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Constrained Hardy Space Approximation II:

Numerics∗

Arne Schneck†

Abstract

In a previous paper [Constrained Hardy Space Approximation, preprint
available at http://www.mathematik.uni-karlsruhe.de/iwrmm/seite/

preprints/] we considered the problem of minimizing the distance ‖f −
φ‖Lp(K), where K is a subset of the complex unit circle ∂D and φ ∈
C(K), subject to the constraint that f lies in the Hardy space H∞(D)
and |f | ≤ g for some positive function g. This problem occurs in the
context of filter design for causal LTI systems. In this paper we devise a
general discretization scheme for this problem and show convergence as the
discretization becomes better. We derive several concrete discretizations
and cast them in the form of second-order cone programs, which can be
solved efficiently. We demonstrate this practically with a problem from
the design of dispersion compensating mirrors for the generation of ultra-
short laser pulses. A MATLAB implementation of our method is available
at http://www.mathematik.uni-karlsruhe.de/grk1294/~schneck/.

1 Introduction and Motivation

Let D = {|z| < 1} be the complex unit disk and ∂D = {|z| = 1} the complex
unit circle. By H∞(D) we denote the Hardy space H∞(D) = {f : D → C :
f analytic and bounded}, see, e.g., [6, 11]. Functions in H∞(D) have boundary
values on ∂D, and so H∞(D) can be identified with a subspace of L∞(∂D).
By A(D) = H∞(D) ∩ C(∂D) we denote the disk algebra, i.e., the subspace of
H∞(D) of functions with continuous boundary values.

In this paper we are concerned with the numerical solution of the optimiza-
tion problem

minimize ‖f − φ‖Lp(K)

subject to f ∈ H∞(D),
|f | ≤ g on ∂D,

(H-OPTp)

where 1 ≤ p ≤ ∞. Here, K ⊂ ∂D is closed with positive measure, g ∈ C(∂D)
with g > 0, and φ ∈ C(K) such that |φ| ≤ g on K.

∗This work was supported by the German Research Foundation (DFG)
†Graduiertenkolleg 1294 “Analysis, Simulation and Design of Nanotechnological Pro-

cesses”, Fakultät für Mathematik, Universität Karlsruhe, 76128 Karlsruhe, Germany
e-mail: arne.schneck@math.uni-karlsruhe.de
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1.1 Motivation

Problems of the form (H-OPTp) occur in the context of the design of causal
linear time-invariant (LTI) systems with a desired frequency response. An LTI
system L is a convolution operator, Lf(t) = (h∗f)(t), t ∈ R, where the function
h : R → R is called the impulse response of the system. The system is called
causal or realizable, if for all t0 ∈ R it holds that f(t) = 0 for t < t0 implies
Lf(t) = 0 for t < t0, or, equivalently, if supph ⊂ [0,∞). An alternative way
to describe an LTI system is by its response to plane waves eiω0·. Taking the
Fourier transform

Ff(ω) = f̂(ω) =

∫

R

f(t)e−iωt dt

of the system, one obtains L̂f(ω) = T (ω)f̂(ω), where T = ĥ is the frequency
response of the system. Especially, Leiω0· = T (ω0)e

iω0·, that is, a plane wave
eiω0· is mapped to a plane wave multiplied by a (complex) scalar T (ω0).

The space of frequency responses of causal LTI systems is rather restricted:
Writing h◦(t) = h(−t), we have T̂ = h◦, or T̂ ◦ = h. Therefore, supp T̂ ⊂

(−∞, 0], or supp T̂ ◦ ⊂ [0,∞). The connection to Hardy spaces is as follows:
The space Hp(C+), 1 ≤ p ≤ ∞, is the Hardy space on the complex upper
half-plane C+ = {ℑz > 0},

Hp(C+) =

{
f : C

+ → C : f analytic on C
+, sup

y>0
‖f(· + iy)‖Lp(R) < ∞

}
.

Functions from Hp(C+) have boundary values on R, and so Hp(C+) can be
identified with a subspace of Lp(R). The Paley-Wiener Theorem [13, Theorem
VI.7.2] gives a characterization of this subspace in the case p = 2: H2(C+) =

{f ∈ L2(R) : supp f̂ ⊂ [0,∞)}. Thus, if T ◦ ∈ L2(R), then T ◦ ∈ H2(C+).
Additionally, the gain of energy of an LTI system is limited due to practical

restrictions, i.e., in a given scenario one can expect that there exists a bounded
function G : R → [0,∞) such that any frequency response T that can be
physically realized satisfies |T | ≤ G. For example, if the system that is to be
designed is passive, then one can choose G ≡ 1. When T is bounded, especially
T ◦ ∈ H∞(C+).

In practice, LTI systems are only used in some frequency range I ⊂ R. For a
design problem, one then specifies a desired complex-valued frequency response
Tdesired : I → C and tries to find a physically realizable system L such that
the corresponding frequency response TL is close to Tdesired on I. In a situation
where every frequency response T with T ◦ ∈ H∞(C+) and |T | ≤ G is actually
physically realizable, and when one measures the distance between Tdesired and
T in the Lp(I)-norm, this is basically the problem (H-OPTp), but posed in
Hp(C+) instead of Hp(D). Using the Möbius transformation w 7→ iw+1

−iw+1 , which

maps C+ conformally to D, the problem can then be transported to the disk to
obtain a problem of the form (H-OPTp), see also, e.g., [10].

The particular example which led us to the study of (H-OPTp) is the design
of dispersion compensating mirrors (DCMs) for the generation of ultra-short
laser pulses [15, 17]. We explain this in detail in the last section of this paper.
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1.2 Related problems

The problem (H-OPTp) can be seen as a generalization of the classical Nehari
problem (see, e.g., [6, 24])

minimize ‖f − φ‖L∞(∂D)

subject to f ∈ H∞(D),

where φ ∈ L∞(∂D). If p = ∞, K = ∂D and g is so large that the con-
straint |f | ≤ g is not active, then (H-OPTp) is a Nehari problem. Several other
generalizations of the Nehari problem that have special cases in common with
(H-OPTp) have been considered, see, e.g., Baratchart, Leblond et al. [3, 4, 5])
or Helton et al. [8, 9, 10, 12].

For the Nehari problem, there is an explicit representation of the solution
[24], which can be turned into an algorithm. For the problems studied by
Baratchart, Leblond et al. and Helton et al., this is not the case, but there are
implicit representations of the solution or optimality conditions which can be
used to obtain algorithms that converge to the solution (see the already cited
references).

1.3 Previous and new results

We have dealt with the theory of (H-OPTp) in [19]. Let us briefly recall the
most important results which we will need in this paper.

Theorem 1 (Theorem 2 in [19]). Let f∗ be a solution of (H-OPTp) and τ∗ =
‖f∗ − φ‖Lp(K) > 0. If 1 ≤ p < ∞, then for almost all eiθ ∈ ∂D \ K

|f∗(eiθ)| = g(eiθ).

If p = ∞, then, for almost all eiθ ∈ ∂D, f∗(eiθ) is on the boundary of the set

S(θ, τ∗) = {z ∈ C : |z| ≤ g(eiθ), |z − φ(eiθ)| ≤ τ∗ if eiθ ∈ K}.

Moreover, for 1 < p ≤ ∞, the solution of (H-OPTp) is unique. If K 6= ∂D, then
the solution of (H-OPTp) is also unique for p = 1.

Theorem 2 (Theorems 10, 11 and Corollary 16 in [19]). Let f∗ be a solution

of (H-OPTp).

1. If 1 ≤ p < ∞, then there is a sequence (fn) ⊂ A(D) with |fn| ≤ g on ∂D

that converges to f∗ in Lp(∂D).

2. If p = ∞ and additionally K is the union of finitely many closed intervals,
then there is a sequence (fn) ⊂ A(D) with |fn| ≤ g on ∂D such that

‖fn − φ‖L∞(K) → ‖f∗ − φ‖L∞(K) and such that (fn) converges to f∗

weakly* in L∞(∂D).

Furthermore, we may even arrange it for the fn to be polynomials. If f∗ is real
symmetric, i.e., f(eiω) = f(e−iω), eiω ∈ ∂D, then we can arrange it for the fn

to be real symmetric.
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Unlike for the problems in Section 1.2, we have no representation or charac-
terization of the solution of (H-OPTp) which could be turned into an algorithm.
We therefore take the more straightforward approach of discretizing (H-OPTp)
directly. This method is actually quite efficient, because the discretization can
be done in a way that results in discrete problems which can be handled well
with existing algorithms. Our theoretical results from [19], Theorems 1 and 2,
will then be essential to show convergence.

The organization of the rest of this paper is as follows. We start in Section 2
by stating some assumptions and fixing notation. In Sections 3 and 4 we devise
a general discretization scheme for (H-OPTp). Theorem 2 suggests that it is
reasonable to replace the space H∞(D) by a finite dimensional subspace of poly-
nomials. This yields a semi-discrete problem, which we consider in Section 3. In
Section 4 we then obtain a fully discrete problem by replacing the norm in the
objective function by a quadrature approximation and checking the constraint
|f | ≤ g on a grid. We show that the minimum of the discrete problem converges
to the minimum of (H-OPTp), and that the solution of the discrete problem
converges to the solution of (H-OPTp), in the cases p = 1 and p = ∞ under
the additional hypothesis on K from Theorems 1 and 2. In Section 5 we con-
sider several concrete discretizations. In Section 6 we show how to recast these
discrete problems as second-order cone programs, for which there already exist
very efficient solvers [20, 21]. We finish in Section 7 by applying our results to a
design problem for a special LTI system, a dispersion compensating mirror for
the generation of ultra-short laser pulses.

2 Assumptions and notation

Notice that because the impulse response h of an LTI system is real-valued (see

Section 1.1), its frequency response T = ĥ is real symmetric, i.e., T (−ω) =
T (ω), ω ∈ R. Therefore, we assume throughout this paper that in the problem

(H-OPTp), K, g and φ are also symmetric, i.e., K = K, φ(e−iθ) = φ(eiθ),
eiθ ∈ ∂D, and g(e−iθ) = g(eiθ), eiθ ∈ K. Because our motivation is the design
of LTI systems, we are only interested in real symmetric solutions of (H-OPTp).
Notice that there is always such a solution: If f∗ is a solution of (H-OPTp),

then (f∗ + f∗(·))/2 is a real symmetric solution. Optimization therefore takes
place in the space

H∞(D) =
{

f ∈ H∞(D) : f(eiθ) = f(e−iθ), eiθ ∈ ∂D

}

=

{
f ∈ L∞(∂D) :

f̂k = 0 for integers k < 0,

f̂k ∈ R for integers k ≥ 0

}

instead of H∞(D). Here, f̂k =
∫ π

−π f(θ)e−ikθ dθ, k ∈ Z, are the Fourier coeffi-
cients of f .

Let N ∈ N. For computations we are going to use the finite dimensional
subspaces

H∞
N (D) =

{
fα : fα(eiθ) =

N−1∑

k=0

αkeikθ , α = (α0, . . . , αN−1)
⊤ ∈ R

N

}
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and

L∞
N (∂D) =

{
fβ : fβ(eiθ) =

N−1∑

k=−N

βkeikθ , β = (β−N , . . . , βN−1)
⊤ ∈ R

2N

}
.

By X we usually denote a grid on ∂D, i.e., a set of finitely many points from
∂D. Given two points eiθ and eiτ on ∂D, we define the distance between eiθ and
eiτ to be

dist
(
eiθ, eiτ

)
= min

ei(θ+µ)=eiτ
|µ|.

Clearly, we always have dist
(
eiθ, eiτ

)
≤ π. The fineness of the grid X , i.e., the

maximal distance between two neighboring points, is

hmax(X ) = max
eiθ∈X

min
eiτ∈X\{eiθ}

dist
(
eiθ, eiτ

)
.

3 Semi-discrete problem

In a first step we replace the space H∞(D) in (H-OPTp) by the discrete space
H∞

N (D). We therefore consider the semi-discrete problem

minimize ‖f − φ‖Lp(K)

subject to |f | ≤ g on ∂D,
f ∈ H∞

N (D).
(SDPp)

We also write (SDPp(N)) in order to denote the above problem with a specific
N . For 1 < p < ∞, (SDPp) has a unique solution since the objective function
is strictly convex and we are minimizing over a compact and convex set.

We have the following convergence result.

Theorem 3. If 1 ≤ p < ∞, then the minimum of (SDPp(N)) converges to the

minimum of (H-OPTp) as N → ∞, that is, if f∗
N is a solution of (SDPp(N)),

and f∗ is a solution of (H-OPTp), then

‖f∗
N − φ‖Lp(K) → ‖f∗ − φ‖Lp(K) as N → ∞.

If K is the union of finitely many closed intervals, the same holds true for
p = ∞.

Proof. Fix ǫ > 0. By Theorem 2 there is a polynomial f̃ with |f̃ | ≤ g such that

‖f̃ − φ‖Lp(K) ≤ min
f∈H∞(D), |f |≤g

‖f − φ‖Lp(K) + ǫ.

Then for N ≥ deg f̃ − 1

‖f∗
N − φ‖Lp(K) = min

f∈H∞

N
(D), |f |≤g

‖f − φ‖Lp(K) ≤ ‖f̃ − φ‖Lp(K)

≤ min
f∈H∞(D), |f |≤g

‖f − φ‖Lp(K) + ǫ = ‖f∗ − φ‖Lp(K) + ǫ.

On the other hand, since f∗
N is feasible for (H-OPTp),

‖f∗ − φ‖Lp(K) ≤ ‖f∗
N − φ‖Lp(K).
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Together we have for N ≥ deg f̃ − 1

‖f∗ − φ‖Lp(K) ≤ ‖f∗
N − φ‖Lp(K) ≤ ‖f∗ − φ‖Lp(K) + ǫ.

Therefore, ‖f∗
N − φ‖Lp(K) → ‖f∗ − φ‖Lp(K) as N → ∞.

Corollary 4. Let f∗
N be a solution of (SDPp(N)), and let f∗ be a solution of

(H-OPTp). If 1 < p < ∞, then (f∗
N ) converges to f∗ strongly in Lp(∂D). If

p = ∞ and K is the union of finitely many intervals, then (f∗
N ) converges to f∗

weakly* in L∞(∂D). If p = 1 and K 6= ∂D, then (f∗
N ) converges to f∗ weakly

in L1(∂D) and strongly in L1(∂D \ K).

Proof. The sequence (f∗
N ) is bounded in L∞(∂D). If p = ∞, then there is a

weakly* convergent subsequence (f∗
Nl

). If 1 ≤ p < ∞, then there is a subse-
quence (f∗

Nl
) which converges weakly in Lp(∂D): In the case 1 < p < ∞ this

is due to the fact that (f∗
Nl

) is especially bounded in Lp(∂D) and that the unit
ball in reflexive spaces in weakly sequentially compact. In the case p = 1 we
notice that, since (f∗

N ) is especially bounded in L2(∂D), we can extract a sub-
sequence (f∗

Nl
) which converges weakly in L2(∂D). But weak convergence in

L2(∂D) implies weak convergence L1(∂D). Denote the limit in any case by f̃ .
Because the norm is sequentially lower semicontinuous with respect to the

weak and weak* topologies,

‖f̃ − φ‖Lp(K) ≤ lim inf
l→∞

‖f∗
Nl

− φ‖Lp(K) = ‖f∗ − φ‖Lp(K).

Equality on the right hand side follows from Theorem 3. The set of functions
that is feasible for (H-OPTp), {f ∈ H∞(D) : |f | ≤ g on ∂D}, is weakly closed in
Lp(∂D) for 1 ≤ p < ∞, and (sequentially) weakly* closed in L∞(∂D). Therefore,

the weak (or weak*) limit f̃ is also feasible for (H-OPTp), whence ‖f̃−φ‖Lp(K) =
‖f∗ − φ‖Lp(K).

Uniqueness of the solution of (H-OPTp) now implies f̃ = f∗. (In the case
p = 1 we need K 6= ∂D for uniqueness.) But then it follows that the whole
sequence (f∗

N ) converges weakly (or weakly*) to f∗: If there were infinitely
many fN outside of an arbitrary (weak Lp(∂D)- or weak* L∞(∂D)-)neighbor-
hood of f∗, we could use the preceding arguments to find a subsequence of these
infinitely many fN that converges to f∗, which is a contradiction.

It remains to show the statements about strong convergence in the cases
1 < p < ∞ and p = 1. If 1 < p < ∞, then weak convergence, f∗

N − φ ⇀ f∗ − φ
in Lp(K), and convergence of the norm, ‖f∗

N −φ‖Lp(K) → ‖f∗−φ‖Lp(K), imply
that f∗

N − φ → f∗ − φ strongly in Lp(K) (see [2, 6.6]), and therefore f∗
N → f∗

strongly in Lp(K). Further, by Theorem 1, |f∗| = g a.e. on ∂D \K. Therefore,

‖g‖Lp(∂D\K) = ‖f∗‖Lp(∂D\K) ≤ lim inf
l→∞

‖f∗
N‖Lp(∂D\K) ≤ ‖g‖Lp(∂D\K),

from which it follows that ‖f∗
N‖Lp(∂D\K) → ‖g‖Lp(∂D\K). As before, weak

convergence and convergence of the norm imply that f∗
N → f∗ strongly in

Lp(∂D \ K). Together, f∗
N → f∗ strongly in Lp(∂D) for 1 < p < ∞.

Finally, because |f∗| = g a.e. on ∂D\K by Theorem 1 and because |f∗
N | ≤ g

for all N , weak convergence f∗
N ⇀ f∗ in L1(∂D \K) implies strong convergence

f∗
N → f∗ in L1(∂D \ K), see, e.g., [22, Theorem 1].
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4 Fully discrete problem

Unfortunately, we are not aware of any “nice” method to check the constraint
|f | ≤ g on the complete circle. For a complete discretization we only check
the constraint on some grid X ⊂ ∂D. Moreover, it may not be possible to
compute the objective function exactly. We therefore replace ‖f − φ‖Lp(K) by
some quadrature approximation T p(f−φ) and obtain the fully discrete problem

minimize T p(f − φ)
subject to |f(eiθ)| ≤ g(eiθ), θ ∈ X ,

f ∈ H∞
N (D).

(FDPp)

If we want to denote the above problem with, e.g., a specific grid X , a spe-
cific approximation T p, or a specific N , we write (FDPp(X )), (FDPp(X , T p)),
(FDPp(X , T p, N)) and so on. The set of feasible functions {f ∈ H∞

N (D) :
|f(eiθ)| ≤ g(eiθ), θ ∈ X} is convex and closed in the finite dimensional space
H∞

N (D). From Lemma 7 below it follows that if the grid X is fine enough, then
the set of feasible functions is also bounded and therefore, because H∞

N (D) is
finite dimensional, compact. Thus, (FDPp) has a solution. If additionally the
quadrature approximation is strictly convex, then the solution is unique.

We assume that we are given a sequence (T p
n) of quadrature approximations

that converges locally uniformly for functions f ∈ H∞
N (D), i.e.,

sup
f∈H∞

N (D), ‖f‖L∞(∂D)≤1

∣∣∣T p
n(f − φ) − ‖f − φ‖Lp(K)

∣∣∣ → 0 as n → ∞. (1)

We show in this section that as the grid X on which we check the constraint
becomes finer and as the approximation T p becomes better, the minimum of the
fully discrete problem (FDPp) converges to the minimum of the semi-discrete
problem (SDPp):

Theorem 5. Let 1 ≤ p ≤ ∞ and fix N ∈ N. Let (Xn) be a sequence of

grids on ∂D with hmax(Xn) → 0 as n → ∞, and let (T p
n) be a sequence of

quadrature approximations to ‖ ·‖Lp(K) such that (1) holds. Then the minimum
of the fully discrete problem (FDPp(Xn, T p

n , N)) converges to the minimum of

the semi-discrete problem (SDPp(N)) as n → ∞, i.e., if f∗
N,n is a solution of

(FDPp(Xn, T p
n , N)), and f∗

N is a solution of (SDPp(N)), then

T p
n(f∗

N,n − φ) → ‖f∗
N − φ‖Lp(K) as n → ∞.

Before we can prove Theorem 5 we need a lemma which gives a bound on
the derivative of functions that are feasible for (FDPp(X , N)).

Lemma 6. Fix N ∈ N. There are h0 > 0 and C > 0 such that for any grid X
with hmax(X ) ≤ h0 and any f which is feasible for (FDPp(X , N)) the estimate

‖f ′‖L∞(∂D) ≤ C‖g‖L∞(∂D).

holds true. Here, f ′(eiθ) = d
dθf(eiθ).

Proof. Let X = {eiθ1 , . . . , eiθn} ⊂ ∂D be some grid. Let f ∈ H∞
N (D). Then f

has the form f(eiθ) =
∑N−1

k=−N βkeikθ for some β = (βk)N−1
k=−N ∈ R2N . We write

the relations

fβ(eiθj ) =
N−1∑

k=−N

βkeikθj , j = 1, . . . , n,

7



in matrix form
B(X )β = f(X ). (2)

Here, f(X ) is the vector f(X ) = (f(eiθj ))n
j=1 ∈ Cn and B(X ) is the matrix

B(X ) = (bjk) ∈ C
n×2N , where bjk = eikθj , j = 1, . . . , n, k = −N, . . . , N − 1.

Now let θj = jπ/N and take the grid XN = {eiθj : j = 1, . . . , 2N} with
n = 2N points. Then 1√

2N
B(XN ) is unitary. Since the set of invertible matrices

is open, and since matrix inversion is a continuous function on this set, there is

h1 > 0 such that if the grid X̃ = {eieθ1 , . . . , eieθ2N} satisfies

max
j=1,...,2N

|eiθj − eieθj | ≤ h1, (3)

then B(X̃ ) is still invertible and

‖B(X̃ )−1‖∞→1 ≤ 2‖B(XN )−1‖∞→1. (4)

Here, ‖ · ‖∞→1 is the operator norm ‖A‖∞→1 = sup‖x‖∞≤1 ‖Ax‖1.
To finish the proof, choose h0 > 0 so small that any grid X ⊂ ∂D with

hmax(X ) ≤ h0 has a subgrid X̃ ⊂ X , consisting of 2N points, that satisfies

(3). Let X be such a grid and X̃ a subgrid with (3). Let f be feasible for
(FDPp(X , N)), i.e., f ∈ H∞

N (D) with |f(eiθ)| ≤ g(eiθ) for all eiθ ∈ X . Then f

has the form f(eiθ) =
∑N−1

k=0 αkeikθ for some α = (αk)N−1
k=0 ∈ RN . By (2) we

have

B(X̃ )

(
0RN

α

)
= f(X̃ ),

whence

‖α‖1 ≤ ‖B(X̃ )−1‖∞→1‖f(X̃ )‖∞ = ‖B(X̃ )−1‖∞→1 max
eieθ∈ eX

|f(eieθ)|

(4)

≤ 2‖B(XN )−1‖∞→1‖g‖L∞(∂D).

Therefore,

‖f ′‖L∞(∂D) = sup
eiθ∈∂D

∣∣∣∣∣

N−1∑

k=1

ikαkeikθ

∣∣∣∣∣ ≤ N‖α‖1 ≤ 2N‖B(XN )−1‖∞→1‖g‖L∞(∂D).

Thus, the lemma holds with C = 2N‖B(XN )−1‖∞→1.

Next, we show that if the grid Xn is fine enough, then functions that are
feasible for the fully discrete problem (FDPp(Xn, N)) are almost feasible for the
semi-discrete problem (SDPp(N)).

Lemma 7. Fix N ∈ N. Then for any ǫ > 0 there is h1 > 0 such that if X is a
grid with hmax(X ) ≤ h1 and f is feasible for (FDPp(X , N)), then

|f | ≤ g + ǫ.

Proof. Since g is uniformly continuous, there is h2 > 0 such that for all |µ| ≤ h2

and all eiθ ∈ ∂D we have

|g(eiθ) − g(ei(θ+µ))| ≤ ǫ/2. (5)
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Suppose that X is a grid with

hmax(X ) ≤ min{h0, h2, ǫ(C‖g‖L∞(∂D))
−1}, (6)

where h0 and C are the constants from Lemma 6. Let f be feasible for the fully
discrete problem (FDPp(X , N)) and let eiθ ∈ ∂D. Choose eit ∈ X such that
dist

(
eiθ, eit

)
≤ hmax(X )/2. Then

|f(eiθ)| ≤ |f(eit)| +
hmax(X )

2
‖f ′‖L∞(∂D)

≤ g(eit) +
hmax(X )

2
C‖g‖L∞(∂D) by Lemma 6

≤ g(eiθ) +
ǫ

2
+

ǫ

2
by (5) and (6)

= g(eiθ) + ǫ.

(7)

Thus, the lemma holds true with h1 = min{h0, h2, ǫ(C‖g‖L∞(∂D))
−1}.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Fix an arbitrary ǫ > 0. Let ǫ1 > 0 be so small that for

η =

(
1 +

ǫ1
mineiθ∈∂D g(eiθ)

)−1

(8)

it holds true that (1 − η)‖φ‖Lp(K) ≤ ǫ. (This is possible since η → 1 as ǫ1 →
0.) By Lemma 7 there is n0 ∈ N such that functions that are feasible for
(FDPp(Xn, N)), n ≥ n0, satisfy

|f | ≤ g + ǫ1. (9)

Because of (1) we can possibly increase n0 such that for all n ≥ n0 and all
f ∈ H∞

N (D) with ‖f‖L∞(∂D) ≤ ‖g‖L∞(∂D) + ǫ1

∣∣∣T p
n(f − φ) − ‖f − φ‖Lp(K)

∣∣∣ ≤ ǫ. (10)

So (10) especially holds true for all f that are feasible for (FDPp(Xn, N)),
n ≥ n0.

Now fix n ≥ n0. Let f∗
N,n be a solution of (FDPp(Xn, T p

n , N)), and let f∗
N

be a solution of (SDPp(N)). Then

T p
n(f∗

N,n − φ) ≤ T p
n(f∗

N − φ) ≤ ‖f∗
N − φ‖Lp(K) + ǫ. (11)

The first inequality holds true because f∗
N,n is a solution of (FDPp(Xn, T p

n , N))
and f∗

N is feasible for (FDPp(Xn, T p
n , N)), and the second inequality is due to

(10).
On the other hand, take η from (8) and set fN,n = ηf∗

N,n. Because f∗
N,n is

feasible for (FDPp(Xn, N)), we have |f∗
N,n| ≤ g + ǫ1 by (9), and therefore

|f∗
N,n| ≤

(
1 +

ǫ1
mineiθ∈∂D g(eiθ)

)
g.

9



So fN,n = ηf∗
N,n ≤ g, that is, fN,n is feasible for the semi-discrete problem.

Therefore,
‖f∗

N − φ‖Lp(K) ≤ ‖fN,n − φ‖Lp(K).

Further, since η ≤ 1 and (1 − η)‖φ‖Lp(K) ≤ ǫ,

‖fN,n − φ‖Lp(K) = ‖ηf∗
N,n − φ‖Lp(K) ≤ η‖f∗

N,n − φ‖Lp(K) + (1 − η)‖φ‖Lp(K)

≤ ‖f∗
N,n − φ‖Lp(K) + ǫ.

Because (10) holds true for f∗
N,n, we end up with

‖f∗
N − φ‖Lp(K) ≤ T p

n(f∗
N,n − φ) + 2ǫ (12)

for n ≥ n0.
(11) and (12) imply that T p

n(f∗
N,n − φ) → ‖f∗

N − φ‖Lp(K) as n → ∞.

Theorem 3 and Theorem 5 together imply

Corollary 8. Let (Xn) be a sequence of grids on ∂D with hmax(Xn) → 0 as

n → ∞, and let (T p
n) be a sequence of quadrature approximations to ‖ · ‖Lp(K)

such that (1) holds.

If 1 ≤ p < ∞, then for each N ∈ N we can choose n(N) such that the
minimum of the fully discrete problem (FDPp(Xn(N), T

p
n(N), N)) converges to

the minimum of (H-OPTp) as N → ∞. If K is the union of finitely many
closed intervals of positive measure, this also holds true for p = ∞.

Similar to Corollary 4 we can prove

Corollary 9. Let (Xn) be a sequence of grids on ∂D with hmax(Xn) → 0 as

n → ∞, and let (T p
n) be a sequence of quadrature approximations to ‖ · ‖Lp(K)

such that (1) holds. Let f∗ be a solution of (H-OPTp) and let f∗
N,n be a solution

of (FDPp(Xn, T p
n , N)).

1. If 1 < p < ∞, then for each N ∈ N we can choose n(N) such that

the minimum of (FDPp(Xn(N), T
p
n(N), N)) converges to the minimum of

(H-OPTp) and such that f∗
N,n(N) → f∗ in Lp(∂D) as N → ∞.

2. If p = ∞ and K is the union of finitely many closed intervals, then for

each N ∈ N we can choose n(N) such that the minimum of the discrete
problem (FDPp(Xn(N), T

p
n(N), N)) converges to the minimum of (H-OPTp)

and such that f∗
N,n(N)

∗
⇀ f∗ in L∞(∂D) as N → ∞.

3. If p = 1, then for each N ∈ N we can choose n(N) such that the minimum

of the discrete problem (FDPp(Xn(N), T
p
n(N), N)) converges to the mini-

mum of (H-OPTp), and, if K 6= ∂D, such that f∗
N,n(N) ⇀ f∗ in L1(∂D)

and f∗
N,n(N) → f∗ in L1(∂D \ K) as N → ∞.

Proof. By Corollary 8, for any 1 ≤ p ≤ ∞ we can choose n(N) such that the
minimum of the fully discrete problem (FDPp(Xn, T p

n , N)) converges to the min-
imum of (H-OPTp). As we saw in the proof of Theorem 5, we can additionally
achieve that

∣∣∣T p
n(f∗

N,n(N) − φ) − ‖f∗
N,n(N) − φ‖Lp(K)

∣∣∣ ≤ ǫN (13)

10



and |f∗
N,n(N)| ≤ g+ǫN with ǫN → 0 as N → ∞. Especially, (f∗

N,n(N)) is bounded

in L∞(∂D). As in the proof of Corollary 4 we can extract a subsequence which
converges weakly in the case 1 ≤ p < ∞ and weakly* in the case p = ∞.
Denote the limit by f̃ . As before, lower semicontinuity of the norm implies
‖f̃ − φ‖Lp(K) ≤ ‖f∗ − φ‖Lp(K).

Now for any ǫ > 0 all but possibly finitely many f∗
N,n(N) lie in the set {f ∈

H∞(D) : |f | ≤ g+ǫ on ∂D}. This set is weakly closed in Lp(D), 1 ≤ p < ∞, and

(sequentially) weakly* closed in L∞(D). Therefore, |f̃ | ≤ g + ǫ for any ǫ > 0,

i.e., |f̃ | ≤ g. But this means that f̃ is feasible for (H-OPTp). If follows that

f̃ is a solution of (H-OPTp). Unique solvability then implies f̃ = f∗. (In the
case p = 1 we need K 6= ∂D.) As before, by uniqueness of the limit the whole
sequence (f∗

N,n(N)) converges weakly (or weakly* if p = ∞) to f∗ in Lp(∂D) as
N → ∞.

Because of (13) and because T p
n(f∗

N,n(N) − φ) converges to ‖f∗ − φ‖Lp(K),

‖f∗
N,n(N) − φ‖Lp(K) → ‖f∗ − φ‖Lp(K). Also, it follows as in the proof of

Corollary 4 that ‖f∗
N,n(N)‖Lp(∂D\K) → ‖f∗‖Lp(∂D\K). As before, we obtain

that f∗
N,n(N) → f∗ strongly in Lp(∂D) for 1 < p < ∞. In the case p = 1,

weak convergence f∗
N,n(N) ⇀ f∗ in L1(∂D \ K), together with the properties

|f∗
N,n(N)| ≤ g + ǫN with ǫN → 0 and |f∗| = g a.e. on ∂D \ K, implies strong

convergence f∗
N,n(N) → f∗ in L1(∂D \ K), see, e.g., [22, Lemma 2].

We finish this section with examples of quadrature approximations that sat-
isfy (1).

Example 10 (Rectangle rule, case 1 ≤ p < ∞). Assume that K is the union

of finitely many closed intervals of positive measure and that φ is smooth. Let
(Xn) be a sequence of grids with hmax(Xn) → 0 as n → ∞. Then (1) is fulfilled

for the rectangle rule

T p
n(f − φ) =


 ∑

eiθ∈K∩Xn

∣∣f(eiθ) − φ(eiθ)
∣∣p hθ




1/p

,

where

hθ =
min{µ > 0 : ei(θ−µ) ∈ X} + min{µ > 0 : ei(θ+µ) ∈ X}

2
.

The reason why (1) holds for the rectangle rule is Lemma 6 and the fact that the

error of the rectangle rule can be estimated by the derivative of the integrand.

Example 11 (Exact quadrature, case p = 2). We will see in the next section

that for p = 2, φ ∈ L∞
Nφ

(∂D) for some Nφ ∈ N and f ∈ H∞
N (D) it is in principle

possible to compute ‖f − φ‖Lp(K) exactly. Assume that (φn) is a sequence with

φn ∈ L∞
n (∂D) and ‖φn − φ‖L2(K) → ∞ as n → ∞ and suppose that

T 2
n(f − φ) = ‖f − φn‖L2(K).

Then ∣∣T 2
n(f − φ) − ‖f − φ‖L2(K)

∣∣ =
∣∣‖f − φn‖L2(K) − ‖f − φ‖L2(K)

∣∣
≤ ‖φ − φn‖L2(K),

so (T 2
n) satisfies (1).

11



Example 12 (Case p = ∞). Assume that K is the union of finitely many closed

intervals of positive measure and that φ is smooth. Let (Xn) be a sequence of

grids with hmax(Xn) → 0 as n → ∞. Then (1) is fulfilled for

T p
n(f − φ) = max

eiθ∈K∩Xn

|f(eiθ) − φ(eiθ)|.

The reason why (1) holds is again Lemma 6.

5 Discretization: Examples

In this section we explicitly write down the different discretizations of (H-OPTp)
corresponding to the quadrature approximations from Examples 10–12.

5.1 1 ≤ p < ∞, rectangle rule

Let X = {eiθ1 , . . . , eiθd} and let N ∈ N. With the rectangle rule to approximate
‖f − φ‖L2(K), see Example 10, we get the fully discrete problem

minimize


 ∑

j∈K∩X

∣∣fα(eiθj ) − φj

∣∣p hθj




1/p

subject to
∣∣fα(eiθj )

∣∣ ≤ gj , j ∈ X ,

in the optimization variable α = (αk)N−1
k=0 ∈ RN . Here, fα(eiθ) =

∑N−1
k=0 αkeikθ .

By the sloppy notation j ∈ X we mean eiθj ∈ X , similarly for j ∈ K ∩X . Also,
we write φj = φ(eiθj ) and gj = g(eiθj ), j = 1, . . . , d.

Let us assume that X is symmetric, i.e., X = X , and write

X+ = X ∩ {eiθ : θ ∈ [0, π]}.

Then due to the symmetry of fα and g it suffices to consider

minimize Fp(α) =


 ∑

j∈K∩X

∣∣fα(eiθj ) − φj

∣∣p hθj




1/p

subject to
∣∣fα(eiθj )

∣∣ − gj ≤ 0, j ∈ X+.

(D-OPTp)

5.2 p = 2, exact quadrature

We come back to Example 11. Suppose that φ is nice enough and can be written
(or well approximated) in the form

φ(eiθ) =

Nφ−1∑

k=−Nφ

βkeikθ

with some Nφ ∈ N and β = (βk)
Nφ−1
k=−Nφ

∈ R
2Nφ . (The βk must be real due

to the real symmetry of φ.) Then it is possible to compute ‖fα − φ‖L2(K)

exactly. Without loss of generality we may assume that Nφ ≥ N with possibly

12



some of the βk equal to zero. To simplify notation in the following, we write

fα(eiθ) =
∑Nφ−1

k=−Nφ
αkeikθ with αk = 0 for k /∈ {0, 1, . . . , N − 1}. We have

‖fα − φ‖2
L2(K) =

∫

K

|fα(eiθ) − φ(eiθ)|2 dθ =

∫

K

∣∣∣∣∣∣

Nφ−1∑

k=−Nφ

(αk − βk)eikθ

∣∣∣∣∣∣

2

dθ

=

∫

K

Nφ−1∑

k,l=−Nφ

(αk − βk)(αl − βl)e
i(k−l)θ dθ

=

Nφ−1∑

k,l=−Nφ

(αk − βk)(αl − βl)

∫

K

ei(k−l)θ dθ.

With

mj =

∫

K

eijθ dθ (14)

we get the discrete problem

minimize F̃2(α) =




Nφ−1∑

k,l=−Nφ

mk−l(αk − βk)(αl − βl)




1/2

subject to
∣∣fα(eiθj )

∣∣ − gj ≤ 0, j ∈ X+.

(D-OPTe2)

5.3 p = ∞

In the case p = ∞ we use the approximation from Example 12 and obtain

minimize F∞(α) = max
j∈K∩X+

∣∣fα(eiθj ) − φj

∣∣

subject to
∣∣fα(eiθj )

∣∣ − gj ≤ 0, j ∈ X+.
(D-OPT∞)

Notice that due to symmetry we only take the maximum over j ∈ K ∩ X+.

6 SOCP formulations

In order to solve the discrete problems from the previous section numerically,
it is advisable to reformulate them as second-order cone programs (SOCPs). A
(dual) SOCP is a problem of the form

maximize b⊤y
subject to A⊤

j y + zj = cj , j = 1, . . . , ν,
zj ∈ Qnj

, j = 1, . . . , ν.

in the optimization variables y and z = (z1; . . . ; zν)∗. Here, b ∈ Rm for some
positive integer m, cj ∈ Rnj for some positive integers nj , j = 1, . . . , ν, and
Aj ∈ R

m×nj . Moreover, Qn is the standard second-order cone of dimension
n ∈ N, Qn =

{
(ξ0; ξ) ∈ R × Rn−1 : ‖ξ‖2 ≤ ξ0

}
. For n = 1, this has to be read

∗The semicolon is used to denote row-wise concatenation of vectors or matrices, i.e.,

(z1; z2) =

„

z
1

z
2

«

.
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as Q1 = {ξ0 ∈ R : 0 ≤ ξ0} . SOCPs can be solved very efficiently via interior-
point methods, see, e.g., [1, 14, 16]. Also, there are a number of free software
packages available that can solve SOCPs [20, 21].

SOCPs include as special cases quadratically constrained quadratic programs
(QCQPs) and p-norm minimization for rational p. A general strategy how to
cast these problems into SOCP form is described in [1]. For example, in order
to obtain SOCP formulations of (D-OPT2), (D-OPTe2) and (D-OPT∞), one can
first write these problems as QCQPs, which can then be recast as SOCPs. For
rational p, one can use the method from [1] to convert p-norm minimization
problems to SOCPs.

A detailed derivation of the SOCP formulations of (D-OPT2), (D-OPTe2)
and (D-OPT∞) is in [18]. Because the derivations are mechanical and do not
yield any particular insights, we merely state the results for (D-OPTe2) and
(D-OPT∞) in the following subsections.

6.1 p = 2, exact quadrature

Recall that for exact quadrature we need to be in the situation that φ(eiθ) =∑Nφ−1
k=−Nφ

βkeikθ with some Nφ ∈ N and β = (βk)
Nφ−1
k=−Nφ

∈ R2Nφ . Let

M̃ = (mk−l)
N−1
k,l=0 ∈ R

N×N ,

where the mj are as in (14). Moreover, let

q̃ = (q̃k)k=0,...,N−1, q̃k = −

Nφ−1∑

l=−Nφ

mk−lβl.

Further, let S̃ be a matrix such that S̃⊤S̃ = M̃ . We can choose S̃ ∈ R
m×N for

some m ≤ N . Finally, for j ∈ X+ let

γj = (cos(kθj))k=0,...,N−1 and σj = (sin(kθj))k=0,...,N−1.

With these definitions the SOCP formulation of (D-OPTe2) is

max.

(
−1

0RN×1

)⊤ (
t
α

)

s.t.




− 1
2 q̃⊤

1
2 −q̃⊤

0Rm×1 −S̃




(
t
α

)
+ zK =




1
2

(
1 −

(∑Nφ−1
k,l=−Nφ

mk−lβkβl

))

1
2

(
1 +

(∑Nφ−1
k,l=−Nφ

mk−lβkβl

))

0Rm×1


 ,

zK ∈ Qm+2,


0 0R1×N

0 −γ⊤
j

0 −σ⊤
j




(
t
α

)
+ zj =




gj

0
0


 , j ∈ X+,

zj ∈ Q3, j ∈ X+.
(SOCPe2)

If α is a minimizer of (D-OPTe2), then (F̃2(α)2; α) is a maximizer of (SOCPe2).
Conversely, if (t; α) is a maximizer of (SOCPe2), then α is a minimizer of

(D-OPTe2), and F̃2(α) = t1/2.
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6.2 p = ∞

For j ∈ K ∩ X+ let

q(j) = (q
(j)
k )k=0,...,N−1, q

(j)
k = −ℜ

(
e−ikθj φj

)
.

The SOCP formulation of (D-OPT∞) is

max.

(
−1

0RN×1

)⊤ (
t
α

)

s.t.




− 1
2 q(j)⊤

1
2 −q(j)⊤

0 −γ⊤
j

0 −σ⊤
j




(
t
α

)
+ zK,j =




1
2 (1 − |φj |

2)
1
2 (1 + |φj |

2)
0
0


 , j ∈ K ∩ X+,

zK,j ∈ Q4, j ∈ K ∩ X+,


0 0R1×N

0 −γ⊤
j

0 −σ⊤
j




(
t
α

)
+




ζ0
j

ζ1
j

ζ2
j


 =




gj

0
0


 , j ∈ X+,

zj ∈ Q3, j ∈ X+.
(SOCP∞)

If α is a minimizer of (D-OPT∞), then (F∞(α)2; α) is a maximizer of (SOCP∞).
Conversely, if (t; α) is a maximizer of (SOCP∞), then α is a minimizer of
(D-OPT∞), and F∞(α) = t1/2.

7 Numerical experiments

In order to solve the SOCPs from the previous section practically, we decided
to use a slightly modified version of the SDPT3 software package [21]. In its
original form, SDPT3 works with sparse matrices. However, the matrices in
(SOCPe2) and (SOCP∞) are dense. By instead using a dense format in some
critical places and by using a highly optimized implementation of the basic linear
algebra subprograms [7], we could achieve a speed-up of SDPT3 for our problems
of around 100 on a system with two Quad-Core Opteron 2352 processors. For
example, the computation time for Example 1 below with p = ∞, N = 212 and
d = 212 was 578 seconds.

7.1 Example 1: Test problem

As a test problem we took the function φ in the top row of Figure 1. It is
defined by φ(eiθ) = |φ(eiθ)|e−iθ, where |φ(eiθ)| is as in the top left of Figure 1.
Moreover, we took g ≡ 1 and K = {eiθ : θ ∈ [π

4 , 3π
4 ] ∪ [−3π

4 , −π
4 ]}. We solved a

series of problems for p = 2 with exact quadrature (Nφ = 214) and p = ∞. We
varied the dimension of the space H∞

N (D) by taking N ∈ {24, 25, . . . , 212}. For
each N we solved the problem for several grids of the form

Xd =
{
ei0π/d, ei1π/d, . . . , ei(2d−1)π/d

}
.

We took d ∈ {2log2 N , . . . , 214}.
The solutions for N = 212 and d = 214 are shown in the middle row (p = 2)

and bottom row (p = ∞) of Figure 1. One can see nicely that the solutions
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f∗
2,N,d and f∗

∞,N,d show the properties of Theorem 1: The absolute value is
(almost) equal to 1 on ∂D \ K. Moreover, in the case p = ∞, |φ − f∗

∞,N,d| is
(almost) constant on K.

We also investigated numerically how the minimum of the discrete problem
behaves when N is fixed and d is increased. Let us denote by τp

N,d the minimum
of the optimization problem with certain p, N and d. Let

δp
N,d =

∣∣∣τp
N,d − τp

N,d/2

∣∣∣ (15)

be the difference between two minima when the number of grid points is doubled.
In Figure 2 we show how δp

N,d behaves for fixed N when we vary d. We observe

that both for p = 2 and for p = ∞, δp
N,d behaves like d−2. However, by looking

only at the left starting points of the curves in Figure 2 (marked by circles)
we observe that in the case p = 2, also δp

d,d behaves like d−2, while in the case

p = ∞ the decay of δp
d,d is significantly slower. This indicates that for p = 2 it

should suffice to choose d = N , while for p = ∞ it might be advisable to choose
d larger than N .

7.2 Example 2: Dispersion compensating mirror

We consider an example which comes from the design of dielectric mirrors that
are used for dispersion compensation inside a laser cavity in order to generate
ultra-short light pulses [15, 17]. Such mirrors consist of a stack of thin layers
of typically two different dielectric materials with different refractive indices,
which is deposited on some substrate, for example silica. The mirror constitutes
a causal LTI system with frequency response R◦, where R◦(ω) = R(−ω), ω ∈ R.
The function R is called reflection coefficient. A plane wave eiω· that is incident
on the mirror gives rise to a reflected wave R(ω)e−iω· propagating in the opposite
direction. The modulus |R(ω)| describes the amplitude of the reflected wave,
and the argument argR(ω) describes the phase shift.

We consider the example of a mirror like the one that is used in [23]. The
mirror should have the following properties:

1. There is a frequency interval I1, containing most of the spectrum of the
pulses generated by the laser, where the mirror is highly reflective and
imposes a specified frequency-dependent phase shift. The desired phase
shift ϕ is usually given as a polynomial around some center frequency
ω0 ∈ I1,

ϕ(ω) =

l∑

ν=0

1

ν!
Dν(ω − ω0)

ν . (16)

The numbers Dν are called dispersion coefficients. The shape of the pulse
after the phase shift does not depend on D0 and D1 [18]. Therefore, in
practice only the group delay dispersion GDD = ϕ′′ is relevant. However,
the coefficient D1 causes a shift of the pulse, so D1 is connected to the
thickness of the mirror. Therefore, there are practical restrictions to how
large or small D1 can be chosen.

2. There is a frequency interval I2 where the mirror is almost transparent,
which can be used for optical pumping.
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Figure 1: Results from Example 1 with N = 4096, d = 16384. Top left: Abso-
lute value of some function φ. Top right: Real and imaginary part of φ. Middle
left: Solution f∗ for the case p = 2, exact quadrature. Middle right: Difference
between φ and f∗ on K for p = 2, exact quadrature. Bottom left: Solution
f∗ for the case p = ∞. Bottom right: Difference between φ and f∗ on K for
p = ∞.
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Figure 2: Example 1. Left: Case p = 2. Each curve shows how δ2
N,d (see

equation (15)) from Example 1 varies when N is fixed and d is varied. The
starting point of each curve is marked by a circle. The curve starting at d = 32
is δ2

32,d, the curve starting at d = 64 is δ2
64,d, and so on. The solid black line

indicates a decay of d−2. Right: Case p = ∞. Each curve shows how δ∞N,d varies
when N is fixed and d is varied.

In our example we take l = 5 and D5 = −9.6928 fs5, D4 = 19.9324 fs4,
D4 = −38.1923 fs3 D2 = −53.5991 fs2 at a center wavelength of 798.7735 nm.
Moreover, we choose D1 = −27 fs and D0 = 0. The frequency interval of interest
is [729 nm, 995 nm], or, with ω = 2πc0/λ, where c0 is the speed of light in vac-
uum, λ is wavelength and ω is angular frequency, I1 = [1.8931 fs−1, 2.5839 fs−1].
For the desired reflection coefficient on I1 we have Rdesired(ω) = eiϕ(ω), where
ϕ is as in (16), see the top left of Figure 3. Moreover, the pump window is
[670 nm, 690 nm], or I2 = [2.7299 fs−1, 2.8114 fs−1]. The amplitude reflectivity
in the pump window should be smaller or equal to 0.05, see the top right of
Figure 3.

The mirror design problem then consists of finding a layer structure n such
that the corresponding reflection coefficient Rn is close to Rdesired on I1 in a
suitable sense, and such that the constraint |Rn| ≤ 0.05 on I2 is satisfied. Un-
fortunately, the mapping n 7→ Rn has a rather complicated behavior. Usually,
long optimization runs are necessary to find a mirror structure n such that Rn is
close to Rdesired. There is not even a useful characterization of the exact range
of realizable reflection coefficients. The best thing we know is that Rn is real
symmetric (i.e., Rn(−ω) = Rn(ω), ω ∈ R), |Rn| ≤ 1 and Rn ∈ H∞(C+) (see
[18] for rigorous proofs of these facts). We can use this information to get an
a priori bound on how small ‖Rn − Rdesired‖Lp(I1) can in principle be made by
solving

minimize ‖R − Rdesired‖Lp(I1)

subject to R ∈ H∞(C+), |R| ≤ G, R real symmetric,
(R-OPTp)

where G ≡ 0.05 on I2 and G ≡ 1 otherwise as in the top right of Figure 3.
Let us consider the case p = ∞. We can solve the problem (R-OPT∞) by

transporting it from the real line to the unit circle, i.e., by casting it in the form
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(H-OPT∞). To this end, we use the isometry

{
T∞ : H∞(D) −→ H∞(C+)

f 7−→ f̃ , f̃(w) = f
(

iw+1
−iw+1

)
,

We obtain a problem of the form (H-OPT∞) with φ and g as in the bottom row
of Figure 3 and K = exp(i([−2.4031,−2.1696]∪ [2.1696, 2.4031])). (K consists
of two intervals due to real symmetry.) We should point out that g is not
continuous in this example, whereas our general assumption in this paper and
in [19] was that g ∈ C(∂D). However, our theorems can be generalized to
include, for example, piecewise continuous g. We did not do this, because it
makes the proofs more tedious, especially in [19], but does not add any insight.

We then solved the discrete problem with N = 212 on a grid X which
contained the points

{
ei0π/d, ei1π/d, . . . , ei(2d−1)π/d

}
, d = 212. The solution

of the discrete problem has a large derivative at the boundary points of K.
(The solution of the (H-OPT∞) is not continuous on ∂K in this case, compare
Example 8 in [19].) Therefore, we additionally refined the grid around K, so for
the final grid we had |X | = 16348.

The solution of the discrete problem, transported back to the real line, is
shown in Figure 4. The minimal reflectivity in the HR region is 0.9978. One
can see that the GDD of the solution oscillates rather wildly around the desired
GDD, especially towards the boundary of K. The magnitude of the oscillations
is just about tolerable for practical use. Notice that the “spikes” in the GDD
are at the boundary of the points of the set where the solution has absolute
value (approximately) 1. This is in accordance with Remark 9 in [19].

Concerning practice, we come to the following conclusions. In order for a
DCM to work inside a laser cavity, it needs to be highly reflective. In our exam-
ple, a minimal amplitude reflectivity of 0.999 in the HR region is required. Our
results show that this design goal cannot be accomplished with the parameters
that we used. For the actual mirror design process one then has two options:

• First of all, one can vary the desired parameter D1. By doing this, one can
shift the effective turning points of incident waves in the HR region deeper
into the mirror. Further numerical experiments show that the minimum
of (H-OPT∞) can be made smaller by varying D1. On the other hand,
the minimum of (H-OPT∞) varied only very slightly in our numerical
experiments when we varied the desired D0.

• The second option is to tweak the objective function that measures the
distance between Rn and Rdesired. In the optimization runs of the actual
mirror design process, one usually does not use the Lp-distance ‖Rn −
Rdesired‖Lp(I), but one measures the distance of the amplitude reflectivity,
|Rn| − |Rdesired|, and the distance of the phase (or GDD) separately, mul-
tiplies them with weights and adds them up. One can then use a larger
weight for the distance of the amplitude reflectivity. In this way one can
achieve that in a good local minimum of the objective function, the am-
plitude reflectivity is larger than 0.999 in the HR region, but on the flip
side one then has to accept deviations from the desired phase (or GDD)
that are larger than those in Figure 4.

19



750 800 850 900 950
−20

−10

0

10

λ in nm

 

 
φ
GDD

750 800 850 900 950
−80

−60

−40

−20

650 660 670 680 690 700 710

0

0.2

0.4

0.6

0.8

1

λ in nm

 

 
reflectivity bound

0 pi/2 pi 3/2 pi pi

0

0.5

1

θ

 

 
|φ|
arg(φ)

−pi

0

pi

0 pi/2 pi 3/2 pi pi

0

0.2

0.4

0.6

0.8

1

θ

 

 
g

Figure 3: Example 2, dispersion compensating mirror with pump window. Top

left: Desired phase shift and GDD in HR region [729 nm, 995 nm]. Top right:

Reflectivity bound in pump window [670 nm, 690 nm]. Bottom left: argφ and |φ|
(desired reflection coefficient transported to the circle). The set K is indicated
on the x-axis. Bottom right: g (reflectivity bound transported to the circle).
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Figure 4: Example 2, results. Left: Absolute value of solution in HR region,
transported back to the line. Right: Desired GDD and GDD of the solution.
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