρ0 = 0.3. In the two-band cases, nπ/nσ = 1
and Λ = −0.1. The gap-edge bound states, which are absent
in the single-band case, are enhanced (and the number of
branches increases) for larger ξπ/ξσ and ρ0.

stay near the gap edge as r is varied. The self-consistency
of the order parameters is essential for studying the pres-
ence or absence of these gap-edge bound states.

In Fig. 15 the total LDOS near the gap edge at various
distances r is shown at temperature T/Tc = 0.1, for (a)
the single-band case, (b) ξπ/ξσ = 5, ρ0 = 0.2, (c) ξπ/ξσ =
2, ρ0 = 0.3, and (d) ξπ/ξσ = 5, ρ0 = 0.3. It can be seen
in Fig. 15(a) that in the single-band case, there is no
localized state near the gap edge at r = 0, while a small
peak develops at the gap edge at large r. This is a bound
state arising solely from the phase winding around the
vortex. In Fig. 15(b), additional bound states exist at
the gap edge both in the core region and far away from
the vortex centre. For a fixed ξπ/ξσ, with increasing
ρ0, gap-edge bound states are enhanced and more bound
states can be created [Figs. 15(b) and 15(d)]. In the
case of Fig. 15(d), there are two bound states close to
the gap edge in the r = 0 spectrum. For nonzero r,
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FIG. 16: (Color online) The total LDOS in the σ-band at the
vortex centre, Nσ(ǫ, r = 0), for energy ǫ close to the energy
gap, for ξπ/ξσ = 5 and T/Tc = 0.1 for different values of Λ;
for ρ0 = 0.2 (a,b) and 0.5 (c,d) and for nπ/nσ = 1 (a,c) and
2 (b,d). Bound states exist near the gap edge for Λ smaller
than a certain value.

all bound states broaden into bands due to dispersion of
the bound states with momentum direction, exhibiting
the typical 1/

√
ǫ-like behaviour at the band edges. This

can be seen clearly in Fig. 14 for the main bound state
crossing zero energy at r = 0. The additional gap-edge
bound states also show this behaviour, as can be seen,
e.g., in Fig. 15(d) for the main gap-edge bound state at
small r. For a fixed ρ0, (more) bound states can exist
for larger ξπ/ξσ [Figs. 15(c) and 15(d)]. In the case of
Fig. 15(c), gap-edge bound states exist at large r, but
not in the core region. However, in this case a coherence
peak can be observed at the gap edge at small r.

2. Gap-edge bound states

We now study the detailed development of bound
states near the gap edge in the σ band in terms of the
spectrum at the vortex centre. We start with the sen-
sitivity of the gap-edge bound state spectrum to Λ and
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FIG. 17: (Color online) Same as Fig. 16, but for fixed Λ =
0, and for (a) various values of ξπ/ξσ for ρ0 = 0.5 and (b)
different values of ρ0 for ξπ/ξσ = 5. Gap-edge bound states
develop as ρ0 or ξπ/ξσ is increased.

to nπ/nσ. In Fig. 16 we show the σ-band total LDOS
Nσ(ǫ, r = 0) for energy ǫ close to the energy gap at tem-
perature T = 0.1Tc. To emphasize the changes we show
here examples for a relatively large coherence length ratio
ξπ/ξσ = 5. The panels (a)-(d) correspond to various fixed
parameter combinations, and the curves in each panel are
for different values of Λ. We show results for ρ0 = 0.2
(a,b) and 0.5 (c,d), and for and for nπ/nσ = 1 (a,c) and 2
(b,d). The Coulomb interaction in the π band also affects
the gap-edge bound states. It can be seen in Fig. 16(a)
that, for the given set of parameters, gap-edge bound
states exist for Λ = −0.1, but not for Λ = 0.2. An in-
crease in nπ/nσ results in an increase in the energy gap,
and (more) gap-edge bound states due to widening of the
core area [Fig. 16(b)]. Increasing ρ0 has similar effects.
It can be seen in Figs. 16(c,d) that the lowest branch
shifts considerably to lower energy, while the energy gap
becomes larger, as Λ is reduced.

Next we discuss the dependence on the coherence
length ratio ξπ/ξσ and on the zero temperature gap ra-
tio ρ0. There is a threshold for both parameters, above
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FIG. 18: (Color online) Same as Fig. 16, but for nπ/nσ = 2
and Λ = 0, for four sets of other parameters (see text) and
various temperatures. The energy gap is reduced significantly
as temperature increases and the energies of the gap-edge
bound states are shifted together with the energy gap.

which gap-edge bound states appear. We illustrate this
in Fig. 17 for T/Tc = 0.1 and Λ = 0. In Figs. 17(a,b)
ξπ/ξσ is changed for fixed ρ0 = 0.5. Results are for (a)
nπ/nσ = 1 and 2 (b). For this gap ratio, gap-edge bound
states exist for ξπ/ξσ > 1 for both ratios of the density of
states shown. As ξπ/ξσ increases, the energy gap changes
only slightly. On the other hand, the lowest bound-state
energies are reduced substantially and more branches ap-
pear. This effect is enhanced for larger nπ/nσ. For
ξπ/ξσ = 5 and ρ0 = 0.5, there are three branches for
nπ/nσ = 2. Figures 17(c,d) show the LDOS for various
values of ρ0 for fixed ξπ/ξσ = 5 for (c) nπ/nσ = 1 and
2 (d). For this parameter set, for ρ0 = 0.1 there is no
gap-edge bound state for nπ/nσ ≤ 2. As ρ0 increases,
the energy gap is enhanced and more branches appear at
the gap edge, and this effect is more significant for larger
nπ/nσ.

Increasing temperature T also enhances the features of
gap-edge bound states. Figure 18 shows the LDOS for
nπ/nσ = 2 and Λ = 0 for various T . In (a) and (c) we
compare for ξπ/ξσ = 3 the cases ρ0 = 0.3 and ρ0 = 0.5,
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FIG. 19: (Color online) The angle-resolved LDOS Nσ(ǫ, py =
0, y) as a function of energy ǫ, for quasiparticles moving in
the x direction at various positions along the y axis (from
y = −18ξσ to y = 18ξσ with an increment of 3ξσ). The
parameter values are ξπ/ξσ = 5, T/Tc = 0.5, nπ/nσ = 1,
Λ = −0.1, with (a) ρ0 = 0.3 and (b) ρ0 = 0.5. An increase in
ρ0 results in more gap-edge bound states and enhancement of
their dispersion.

and in (b) and (d) we fix ρ0 = 0.5 and compare the cases
ξπ/ξσ = 1 and ξπ/ξσ = 5. As T increases, bound states at
the gap edge shift lower together with the energy gap and
increase in strength. The change from T/Tc = 0.1 to 0.5
in Fig. 18 is substantial for ρ0 = 0.5 and ξπ/ξσ = 5. The
results in Fig. 16-18 illustrate that the gap edge bound
states are a robust feature of our model.

3. Angle-resolved LDOS

The bound-state spectrum can be discussed most
clearly in terms of the angle-resolved LDOS spectra, ob-
tained from Eq. (9). In Fig. 19, the angle-resolved LDOS
Nσ(ǫ, py = 0, y) for quasiparticles moving with impact
parameter y in the px direction is shown as a function of
ǫ at various positions y (x = 0). The two panels are for
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FIG. 20: (Color online) The energy of the bound states as a
function of y obtained from Fig. 19. There are two branches
of gap-edge bound states for ρ0 = 0.3. For ρ0 = 0.5 there
is a third branch in the vortex core: the lowest branch is
extended over large distances and its dispersion is enhanced
considerably compared with the case for ρ0 = 0.3.

(a) ρ0 = 0.3 and (b) ρ0 = 0.5. The position of the bound
states as a function of impact parameter y is plotted in
Fig. 20. The CdGM bound-state branch disperses with
angular momentum, crossing the chemical potential in
the vortex centre. In Fig. 19(a) additional bound states
near the gap edge can be seen, which have only weak
dispersion. A close inspection reveals that there are two
branches; for ǫ > 0, the lower branch for roughly y > −6
and the higher one for y > 0, and similarly for negative
y for ǫ < 0. The higher branch hardly disperses with y
[see Fig. 20(a)]. As coupling with the π band becomes
stronger, the energy gap increases. At the same time,
the energies of the bound states are lowered (for rela-
tively small angular momenta), and more bound states
appear near the gap edge, due to enlargement of the core
area [Fig. 19(b)] [see also Fig. 20(b)]. For ρ0 = 0.5, there
is a third bound-state branch at the gap edge for small
|y|, and the lowest branch extends over large distances,
with enhanced dispersion compared to that for ρ0 = 0.3.
For a fixed ρ0, increasing ξπ/ξσ results in a larger core
area and has similar effects as increasing ρ0.

D. Current density

For a clean single-band superconductor, supercurrents
around a vortex are strongly coupled to the Andreev
spectrum discussed in the preceding section, and are
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FIG. 21: (Color online) Magnitude of the supercurrent den-
sity in the two bands, jπ and jσ, as a function of distance r
from the vortex centre, for nπ/nσ = 1 and Λ = 0, for various
temperatures. In the left-hand panels, we have ρ0 = 0.1, for
(a) ξπ/ξσ = 1 and (b) 3. The right-hand panels have ρ0 = 0.5,
for (c) ξπ/ξσ = 1 and (d) 3. The π-band contribution can be
substantial, or even dominating, and have strong tempera-
ture dependence far outside the vortex core for large enough
ρ0 and ξπ/ξσ.

inside the core area carried mainly by these bound
states.74,75 In the following we present results for the
current density calculated with Eqs. (11) for our two-
band model. In Fig. 21 we show contributions from the
two bands to the current density around the vortex sep-
arately, for parameters nπ/nσ = 1 and Λ = 0, and for
various temperatures. In the left-hand panels, we have
ρ0 = 0.1, and (a) ξπ/ξσ = 1 and (b) 3. For this weak
coupling between the two bands, the current contribu-
tion from the π band is negligible for ξπ/ξσ = 1. For
ξπ/ξσ = 3, though still small, at low temperature (i.e.,
T/Tc = 0.1) the π-band contribution in the bulk (out-
side the vortex core, but still well within the penetration
depth distance from the core) is almost the same as that
in the σ band. As T → 0, the peak of jσ approaches
the vortex centre – this is the KP effect manifest in the
supercurrent. The current density arising from the in-
duced superconductivity in the π band is also enhanced
by decreasing temperature, but the maximum does not
approach the vortex centre [see Fig. 21(b)]. In Ref. 1,
the same trend of the π-band current density as a func-
tion of temperature was presented for parameter values
appropriate for MgB2.

As ρ0 increases, the π-band contribution to the current
density becomes considerable. In the right-hand panels
of Fig. 21, the current density contributions are plotted
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for ρ0 = 0.5, for (c) ξπ/ξσ = 1 and (d) 3. Interestingly,
as the coupling between the two bands is increased, the
π band starts exhibiting the KP effect in the current
density. The maximum shifts towards the vortex centre
as temperature is decreased, although the ‘core size’ as
defined by the position of the current maximum remains
larger than that in the σ band [see Figs. 21(c) and (d)].

As can be seen in Fig. 21(d), for relatively large ρ0 and
ξπ/ξσ(> 1), the π-band contribution to the current den-
sity becomes substantial. Especially away from the vor-
tex core, where the contribution of the σ band is reduced,
the π-band contribution can be dominant. Another im-
portant observation is that the current density in the π
band has strong temperature dependence also far outside
the core. On the contrary, the σ-band current density is
temperature-dependent only in the core area. Far away
from the vortex core, we can use in Eq. (11) the analytical
solutions to the Eilenberger and Usadel equations for a
quasihomogeneous system, with constant magnitude and
constant phase gradient of the order parameters. We
thus obtain the current-density magnitudes for a large
distance r from the vortex centre (but small compared
to the London penetration depth) as

jσ(r) ≈ eNFσv2
Fσ

1

2r
, (35)

jπ(r) ≈ eNFππD|∆π|
1

r
. (36)

Clearly, the temperature dependence of jπ is dominated
by that of |∆π|. This bulk behaviour of the current den-
sity in the two bands also explains the dominance of the
π-band contribution in the bulk for relatively large ρ0 and
ξπ/ξσ. For large r, the current-density ratio approaches

lim
r≫ξπ,σ

jπ(r)

jσ(r)
=

NFπ2πD|∆π|
NFσv2

Fσ

=
nπ

nσ

|∆π|
Tc

(

ξπ

ξσ

)2

. (37)

Thus the π-band contribution to the current density dom-
inates when (ξπ/ξσ)2 > (nσ/nπ)(|∆π|/Tc)

−1. This is rel-
evant for MgB2, for which this condition roughly reads
as ξπ/ξσ > 1.

V. CONCLUSIONS

In conclusion, we have studied a model recently intro-
duced by us1 for describing a multiband superconductor
with a ballistic and a diffusive band in terms of coupled
Eilenberger and Usadel equations. Both equations were
solved directly and numerically until self-consistency of
the order parameters was achieved. We have studied the
effects of induced superconductivity and impurities in the
weak diffusive (π) band on the order parameter, the cur-
rent density, and the spectral properties of the strong
ballistic (σ) band. A unique feature found in our model
is the existence of additional bound states at the gap edge
in the ballistic band, which are absent when there is no
coupling with the diffusive band.

Although the two bands are coupled by the pairing
interaction, the order parameters in the two bands can
have very different length scales. When the Coulomb
interaction dominates in the π band, the order parameter
in the σ band has a longer recovery length than that in
the π band. In this case, the π band exhibits the Kramer-
Pesch effect with a ‘core size’ [defined by Eq. (34)] smaller
than that in the σ band. Furthermore, when coupled to
the diffusive band, the order parameter in the ballistic σ
band is suppressed by temperature more strongly than
in the single-band case.

The zero-bias LDOS in the two bands can have very
different decay lengths, the one in the π band being larger
than that in the σ band. As the induced superconductiv-
ity in the π band becomes stronger, the core area widens
in the σ band and (more) gap-edge bound states ap-
pear. Moreover, an increase in the Fermi-surface den-
sity of states in the π band results in an increase in the
energy gap and the number of gap-edge bound states in
the σ band. Increasing the Coulomb repulsion in the π
band and temperature also enlarges the core area in the
σ band, which results in additional bound states at the
gap edge. The gap-edge bound states have only weak dis-
persion. It is thus expected that these bound states are
affected only weakly by impurity scattering within the σ
band.76 Results incorporating impurities in the strong σ
band confirm this statement and will be presented in a
future paper.77

The supercurrent density is dominated in the vortex
core by the σ-band contribution, and outside the core the
π-band contribution can be substantial, or even dominat-
ing over the σ-band current density. The current density
in the σ band shows the Kramer-Pesch effect in the core
area. On the other hand, the π band current density
has strong temperature dependence also outside the core.
It exhibits the Kramer-Pesch effect when the coupling
between the two bands is relatively strong. Stronger
Coulomb repulsion in the π band enhances the current
density in the π band, while it has little effect on the
σ-band current density.

Our model is suitable for describing MgB2. For pa-
rameter values appropriate for MgB2, we have found the
above intriguing features in the LDOS and the current
density, including additional bound states near the gap
edge in the σ band. The gap-edge bound states should be
affected only weakly by the strong electron-phonon inter-
action, as the energy of relevant phonons is much higher
(above 60-70 meV) (Refs. 18,78,79). Our predictions on
the spectral properties of the σ band can be tested by
tunneling electrons onto the ab plane.8,80
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