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Zusammenfassung

Trotz der derzeitigen Diskussion über Sicherheit in der Informatik können aktu-
elle Sicherheitstechniken nur die Herkunft und Identität eines Software-Artefakts
überprüfen. Die Semantik eines Artefakts wird nicht berücksichtigt, wodurch
Trojanische Pferde, Würmer und andere Formen von bösartiger Software be-
günstigt werden. Durch die allgegenwärtigen Netzwerke unserer Zeit werden
diese Probleme umso gravierender.

Informationsflusskontrolle ist eine Technik, die die Sicherheit eines gegebe-
nen Programms hinsichtlich einer Sicherheitspolitik überprüft. Im Gegensatz
zur traditionellen Sicherheitstechnik berücksichtigt sie auch die Programmse-
mantik. Das wohl bekannteste Beispiel einer Sicherheitspolitik, Nichtinterferenz,
verlangt zum Beispiel, dass geheime Eingaben eines Programms nicht zu öffentli-
chen Ausgaben fließen dürfen. In der Tat dürfen öffentliche Ausgaben noch nicht
einmal von geheimen Eingaben beeinflusst werden. Obwohl Informationsfluss
in der letzten Dekade Ziel intensiver Forschung war, verwenden die eingesetz-
ten Techniken nur einen sehr begrenzten Teil der Programmanalyse, nämlich
hauptsächlich Typsysteme. Typsysteme öffneten erfolgreich die Tür für Pro-
grammanalyse als eine Form der Informationsflusskontrolle, aber andere Tech-
niken bieten höhere Präzision oder benötigen geringeren Annotationsaufwand,
um die Sicherheitspolitik zu spezifizieren.

Das sog. Program Slicing hängt erwiesenermaßen stark mit Informations-
flusskontrolle zusammen und bietet mehrere Dimensionen, um die Analysege-
nauigkeit zu erhöhen. Diese Arbeit präsentiert ein präzises Modell von objektori-
entierten Programmen in einer klassischen Datenstruktur für Program Slicing,
dem Systemabhängigkeitsgraphen. Die Slicingalgorithmen wurden dahingehend
erweitert, dass sie präzise Informationsflusskontrolle und, falls nötig, eine Mög-
lichkeit zur Herabstufung geheimer Information bietet. Pfadbedingungen geben
tiefere Einsicht, wie eine Anweisung eine andere beeinflussen kann. Sie ergeben
somit Bedingungen für unlauteren Informationsfluss oder zeigen auf, dass ein
vermuteter Fluss in Wirklichkeit unmöglich ist.

Obwohl die präsentierte Analyse im Allgemeinen teurer ist als ein Typsys-
tem, zeigt eine Evaluation, dass unsere Technik für die Sicherheitskerne skaliert,
deren Analyse wir beabsichtigen. Gleichzeitig reduziert sich der Aufwand deut-
lich, die Sicherheitspolitik zu spezifizieren. Das wichtigste Ergebnis dieser Arbeit
ist allerdings, das wir die erste Analyse bieten, die eine realistische Program-
miersprache zertifizieren kann: Unser System analysiert Java Bytecode in vollem
Umfang.
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Abstract

Despite the current discussion on security in computer science, current security
mechanisms can only validate origin and identity of a software artifact. The
semantics of an artifact are not taken into account, giving rise to all forms of
trojan horses, worms and other malware. With the ubiquity of networks in
modern life, these problems become all the more serious.

Information flow control is a technique to assert the security of a given pro-
gram with respect to a given security policy. In contrast to traditional security,
it also takes the program semantics into account. The most prominent example
of a security policy, noninterference, requires that secret input of a program may
not flow to public output; in effect, public output may not even be influenced
from secret input. While information flow has been intensively researched in the
last decade, the techniques for checking security policies only leverage a very
restricted part of program analysis technology, mostly type systems. While type
systems were a successful door opener for program analysis as a means of infor-
mation flow control, other techniques offer higher precision or lower annotation
burden for specifying the security policy.

A technique called program slicing has been shown closely connected to
information flow control and offers many dimensions for improving analysis pre-
cision. This thesis presents a precise model for object-oriented programs in a
classic data structure for slicing, the system dependence graph. It extends the
algorithms for program slicing to allow for precise information flow control and
provide a means to downgrade secret information, if necessary. Path conditions
provide further insight into how one statement influences another. They may
thus lead to conditions for illicit information flow, or they may provide evidence
that an assumed flow is impossible.

While the presented analysis is clearly more expensive than type systems,
an evaluation shows that our techniques scale well to the security kernels which
we have in mind. At the same time, the burden for specifying the security
policy is reduced significantly. But most importantly, we offer the first security
analysis that can certify programs written in a realistic programing language:
Our system can analyze full Java bytecode.

5





Contents

List of Algorithms 9

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Principles of Program Analysis . . . . . . . . . . . . . . . . . . . 16
1.2 Dimensions of Program Analysis . . . . . . . . . . . . . . . . . . 17
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Dependence Graphs and Slicing for Object-Oriented Languages 21
2.1 Intraprocedural Dataflow Analysis . . . . . . . . . . . . . . . . . 22

2.1.1 Monotone Dataflow Analysis Framework . . . . . . . . . . 23
2.1.2 Reaching Definitions . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Static Single Assignment Form . . . . . . . . . . . . . . . 26

2.2 Program Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Slicing in the PDG . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Interprocedural Analysis . . . . . . . . . . . . . . . . . . . 31

2.3 Points-To Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Inclusion-Based vs. Unification-Based Analysis . . . . . . 38
2.3.2 Inter-procedural Analysis and Dynamic Dispatch . . . . . 39
2.3.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Slicing Object-oriented Languages . . . . . . . . . . . . . . . . . 42
2.4.1 Dynamic Dispatch . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Exception Handling . . . . . . . . . . . . . . . . . . . . . 42
2.4.3 Objects and Fields . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Interprocedural Dataflow-Analysis . . . . . . . . . . . . . . . . . 46
2.5.1 Intraprocedural IRef and IMod Computation . . . . . . . 47
2.5.2 Interprocedural Analysis . . . . . . . . . . . . . . . . . . . 51
2.5.3 Data Dependences . . . . . . . . . . . . . . . . . . . . . . 53
2.5.4 Correctness of Object Tree Algorithm . . . . . . . . . . . 55

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7



CONTENTS

3 Concurrency 65
3.1 The New Java Memory Model . . . . . . . . . . . . . . . . . . . . 65
3.2 Slicing Concurrent Java . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.1 Undecidability of Slicing . . . . . . . . . . . . . . . . . . . 69
3.2.2 Dynamic Thread Creation . . . . . . . . . . . . . . . . . . 70

3.3 Dependence Analysis for Concurrent Programs . . . . . . . . . . 76
3.3.1 Interference Dependence . . . . . . . . . . . . . . . . . . . 76
3.3.2 Other Concurrency-Related Dependences . . . . . . . . . 77

3.4 Slicing the cSDG . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Iterative two-phase SummarySlicer . . . . . . . . . . . . . 80
3.4.2 Time Travel . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 Slicers Disallowing Time Travel . . . . . . . . . . . . . . . 81

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Information Flow Control 85
4.1 Computer Security . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Information Flow . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.2 Channels and Information Flow . . . . . . . . . . . . . . . 86

4.2 Information Flow Control . . . . . . . . . . . . . . . . . . . . . . 87
4.2.1 The Lattice Model of Information Flow . . . . . . . . . . 88
4.2.2 Language-Based Information Flow Control . . . . . . . . . 88
4.2.3 Dependence Graphs for Information Flow Control . . . . . 90

4.3 Dependence Graphs and Noninterference . . . . . . . . . . . . . . 91
4.4 Examples for Slicing-based IFC . . . . . . . . . . . . . . . . . . . 92

4.4.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Context-Sensitivity and Object-Sensitivity in Action . . . 94

4.5 Analyzing Information Flow . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Fundamental Flow equations . . . . . . . . . . . . . . . . 97
4.5.2 Solving Flow equations . . . . . . . . . . . . . . . . . . . . 99
4.5.3 The PDG-Based Noninterference Test . . . . . . . . . . . 100

4.6 Inter-procedural propagation of security levels . . . . . . . . . . . 102
4.6.1 Context-Sensitive Slicing . . . . . . . . . . . . . . . . . . . 102
4.6.2 Backward Flow Equations . . . . . . . . . . . . . . . . . . 107

4.7 Declassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7.1 Declassification in SDGs . . . . . . . . . . . . . . . . . . . 108
4.7.2 Monotonicity of Release . . . . . . . . . . . . . . . . . . . 110
4.7.3 Confidentiality check with declassification . . . . . . . . . 111

4.8 Improving Interprocedural Declassification . . . . . . . . . . . . . 112
4.8.1 Summary Declassification Nodes . . . . . . . . . . . . . . 112
4.8.2 Computation of R(d) for Summary Declassification Nodes 114
4.8.3 Beyond PDGs . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.9.1 SDGs and IFC . . . . . . . . . . . . . . . . . . . . . . . . 118
4.9.2 Security type systems . . . . . . . . . . . . . . . . . . . . 118
4.9.3 Verification and IFC . . . . . . . . . . . . . . . . . . . . . 119
4.9.4 Static analysis for security . . . . . . . . . . . . . . . . . . 120

8



CONTENTS

5 Path Conditions 121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Foundations of Path Conditions . . . . . . . . . . . . . . . . . . . 122

5.2.1 Intraprocedural Path Conditions . . . . . . . . . . . . . . 122
5.2.2 Interprocedural Path Conditions . . . . . . . . . . . . . . 125

5.3 Static Path Conditions for Java . . . . . . . . . . . . . . . . . . . 127
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 Dynamic Type Tests . . . . . . . . . . . . . . . . . . . . . 127
5.3.3 Path Conditions for instanceof . . . . . . . . . . . . . . 129
5.3.4 Dynamic Dispatch . . . . . . . . . . . . . . . . . . . . . . 131
5.3.5 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.6 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.7 Path Conditions for Information Flow Control . . . . . . . 137

5.4 Dynamic Path Conditions in Dependence Graphs . . . . . . . . . 137
5.4.1 Program Tracing . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.2 Dynamic Slicing . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.3 Dynamic Path Conditions . . . . . . . . . . . . . . . . . . 143
5.4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Implementation 149
6.1 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Stubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Analyses based on SDGs . . . . . . . . . . . . . . . . . . . . . . . 152
6.3 Graph Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.4 Path Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5 Eclipse Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5.1 Plugins for Information Flow Control . . . . . . . . . . . . 155

7 Evaluation 159
7.1 Slicing Java Programs . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2 Evaluating Interference Dependence . . . . . . . . . . . . . . . . 161
7.3 Information Flow Control . . . . . . . . . . . . . . . . . . . . . . 163

7.3.1 JIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3.2 Slicing-Based Information Flow Control . . . . . . . . . . 167
7.3.3 Flow-, Context- and Object-Sensitivity . . . . . . . . . . . 168
7.3.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.3.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4 Case Studies for Path Conditions . . . . . . . . . . . . . . . . . . 177
7.4.1 Static Path Conditions for Java . . . . . . . . . . . . . . . 179
7.4.2 Dynamic Path Conditions for C . . . . . . . . . . . . . . . 181

8 Conclusion 189

A Appendix 191

Bibliography 195

Index 215

9





List of Algorithms

1 Kildall’s algorithm to compute the MFP . . . . . . . . . . . . . . 25
2 Pseudocode for computing summary edges . . . . . . . . . . . . . 35
3 Points-to analysis with on-the-fly call graph computation. . . . . 41
4 Virtual thread numbers . . . . . . . . . . . . . . . . . . . . . . . 72
5 computeInterference() . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Iterative two-phase SummarySlicer . . . . . . . . . . . . . . . . . 79
7 Algorithm for context-sensitive IFC, based on the precise inter-

procedural HRB slicing algorithm . . . . . . . . . . . . . . . . . . 104
8 Computation of R(d) for Summary Declassification (backward

propagation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9 Auxiliary procedures for Summary Declassification Nodes . . . . 115
10 Path condition for instanceof . . . . . . . . . . . . . . . . . . . . 129

11





List of Figures

2.1 Example program and its CFG . . . . . . . . . . . . . . . . . . . 22
2.2 Example program and SSA form . . . . . . . . . . . . . . . . . . 27
2.3 Post-dominator tree and control dependence subgraph for the

example program in Figure 2.2. Edges are implicitly directed
downwards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Program dependence graph of the example . . . . . . . . . . . . . 30
2.5 Interprocedural example with system dependence graph . . . . . 33
2.6 Backward slice of node v at call site 4 in the example . . . . . . . 36
2.7 Code fragment and possible points-to graphs . . . . . . . . . . . 37
2.8 Points-to relations for the graphs in Figure 2.7 . . . . . . . . . . 38
2.9 Example code for exception handling with SDG . . . . . . . . . . 44
2.10 Example program illustrating field sensitivity . . . . . . . . . . . 45
2.11 An example program . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.12 Intermediate SDG for class B after traditional SDG generation. . 49
2.13 Intermediate SDG for class B after intraprocedural IREF/IMOD

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.14 Example program illustrating recursive data structures. . . . . . 50
2.15 SDG (without summary edges) for Figure 2.14 including object

trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.16 Intermediate SDG for class B after first iteration of interproce-

dural CRef/CMod propagation. . . . . . . . . . . . . . . . . . . . 53
2.17 Intermediate SDG for class B: First iteration of GRef/GMod. . . 53
2.18 Intermediate SDG for class B: Fixed point after second CRef/C-

Mod propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.19 SDG for class B including data dependences (but without sum-

mary edges). Shaded nodes are cut off by 1-limiting. . . . . . . . 54

3.1 An example cSDG . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Examples for imprecise slices . . . . . . . . . . . . . . . . . . . . 70
3.3 Example program for undecidability . . . . . . . . . . . . . . . . 71
3.4 Example program with multiple threads . . . . . . . . . . . . . . 74
3.5 Call graph and virtual thread numbers for the example program 3.4 75
3.6 A counter example to Zhao’s approach . . . . . . . . . . . . . . . 78
3.7 Slicing an example cSDG . . . . . . . . . . . . . . . . . . . . . . 81

4.1 A lattice with incomparable elements . . . . . . . . . . . . . . . . 88

13



LIST OF FIGURES

4.2 A secure program fragment . . . . . . . . . . . . . . . . . . . . . 90
4.3 A Java password checker . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 PDG for check in Figure 4.3 . . . . . . . . . . . . . . . . . . . . 94
4.5 PDG with exceptions for Figure 4.3 . . . . . . . . . . . . . . . . . 95
4.6 Another Java program . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 SDG for the program in Figure 4.6 . . . . . . . . . . . . . . . . . 97
4.8 PDG for Figure 4.3 with computed security levels . . . . . . . . . 101
4.9 Example for context-sensitivity with corresponding SDG. The

statement x computes the return value b from the formal input
parameter a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 Constraint system for Figure 4.9 generated by Algorithm 7. Parts
in gray are only generated for context-insensitive analysis. . . . . 106

4.11 Example for declassification . . . . . . . . . . . . . . . . . . . . . 111
4.12 System Dependence Graph for Figure 4.11 . . . . . . . . . . . . . 112
4.13 SDG for Figure 4.11 with summary declassification nodes . . . . 113

5.1 A small program and its dependence graph . . . . . . . . . . . . 122
5.2 Multiple variable assignments . . . . . . . . . . . . . . . . . . . . 124
5.3 Abstract structure of multiple invocations of method f . . . . . . 126
5.4 An example for the instanceof operator . . . . . . . . . . . . . . 129
5.5 Virtual method call with two possible targets and summary edges 132
5.6 Example program for dynamic binding . . . . . . . . . . . . . . . 133
5.7 Example for exception handling . . . . . . . . . . . . . . . . . . . 135
5.8 Incorrect dependence by gap in protocol . . . . . . . . . . . . . . 139
5.9 Dynamic data dependence graph for figure 5.2. Control depen-

dence edges are omitted for readability . . . . . . . . . . . . . . . 141
5.10 A simple program trace for Figure 5.2 . . . . . . . . . . . . . . . 144

6.1 Valsoft/Joana architecture . . . . . . . . . . . . . . . . . . . . . . 150
6.2 The graph viewer with an example PDG . . . . . . . . . . . . . . 152
6.3 The slicing plugin with an example program. . . . . . . . . . . . 154
6.4 The SDGView for node 55 in Figure 6.2 . . . . . . . . . . . . . . 156
6.5 The lattice editor in Eclipse with illegal graph . . . . . . . . . . . 156
6.6 Example of Figure 4.11 without declassification in our Eclipse

plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1 Evaluation of context-sensitive slicing with object trees . . . . . . 161
7.2 The lattice for analyzing the battleship example . . . . . . . . . . 170
7.3 Initialization method of a Player in Battleship . . . . . . . . . . . 171
7.4 Average execution time (y-axis, in seconds) of IFC analysis for the

unionfind benchmark with different lattices and varying numbers
of declassifications (x-axis) . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Time for summary declassification nodes (in seconds) of unionfind
with different lattices and varying numbers of declassifications (x-
axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

14



LIST OF FIGURES

7.6 Average execution time (y-axis, in seconds) of IFC analysis for all
benchmark programs with the largest lattice and varying numbers
of declassifications (x-axis). Bars use a different scale. . . . . . . 176

7.7 Time for summary declassification nodes (y-axis, in seconds) for
all benchmark programs with the largest lattice and varying num-
bers of declassifications (x-axis). Bars use a different scale. . . . . 177

7.8 Simplified weighing machine controller . . . . . . . . . . . . . . . 178
7.9 Path condition of Figure 7.8 from line 9 (input) to 22 . . . . . . 178
7.10 Illicit information flow through an exception and corresponding

path condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.11 Example for dispatch . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.12 Excerpt of path condition for Figure 7.11 . . . . . . . . . . . . . 181
7.13 ptb_like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.14 Static path condition for ptb_like . . . . . . . . . . . . . . . . . . 184
7.15 Excerpt of a dynamic path condition for ptb_like . . . . . . . . . 184
7.16 Dynamic path condition of illegal flow in ptb_like . . . . . . . . 185
7.17 Static path condition for mergesort . . . . . . . . . . . . . . . . . 186
7.18 Excerpt of a dynamic path condition for mergesort . . . . . . . . 186
7.19 mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

15





List of Tables

7.1 Data for benchmark programs . . . . . . . . . . . . . . . . . . . . 160
7.2 Evaluation of interference dependence in comparison to [RH04] . 163
7.3 Characteristics of the lattices in the evaluation. . . . . . . . . . . 174
7.4 Example programs for case studies . . . . . . . . . . . . . . . . . 181
7.5 Evaluation of static vs. dynamic chop sizes . . . . . . . . . . . . 182

A.1 Execution time (in sec) of summary declassification node compu-
tation with different numbers of declassifications . . . . . . . . . 191

A.2 Average execution time (in sec) of 100 IFC analyses with different
numbers of declassifications . . . . . . . . . . . . . . . . . . . . . 193

17





Chapter 1

Introduction

There are no great discoveries or great progress
so long as there is an unhappy child on the earth.
(Albert Einstein)

This thesis presents several precise techniques that analyze object-oriented
languages for security violations, together with evaluations on Java benchmarks.
The key question that will be targeted throughout this work is “Can a given
statement directly or indirectly influence another statement, and if this is possi-
ble, how can this influence happen during program execution?” Several branches
of computer science ask slight variations of this question, but the basic idea re-
mains the same for all their targeted problems. A seminal technique to answer
the first part of the question has been presented by Weiser [Wei84] which has
been coined program slicing. Program slicing as presented by Weiser and many
other authors, determines the set of statements that potentially affect the exe-
cution of a given statement.

Program slicing has been extended to procedural languages like C and imple-
mented in frameworks like CodeSurfer [AT01] or ValSoft [SRK06]. But for the
predominant programming paradigm of our time, object-oriented programming
(OOP), no clear and sound model was available when this thesis started. Apart
from that, whereas support for multi-threading is integrated into contemporary
languages like Java, and several algorithms for slicing multi-threaded applica-
tions had been proposed, no precise data flow analysis had been defined, which
seems to be imperative for precise slicing algorithms. As a remedy, this thesis
presents novel methods for modeling key features of languages like Java – ob-
jects, dynamic binding, exception handling and concurrency – for the purpose of
program slicing. A precise analysis for computation of inter-thread dependences
is defined that prunes most of the false positives that crude implementations do
include.

Further, the second part of the key question presented in the first para-
graph, how one statement can influence another statement, cannot be answered
with program slicing alone. A technique called Path Conditions (PC ) had been
proposed by Snelting [Sne96] and was refined and implemented by Robschink
and Krinke [Rob05, SRK06], however only for procedural languages. The re-
sulting conditions sometimes become rather long and unintuitive, so that other
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techniques like automated constraint solving need to be leveraged. The con-
straint solver checks the satisfiability of the condition and, if possible, generates
program input that trigger the influence in question, thus acting as a digital
“witness”. However, we found that naively extending path conditions to object-
oriented constructs results in conditions that such solvers cannot reduce to in-
put. So generating witnesses would be impossible. As part of this work, path
conditions are extended to object-oriented language features. Furthermore, we
present how to refine the terms generated by naive extension, such that a con-
straint solver can handle these terms and generate witnesses. Complementary,
this thesis proposes an approach to increases precision of path conditions by
dynamic profiling data.

All these analyses form the foundation for our main application, informa-
tion flow control (IFC). Information flow control basically aims at proving that
(almost) no sensitive data can leak to untrusted users or other uncontrolled
channels like the Internet. While it was folklore that IFC could be done with
program slicing [ABHR99], only one mechanism and implementation of this
technique for imperative languages was known, and none for object-oriented
languages; research was almost exclusively concerned with type systems that
guarantee correct information flow [SM03]. Unfortunately type systems are a
rather coarse means of program analysis and usually allow no flow-, context-,
field-, or object-sensitive1 analysis. Further, type systems must restrict the
programming language and require abundant annotations, both of which may
be prohibitive for real applications. Thus type systems are too restrictive for
practical use in realistic security-sensitive applications. As an alternative ap-
proach, this thesis develops an information flow control mechanism based on
dependence graphs and program slicing. It allows a more precise analysis in
all dimensions presented in the sequel. As many intuitively secure programs
contain a negligible information flow from secret input data to public output,
which is prohibited by standard noninterference, we added an extension for de-
classification, and present a technique to determine context-sensitive results in
spite of declassification’s intransitive nature.

All the approaches presented in this thesis have been implemented. This
implementation will be described, together with a presentation of the Eclipse
integration. Finally, the scalability and precision of the presented approaches
will be evaluated.

1.1 Principles of Program Analysis

Program analyses infer a given property from the analyzed program. However,
for any non-trivial property, it is in general undecidable whether the program
satisfies the property [Ric53]. As a consequence every program analysis is sub-
ject to several conflicting requirements:

Correctness is mandatory for many program analyses. Correctness stipulates
that the analysis will find all instances of the property in the given pro-

1These terms are explained in the next section.
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gram. This holds even more for security analysis, where one wants to
ensure that any security violation in the program is actually found.

Precision requires that only those cases that satisfy the given property are
reported. For security analyses, it means that there are no false alarms:
any program condemned by the analysis must indeed contain a security
leak.

Scalability demands that the analysis can handle realistic programs (e.g. 100
kLOC), written in realistic languages (e.g. full Java bytecode).

Practicability demands that an analysis is easy to use. This property sub-
sumes precision, as users are averse to excessive false positives; but it also
entails little user interaction (i.e. a low number of program annotations),
and understandable descriptions of the analysis results.

Unfortunately, in consequence to the aforementioned undecidability result,
any program analysis can only guarantee either correctness or precision. Hence,
correct algorithms are conservative approximations: The analysis is guaranteed
to determine all cases that satisfy the given property, but the result will contain
some spurious cases in general. These spurious cases do not satisfy that property
and are thus often referred to as false positives. For purposes like testing or bug
finding, one often trades some correctness for precision or scalability. In these
applications it is more important to find the majority of the problems fast and
to keep the false positive rate very low, as manual inspection is tedious. In
contrast, this thesis generally opts for correct analyses, which is paramount
for security purposes. Although correctness prevails for our purposes, we must
nonetheless optimize precision. The most prominent dimensions of precision
in contemporary program analysis are presented in the next section. But note
that precision also influences scalability: usually better precision means worse
scalability; fast algorithms are not precise. Yet, this is only a rule of thumb:
Sometimes increased precision removes excess analysis overhead resulting from
imprecision, which compensates for the increased complexity.

1.2 Dimensions of Program Analysis

Due to the conflicting requirements presented before, designing a program analy-
sis always constitutes a trade-off between analysis speed and precision. This
section will therefore discuss the major dimensions of precision of contemporary
program analysis research. In the field of program analysis a large collection
of techniques has been developed such that the engineer can choose from a
spectrum between cheap/imprecise and precise/expensive analysis algorithms;
depending on the purpose of the analysis. In particular, the engineer can choose
whether an analysis should respect:

Flow-sensitivity An analysis is called flow-sensitive if it accounts for the con-
trol flow inside a method. Usually a separate solution is computed for
each program point. Flow-insensitive analyses ignore the intra-procedural
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statement order and compute only one solution for each method. Dataflow
analysis (see section 2.1) is inherently flow-sensitive, but for other forms
of program analysis like pointer analysis flow-sensitivity was widely con-
sidered too expensive to scale to realistic applications. Still, current re-
search presents promising exceptions (e.g. [LL03, NR03]. As a remedy,
flow-sensitivity is often approximated by static single assignment form
(see section 2.1.3).

Context-sensitivity A context-sensitive analysis distinguishes different call-
ing contexts when analyzing the target of a function call. Separate in-
formation is computed for different calls of the same method. A context-
insensitive analysis merges information from all invocation contexts of a
method at the expense of possibly losing precision. The mechanisms to
achieve context-sensitivity will be presented with the particular analyses.

Field-sensitivity Field-sensitive analyses distinguish the flow of values stored
in different fields of an object. Field-insensitive analyses merge all fields
of a given object.

Object-sensitivity Object-sensitive analyses2 take different ’host’ objects for
the same field (attribute) into account, while object-insensitive analyses
merge the information for a given field over all objects of the same class
(and its subclasses).

Virtual method resolution Most inter-procedural analyses are based on a
pre-computed call graph3 to approximate virtual method resolution. Typ-
ical analysis techniques for determining such a graph are class hierarchy
analysis (CHA) [DGC95], rapid type analysis RTA [BS96] and its exten-
sion XTA [TP00]. Points-to analysis4 allows its computation on-the-fly ,
meaning that the call graph is computed in the course of points-to analy-
sis. Since points-to analysis is more precise than the other techniques, the
on-the-fly call graph is most precise, often reducing the number of possibly
called methods of a virtual method call to just one.

Several empirical studies have shown that these dimensions dramatically
improve precision, in particular for large or automatically generated programs.
Even so, due to the increase in analysis time, a trade-off between all kinds of
sensitivity and scalability must be found.

1.3 Contributions

This thesis aims to be self-contained and presents previous work for that pur-
pose. The key accomplishments of this work are:

2In points-to analysis, object-sensitive analysis is a variant of context-sensitive analysis
[MRR02], where each method is analyzed separately for each target object on which the
method may be invoked.

3For a definition confer section 2.5
4See section 2.3
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• Modeling of side-effects soundly in system dependence graphs. In partic-
ular, object parameters are represented as trees according to the instance
field nesting structure. Based on pointer analysis results, our analysis
handles recursive data structures in a precise but conservative fashion.
This modeling is congruous with previous definitions of system dependence
graphs, thus the standard linear time context-sensitive slicing algorithm
can be leveraged.

• When a language offers dynamic thread creation as in Java, there is an-
other source of undecidability of precise slicing even in the intraprocedural
case.

• A new approach to compute interference dependence for Java’s memory
model. It prunes most of the spurious cases that previous slicers included.
In contrast to existing definitions, our algorithm considers the precise alias-
ing situation and not just type or thread escape information.

• Extending path conditions to object oriented languages which offer lan-
guage constructs such as dynamic dispatch, instanceof operators and ex-
ceptions. This leads to precise static path conditions operating only on the
program’s variables. The gain in precision allows leverage of automatic
constraint solving techniques.

• Dynamic path conditions that enrich static path conditions with dynamic
trace data. As a consequence, the conditions are no longer correct for all
program runs but only for the current execution. But after an unexpected
program behavior has been perceived, the enriched conditions allows a
flight recorder principle. This yields precise conditions for the program
failure which help to prevent such problems in the future.

• Information flow control is defined in terms of an analysis on the system
dependence graph. The basic notion guarantees classical noninterference
as presented by Goguen and Meseguer [GM84].

• For the cases where noninterference is too restrictive, a means for declas-
sification is defined. Special declassification summary edges and nodes
in the system dependence graph allow for context-sensitive IFC in the
presence of declassification.

• All algorithms are implemented. The evaluation illustrates the scalability
and practicability of our algorithms and compares with previous work.
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Chapter 2

Dependence Graphs and Slicing
for Object-Oriented Languages

This chapter gives an overview of dataflow analysis, dependence graphs and
program slicing, as a prerequisite for the development of the author’s contribu-
tions. It does, however, not try to give a complete survey of program slicing
literature, as the number of publications in this area has exploded in the last
decade. A little outdated but still valuable is Tip’s survey on program slic-
ing [Tip95]; other surveys on slicing techniques, applications and variations can
be found in [BG96, dL01, HH01, BH04]. Krinke [Kri03a, Kri05] gives another
incomplete, but more recent picture of the slicing literature. The most recent
overview probably can be found in [MM07]. We will first consider procedure-less
programs (the intra-procedural case) and then move on to procedural programs
(the inter-procedural case). Section 2.1 will therefore present intraprocedural
dataflow analysis starting from the control flow graph and reaching definitions
analysis that allow to transform a program into static single assignment form.
From that intermediate representation, section 2.2 describes program slicing as
a program transformation technique and how to compute slices on a data struc-
ture called the program dependence graph. In the second part, techniques to
extend dependence graphs to programs that consist of multiple procedures are
discussed and how this impacts program slicing. The next section defines points-
to analysis and aliasing, prerequisites for precise analysis of all object-oriented
languages. This analysis is heavily leveraged in section 2.4, which extends de-
pendence graphs to language features like dynamic dispatch, exception handling,
and most prominently, objects and instance fields. A precise analysis of inter-
procedural side-effects is presented in section 2.5, together with a correctness
proof. This analysis allows computation of precise data dependences between
instance fields in the presence of method calls.

A preliminary exposition about the analysis presented in this chapter was
published under the title “An improved Slicer for Java” – Christian Hammer
and Gregor Snelting [HS04] at the 5th ACM SIGPLAN-SIGSOFT workshop on
Program Analysis for Software Tools and Engineering 2004.
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1 read(n);
2 i = 1;
3 sum = 0;
4 prod = 1;
5 while (i <= n) {
6 sum = sum + i;
7 prod = prod * i;
8 i++;
9 }

10 write(sum);
11 write(prod);

START

1

2

3

4

5

10

11

6

7

8

END

true

false

Figure 2.1: Example program and its CFG

2.1 Intraprocedural Dataflow Analysis

Dataflow Analysis (DFA) is a major branch of program analysis. It answers
questions of the form “Can a value computed at a certain statement flow to
another given statement?” For DFA it is customary to represent a program as a
directed graph, where the nodes are the statements or predicates of the program
and the edges describe the control flow , i.e. possible execution sequences of the
statements. The graph-based representation allows analysis of programs with
structured and unstructured control flow, like goto’s or exception handling.

Definition 2.1 (Control Flow Graph). A Control Flow Graph (CFG) is a
directed attributed graph G = (N,E, ns, ne, ν). N is the set of nodes repre-
senting statements and predicates which contains two distinguished nodes ns
(START) and ne (END) representing the beginning and termination of the pro-
gram respectively. E is the set of control flow edges (n,m) ∈ E, also written
n

cf→ m. E contains a control flow edge n cf→ m iff the statement represented by
m may execute immediately after the execution of the statement represented by
n. Therefore, START has no predecessors and END no successors. The total
attribute function ν : E → {true, false, ε} ∪ Z maps the edges to an attribute:
Nodes representing a predicate have two successors where the edge to one node
is attributed with true, the other with false in accordance with the predicate’s
outcome. switch statements may have a variable number of successors where
each edge is attributed with the integer value that the predicate variable must
equal for control flowing to the edge’s target. All other edges are attributed with
ε, the empty attribute. The functions pred and succ return for each node in the
CFG its predecessors and successors, respectively.

Example 2.1. Figure 2.1 shows an example program along with its control flow
graph. The nodes are represented with the line number of the corresponding
statement.
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Since the nodes and their corresponding statements are bijectively mapped,
we will use both meanings interchangeably in the sequel.

Reachability in the CFG One of the most fundamental properties of a
program is the question if an execution of the program exists, where a given
node is traversed and later in this execution another given node is reached,
i.e. whether a given statement is reachable in a program execution from another
given statement. A path p = (n1, ..., nk) is called realizable if an execution
exists, where the nodes are executed in the order induced by the path. This
question, however, is undecidable in general and so one conservatively assumes
that all paths in the CFG correspond to a valid execution. This corresponds to
treating conditionals like non-deterministic choice operators.

2.1.1 Monotone Dataflow Analysis Framework

Monotone dataflow analysis frameworks (MDFAF ) are the most important class
of dataflow analysis. Under a certain condition, they always compute the most
precise solution in a finite number of steps, even if loops in the CFG may allow
infinitely long paths. The basic data structure of a MDFAF is a lattice of values:

Definition 2.2 (Semi Lattice). A (join) semi lattice L = (L,≤, ⊥,t) consists
of a set of values L with a partial order1 ≤, and a binary operator supremum
( join) t where the least element ⊥ := t∅ in L is called bottom and the following
properties hold:

1. a ≤ b := a t b = b

2. (a t b) t c = (a t b) t c (associativity)

3. a t b = b t a (commutativity)

4. a t a = a (idempotence)

A (meet) semi lattice L = (L,≤,>,u) consists of a set of values L with a partial
order ≤, and a binary operator infimum (meet) u where the greatest element
> := u∅ in L is called top and the following properties hold:

1. a ≤ b := a u b = a

2. (a u b) u c = (a u b) u c (associativity)

3. a u b = b u a (commutativity)

4. a u a = a (idempotence)

Definition 2.3 (Complete Lattice). A complete lattice L = (L,≤, ⊥,>,t,u)
consists of a set of values L with a partial order ≤ such that L = (L,≤, ⊥,t)
is a join semi lattice and L = (L,≤,>,u) is a meet semi lattice. The least
element in L is ⊥ (bottom), the greatest is > (top). The binary operators
infimum (meet) u and supremum ( join) t have the additional properties:

1A partial order is a reflexive, antisymmetric and transitive relation
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1. a u (a t b) = a

2. a t (a u b) = a (absorption)

3. any subset X ⊆ L has a supremum tX in L.

It is straightforward to show that finite lattices are always complete, which
suffices our needs in this thesis.

Definition 2.4 (Monotone Function Space). A set of functions F defined on a
join semi-lattice L = (L,≤,>,u) is a monotone function space, if

1. ∃idL ∈ F : ∀x ∈ L : idL(x) = x (identity function)

2. ∀F ∈ F : ∀x, y ∈ L : x ≤ y =⇒ F (x) ≤ F (y) (monotonicity)

3. ∀F,G ∈ F : F ◦G ∈ F (closed under composition)

4. ∀F,G ∈ F : F uG ∈ F (pointwise infimum)

Definition 2.5 (Monotone Dataflow Analysis Framework). A monotone data-
flow analysis framework (MDFAF) A = (L,F) consists of a

1. a complete semi-lattice L = (L,≤,>,u) with a supremum operator for the
abstract values of the dataflow analysis, and

2. a monotone function space F defined on L.

If all functions in F are distributive over u, i.e. (∀F ∈ F : ∀x, y ∈ L :
F (x u y) = F (x) u F (y)), it is called a distributive MDFAF. The desired
solution of a monotone dataflow analysis framework is the meet-over-all-paths
(MOP) solution, which is defined in terms of paths in the control flow graph.
The transfer function for a path P = (n1, .., nk) can be constructed with the
recursive definition:

F(n1,...,nk) : L→ L : F(n1,...,nk)(x) = Fnk(F(n1,...,nk−1)(x))

Since there are usually infinitely many paths in a control flow graph, there
is in general no algorithm to compute the MOP, which is

d

Path Pi
FPi directly.

However, an efficient solution can be found using a different definition, which is
equivalent or conservative to the MOP for monotone transfer functions.

Definition 2.6 (Fixed point). A fixed point of an operator f on a semi-lattice
L is an element x ∈ L such that f(x) = x. A fixed point x for f is called
minimal (MFP) if ∀y ∈ L : f(y) = y =⇒ x ≤ y.

The efficient algorithm for computing the MFP solution of a MDFAF, which
has been invented by Kildall [Kil73], can be seen as pseudocode in Algorithm 1.
Kam and Ullman [KU77] have shown that the monotonicity of the function
space guarantees termination and that a MFP exists. The MFP solution is
always a conservative solution but if the MDFAF is not distributive it is not
necessarily the most precise solution.
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Algorithm 1 Kildall’s algorithm to compute the MFP

1 Input: CFG a control flow graph
2 Fq transfer functions of a monotone dataflow analysis framework
3 Output: A an array of lattice elements containing the MFP of the MDFAF
4 foreach n ∈ CFG do
5 A[n] = ⊥
6 od
7 do
8 change = false
9 foreach n ∈ CFG do

10 temp =
d

q∈pred(n)

Fq(A[q])

11 if temp 6= A[n]
12 change = true
13 A[n] = temp
14 fi
15 od
16 until !change

Theorem 2.1 (Coincidence Theorem [KU77]). Let P1, P2, . . . be all (maybe
infinitely many) paths from START to the program point s; let the transfer
functions FB be distributive; let A[s] = fix(s) ∈ L be the value computed by the
fixed point iteration. Then follows:

fix(s) =
l

Path Pi ending in s

FPi(⊥)

In the general case of non-distributive transfer funtions, the MFP is only
less or equal to the MOP.

2.1.2 Reaching Definitions

Reaching definitions is a traditional dataflow problem of optimizing compilers
but is also a prerequisite for computing the program dependence graph. It
answers the question, if a definition of a variable at one given statement can
reach the use of that variable at another statement without being redefined on
the way. A definition is a statement that assigns some value to a variable, while
a use is a statement that takes a variable as parameter. A definition can reach
another statement, if there is a path from the definition to that statement in
the CFG without any other definition of the same variable on that path:

Definition 2.7 (Reaching Definitions). Let Def(n) be the set of variables defined
at a node n in the CFG G, then a definition d of a variable var(d) := v, where
v ∈ Def(n), reaches a (not necessarily different) node n′, if there is a path P =
(n = n0, . . . , nk = n′) in G with k > 0 such that ∀i ∈ 1, . . . , k − 1 : v 6∈ Def(ni).

Reaching definitions can be expressed as a distributive monotone data flow
framework with the powerset of D, the set of all definitions, as the lattice
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elements L in L = (L,≤,∅, D,∪,∩). The transfer functions are derived from
the abstract semantics of variable assignment:

Fn(X) = X \ kill(n) ∪ gen(n)

A statement n defines the variables in Def(n), so all definitions in D that define
the same variables can no longer be visible after n has executed, i.e. they are
overwritten or “killed” by this definition. All elements of Def(n) are “generated”
by that statement and thus visible after its execution. This can be formalized
as follows:

gen(n) := Def(n)

kill(n) :=
⋃

v∈Def(n)

Dv, where Dv := {d ∈ D | v = var(d)}

As reaching definitions is a distributive monotone dataflow analysis frame-
work, its MFP computed by Kildall’s algorithm with which the MOP solution
coincides.

2.1.3 Static Single Assignment Form

A very popular program representation is called static single-assignment (SSA)
form [CFR+91]. It effectively separates a program’s values from the program’s
variables and thus enables several more effective optimizations. A program
is in static single-assignment form if every variable is assigned at most once
in the source code. It is called static because the variable may very well be
assigned to multiple times during program execution, e.g. in a loop. For program
analysis, the outstanding property of SSA form is that it makes def-use chains,
as computed by reaching definitions in the last section, explicit and allows flow-
sensitive analysis for the program’s variables, as each variable is assigned to
exactly once. Because of that, SSA form has become a standard intermediate
representation in program analysis.

To compute the static single-assignment form [CFR+91], one usually in-
troduces a subscript for each variable that is incremented at each assignment
statement. At join points in the control flow graph, new assignments with a
so-called Φ-operator need to be inserted that represent the choice of the ap-
propriate variable according to the program’s flow. Note that programs in SSA
form are equivalent to the original program. As an example, consider Figure 2.2,
where a program is depicted alongside its SSA form. In line 5 of the SSA form,
sum2 is defined as either sum1, if the while loop has not yet been entered, or
else as sum3, the last value defined in the loop body.

2.2 Program Slicing

A program slice contains only those statements of a program that potentially
influence the execution of a given statement of interest. The idea of (static)
program slicing was first presented by Weiser [Wei79,Wei81,Wei84] in 1979.
Weiser formulated the seminal idea that, while debugging, programmers build
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1 read(n);
2 i = 1;
3 sum = 0;
4 prod = 1;
5 while (i <= n) {
6 sum = sum + i;
7 prod = prod * i;
8 i++;
9 }

10 write(sum);
11 write(prod);

1 read(n);
2 i 1 = 1;
3 sum 1 = 0;
4 prod 1 = 1;
5 while [i 2 = Φ(i 1 , i 3 )

sum 2 = Φ(sum 1 , sum 3 )
prod 2 = Φ(prod 1 , prod 3 )]

(i 2 <= n) {
6 sum 3 = sum 2 + i 2 ;
7 prod 3 = prod 2 * i 2 ;
8 i 3 = i 2 + 1;
9 }

10 write(sum 2 );
11 write(prod 2 );

Figure 2.2: Example program and SSA form

a program abstraction in their minds [Wei82] for which he coined the name
program slice. In his definition, a slice is an executable program, with some
statements of the original program P removed. For a given so-called slicing
criterion C = (n, V ), a tuple consisting of a statement and a subset of the
program’s variables, such a reduced program S is called a program slice if it
fulfills the following properties:

1. S must be a valid program, and

2. whenever P halts for a given input, S also halts for that input, comput-
ing the same values for the variables in V whenever the statement n is
executed.

A formal definition of this idea was presented in [Wei84]. Trivially, every pro-
gram is a slice of itself. A slice is called statement-minimal for a given criterion,
if no other slice for that criterion contains fewer statements. Unfortunately,
statement-minimal slices are not unique in general, and their computation is
undecidable. Weiser also formulated the first algorithm for slicing [Wei84], an
iterative dataflow analysis on the source code level.

Semantics of Slicing Slicing does not preserve traditional program semantics
in which the program and its slices are defined [CF89,GM03]. The problem with
the standard semantics lies in that slicing may remove non-terminating portions
of a program, i.e. transform a non-terminating program into a terminating one.
In this case, the slice clearly has different semantics than the original program.
However, recently, a non-standard semantics has been found that is preserved
under program slicing. Danicic et al. [DHHO07] present a non-strict semantics
for a simple while language that is consistent with program slicing.
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2.2.1 Slicing in the PDG

Later, Ottenstein and Ottenstein [OO84] presented an alternative way of slicing:
They reformulate slicing as a reachability analysis in a program representation
called Program Dependence Graph (PDG) as defined by Ferrante et al. [FOW87].
In the PDG, slicing can be done in time linear to the number of statements, with
a single backward-traversal of dependences between these statements (defined
later). In contrast to the executable slices of Weiser’s algorithm, slices in the
PDG do not necessarily represent executable slices, i.e. the first property of a
slice may be violated. The notion of a static slice with a PDG is rather the set
of statements that may directly or indirectly affect the slicing criterion. Thus
the slice may not represent a syntactically correct program, or some structural
statements like gotos can be missing, which changes the program’s semantics.
To circumvent these restrictions, several extensions of slicing in PDGs were
presented that also compute executable slices [BH93,CF94,Agr94,HD98,HLB06]

The PDG is defined in terms of the control flow graph: it contains all the
nodes of the CFG, but not its edges. Instead, nodes are connected by data and
control dependence edges.

Control Dependence

Control dependence exists between two statements, if a statement directly con-
trols the execution of the other statement. In structured programs, control
dependence is equivalent to the nesting level of source code: Each statement
that is indented by exactly one additional level is control dependent on the
directly enclosing branch or loop predicate. In the presence of arbitrary con-
trol flow, control dependence is defined in terms of post-dominance [FOW87]. A
node x in the CFG is post-dominated by node y if all paths from x to END pass
through y. Some definitions exclude the case that a node does postdominate
itself.

Definition 2.8 (Control Dependence). A node y is control dependent on node
x (x→cd y) if

• there exists a path p from x to y in the CFG, such that y post-dominates
every node in p (except for x),2 and

• x is not post-dominated by y

There is always an immediate post-dominator for each statement that has a
post-dominator, i.e. a post-dominator that does not post-dominate another post-
dominator of the same statement. Therefore, post-dominance can be depicted as
a tree, where only the immediate post-dominator relation is depicted, transitive
post-domination can be found by paths in the tree. As an example, consider
Figure 2.3, which shows the post-dominator tree (left) and the corresponding
control dependence (sub)graph for the example program in Figure 2.2. For
example, node 11 is immediately post-dominated by END. There is a control
dependence 5 →cd 7, as 7 can be avoided on the path from 5 to END, and 7
post-dominates all nodes on the path 〈5, 6, 7〉 except 5.

2If post-dominance is not reflexive, then also except for y
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Figure 2.3: Post-dominator tree and control dependence subgraph for the ex-
ample program in Figure 2.2. Edges are implicitly directed downwards.

Definition 2.8 is equivalent to the intuition outlined above for structured
programs. Ferrante et al. [FOW87] presented an approach to compute con-
trol dependence: They first compute the post-dominator tree with the fast
Lengauer-Tarjan algorithm [LT79]. Then, for every edge x cf→ y where y is not
postdominated by x, one moves upwards from y in the post-dominator tree.
Every node z visited before x’s parent is control dependent on x. The con-
trol dependence edge x →cd z is labeled with ν(x, y), the label of the control
flow edge. To obtain a connected control dependence graph, usually a synthetic
control flow edge (with label false, the original edge from START to the first
statement is labeled true) is inserted between START and END. Therefore,
the START node will be the root in the control dependence subgraph. This
synthetic edge is only inserted while computing control dependence and ignored
for other analyses.

Data Dependence

Originally [FOW87], data dependence comprised several types of dependences
like flow dependence, output dependence and anti-dependence, but for the pur-
pose of slicing, usually only flow dependence is relevant. For that reason, the
term data dependence is generally used interchangeably with flow dependence
in that context. The intuition behind a flow dependence x→dd y is that a node
x computes a value that may be used at node y in some feasible execution. In
some cases, a distinction between loop-carried and loop-independent data de-
pendences is made, representing if the dependence may or may not arise as a
result of loop iterations. In the sequel, data dependence will stand for loop-
carried or -independent flow dependence. In the CFG, this can be formalized
as follows:
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1 read(n);
2 i = 1;
3 sum = 0;
4 prod = 1;
5 while (i <= n) {
6 sum = sum + i;
7 prod = prod * i;
8 i++;
9 }

10 write(sum);
11 write(prod);

START

1 2 3 4 5

6 7 8

10 11

Figure 2.4: Program dependence graph of the example

Definition 2.9 (Data Dependence). Let Ref(x) denote the set of variables ref-
erenced at node x. Then a node y is data dependent on node x (x→dd y) if

• there exists a variable v with v ∈ Def(x) and v ∈ Ref(y), and

• there exists a path P in the CFG from x to y where the definition of v in
x is not definitively killed (i.e. x is a reaching definition of y.)

As mentioned earlier, the program dependence graph consists of the nodes
of the CFG (sometimes the END node is omitted as it has no in- or outgoing
dependence edges) with control and data dependence edges replacing the control
flow edges. Consider the program dependence graph of our example program in
Figure 2.4. The data dependences are depicted in green, control dependences in
blue. Since statement 1 defines the variable n that is referenced at line 5 and not
overwritten in-between, there is a data dependence from 1 to 5. The condition
in line 5 determines if and how often the loop is executed, so all the statements
in the loop body are connected by control dependence to node 5. Note that
dependence graphs may contain loops (see the data dependence at node 6) and
multiple edges between two nodes, i.e. they are multigraphs in general.

Data dependence can be computed with reaching definitions analysis di-
rectly. But it is already explicit for programs in SSA form, as each variable
name is only defined once. So computing DD from SSA form is finding the
definition of the referenced variable and – if this definition is in a Φ-function –
building the transitive hull of variables in referenced Φ-functions.

As an example, consider Figure 2.2 again. The definition of sum3 depends
on the variable sum2, which is defined in a Φ-function. This function in turn
references sum1 and sum3, none of which is defined in a Φ-function. So sum3 is
data dependent on itself and on the initialization. This can be seen in Figure 2.4
as data dependences from node 3 to node 6 and from 6 to 6.

Slicing

The slicing criterion for dependence graph based slicing is usually defined dif-
ferent from Weiser’s original: Instead of a tuple (n, V ), a statement and a set
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of variables, it is only a node v in the dependence graph. This yields a more
coarse-grained kind of slicing criterion, as it is equivalent to the slicing cri-
terion, where n is the statement corresponding to the criterion node v, and
V = Ref(v) ∪ Def(v). To compute a slice for a variable not in V one needs
to alter the program and insert a synthetic reference of that variable, but this
difference should be negligible in practice.

Definition 2.10 (Intraprocedural Backward Slice). The (backward) slice BS(v)
of v is defined as the reflexive, transitive closure of {v} under the predecessor
relation in the PDG, denoted as →∗, where the predecessor relation subsumes
both kinds of dependence edges:

BS(v) = {x ∈ PDG|x→∗ v} (2.1)

So slicing in the PDG becomes a simple graph reachability problem, which
stems from the transitivity of data and control dependence.

In our example program in Figure 2.4, nodes in the backward slice of node
10 are shaded. Lines 4, 7, and 11 could therefore be deleted from the program
if one were only interested in the sum, but not in the product.

A common variation of slicing is the forward slice, that computes which
statements may be influenced by the slicing criterion, as opposed to backward
slicing, which determines those statements that can influence the criterion:

Definition 2.11 (Intraprocedural Forward Slice). The forward slice FS(v) of v
is defined as the reflexive, transitive closure of {v} under the successor relation
in the PDG, again subsuming both kinds of dependence edges:

FS(v) = {x ∈ PDG|v →∗ x} (2.2)

2.2.2 Interprocedural Analysis

When analyzing procedural languages, the calling structure of the program must
be taken into account. A standard data structure for that purpose is the call
graph [Ryd79,CCHK90,GDDC97], which can be derived from the interproce-
dural control flow graph.

Definition 2.12 (interprocedural control flow graph). An interprocedural con-
trol flow graph ( ICFG) G = ((Gp)p∈P ,main,Call,Ret) for a program P consists
of a family (Gp)p∈P of CFGs Gp = (Np, Ep,Entryp,Exitp) for procedures p ∈ P ,
an entry procedure main, and sets of call and return edges Call and Ret such
that

1. Both (Np)p∈P and (Ep)p∈P are each pairwise disjoint.

2. If (u, v) ∈ Call, then u ∈ Np\{Entryp} and v = Entryp′ for some p, p′ ∈ P ,
and there is a matching return edge (Exitp′ , u′) ∈ Ret such that u′ ∈ Np is
the only successor to u in Gp. p is the caller and p′ the callee for that call
edge. We say that u and u′ match each other and call (u, u′) a call-return
edge.
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3. Conversely, every return edge in Ret has a matching call edge in Call.

Nodes with outgoing call edges (incoming return edges) are called call nodes
( return nodes)

In an ICFG, label each call edge (u,Entryp′) with Lup′ and each return edge
(Exitp′ , u′) with u

p′M where u is the matching call node for u′ and label all call-
return edges with ⊥. All other edges are labeled according to Definition 2.1

Definition 2.13 (interprocedural realizable path [RHSR94,Kri03a]). For a path
π in ICFG G, let EL(π) denote the concatenation of labels of the edges in π. π is
balanced iff EL(π) is in the language of balanced parentheses generated from the
nonterminal M by the context-free grammar with this set of productions {M ::=
M Lup′ M u

p′M | true | false | ε | i | MM} where (u,Entryp′) ∈ Call ∧ i ∈ Z.
π is left balanced iff there are paths π1, π2 in G such that π = π1π2 is the
concatenation of π1 and π2, π2 is balanced and EL(π1) contains no labels of
the form u

pM and ⊥. π is right balanced iff there are paths π1, π2 in IG with
π = π1 · π2 such that π1 is balanced and EL(π2) contains no labels of the form
Lup and ⊥. π is realizable iff π is left balanced or right balanced.

Note that realizable paths in the ICFG are not closed under concatenation.
A common abstraction of the ICFG is the call graph, which models the invoca-
tion structure of a program:

Definition 2.14 (Call Graph). A call graph in our setting is a directed bipartite
graph Gc = (N∗p +Nc, E) consisting of the procedure entry nodes of the program
(N∗p := {v ∈ Np | v = Entryp for some p ∈ P}) and the call sites of the program
(Nc := {u ∈ Np | (u, v) ∈ Call}), where the edges E represent

1. containment: An edge e = Entryp → c is included in E for each call site
c ∈ Nc that appears in procedure p ∈ N∗p .

2. invocation: An edge e = c→ Entryp is contained in E iff call site c ∈ Nc

may invoke procedure p ∈ N∗p .

This graph effectively represents the interprocedural control-flow of the pro-
gram. Containment is a static property, that can easily be determined using
the ICFG. With static binding, each call site has out degree of 1, namely the
called procedure. But function pointers or dynamic dispatch make ICFG and
call graph construction more difficult. We will see later how pointer analysis
can be leveraged for constructing precise call graphs in the presence of dynamic
dispatch.

Slicing Procedural Programs

To slice programs that consist of a set of procedures Horwitz et al. [HRB90] ex-
tended the PDG: The System Dependence Graph (SDG) models multi-procedure
programs using a call-by-value-result parameter passing semantics. Each pro-
cedure is represented by a dependence graph similar to a PDG, the Procedure
Dependence Graph, which is also abbreviated to PDG. It is always clear from
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1 main() {
2 a=3;
3 b=4;
4 v=add(a,b);
5 w=add(v,b);
6 }
7 add(x,y) {
8 return x+y;
9 }

control dependence
data dependence

summary edge
parameter edges
call dependence

Entry main

2 3 4

a b v

5

v b w

Entry add

x y 8

Figure 2.5: Interprocedural example with system dependence graph

the context, if PDG represents only a procedure or a whole program. At each
call site, the PDG contains an actual-in node per parameter of the invoked
procedure, modeling the assignments of the parameters to temporary variables
(this assignment is supposed to take place before the actual call). The called
procedure’s PDG holds, in analogy, one formal-in node for each formal param-
eter, representing the assignment of the corresponding temporary variable to
the formal parameter. At the end of the procedure the opposite schema is ap-
plied: the return parameters are copied to temporary variables in formal-out
nodes and, after returning to the caller, those temporaries are copied back to
the variables receiving the return values in actual-out nodes. Globally visible
variables (e.g. static variables in Java) receive special treatment: They are han-
dled like additional read-write-parameters of that procedure [HRB90] and are
thus ignored in the subsequent discussions.

The SDG consists of all the PDGs involved in the program connected by
interprocedural edges, which are inserted in accordance to the invocation edges
of the call graph: An actual-in parameter node is connected to its correspond-
ing formal-in node with an parameter-in edge (pi), formal-out nodes to their
corresponding actual-out nodes with an parameter-out edge (po). Finally, the
node representing a call-site is connected to the entry node of the callee with a
call edge (cl).

As an example, consider Figure 2.5, which shows an example program and
the corresponding SDG. The straight edges in blue represent control depen-
dence, the curved edges in green data dependence. Interprocedural edges are
shown as dashed edges: The call edges from nodes 4 and 5 to the entry of pro-
cedure add, parameter-in edges from variables a and v to x, parameter-out edges
from the return statement in node 8 to the variables v and w.

While this representation does allow program slicing, the slice according
to equation 2.1 is correct but not context-sensitive due to the calling-context
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problem: A slice may enter a callee by a parameter-out edge but leave it towards
a different procedure using a parameter-in edge towards a different call-site, so
this kind of slicing is called context-insensitive.

When slicing the example program in Figure 2.5, the context-insensitive
backward slice of node v from call site 4 is shown in Figure 2.5 as shaded nodes.
However, a dataflow from in-parameters of statement 5 to the slicing criterion
is infeasible in any program execution, because statement 5 executes only after
statement 4.

As the SDG makes all side-effects visible, the actual-out parameters of any
call-site can only be (transitively) dependent on actual-in parameters of the same
call-site. This inspired the inclusion of so-called summary edges [HRB90] to
enrich the SDG. Summary edges are inserted between actual-in and actual-out
nodes of the same call-site, if there exists a realizable path in the callee between
the corresponding formal parameters. These edges represent interprocedural
summary information of dependences between procedure parameters and thus
allow preservation of the calling context.

In our example in Figure 2.5, there are four summary edges depicted in red
and dashed: from a and b of call site 4 to v, and from v and b of call site 5 to w.
These correspond to the transitive dependences between the formal parameters
x and y and the return statement in node 8.

With summary edges, context-sensitive slicing becomes a two-phase algo-
rithm which is still in O(|SDG|). The first phase traverses all edges (including
summary edges) except for parameter-out edges. Thus all dependences of the
slicing criterion’s procedure and its transitive callers are included. The second
phase starts at all omitted formal-out nodes and traverses all edges but call and
parameter-in edges, thus omitting all callers (whose effects have already been
included because of the summary edges). The context-sensitive slice is the union
of the nodes encountered in both phases.

The result of the context-sensitive two-phase algorithm for the program in
Figure 2.5 is shown in Figure 2.6. It traverses the summary edges to a and
b and from there the nodes 2, 3, 4 and the entry of main (gray nodes). The
second phase starts with node 8 which has been omitted due to the formal-out
edge to v and includes the nodes x and y and the entry of add (depicted in
light gray). Note that the nodes at call site 5 are correctly not included in the
context-sensitive slice, but in the context-insensitive slice (Figure 2.5).

Computing Summary Information

Summary edges have been proposed by Horwitz et al. [HRB90] as a means
to allow context-sensitive slicing in time linear in the size of the dependence
graph. Their algorithm to compute these edges based on attribute grammars,
however, is asymptotically slower than an alternative algorithm presented by
Reps et al. [RHSR94]. An optimization of this latter algorithm, which trades
space for time in the map fragmentPath, is presented in Algorithm 2. Its worst
case complexity is in O(n3) where n is the size of the dependence graph. After
summary edges have been computed, each slice can be determined in linear
time.
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Algorithm 2 Pseudocode for computing summary edges

1 function ComputeSummaryEdges
2 Input: G an SDG
3 Output: SummaryEdge set of summary edges
4 declare PathEdge, SummaryEdge,WorkList: set of edges
5 declare fragmentPath: map from vertex to set of edges
6 begin
7 PathEdge := ∅; SummaryEdge := ∅; WorkList := ∅
8 foreach w ∈ FormalOutNodes(G) do
9 insert (w → w) into PathEdge

10 insert (w → w) into WorkList
11 od
12 while WorkList 6= ∅ do
13 select and remove an edge v → w from WorkList
14 switch v
15 case v ∈ ActualOutNodes(G) :
16 foreach x such that x→ v ∈ SummaryEdge ∨ x→cd v ∈ G do
17 Propagate(x→ w)
18 od
19 esac
20 case v ∈ FormalInNodes(G) :
21 foreach c ∈ {Gc | (c→ Entry(w)) ∈ E} do
22 let x = CorrespondingActualIn(c, v)
23 y = CorrespondingActualOut(c, w) in
24 insert x→ y into SummaryEdge
25 for each a such that y → a ∈ fragmentPath(y) do
26 Propagate(x→ a)
27 od
28 end let
29 od
30 esac
31 default :
32 foreach x such that x→dd v ∈ G ∨ x→cd v ∈ G do
33 if x→dd v or x and v are not both parameter nodes then // exclude object trees
34 Propagate(x→ w)
35 fi
36 od
37 end switch
38 od
39 return(SummaryEdge)
40 end
41

42 procedure Propagate(e: edge (v → w))
43 begin
44 if e 6∈ PathEdge then
45 insert e into PathEdge
46 insert e into WorkList
47 if v ∈ ActualOutNodes(G)
48 insert e into fragmentPath(w)
49 fi
50 fi
51 end
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Figure 2.6: Backward slice of node v at call site 4 in the example

Correctness of graph-based Slicing

Horwitz et al. [HPR88] showed that PDGs (for a while language including ar-
rays) are adequate for representing a program’s execution behavior: If the PDGs
of two programs are isomorphic, then for a given input either both programs
diverge, or terminate with the same final values for all variables. Backward
intraprocedural slicing based on the PDG for a simple while language has been
proved correct in [RY88]. Their Slicing Theorem shows that for any initial state
on which the program terminates, the program and its slice compute the same
sequence of values for each element of the slice. This result was extended to
the SDG by Binkley et al. [BHR89] and to programs with heap-allocated stor-
age (based on a LISP-style cons operator) and pointers [PS91], in the spirit
of [HPR89]. It is well-known that such an operator is sufficient to model com-
plex heap structures and even Java-like objects. Still, our extension of SDGs in
section 2.5 is presented together with a correctness argument for interprocedural
data dependences to illustrate the soundness of our modeling of method param-
eter passing. Syntax-preserving slicing in the presence of unstructured control
flow has been solved independently by Ball and Horwitz [BH93] and Choi and
Ferrante [CF94]. Both solutions include a correctness proof. Harman and Dani-
cic [HD98] extend the solution of Agrawal [Agr94] and present a correctness
proof.

2.3 Points-To Analysis

Points-to analysis is a major prerequisite for analyzing heap-manipulating pro-
gramming languages. For an object-oriented language, it answers the question
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1 Object o1;
2 String o2;
3 o1 = new Object ();
4 o2 = new String ();
5 if (...)
6 o1 = o2;

o1

o2

new String()

new Object()

o2 o1

new String() new Object()

Figure 2.7: Code fragment and possible points-to graphs

which objects a given pointer or reference may point to at runtime. Based on
this analysis one can derive related questions, like may-aliasing , i.e. whether
two variables may refer to the same location in memory – thus to the same ob-
ject, and under certain conditions also must-aliasing , i.e. if two variables always
point to the same object.

Since the basic techniques were presented by Andersen [And94] and Steens-
gaard [Ste96], hundreds of papers have targeted this issue (e.g. [SS00b,RMR01,
RLS+01,MRR02,NR03,LH03,LL03,WL04,LH08]) and thereby refined the tech-
nique such that today, pointer analyses scale well for realistic programming
languages and program sizes. However, even though points-to analysis seemed
worn out [Hin01] years ago, there are still papers at major conferences on that
topic that improve precision and scalability substantially.

Points-to analysis is usually solved by constraint based program analysis:
From the control flow graph a number of constraints is extracted that must
hold due to the program semantics. These constraints can be solved and yield
a conservative solution for the points-to relation. The constraint system is
traditionally represented as a points-to graph, where (in the intra-procedural
case)

• there is one node for each pointer variable in the program,

• one node for each representative of an object (usually an object creation
site). Due to undecidability, objects created by the same creation site in
different iterations of a loop can in general not be distinguished and are
therefore all represented by the same creation site; and

• an edge p→ q, where p and q are nodes in the graph, is inserted if p might
point to q during program execution.

A pointer p may point to an object created at a creation site o (o ∈
points-to(p)) iff there exists a path p→ · · · → o in G.

As an example, consider Figure 2.7, where a program fragment is depicted
together with possible points-to graphs. There are nodes for each variable o1
and o2 and for both creation sites. The assignment in line 3 and 4 yield edges
between the variables and the corresponding creation sites. The assignment in
line 6 creates another edge between the two variables.
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o2 o1

new String() new Object()

o2 o1

new String() new Object()

Figure 2.8: Points-to relations for the graphs in Figure 2.7

2.3.1 Inclusion-Based vs. Unification-Based Analysis

Two fundamental approaches in determining points-to relations have been pre-
sented:

Steensgaard [Ste96] proposed a unification-based approach, where pointers
are either unaliased or point to the same set of objects. Its big advantage is
the near-linear complexity of O(n · α(n)) (where α is the inverse Ackermann
function), based on the fast Lengauer-Tarjan algorithm [LT79]. In the exam-
ple of Figure 2.7, the rightmost graph corresponds to Steensgaards algorithm.
Since unification means that the points-to set of o1 equals the one of o2, the
edge between their corresponding nodes points in both directions. Unfortu-
nately, applying this algorithm to Java yields several undesirable properties.
Streckenbach [SS00b] has found that strongly typed languages like Java loose
type safety with unification-based approaches, which can be seen in Figure 2.8,
where a reference of type String is determined to possibly point to a variable
of declared type Object. This has dramatic implications on the approximation
of dynamic binding, where the called method is dependent on the target object:
When String.charAt(int) is called on o2, the analysis cannot determine such
a method in java.lang.Object, the type of the first allocation. Since bytecode
lacks typing information, it is now unclear, if the bytecode is unsafe, the analysis
contains a bug, or this flaw is simply due to over-approximation.This problem
led to years of research in scalability for the inclusion-based approach.

Andersen’s points-to graph is inclusion-based and inserts only uni-directed
edges between pointer nodes of an assignment. This approach will only generate
constraints that obey type-safety3, which corresponds more thoroughly to an
assignment’s semantics, as can be seen in Figure 2.7 (middle): Here, only o1
might point to o2 but not vice versa. Thus the points-to relation becomes more
precise than with the unification-based approach (see left graph in Figure 2.8).
However, the cost of solving the constraint system is in O(n3) where n is the
number of statements in the program. Despite this relatively high worst case
complexity, inclusion-based analyses have become predominant in the last years,
due to advances in runtime based on recent research e.g. by using better data
structures like BDDs [WL04,LH08].

3In some representations, explicit downcasts may generate constraints violating type-safety,
too: Code of the form if (x instanceof A) A y = (A) x; needs to take into account that
y’s type is guaranteed to be A, however, since bytecode is untyped, this requires program
analysis.
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2.3.2 Inter-procedural Analysis and Dynamic Dispatch

For inter-procedural analysis, the predominant implementation technique is
graph cloning, i.e. one adds a points-to graph for each procedure in each con-
text. A context may be the traditional calling context as in [WL04]. Alterna-
tively, for object-oriented languages the target object of virtual bound methods
has been found effective as context [MRR02], which has been termed object-
sensitive pointer analysis. Using calling contexts for contexts is problematic in
that it requires conservative approximations in case of recursion and often a pre-
computed call graph is needed, which hinders on the fly computation. Therefore,
using target objects as contexts is – while more conservative for some cases –
more practical, as no call graph is needed for context computation and con-
texts need not be constructed in a complicated manner. Still, it has been found
efficient for many typical problems, like factory methods or containers, which
context-insensitive analysis treats in a too conservative way.

Object-oriented languages like Java either need a pre-computed call graph
for points-to analysis, with the drawbacks that an additional analysis needs
to be done in advance and that the generated call graphs are typically rel-
atively imprecise. Alternatively, the call graph may be computed on the fly
during points-to analysis. While this makes points-to considerably more com-
plex, additional analysis is omitted and the generated call graph is as accu-
rate as the analysis itself, typically much more precise than simple algorithms
like class hierarchy analysis (CHA) [DGC95] or more refined analyses like 0-
CFA [GDDC97], VTA [SHR+00], Rapid Type Analysis (RTA) [BS96] and the
XTA algorithm [TP00].

The algorithm to conservatively approximate dynamic binding on-the-fly
during points-to analysis consists of [HBCC99,SS00b]:

• Construct the initial points-to relations from assignments and statically
dispatched method calls.

• Propagate the points-to relations along the graph edges.

• For each virtual call o.f(x1, ..., xn) determine points-to(o) = {o1, . . . ok}
in the current graph

• Use static lookup to determine the call target fi of method oi.f(x1, . . . ,
xn) and insert an edge from the call site to its target fi in the call graph.

• Connect the parameters and return value of the call to those of fi in the
points-to graph, but only add an edge between the this-pointer of fi and
oi instead of o. This last restriction guarantees type safety.

• Iterate until a fixed point of the points-to-relation is reached

The high technical complexity of this algorithm – an adaption of Lhoták
[LH03] – especially when propagating points-to relations with a worklist algo-
rithm, stems from the fact that the call targets fi usually have not yet been
analyzed and need to be added to the points-to graph first. This is even more
true for call targets in fi, which often need to be analyzed and added as well,
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and those methods can in turn contain calls to new methods. But even after
analyzing and adding all new methods, the complexity remains that a worklist
algorithm must know which nodes need propagation. When analyzing new code
it is not sufficient to just add the parameters of the call to f into the worklist,
but the targets of all edges from newly analyzed code to “elder” nodes, that
already have been propagated to, may also require propagation. However, it is
difficult to keep track of which nodes are old and which are not. As a remedy,
on can conservatively propagate all method-spanning assignment edges after
adding new methods.

Algorithm 3 shows the adaption of Lhoták’s [LH03] algorithms to on-the-fly
call graph computation. The main algorithm starts in line 1 and iterates until no
more elements are in the worklist. As expected, processing the new virtual call
target is most challenging. This procedure directly reflects all items described
in the list above.

2.3.3 Aliasing

For our application — program slicing — points-to information is mainly re-
quired for alias determination. Two references are said to be aliased [HLW+91],
if they point to the same memory cell. We distinguish two flavors of aliasing:

Definition 2.15 (Aliasing). Two references are must-aliased, if they point to
same memory cell in every execution of the program; they are may-aliased, if
they point to the same memory cell in some executions of the program.

May-alias information is needed when computing data dependences, where
a dependence must be inserted if the two statements may accesses the same
memory cell. Must-aliasing information allows strong updates (i.e. insertion
into the kill-set of an update) and thus reduces the number of spurious data
dependences. However, aliasing is known to be statically undecidable [Ram94],
so conservative approximations must be applied. In practice this means that
only a subset of the must-aliases and thus strong updates can be determined,
some spurious dependences remain in the dependence graph. And for may-
aliasing, one must find a superset of all definitive may-aliases, in order to get
all possible data dependences.

May-aliasing based on points-to relations is easily determined, even that
easily, that points-to and aliasing are sometimes used interchangeably:

Definition 2.16 (May-aliasing). For two references [or pointers] p and q,

may-alias(p, q) := (points-to(p) ∩ points-to(q) 6= ∅)

Little work can be found on must-aliasing, probably because may-aliasing
(and points-to) is already hard enough for realistic languages and often local
reasoning is sufficient. Must-aliasing is hard to determine, as the points-to
relation is already a conservative approximation (here specifically due to flow-
insensitivity). One problem lies in the fact that each allocation site in the points-
to set stands for an equivalence class of dynamic allocations that are possible at
runtime. For example, an allocation in a loop can create an unbounded number
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Algorithm 3 Points-to analysis with on-the-fly call graph computation.

1 process allocations
2 repeat
3 repeat
4 remove first node p from worklist
5 process each assignment edge p← q
6 process each store edge p← q.f
7 process each store edge q ← p.f
8 process each load edge p.f ← q
9 until worklist is empty

10 process every store edge
11 process every load edge
12 process new virtual call targets
13 until worklist is empty
14

15 procedure process allocations
16 foreach allocation edge new1← p do
17 points-to(p) ∪= {new1}
18 worklist ∪= {p}
19 od
20 foreach assignment edge spanning method boundaries p← q do
21 worklist ∪= {q}
22 od
23

24 procedure process assignment edge (p← q)
25 points-to(q) ∪= points-to(p)
26 if points-to(q) was changed then
27 worklist ∪= {q}
28 fi
29

30 procedure process store edge (p← q.f)
31 foreach allocation node a ∈ points-to(q) do
32 points-to(a.f) ∪= points-to(p)
33 od
34

35 procedure process load edge (p.f ← q)
36 foreach allocation node a ∈ points-to(p) do
37 points-to(q) ∪= points-to(a.f)
38 if points-to(q) was changed then
39 worklist ∪= {q}
40 fi
41 od
42

43 procedure process new virtual call targets
44 for each virtual call o.f(x1, ...xn) do
45 for each allocation node a ∈ points-to(o) do
46 determine a.f(y1, ...yn) with static lookup
47 add (a.f(y1, ..., yn).this→ a) in the graph
48 connect other parameters and return value in the graph
49 od
50 od
51 add all targets of created edges to worklist
52 if new methods have been added to the graph or new connections have been created then
53 process allocations
54 fi
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of objects at runtime, none of which is must-aliased but to itself. The same goes
for allocations in recursive cycles of the call graph. Still, provided an allocation
a is not in any cycle in the interprocedural control flow graph, two accesses
x, y where points-to(x) = points-to(y) = {a} are known to be must-aliases.
This is trivial for the case where both references may never be null, but also
straightforward, if one reference might be null, as then the corresponding use
or definition will not take place but the program will branch to error handling
code. So such a dependence is impossible and redundant, so must-aliasing may
induce killing definitions here.

As references in Java are immutable, must-aliasing becomes a simple form
of Global Variable Numbering [RWZ88]. Therefore, another local analysis is
possible with an intermediate representation in SSA-form: If two statements
in the same method access the same SSA-variable, they are must-aliases, no
matter how many elements their points-to set contains. Usually the employed
SSA-form is not minimal, so mere renamings of the form x2 = Φ(x1, . . . x1) can
also be detected as must-aliases.

2.4 Slicing Object-oriented Languages

The slicing techniques presented in the previous sections and other research in
program slicing has produced systems such as CodeSurfer [AT01] or VALSOFT
[Kri03a,RS02], which can slice realistic programs written in the full C language
with reasonable precision and performance.

2.4.1 Dynamic Dispatch

Several extensions of the SDG to object-oriented features have been proposed,
and all of them are capable of handling dynamic dispatch and inheritance
[LH96, KMG96, Zha00, LH98,WRW03,MMKM94, TAFM97, HDZ00]. Usually,
dynamic dispatch is treated similar to function pointers in C [GH96]. Today,
approximation of dynamic dispatch in slicers for object-oriented languages is
reasonable precise and efficient, thanks to powerful call-graph and points-to
analysis algorithms supporting the SDG construction. For every method that –
according to the call graph (see Definition 2.14) – might be called at runtime,
one adds a call edge to the entry of this method [TAFM97]: Each c→ m ∈ Gc
induces a call edge c →c Entrym in the SDG. As the number and type of
parameters must be identical for redefined methods, the parameter nodes at
the call site can be taken from any appropriate method definition. However,
global variables and fields of parameters that are used or modified may differ
for redefinitions. This problem will be discussed in section 2.5.

2.4.2 Exception Handling

Java offers exception handling in a try ... catch ... finally construct, which
must be taken into account, when building the control flow graph: Each instruc-
tion that may throw a subtype of the type given in a catch block must have
a successor at the associated exception handler code. As Java allows multiple

46



2.4. SLICING OBJECT-ORIENTED LANGUAGES

catch blocks for the same try block, where only the first matching catch block is
executed [LY99], only the first matching block should be a successor, to achieve
maximum precision. Finally blocks are executed in any case, and thus are in-
corporated into the control flow after all4 code in the try and catch blocks has
been executed. If no appropriate exception handler is present, it is nevertheless
executed before the procedure returns abnormally (throwing the exception to
the caller) and must therefore be included just before the method’s exit node.

Building PDGs just according to explicit exception handling constructs ren-
ders it incomplete for the full Java semantics: In Java, many bytecode instruc-
tions may throw an implicit exception (subtypes of RuntimeException) in case
operands are inconsistent. For example, nearly every bytecode instruction that
manipulates objects may throw a NullPointerException, those for arrays may
throw ArrayIndexOutOfBoundsExceptions. To get a sound analysis result, con-
trol flow due to implicit exceptions must be taken into account. In our model,
each bytecode instruction that may throw an implicit exception is preceded by
code that checks a bytecode’s precondition for normal execution, and if it is not
satisfied, control flow branches to exception handling code or else to code for
abnormal termination [CPS+99].

An exception without appropriate exception handler is passed to the caller of
the causative method. If this caller method has an appropriate handler installed
at the invocation bytecode, this handler is branched to in order to handle the ex-
ception; if not, then the caller method terminates abruptly as well, “rethrowing”
the causing exception. This schema is employed until an appropriate handler
is found somewhere above in the call stack, or else this thread of execution
terminates and the causing exception is printed to the user. Again, this is in-
corporated into the control flow graph by introducing an extra predicate node
with two successors for each possibly excepting call instruction: one succes-
sor models normal termination and one is for abrupt termination of the called
method.

As an example, consider Figure 2.9, which shows a code snippet and the
corresponding SDG. Line 3 in the code corresponds to several nodes: First
the node bar with its children representing the parameter s and the synthetic
return-parameter $exc. And second the predicate node exc==null, which models
branching according to normal or abrupt termination of bar. If it terminates
abruptly (the predicate is true), the statement of line 6 is executed.

In the subgraph for method bar, the precondition for an arraylength bytecode
is that the array reference may not be null, which is checked in a synthetic
predicate node. If it is true, an exception is thrown, otherwise the statement of
line 10 is executed.

In case there are multiple catch blocks for one try block, the control flow
graph contains a so-called typeswitch statement, which is similar to a traditional
switch statement. For each possible catch block with exception type e there
exists an edge labeled e to the corresponding code block.

4See Allan and Horwitz [AH03] for a discussion of inlining for finally blocks.
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1 void foo(Object [] s) {
2 try {
3 bar(s);
4 } catch (
5 NullPointerException e) {
6 print("null");
7 }
8 }
9 void bar(Object [] s) {

10 print(s.length );
11 }

Entry foo

s bar

s $exc

$exc==null

print("null")
T

Entry bar

s s == null

print(...)
F

NPE
T

Figure 2.9: Example code for exception handling with SDG

2.4.3 Objects and Fields

Program slicing in the presence of objects and fields is not so different from
slicing composite data types in traditional languages. Horwitz et al. [HPR89]
already noticed that to extend the concept of data dependence for languages
that manipulate heap-allocated storage, it is necessary to phrase its definition
in terms of memory locations rather than variables:

Definition 2.17 (Data Dependence for Composite Data Structures). Program
point q has a data dependence on program point p if p writes into a memory
location loc that q reads, and there is no intervening write into loc along the
execution path by which q is reached from p.

Even though Horwitz et al. did only consider a Lisp-style cons operator, it
can model more complex data structures. However, with objects and fields, it is
not always decidable, if two program points access the same memory location.
Agrawal et al. [ADS93] give a classification of memory accesses into complete,
maybe and partial intersection of abstract memory locations: Complete inter-
section arises, if the objects of both accesses are must-aliases and they access
the same field. Maybe intersection for field access is possible due to aliasing:
if two accesses reference the same field but they are only may-aliases, this is
called maybe intersection. Another case of maybe intersection arises with ar-
rays, as the field index is generally unknown at compile time. Arrays combine
this maybe intersection with partial intersection, as only one element of the
whole array is accessed. Most work on arrays treats arrays as a single location
in memory, thus ignoring the index which is, in general, only known at runtime.
We follow this conservative convention by modeling arrays as a field with the
reserved name []. Lyle [Lyl84] proposed that array updates should be handled
like a reference to and subsequent update of the whole array (killing modifica-
tions). This results in data dependences between array updates a[i] →dd a[j]
when the first statement reaches the second, even if i may not equal j.
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1 int z;
2 T a, b; // initialization omitted here
3 a.x = 1;
4 b.x = 2;
5 a.y = 3;
6 b.y = 4;
7 a = b;
8 z = a.y;
9 }

Figure 2.10: Example program illustrating field sensitivity

For computing precise results for data dependence it is necessary to base
intersection decision on the results of pointer and alias analysis. Tonella et
al. [TAFM97] were the first to propose to use points-to analysis [And94,Ste96,
SS00b] for SDG generation of OO programs.

Field sensitive analysis

Several approaches for determining the type of intersection have been pro-
posed in literature. Each approach has its own strengths and weaknesses. For
example, a straightforward intersection computation based on scalar replace-
ment [Kri03a], where any access to a variable is (recursively) replaced by ac-
cesses to the contained fields, does not necessarily give the most precise data
dependences. Consider the program in Figure 2.10 where variable z is only de-
pendent on the definition in line 6. The C-Framework of ValSoft [Kri03a] com-
putes a slice containing line 4 due to the inherent loss of precision of its virtual
scalar replacement. CodeSurfer [AT01] employs a non-virtual scalar replace-
ment strategy that blows up the code by replacing the assignment a = b with
a.x = b.x; a.y = b.y beforehand, which allows the computation of the precise
slice. Such a replacement may be appropriate for procedural languages like C,
where nesting of structures is not too common, for object-oriented languages
like Java with deeply nested objects, this would require a large overhead, which
can be omitted in intraprocedural cases using a definition of data dependence
without explicit scalar replacement.

The definition of data dependences can be refined for the case of field access
to a field f , which is referenced by its fully qualified name (including name and
defining class):

Definition 2.18 (Data Dependence for Field Access). A PDG has a data de-
pendence edge from node n1 to node n2 due to field access iff all the following
conditions hold:

• n1 is a node that defines the field f of variable x

• n2 is a node that uses the field f of variable y

• x and y are potential aliases (may-aliases)
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• control flow can reach n2 after n1 via a path in the CFG along which is
no intervening definition of f

With this definition, we get the precise slice in Figure 2.10 without expen-
sive scalar replacement strategies just by inspecting the reaching definitions
of the last line, which contains both assignments to the y field. With the
flow-sensitivity in pointer analysis gained by SSA form, the criterion will be
determined data dependent only on the definition in line 6. So while this last
definition of data dependence is always field-sensitive, its precision relies heavily
on the precision of the underlying alias analysis.

2.5 Interprocedural Dataflow-Analysis

For interprocedural analysis, a conservative approximation is required of how
a program manipulates its data at the call-graph level. For program slicing,
this mainly covers knowledge about what side-effects a method5 call may im-
pose on its parameters6. Side-effects of called methods produce new definitions
that may reach a use and thus require transitive data dependences. Algorithms
to compute such side-effects are known in the literature [Ban79,Muc97], but
they are presented for procedural languages only, without covering extensive use
of objects and their field structures. Side-effect analysis for multi-level point-
ers [RLS+01] is, however, too intricate for Java’s single-level references. While
some authors targeted how to represent objects for slicing [LH96, LH98], their
approaches either have flaws or are not explicit on how to handle nested and re-
cursive object structures conservatively. Tonella [TAFM97] already noted that
points-to information is a prerequisite for precise side-effect analysis of object-
oriented languages. The following section will present a new approach for com-
puting a precise but conservative approximation of the side-effects of methods
and their invoked methods that allows context-sensitive slicing of objects. It
allows field-sensitive slicing and takes possible aliasing into account.

To allow field-sensitive analysis also in the interprocedural case, we need
to explicitly represent all the fields of parameter objects and accessed static
variables at the method entry nodes and call sites [PS91]. This corresponds
to the non-virtual scalar replacement strategy in the intra-procedural case (cf.
section 2.4.3).

In analogy to previous work [Ban79,Muc97] we characterize side-effects as
two functions from statements to the set of locations they may access. Amemory
location is an abstraction of a cell in the heap and is represented as a sequence
of fields7 rooted at a parameter of the given method, such that dereferencing
the fields in the list yields a pointer to the given abstract location. For example,
if an object may be accessed with the expression a.f.g from the parameter a,
then a.f.g is an abstract location for the memory storing that object. While this
representation is not necessarily unique, it is sufficient for our algorithm. We

5The object-oriented term method will be used instead of procedure in the sequel
6As static variables are modeled as extra parameters in SDGs the term parameter will

cover both normal parameters and synthetic ones for static variables in the sequel
7To achieve disambiguity, the fully qualified field name must be used.
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will write a.f.g for an abstract location rooted in the parameter a which may
be accessible in one execution through dereferencing first f and then g. We say
that a location x = a.f.g extends location y = a.f when the list of fields of y is
a prefix of x’s and they share the same root. We will also write x = y.g where
y is another location as an abbreviation of the extension of y with g. Finally,
we define root(a.f1...fn) := a. The side-effects for a method m are described by
the following functions [Ban79]:

Ref(m) = set of locations that may be referenced by executing m and
Mod(m) = set of locations that may be modified by executing m

These sets are prefixed with letters to represent interprocedural versions (see
next paragraph). By definition, Ref(m) ⊃ Mod(m) and the same relation
holds for the prefixed variants.

The first step in computing side-effect is to determine which side-effects a
method may produce without considering other methods called in that method.
We call these sets IRef and IMod to indicate that they are intra-procedural
only.

2.5.1 Intraprocedural IRef and IMod Computation

Before going into the details of the algorithm, the notation used in the sequel
is presented: For a method m, the set Param(m) denotes all formal parameters
of m. The notation loc y.f represents an abstract memory location. We will
write Subobject(x) for the set of locations that are transitively reachable by
dereferencing fields of x. This set can easily be determined by Class Hierarchy
Analysis [DGC95], but the results of pointer analysis generally allow much more
refined sets, as only fields of classes in the points-to set of x (and transitively
reachable locations) need to be considered. The notation base(y.f) refers to the
base object location of a composite location y.f and is defined as base(y.f) = y,
the field can be obtained by field(y.f) := f .

The locations that may be referenced or modified by executing the method
alone, i.e. without taking effects of method calls into account, are computed
according to the following recursive definitions. Therefore, we are interested in
their minimal fixed point:

IRef(m) = {loc y.f | y ∈ Param(m) ∪ IRef(m) : ∃ statement r ∈ m
∃ locx.f ∈Mod(r) ∪Ref(r) : may-alias(x, y)} ∪ IMod(m) ∪ Subobject(
{loc y.f ∈ IRef(m) : ∃r ∈ m ∃ locx.f ∈ Def(r) : may-alias(x, y)}) (2.3)

The memory locations that may be directly referenced in a method consist of the
parameters of the analyzed method m as well as memory locations transitively
reachable from these (IRef) by access through a field f whose base object x is
a may alias of a memory location that may be referenced. Apart from that, all
memory locations that may be written (IMod(m)) must be included into IRef
by definition, as not all paths in that method must redefine those fields. In that
case, the original value will be synthetically referenced. Finally, the subobjects
of all memory locations that may be used when writing another memory location
need to be included. The reason is that, when an object is written, its whole
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subobject structure changes due to its changed field values, and these changes
come from the field values of the used object.

As an example, in Figure 2.10, line 7 defines a using b, therefore all definitions
concerning the subobject of b need to be included in the backward slice for a.

IMod(m) = {loc y.f | y ∈ Param(m) ∪ IRef(m) : ∃ statement r ∈ m
∃ locx.f ∈ Def(r) : may-alias(x, y)} ∪ Subobject(IMod(m) ∪ {$ret, $exc})

(2.4)

The set of memory locations that may be modified in the method m directly
subsumes all locations that are directly or indirectly accessible via parameters
and are used at a statement r ∈ dom(Mod) with a possible aliasing situation of
their base locations. Apart from that, the whole set together with the synthetic
variables $ret, $exc that representing the return value or the thrown exception
of method m, respectively, is transitively closed with respect to the subobject
relation.

Note that in the presence of recursive data structures, IRef and IMod may
contain an infinite number of locations with finite length. For example, a linked
list might contain {head, head.next, head.next.next, . . . }. We will show later,
that for computation purposes, it is sufficient to determine only a finite number
of representatives for an equivalence relation, so these sets can be considered
finite in the meantime.

Figure 2.11 presents a small Java program which we will use as a running ex-
ample for illustrating interprocedural dataflow-analysis. Its intermediate SDG
after the traditional SDG generation steps is depicted in Figure 2.12. It only
contains five accesses to abstract locations: Mod(3) = {this.x}, Mod(10) =
{this.a}, Ref(12) = {this.a} and Ref(13) = {a.x}. In the constructor A.init,
IRef(A.init) = {this.x} and thus IMod(A.init) = {this.x}. IRef(B.init) =
{this.a} and thus IMod(B.init) = {this.a}, IRef(foo) = {this.a}, IRef(bar) =
{a.x} and all other IRefs and IMods are empty. This result can be seen in
Figure 2.13 where IRef and IMod are represented in the tree domain, how-
ever, with IRef(A.init) omitted, as the instance members of the this object
are uninitialized at invocation of the constructor.

The Unfolding Criterion

Liang and Harrold [LH98] already pointed out that in the presence of recursive
data structures the object trees cannot be unfolded until all leaves are primitive
types. As mentioned in section 2.5, their solution, namely to limit the depth to a
fixed level, is unsatisfactory. In our approach we unfold the tree until we reach a
fixed point with respect to the aliasing situation of the containing object. Thus
we obtain a safe criterion telling us whether further unfolding can be stopped
without losing dependences. The criterion is based on points-to information and
works as follows. We define a reflexive, symmetric relation R ⊆ loc× loc:

l1R l2 ⇔ l1 = l2 ∨ ((l1 extends l2 ∨ l2 extends l1)∧
points-to(base(l1)) = points-to(base(l2)) ∧ field(l1) = field(l2)) (2.5)
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1 class A {
2 int x, y;
3 A(int i) { x = i; }
4 }
5

6 class B {
7 A a;
8 B() {
9 A n = new A(2);

10 this.a = n;
11 }
12 int foo() { return bar(a); }
13 static int bar(A a) { return a.x; }
14 public static void main(String [] args) {
15 B b = new B();
16 int z = b.foo();
17 }
18 }

Figure 2.11: An example program

main

b = new B() b.foo()

B b
A a

B this

data

dependence

control dependence

call edge

foo()
n = new A(2)

A.init(int i)

int i x  =  i

2

B.init()

bar(a)

bar(A a)

return a.x

a  =  n

return

z
$ret

$ret

parameter in/out

        edge

Figure 2.12: Intermediate SDG for class B after traditional SDG generation.
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Figure 2.13: Intermediate SDG for class B after intraprocedural IREF/IMOD
analysis.
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1 class C {
2 C f;
3 public static void main(String [] args) {
4 C c = new C();
5 C.rec(c);
6 C x = c.f;
7 C y = x.f;
8 }
9 static void rec(C c) {

10 c.f = new C();
11 C x = c.f;
12 x.f = c;
13 }
14 }

Figure 2.14: Example program illustrating recursive data structures.

Figure 2.15: SDG (without summary edges) for Figure 2.14 including object
trees.

The idea is to stop unfolding, when the same field has been observed earlier in
this branch of the object tree and the base pointers of these two locations have
the same points-to sets. In this case, both locations are equivalent with respect
to all properties used for computing data dependences, so including the second
tree would just add the same information again, rendering one of these locations
redundant. The transitive closure ∼ of R yields an equivalence relation which
we leverage to find a unique representative:

When computing the quotient sets IRef/∼ and IMod/∼, we choose the short-
est entry (i.e. the infimum in terms of the extends relation) as representatives.
These sets are finite due to the sets in the points-to relation being finite. We
will show later that including these quotient sets (i.e. these representatives) into
the dependence graph is sufficient to compute correct slices with respect to field
access. This is due to Definition 2.18 of data dependence, which is also based
on the aliasing situation.
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As an example, consider Figure 2.15, which shows the SDG for class C in
Figure 2.14. Note that no data dependence points to the formal-out parameter
node C c, as Java only supports call-by-value, such that this node does not
represent a reference of c. Its only purpose is to reflect the tree structure of the
formal-in parameters. The points-to set of c contains only the new statement in
C.main, while the points-to set of field f in c contains only the new instruction
in C.rec. Our algorithm adds the first level for field f due to the write to c.f.
The second level is added in our approach as the points-to sets of the root and
the first level node are not equal. A third level is not added as the points-to sets
of the c and c.f.f nodes are equal. The representative of c.f.f.f’s equivalence
class is c.f. Adding the field f a third time, would just result in the same
dependences as c has because of the aliasing situation. In contrast, k-limiting
as proposed by Liang [LH98] would cut off the trees and miss the purple shaded
nodes for k = 1, hence dependences and slices would be incomplete. Liang is
not specific on how to approximate these missing dependences.

2.5.2 Interprocedural Analysis

The previous section only determined side-effects up to method boundaries.
The next step must therefore determine these side-effects up to the call graph
level. This involves propagating side-effects along call sites and then again from
the actual parameters to formal parameters if necessary. A fixed point iter-
ation is required until all side-effects have been propagated to methods that
transitively call them. Before going into the technical descriptions, we need
to define some auxiliary functions: To this end, we overload the Param func-
tion to call sites such that Param(m, c) denotes all locations that are passed
to method call c which resides in method m. We assume temporary variables
are leveraged when a complex expression is passed to c and in cases of pa-
rameter aliasing. For example, the call f(x+y) is replaced by t = x+y; f(t),
where t is a fresh variable. When c may call method m′ then the function
bindm,c,m′ : Param(m′) → Param(m, c) returns the actual parameter of call c
that corresponds to the formal parameter of method m′. For convenience, we
extend this function to sets, where the set of actual parameters corresponding
to a given set of formal parameters is returned.

Since the global side-effects GRef and GMod (defined later) include the
local ones IRef/∼ and IMod/∼ (as defined in [Ban79,Muc97]), we can determine
the side-effects of the directly called method at a call site according to the
following definitions:

CRef = {(m, c, t) | t ∈ bindm,c,m′(GRef(m′))} (2.6)
CMod = {(m, c, t) | t ∈ bindm,c,m′(GMod(m′))} (2.7)

For convenience, we define the curried versions CRef(m, c) = {t | (m, c, t) ∈
CRef} and CMod(m, c) = {t | (m, c, t) ∈ CMod}. Intuitively, CRef and
CMod represent the set of side-effects IRef and IMod of the possibly called
methods m′ at the call-site c, however with the formal variable names replaced

55



CHAPTER 2. DEPENDENCE GRAPHS AND SLICING FOR
OBJECT-ORIENTED LANGUAGES

by the actual variables passed to m′ at c. As we are using GRef and GMod
instead of IRef and IMod, a fixed point iteration needs to be done to include
the global side-effects, i.e. the side-effects that include those of called methods
as well.

Figure 2.16 shows the results of applying these definitions to the local side-
effects IRef/∼ ⊂ GRef and IMod/∼ ⊂ GMod of our running example as deter-
mined in section 2.5.1: CMod ⊃ {(B.init, newA(), n), (B.init, newA(), n.x)}
and CRef ⊃ {(foo(), bar(), a), (foo(), bar(), a.x)}. Note that the implicit vari-
able this of A.init has been renamed to the name of the actual parameter a.
Moreover, the corresponding nodes in the graph have already been connected
by parameter-in and -out edges, except for the root of IMod(A.init). This ex-
ception reflects Java’s call-by-value parameter passing scheme, which does not
propagate changes to formal parameter variables back to its callees.

The method entry vertex contains parameter trees with one formal-in node
for every location inGRef , and one formal-out node for every location inGMod.
For a virtual method call this means that there is not exactly one actual node
(CRef/GRef) for every formal node: Different (re)definitions of virtual meth-
ods may very well access a different set of fields of a parameter. Thus, ev-
ery actual tree in CRef/CMod is a union of all corresponding formal trees in
GRef/GMod of all possibly called methods in the approach presented here.

Now the side-effects of called methods are visible at the call site but they may
in turn represent side-effects of the method containing the call. For example, the
definition of a.x in B’s constructor is also a side-effect of this method. Therefore,
we need another function bindm,c : Param(m, c)→ Param(m)∪IRef(m), which
returns, for a given parameter of a method call c in method m, the formal
parameters or locations in IRef(m) that are aliased:

bindm,c(x) := {y ∈ Param(m) ∪ IRef/∼(m) : mayAlias(x, y)} (2.8)

Again, this definition is extended to sets of parameters. In our example
program, bindB.init,newA()(n) = {this.a} and bindfoo(),bar()(a) = {this.a}. For
two locations y and z, the append function @ returns the location of the con-
catenation of the access paths of y and z:

Definition 2.19 (Append). For two locations y = v.f1...fn and z = w.g1...gm
where may-alias(y, w) the concatenation y@z = v.f1...fn.g1...gm.

Now, the global side-effects of method calls [Ban79] can be included into the
parameters of a method:

GRef = {(m, t) | t ∈ IRef/∼(m) ∨ (t = y@z : ∃c ∈ Calls(m) :
z ∈ CRef(m, c) ∧ y ∈ bindm,c(root(z)))} (2.9)

GMod = {(m, t) | t ∈ IMod/∼(m) ∨ (t = y@z : ∃c ∈ Calls(m) :
z ∈ CMod(m, c) ∧ y ∈ bindm,c(root(z)))} (2.10)
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Figure 2.16: Intermediate SDG for class B after first iteration of interprocedural
CRef/CMod propagation.
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Figure 2.17: Intermediate SDG for class B: First iteration of GRef/GMod.

Again, we define the convenience functionsGRef(m) = {t | (m, t) ∈ GRef} and
GMod(m) = {t | (m, t) ∈ GMod}. CRef and GRef are mutual recursive, as
well as their Mod counterparts, and the minimal fixed point gives the desired
solution. It is again sufficient to consider representatives of the ∼ relation in
the GRef and GMod definitions, so this fixed point is guaranteed to exist.

Considering our running example again, Figure 2.17 shows the first iteration
of the GRef and GMod computation: GMod ⊃ {(B.init, this), (B.init, this.a),
(B.init, this.a.x)} andGRef ⊃ {(foo(), this), (foo(), this.a), (foo(), this.a.x)}.

After the second iteration, CRef/CMod contain the locations depicted in
Figure 2.18 where CMod ⊃ {(main, newB(), b.a), (main, newB(), b.a.x)} and
CRef ⊃ {(main(), foo(), b), (main(), foo(), b.a), (main(), foo(), b.a.x)}. Since
bindmain,foo is constantly empty (for main only having args as formal parame-
ters), the fixed point iteration ends here.

2.5.3 Data Dependences

When all global side-effects have been computed, data dependence for fields
is determined according to Definition 2.18. To this end, elements of GRef
are considered as elements of Def of the corresponding method entry node,
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elements of GMod as elements of Ref of the corresponding exit node [HRB90].
In contrast, elements of CRef are inserted in Ref of the call node and CMod
in Def , respectively [HRB90]. The kill sets of the standard intraprocedural
reaching definitions analysis are only populated with definitions where the must-
aliasing relation of the base objects holds. Data dependence is subsequently
determined using Definition 2.18.

In our running example, Figure 2.19 shows the result of this step: In A.init,
the definition x = i reaches the exit node, so we get a data dependence between
this definition and the synthetic use of this.x in GMod. Similarly, the synthetic
definition based on GRef(bar) a.x reaches the return statement and therefore
produces a data dependence edge. In main, the synthetic definitions based on
CMod(main, newB()) reach the synthetic uses of CRef(main, foo()), so data
dependences are inserted between these locations.

Summary Edges for Object Trees When computing summary edges with
object trees, an optimization is crucial to obviate combinatorial explosion: With
the original algorithm for summary edges, if a child of an actual-in parameter
has a summary edge to node n, then the parent(s) would get such an edge to
n as well. But these edges are redundant, as one can always follow the child’s
summary edge and ascend to the parent, so slicing will yield the same with or
without these edges. As a consequence, Algorithm 2 does not follow control
dependences from parameters to their parents (line (33)).

2.5.4 Correctness of Object Tree Algorithm

Previous work [RY88,BHR89,PS91] has shown several dimension of slicing cor-
rect (in particular interprocedural slicing and heap objects, see page 36). As a
combination of interprocedural slicing with heap objects has not been explicitly
proven correct, we focus on the soundness of interprocedural data dependences
for heap objects. Thus, to show the soundness of our algorithm, we need to
prove that all dynamic data dependences are approximated by static data de-
pendences, i.e. when a statement defines a field value in an execution and this
value is later used at another statement, then there must be a dependence chain
between the corresponding nodes of the SDG. For a method call call, we assume
that in a dynamic execution, the successor of the last statement of the invoked
method is again call, to assign the returned value to the result variable.8 In
the sequel, we denote the kind of dependence of an SDG edge e with label(e),
e.g. label(x→dd y) = dd. correspondingCall(n) denotes the call statement that
created the stack frame of statement n, where n is typically a return statement.

Theorem 2.2 (Correctness of Object Tree Algorithm). For all runs of the
program p whose SDG G was built according to section 2.5, if the execution E
contains a path P = 〈p1, . . . pn〉 where p1 defines memory cell mem and pn reads
mem, where either p1 = correspondingCall(pn) and both p1 and pn are syn-
thetic field assignments due to parameter passing or p1 is a regular field assign-

8This assignment is not assumed to constitute an interprocedural statement.
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ment,9 and ∀pi ∈ {p2, . . . , pn} we have that pi is not a regular field assignment
statement to memory mem, then ∃ path S ∈ G with S = 〈p1 = s1, . . . , sm = pn〉
where label(si, si+1) ∈ {DD,PI, PO}.

Proof. The proof is an induction over the number q of interprocedural state-
ments in the execution trace P , where interprocedural statements are either
call, return, or throw statements. Without loss of generality, we assume that
we have no throw statements, as these are functionally equivalent to return
statements (using the synthetic variable $exc instead of $ret (see section 2.5.1)).

Base case: q = 0 (intra-procedural case) We have that P = 〈p1, . . . , pn〉 is
a subsequence of E where p1 defines memory cell mem and pn reads mem,
thus p1 ∈ Def(f) and pn ∈ Ref(f) for a field f and may-alias(base(p1),
base(pn)). As none of pi ∈ {p2, . . . , pn} redefines memory mem in this
execution, the definition of p1 reaches pn in the CFG and points-to(p1) ∩
points-to(pn) 6= ∅. Therefore definition 2.18 applies, such that we get a
data dependence p1 →dd pn

Inductive step: q → q + 1

The last interprocedural statement pi in P is a call

p1 . . . , pi: call

. . . pn

Three kinds of statements may have access to a memory cell:
a) A regular field access statement in Java can only access a mem-
ory cell via a parameter10, so we know that there exists an access
path A = 〈form, f1, . . . , fd〉 through which pn has gained access to
mem in execution E. Thus, by equation (2.3) ∃ access path A′ ∈
IRef/∼(method(pn)) such that the last field of both access paths
equal and A′ is an alias for mem.
b) For an actual-in parameter A = 〈act, f1, . . . , fn〉 of a call statement
pn, where A ∈ CRef(method(pn), pn), there must also be a parame-
ter form such that an access path A′ = 〈form, f ′1, . . . , f ′d′〉@A is an
alias for mem due to equation (2.9).
c) Finally, if pn is a return statement, the use A = 〈form, f1, . . . , fd〉
at pn must be in GMod(method(pn)). With equation (2.9), we get
A′ ∈ GRef(method(pn) with A′ = A.
In all cases, with equation (2.6) we have an access path C ∈ CRef(
method(pi), pi) which corresponds to A′, i.e. C = 〈act, f ′1, . . . , f ′d′〉
(and f ′d′ = fd) which constitutes a use in method(pi). Now we can
apply the induction hypothesis on the path P ′ = 〈p1, . . . , pi〉 which
yields a path S = 〈p1 = s1, . . . , sm = pi〉 where label(si, si+1) ∈

9A regular field assignment statement is a bytecode that actively manipulates the heap, in
contrast to synthetic field assignments induced by parameter passing.

10Or static (global) variables, which are modeled as extra parameters in SDGs
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{DD,PI, PO}. As the algorithm inserts a parameter-in edge (C,A′),
and a data dependence edge (A′, pn), we get the claim.

The last interprocedural statement pi in P is a return
There are two possibilities for c = correspondingCall(pi):

1. c ∈ P

p1 c: call

. . . pi:return

. . . pn

There exists an access path A = 〈v, f1, . . . , fd〉 via which pn has
gained access to mem in execution E. As 〈pi, . . . , pk〉 does not
contain any redefinition statements of memory mem, there are
two possibilities:
(a) There is A′ ∈ GMod(method(pi)) which may be aliased to

mem, and by definition A ∈ GRef(method(pi)) corresponds
to A′. This may be due to a regular modifying statement m
in a method that is reachable from c in the call graph that
modifies a memory cell which may be aliased tomem (but as
the pi contain no redefinition for i = 2, . . . , n− 1 it was not
aliased or executed in this execution). Then there is, accord-
ing to the induction hypothesis applied to the path c, . . . , pi a
path from A to A′, as c, . . . , pi does not redefine mem. With
equations (2.6) and (2.7) we have C ∈ CRef(method(c), c)
and a corresponding C ′ ∈ CMod(method(c), c) that are con-
nected to A and A′ with parameter-in and -out edges, re-
spectively. C ′ represents a definition, thus we have a data
dependence (C ′, pn) and get the claim with the induction
hypothesis applied to the path 〈p1, . . . , c〉, as C represents a
use at c. The e SDG contains thus a path p1 →dd · · · →dd

C →pi A→dd · · · →dd A′ →po C ′ →dd pn.
(b) If there is no location in GMod(method(pi)) which may

be aliased to mem, then there is no definition C ′ where
C ′ ∈ CMod(method(c), c) is aliased to mem, therefore we
can apply the induction hypothesis on the last interprocedu-
ral statement preceding c.

2. c 6∈ P : In this case, we show the claim in Lemma 2.3.

Lemma 2.3. For all runs of the program p whose SDG G was built according to
section 2.5, if the execution E contains a path P = 〈p1, . . . pn〉 where p1 defines
memory cell mem and pn reads mem, where either p1 = correspondingCall(pn)
and both p1 and pn are synthetic field assignments due to parameter passing or p1

is a regular field assignment. Moreover, ∀pi ∈ {p2, . . . , pn} we have that pi is not
a regular field assignment statement to memory mem, and the last interprocedu-
ral statement in P is a return statement at pj with correspondingCall(pj) = c 6∈
P , then ∃ path S ∈ G with S = 〈p1 = s1, . . . , sm = pn〉 where label(si, si+1) ∈
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{DD,PI, PO}. Furthermore, we assume the induction hypothesis of Theo-
rem 2.2.

Proof. The proof is an induction over the number q of interprocedural state-
ments in the execution trace P , where interprocedural statements are either
call, return, or throw statements. Again, without loss of generality, we assume
that we have no throw statements.

Base case: q = 0, intra-procedural case As the precondition of the claim is
not satisfied, we vacuously get the claim.

Inductive step: q → q + 1

The first interprocedural statement pi in P is a call As pi is the
first interprocedural statement in P and the call corresponding to pj
happened before p1 (as it is not in P ), we get the following invocation
structure:

c: call

p1 pi: call

. . . pk: return

. . . pj : return

. . . pn

As invocation is nested in the execution, there must be a k ∈]i, j[:
pk = return ∧ pi = correspondingCall(pk). There exists an access
path A = 〈v, f1, . . . , fd〉 via which p1 has gained access to mem
in execution E. As 〈pi, . . . , pk〉 does not contain any redefinition
statements of memory mem, there are two possibilities:

1. There is A′ ∈ GMod(method(pk) which may be aliased to mem
and a corresponding A ∈ GRef(method(pk)). This may be
due to a modifying statement in methods reachable from pi in
the call graph that access a memory cell that may be aliased
to mem. Then there is, according to the induction hypoth-
esis and the induction hypothesis of Theorem 2.2 applied to
the path 〈pi, . . . , pk〉 a path from A to A′, as there is a path
in CFG that does not redefine mem. With equations (2.6)
and (2.7) we have C ∈ CRef(method(pi), pi) and a correspond-
ing C ′ ∈ CMod(method(pi), pi) that are connected to A and A′

with parameter-in and -out edges, respectively. C represents a
use, thus we have a data dependences (p1, C) and get the claim
with the induction hypothesis of Theorem 2.2 applied to the path
〈pi+1, . . . , pn〉, as A represents a definition at pi+1.

2. If there is no location in GMod(method(pk)) that may be aliased
to mem, then there is no definition C ′ ∈ CMod(method(pi), pi),
therefore we can apply the induction hypothesis on the first in-
terprocedural statement following pk.
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The first interprocedural statement pi in P is a return
As statements in Java can – again – only access a memory cell via
a parameter or local variable that is returned, we know that there
exists an access path A = 〈v, f1, . . . , fd〉 via which p1 has gained
access to mem in execution E.
a) For a regular field modification statement we know by equation (2.4)
that there exists an access path A′ ∈ GMod(method(p1)) because p1

is a definition.
b) For an actual-out parameter of a method call A = 〈f1, . . . , fd〉 ∈
CMod(method(p1), p1) at p1, we have with equation (2.10) ∃ access
path A′ = 〈f ′1, . . . , f ′d′〉@A ∈ GMod(method(p1)) for A to be visible
after method(p1) returns.
c) For a formal-in parameter A = 〈f1, . . . , fd〉 ∈ GRef(method(p1))
at p1 (that also constitute definitions) A is corresponding to the
access path A′ ∈ GMod(method(p1) (which exists as p1 is syn-
thetic, so pn is synthetic, too and p1 = correspondingCall(pn))
due to equation (2.9). Thus, with equation (2.7) we have an ac-
cess path C ∈ CMod(method(pi+1), correspondingCall(pi)) with
C = 〈v′, f ′1, . . . , f ′d′〉 which constitutes a definition at pi+1.
Thus we apply the induction hypothesis on the path P ′=〈pi+1, . . . , pn〉.
Then ∃ path S = 〈C = s1, . . . , sm = pn〉 where label(si, si+1) ∈
{DD,PI, PO}. As the algorithm inserts a parameter-out edge (A′, C),
and a data dependence edge (p1, A

′), we get the claim.

Corollary 2.4 (Safety of Unfolding Criterion in Definition 2.5). Using IRef/∼
and IMod/∼ instead of IRef and IMod is sound.

Proof. The proofs of Theorem 2.2 and Lemma 2.3 do not rely on the actual
access path A of the execution E, but on an abstraction A′ that has (at least)
the same aliasing relation and ends with the same field name. Thus, using the
shortest location with the same field and aliasing relation, which is IRef/∼ or
IMod/∼, is sufficient.

2.6 Related Work

Danicic et al. [DHHO07] present a lazy semantics for Weiser-style program slic-
ing (i.e. without using intermediate representations like dependence graphs) of
a simple while language. This semantics allows program slicing to introduce
termination (i.e. a program slice may terminate while the original program does
not, see [Wei84], so it is non-termination insensitive in the sense of Ranganath
et al. [RAB+07].) Their semantics is consistent with program slicing and substi-
tutive, thus allowing program transformations and software maintenance tasks
like component reuse.

A formalization of program slicing that allows comparison of various variants
of program slicing has been given in Binkley et al. [BDG+06]. This theory allows
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classification of static slicing, dynamic slicing, both with or without counting
iterations, and their variants that additionally require the program and its slice
to follow identical paths11. Further, it formally defines what it means for one
slicing algorithm to be weaker than another, which gives a precise understanding
of what uncouth sentences like “Dynamic slices are smaller than static slices”
mean. Finally, simultaneous slices (i.e. involving a set of slicing criteria) and
conditioned slicing [CCL98] are related to other forms of slicing. Dependence
graph based slicing usually produces a non-executable slice12, and it remains an
open question how these relate to the forms presented in this paper.

Binkley et al. [BDH+06] prove a formal relationship between (conditioned)
program slicing and partial evaluation [JGS93]. A combination of these tech-
niques might allow construction of practical amorphous slicers [HBD03]. Para-
metric program slicing [FRT95] allows specification of constraints over the pro-
gram’s input. A term rewriting system extracts a program slice satisfying these
constraints. Conditioned program slicing [CCL98] is a similar technique that
slices based on a first order logic formula on the input variables. The conditioned
slice is based on deleting statements while preserving the program’s behavior.
Amorphous program slicing [HBD03] is a different technique that does only
preserve the program’s behavior with respect to the slicing criterion, but not
the original source code structure. This allows all kinds of semantics-preserving
program transformations.

Other Notions of Control Dependence The first rigorous examination
of control dependence was by Podurski and Clarke [PC90]. They define two
notions of control dependence, strong control dependence and control depen-
dence!weakweak control dependence. The former is actually equivalent to the
transitive closure of the standard control dependence defined earlier. Weak con-
trol dependence generalizes control dependence to cases, where an infinite loop
may hinder statements reachable from this loop from execution, which repre-
sents another form of controlling whether another statement is executed. Apart
from the cases covered by standard control dependence, a statement is intu-
itively weakly control dependent on the predicate of the directly predecessing
possibly nonterminating loop.

This intuitive notion was coined divergence dependence by Hatcliff et al.
[HCD+99] but later divergence dependence together with standard control de-
pendence was replaced by the more general definition of weak control depen-
dence [RAB+07]. Cheng [Che93b] presents a generalization of control depen-
dence for non-deterministic choice operators, called selection dependence.

Ranganath, Amtoft et al. [RAB+07,Amt08] present new forms of control de-
pendence suitable for control flow graphs that do not satisfy the unique end prop-
erty , i.e. which do not terminate (e.g. reactive systems) or have multiple points
of return (e.g. return and throw statements). They generalize standard control
dependence to nontermination-insensitive control dependence and weak con-
trol dependence to control dependence!nontermination-sensitivenontermination-

11Called Korel and Laski [KL88] style slicing in [BDG+06]
12Although most techniques can be extended to executable slices
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sensitive control dependence. Nontermination-sensitivity guarantees that the
standard program semantics (instead of a lazy semantics) is preserved by slic-
ing, which plays an important role in their application, namely model checking.

Furthermore they define various notions of order dependence which consti-
tute ternary relations rather than traditional binary relations, allowing a rig-
orous definition of slicing with correctness proof even in the case of irreducible
control flow graphs. Amtoft [Amt08] took on one of these, namely weak or-
der dependence,13 to verify the correctness of nontermination insensitive slicing
without assuming a unique end node in the control flow graph. Slicing with
this ternary relation a → (b, c) includes a into the slice, only if b and c are
already contained. Currently, both works have no extension to interprocedural
programs.

When programs contain halt statements in procedures, Sinha et al. [SHR01]
found that intraprocedural control dependences together with call dependences
do not suffice to guarantee semantic preservation during slicing. Based on
Podurski and Clarke’s work [PC90], they define interprocedural control depen-
dences to capture the effects of non-terminating procedure calls. They prove
that these guarantee semantic preservation, however, their approach captures
context-insensitive slicing only. They propose a second algorithm that pre-
serves context-sensitivity, but this algorithm is practicably infeasible as it relies
on method inlining even for recursive methods. Their approaches are claimed
to extend to weak control dependence, however, without any proof.

Exception Handling Sinha and Harrold [SH00] take a different approach
for modeling exception handling in Java: They add interprocedural control de-
pendences from throw statements to possible catch blocks in methods above
in the call graph. However, this approach does not handle implicit exceptions
and requires non-standard interprocedural control dependence edges, which may
render efficient context-sensitive slicing with summary edges infeasible. Allen
and Horwitz [AH03] show that this problem may lead to incorrect slices for
certain programs, where the call chain is greater than one. Further, Sinha and
Harrold ignore data dependences due to exceptions, rendering their approach
unsound.

Allen and Horwitz [AH03] model try, throw and catch statements – in anal-
ogy to jump statements of traditional language [BH93, CF94] – as synthetic
predicates. Like in our approach, possibly excepting call statements are mod-
eled as predicates that introduce control dependences on their successors, as
these depend on whether the method terminates normally or abruptly, how-
ever, there may be multiple successors, one for each type of exception that may
be thrown. Their modeling of interprocedural dependences for the returned or
thrown values is non-standard, as they insist on having a control dependence
path from a throw statement to all vertices whose execution may be affected.
Thus they need summary edges between parameter-in nodes and non-parameter
nodes. In contrast, our approach handles these values with traditional interpro-
cedural data dependences (parameter-out edges); this induces the same transi-

13However, using an incompatible definition

65



CHAPTER 2. DEPENDENCE GRAPHS AND SLICING FOR
OBJECT-ORIENTED LANGUAGES

tive dependences with standard techniques. In order to get more precise slices
for exception paths, they propose to split return parameter nodes, such that
each possible exception type that may be thrown has its own node. While this
requires an interprocedural uncaught exception analysis that is not discussed in
this paper, it also raises the problem that realistic programs already include a
high number of parameters due to object nesting, so splitting may dramatically
reduce scalability with only minor impact on precision. Further, it has been
shown [Tip95] that synthetic predicates are more conservative than necessary,
which may lead to imprecise slices.

Extensions for Object-oriented Languages Although program slicing and
dependence graphs are relatively old, extensions for object-oriented features
have not yet reached the degree of maturity of procedural analysis. One early
approach to object-oriented slicing was the work by Larsen and Harrold [LH96].
This approach represents fields of object parameters as extra (scalar) parameters
and thus merges all fields of different objects. This results in a more conserva-
tive approximation, as the approach is not object-sensitive. As already proposed
by Malloy [MMKM94], they include membership dependences and inheritance
dependences, which are only interesting for executable slices. Several authors
proposed Java implementations based on Larsen and Harrold’s work: Kovács
et al. [KMG96] based their implementation of a Java slicer on that representa-
tion, with a slight adaption for Java. Zhao [Zha00] also bases his proposal on
the Larsen/Harrold work. Eventually Liang [LH98] pointed out that Larsen’s
approach is insufficient: An object passed as a parameter to another object’s
methods calls or being used as another object’s field cannot be represented.
Apart from that, its model of polymorphic choice at invocation sites may give
incorrect results. It remains unclear how the approaches based on Larsen’s work
circumvent these defects.

Tonella [TAFM97] proposed to use the results of a flow-insensitive points-to
analysis to resolve the runtime types of an object but represent an object as
a single vertex when an object is used as a parameter. Thus his approach is
field-insensitive and lacks precision.

Liang and Harrold [LH98] correct several flaws and imprecision of previous
approaches. They introduce full object-sensitivity in their SDG, and can handle
(polymorphic) objects that are passed as parameters or used as data members in
other objects. Further, they soundly represent polymorphism with its parame-
ters and inheritance. They represent object parameters as tree structures, how-
ever, they propose limiting its depth to a fixed number and it remains unclear
how dependences due to deeper levels are approximated. This problem inspired
this work, which gives a precise condition for unrolling these trees together with
a soundness argument. Liang and Harrold discuss a language without excep-
tions, our work also integrates exception handling. Liang and Harrold do not
report an implementation of their approach.

Walkingshaw [WRW03] implemented a SDG generator for sequential Java
using the SOOT framework. Threads, exceptions and unstructured control flow
are not yet represented. Like our approach, it is object sensitive for field depen-
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dences, but no algorithm to compute the object trees was given. In addition to
our SDG, his graph contains membership dependences and inheritance depen-
dences as proposed in [MMKM94]. For non-executable slices, the latter are not
necessary as they do not increase the precision of the slice. Thus in our SDG
membership and inheritance dependences are omitted.

Nanda’s approach [NR03] models fields of objects as extra parameter nodes
called escape nodes. The concept is similar to our approach but they build no
trees which makes it harder to find the dependence between a field and the
containing object.

CodeSurfer [AT01,ART03] contains a beta version slicer for C++. A Java
version is planned. As of today, nothing is known about the precision of
Codesurfer for C++.

The Bandera [HDZ00] project uses the Indus14 Java slicer to automatically
reduce the size of the transition system for model checking of Java source
code [DHH+06]. The Bandera slicer is designed as a model checker front-
end, not as a tool for program analysis. In contrast, the Kaveri Eclipse plu-
gin [JRH05] offers a slicer for Java in a popular development environment. To
our knowledge only the Indus slicer is—besides ours—fully implemented and
can handle full Java bytecode. Indus is customizable, embedded into Eclipse,
and has a very nice GUI, but is less precise than our slicer e.g. in terms of inter-
procedural data dependences of object fields. Like all implementations based on
SOOT, they do not include all possible control flow based on implicit exceptions,
which may lead to unsound results.

Many implementations of slicers for Java like [JRH05] pursue a relaxed
notion of dependence graph15, where data dependences are allowed to cross
method boundaries. While this allows a more efficient implementation, one
looses context-sensitivity for slicing and thus precision16 As an example, Kaveri
only offers k-limiting of contexts for precise slicing, while SDG slicing is precise
even for recursive methods. Furthermore, applications like our precise informa-
tion flow control algorithm (see section 4.6.1) require context-sensitive slicing
and are thus not applicable to such relaxed graphs. Only the basic IFC algo-
rithm can be leveraged in such a setting.

14http://indus.projects.cis.ksu.edu
15In comparison to the traditional system dependence graph of [HRB90].
16A more detailed study of slice sizes compared to our approach can be found in section 7.1.
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Chapter 3

Concurrency

Both standard Java (J2SE) and Java for embedded devices (J2ME) support
several threads of execution at the same time, either virtually dispatched to
a single processor or running concurrently on multiple processors like in the
current multicore architectures. All these threads share main memory, where
the heap objects reside. Threads in Java are integrated into the programming
language itself, whereas most languages need to include a multi-threading library
that accesses native operating system routines. Therefore, threads in Java are
much more system-independent than in other languages.

As Java is an object-oriented language, each thread running in the Java VM
is associated an object of the Thread class. There is no other way for a user
to create a thread but via a Thread object1 whose start method is invoked. In
such a case, a new thread is spawned and the run method of this thread object
is executed. All threads share a single heap for storage of objects and their only
interactions consist of synchronization and communication via shared variables
(i.e. at least two threads share the reference to a heap memory cell).2

Making threads independent of the base operating system required the defi-
nition of a semantics for thread operations. Apart from that, the Java designers
wanted to give compilers the ability to apply aggressive optimizations while at
the same time giving programmers a certain kind of security. As a result, the
Java Memory Model (JMM ) was released based on JSR-133 and incorporated
into Java 1.5 [GJSB05].

3.1 The New Java Memory Model

A memory model answers the question on which conditions a thread will see
the value of a shared variable that has been previously (re)defined in another
thread. With multicores having separate caches, it is no longer the case that
one thread might ever, let alone immediately, see the results of an operation

1In analogy to previous work, the term thread will mean a thread of execution in the
operating system, while an instance of the class thread will be called a thread object.

2If one thread t1 calls a (non-synchronization) method of the thread object t2 (where t2
corresponds to a thread executing in parallel to t1), this call is nevertheless executed in t1’s
thread of execution, thus will only interact with t2’s thread in terms of shared memory.

69



CHAPTER 3. CONCURRENCY

in another thread. Defining a precise memory model has several advantages:
First, describing the behaviors that multithreaded programs are allowed to ex-
hibit allows all kinds of compiler optimizations, even if such an optimization is
not yet known or implemented by the time the memory model is defined. To
remain consistent, the Java Language Specification requires an as-if-serial se-
mantics within thread boundaries that programmers are used to from sequential
programming. And second, the specification committee wanted to guarantee a
certain level of security, even if the program is insufficiently synchronized: The
result of an improperly synchronized field access is not undefined as in tradi-
tional programming languages, which might lead to reading an arbitrary value
from memory (e.g. a secret password). Instead, the JMM defines that only a
value written to that field in this or another thread before the read instruction
may ever be seen, even in the case of race conditions.3

Requiring that every processor in a shared-memory multiprocessor environ-
ment immediately sees what all the other processors are doing is prohibitively
expensive in contemporary architectures, that only appear to adhere to the
von Neumann computing model. In practice, this requirement would abandon
nearly all recent achievements in speeding up processors, like pipelining, caches
or speculative execution. Therefore, all contemporary architectures use a more
or less relaxed notion of memory-coherence and require the operating system,
compilers and sometimes even the program to insert special instructions (fences)
to guarantee safe sharing of data. Java’s write once, run everywhere philosophy
thus required the definition of a common memory model, which is enforced by
the JVM in terms of the platform’s memory model.

The JMM describes, based on a program and a corresponding execution
trace, whether the trace is a legal execution of the program. To this end, it
validates for each read, that the observed write follows certain rules. Implemen-
tations of the JMM need only make sure that the execution produces a result
that can be derived from the rules in the JMM, but are free in all other details.
In particular, all present and future compiler optimizations are legal, if they
adhere to those rules.

The actions of each thread in isolation must obey an as-if-serial semantics
also called intra-thread semantics, i.e. all actions must appear to execute in the
same order that the thread’s statements are ordered in the program, with the
additional restriction that the observed values of shared variables must adhere to
the rest of the memory model. As-if-serial semantics does, however, not restrict
optimizations that change a thread’s semantics but preserve that appearance
(e.g. loop invariant code motion).

In Java, all instance and static fields and arrays are stored in shared heap
memory and are therefore affected by the memory model. In contrast, local
variables in methods or formal method or exception handler parameters are
not shared and thus need only adhere to intra-thread semantics. For the rest
of the memory model, the term variable will denote a shared variable. Two

3An exception to this rule exists for 64 bit values, where access may be split into two
accesses of 32 bit length, so an inconsistent value might be observed in case of insufficient
synchronization.
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accesses (reads or writes) to the same variable are said to be conflicting , if at
least one is a write. An inter-thread action is an action by one thread, that can
be detected or directly influenced by another thread. The inter-thread actions
include reads and writes to variables, locks and unlocks of monitors [Hoa74]
as short-term scheduling means, and starting and joining of threads. Mid-
term scheduling is provided via Brinch-Hansen style [BH73] signal-and-continue
[How76] wait/notify/notifyAll primitives.

The JMM guarantees visibility of results between two inter-thread actions
only if they are ordered by a partial ordering called happens-before. If two ac-
tions are not ordered by happens-before, the JVM may reorder them arbitrarily
which allows compiler optimizations. Two conflicting accesses are said to form
a data race (aka. race condition), if they are not ordered by happens-before. A
correctly synchronized program in Java exhibits no data races.

Happens-before is defined by the following rules [GJSB05,GPB+06]:

Program order defines that each action in a thread happens-before every ac-
tion in that same thread that follows in the program order.

Monitor lock An unlock on a monitor lock happens-before every subsequent
lock on the same monitor.4

Volatile variable A write to a volatile variable happens before every subse-
quent read on that same variable.

Thread start A call to Thread.start happens-before every action in the started
thread.

Thread termination Any action in a thread happens-before any other thread
detects that the thread has terminated through join or isAlive of class
Thread.

Interruption A thread calling interrupt on another thread happens-before the
interrupted thread detects the interrupt through an InterruptedException
or isInterrupted or interrupted.

Finalizer The end of a constructor happens-before the start of a finalizer for
that object.

Transitivity Happens-before is transitive.

The transitivity rule together with program order makes synchronization on
the same variable effectively a fence instruction, i.e. all actions in one thread
before a lock release are visible in the other thread after its subsequent acquisi-
tion. The same holds for a write and a read of a volatile variable. However, if
two threads synchronize on different locks, there is no happens-before relation
and therefore no ordering required.

4This rule includes wait/notify synchronization, due to the implicit unlocking of wait.
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3.2 Slicing Concurrent Java

The JMM defines the inter-tread semantics for accessing shared variables and
therefore forms the basis for intra-thread slicing. The program order rule’s intra-
thread semantics effectively requires that program transformations must adhere
to the topological ordering imposed by data and control dependences (see defini-
tions in the last chapter). Statements that are not ordered by these dependences
can safely be reordered.5 Therefore, a more precise data and control dependence
analysis may enable more aggressive compiler optimizations. Additionally, the
memory model requires that values written to shared variables in other threads
are visible to a read of that variables, if they are ordered by happens-before.
Therefore, the SDG needs to be extended to a concurrent system dependence
graph (cSDG), a representation of concurrent programs where threads commu-
nicate via shared variables. These communications are represented as a special
kind of data dependence for shared variables that is traditionally called interfer-
ence dependence. The most basic form just requires that the involved accesses
are conflicting:

Definition 3.1 (Interference Dependence). A node m is interference dependent
[Kri98,HCD+99] on node n (n→ir m), if

1. there is a variable v, such that v ∈ Def(n) and v ∈ Ref(m),

2. n and m might execute in different threads6 at runtime (θ(n) 6= θ(m)),

where a thread map θ maps a CFG node n to a thread identifier to which n
belongs.

This definition is very conservative and we will see in the subsequent sections,
how to refine this definition to prune many of the spurious cases that many
previous approaches [HCD+99,Zha99,RH04] suffer from.

Thread invocation is traditionally modeled in analogy to procedure calls,
i.e fork sites are connected via fork edges to the corresponding run() meth-
ods. As Java only supports thread invocation via calling Thread.start(), which
spawns a new thread executing its run() method, and both do not have ex-
plicit parameters, such a fork site can only have one parameter for the implicit
this pointer, as well as synthetic parameters for static variables. This param-
eter passing is modeled as fork-in edges, in analogy to parameter-in edges of
method invocations. Changes in parameters are already modeled with interfer-
ence edges7, so separate parameter-out edges are not needed.

As an example, consider Figure 3.1, where a program fragment is depicted
alongside its cSDG. The variables x and y are global, and thus added as extra
parameters at the thread’s fork point. Note the fork edge between nodes 4 and
10 and the fork-in edges between nodes 5 and 11, and 6 and 12. Node 15 defines
the shared variable x, which is used at node 7 in the main thread, therefore an
interference dependence is included from 15 to 7. The same goes for nodes 9
and 13, where the shared variable y is redefined.

5Unless they are subject to another rule of the memory model.
6It may also be the case that two threads are different objects of the same class
7This is due to the obliviousness of Thread.join() of our model.
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int x,y;

main() {
x = 0;
y = 1;
fork(thread_1 );
int p = x - 2;
int q = p + 1;
y = q * 3;

}

thread_1 () {
int a = y + 1;
int b = a * 4;
x = b / 2;

}

entry main

x = 0
2

y = 1
3

fork thread_1

xin = x
5

yin = y

6

4

p = x-2

7

q = p+1

8

y = q*3
9

1

start thread_1

x = xin
11

y = yin

12

a = y + 1

13

b = a - 4

14

x = b / 2

15

fork-in edge

fork edge
10 interference edge

Figure 3.1: An example cSDG

3.2.1 Undecidability of Slicing

Precise slicing is undecidable in general. Several undecidability results have
impact on the slicing technique for concurrent programs:

1. Whether a condition becomes true or false in the run of a program cannot
be statically decided. To circumvent this, one generally assumes non-
deterministic choice operators at conditionals during static analysis, with
the consequence that every path in the intraprocedural CFG is assumed
to be feasible (see chapter 2, page 23).

2. Precise slicing of languages with respect to synchronization and recursion
is undecidable [Ram00].

3. In combination with interference dependence, data dependence is no longer
transitive [MOS01], rendering parallel interprocedural slicing undecidable
altogether.

4. In the following, we will present another source of undecidability: Pre-
cise intraprocedural slicing [Kri98] in combination with dynamic thread
creation is undecidable.

To illustrate the results (2) and (3), consider Figure 3.2, which shows small
example programs. The program on the left demonstrates how synchronization
can induce an ordering on the execution sequence: first a is set to 1, after
notification the other thread can proceed and will thus kill the first definition
assigning 0 to a. So the dependence between a:=1 and write(a) could be
removed.

In the example on the right (taken from [MOS01]), the value of a will not
have an influence on write(c) in any possible execution sequence. The state-
ment in the right thread might either be scheduled before b:=0 or after. If it
executes before, then c will be redefined in the first thread before the join. If
not, b will already be redefined to 0, and thus independent from the value of
a. The works cited above show that the effects presented in these examples
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fork

a:=1

notify

b:=2

join

write(a)

wait

a:=0

a:=1

fork

b:=a

b:=0

c:=0

c:=b

join

write(c)

data-/interference

dependence

control flow

Figure 3.2: Examples for imprecise slices

combined with context-sensitive slicing of procedure calls make precise slicing
undecidable, so conservative approximations need to be leveraged.

3.2.2 Dynamic Thread Creation

Threads in Java are — in contrast to several previous languages like Ada —
totally dynamic. In general, static detection of the number of threads running
in a program’s execution is undecidable. A thread object can be created like any
other object calling one of java.lang.Thread’s constructors, and a subsequent
invocation of its start() method will create a new thread of execution in the
operating system executing its run() method. All this may happen in loops or
recursion, so there is no static bound on the number of threads.

When a language offers threads that can be created and destroyed dynam-
ically, and when thread creation may occur in a control flow cycle one gets
another source of undecidability even if the language offers no procedures. In
this case, the undecidability result from sequential intraprocedural slicing causes
another undecidability: One cannot determine if, or how often, the cycle is ex-
ecuted and thus a new thread instance is created. For program analysis one
therefore has to conservatively assume that an indefinite number of thread in-
stances will be created. Hence, the question if there may exist two threads
during program execution where one is at a given statement s1 and the other
at a given statement s2 must be conservatively answered ’yes’, for there may
always be another thread that is currently at statement s2.

As an example, consider Figure 3.3, where the main thread forks an unknown
number of threads t, and t exposes no classical data dependence due to control
flow. However, interference is possible to other instances of t. The graph on the
right illustrates, that a feasible interference path can only be found if at least
three instances of t have been created. However, since it is undecidable if the
loop executes at least thrice, precise slicing is undecidable here as well.

This dynamic characteristic make static analysis of threads in Java more
challenging than in languages with a statically bounded number of threads,
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1 main() {
2 d = 1;
3 for (...) {
4 fork t;
5 }
6 x = a;
7 }
8

9 thread t {
10 a = b;
11 b = c;
12 c = d;
13 }

d = 1 t1

a = b

b = c

c = d

t2

a = b

b = c

c = d

t3

a = b

b = c

c = d

x = a

Figure 3.3: Example program for undecidability

and means that for most cases one needs to become more conservative. For
determining interference, it is crucial to know if more than one instance of
a given thread class might ever execute in parallel, as in this case different
instances of this thread class could interfere. If only a single instance of a given
thread class will ever be created or executed, then no interference between two
instances of this class is possible, and we can only have interference between
this thread and threads of another class. For a specific code this can be easily
determined: The thread executing the main method is a singleton, provided
its class does not extend Thread or implement Runnable; however, in general
determining threads that may ever only be created once in a program’s execution
is undecidable. But similarly to must-aliasing as described in section 2.3.3, if a
Thread allocation statement a is not contained in a cycle of the interprocedural
control flow graph, then we know that a’s equivalence class represents actually
a singleton set, thus if there is no other allocation site of a’s type, we know that
there cannot be interference from a to another instance of a. A similar idea was
presented in [RH04], where singleton sets of thread allocations are determined
not to have thread-local data escaping.

To get a dependence graph which is most similar to the sequential SDG-
variants, many approaches [Kri03b,Zha99,NR06] propose to build one sequen-
tial dependence graph for each thread of execution and connect those with
inter-thread dependences. This may reduce the number of spurious interfer-
ence dependence edges, but in a highly dynamical language, where (at least
theoretically) an unbounded number of threads can be started during program
execution, this approach is no longer feasible. Another reason against this ap-
proach is that class libraries like Java’s are so large that one needs to share their
dependence graphs.

For these reasons, our approach includes every method into the cSDG only
once. Yet, this complicates the determination of the θ function for Definition 3.1,
which in the other approaches simply returns the enclosing thread for a given
node n. In our setting it must return a set of enclosing threads. But as the
number of threads generated at runtime is not fixed we have to conservatively
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Algorithm 4 Virtual thread numbers
Input: The call graph
Output: A map θ : method→ set of numbers and

the maximal number of virtual threads maxThreads

maxThreads = 0
assign {0} to all root methods of the call graph
add all methods in the cSDG into the worklist changed
while changed is not empty do
remove method m from worklist
for all c ∈ caller(m) do
if m is redefinition of Thread.run() and

c is Thread.start() then
if m’s thread may be started more than once then
θ(m) ∪= {maxThreads+ 1,maxThreads+ 2}
maxThreads += 2

else
θ(m) ∪= {maxThreads+ 1}
maxThreads += 1

end if
else
θ(m) ∪= method(θ(c))

end if
if θ(m) has changed then
add all callees of m to worklist

end if
end for

end while
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approximate the effects. If we do not know for sure that a thread is only started
once, we assume that there are at least two instances of the given thread class.
Thus we will include interference dependence, whenever one instance of the
thread class defines a field which another instance reads. Our approach is thus
similar to Lee et al’s [LPM99] analysis of parallel do which summarizes conflict
and synchronization information between all dynamically created threads of the
parallel do.

Unfortunately, determining whether a thread class (!) is only started once is
undecidable in general; A precise answer is feasible only in very special cases.
For example, if there is only one calling context for the redefined run() method
where the points-to set of the this pointer is a singleton {a} and one can estab-
lish that the allocation site a is only executed once. Finding these cases requires
a special whole program analysis, e.g. based on Ruf [Ruf00], which is beyond
the scope of this thesis, but has been integrated into our framework [GH09].

For analysis purposes, we model this distinction between singleton and gen-
eral threads by so-called virtual thread numbers. The prefix ’virtual’ represents
that the dynamic number of threads created at runtime is unknown. Virtual
thread numbers are determined according to the call graph we get from a points-
to analysis. Algorithm 4 describes how to compute the θ function: There is one
thread that we know for sure is dynamically only created once: The thread ex-
ecuting the main-method8. We assign the set containing only the virtual thread
number 0 to all the root methods (including main and class initializers).

Then we iterate over all methods in the call graph: if a new thread has
been started, i.e. the method m we are currently working on is a redefinition of
Thread.run() and it has been called by Thread.start() (in all the other cases
the run() method behaves like a normal method) then we add new numbers to
the set of virtual thread numbers. Otherwise the set of virtual thread numbers of
the caller is included into the set of m. A singleton thread class will be assigned
a single thread number, such that it will not exhibit interference to itself, while
general thread classes are assigned two distinct thread numbers. As interference
is determined between statements with different numbers, interference arises for
singleton threads only from and to threads of a different class.

When the set of virtual thread numbers has changed, all the methods called
by the analyzed method have to be (re-)analyzed, too. This fixed point iteration
ends when no more changes in these sets have been found. Thread numbers
are bounded by the number of thread classes, so this monotonic iteration is
guaranteed to terminate with a minimal fixed point. Finally, all statements in
each method are assigned the thread numbers of their method.

As an example, consider the program in Figure 3.4 together with its bi-
partite callgraph in Figure 3.5. Boxes represent methods and ellipses callsites
in the call graph. Note that we omitted native and library methods as they
do not contribute interference dependences in this example. The root method
main is assigned the virtual thread number 0 according to Algorithm 4. Then,
all methods in the callgraph are added to the worklist. For all methods ex-

8If the main class is an instance of Thread then its forked instances receive new virtual
thread numbers
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1 public class FacThreads extends Thread {
2 static int i;
3 static final Int[] facs = new Int [10];
4

5 public static void main(String [] args) {
6 new FacThreads (). start ();
7 for (int i = 0; i < facs.length; i++) {
8 fac(i);
9 }

10 }
11

12 static void fac(int n) {
13 if (n <= 1)
14 return setValue(n, 1);
15 return setValue(n, n * fac(n - 1));
16 }
17

18 static int setValue(int n, int i) {
19 synchronized (facs) {
20 if (facs[n] == null) {
21 facs[n] = new Int(i);
22 facs.notify ();
23 }
24 }
25 return i;
26 }
27

28 public void run() {
29 for (int i = 0; i < facs.length; i++) {
30 synchronized (facs) {
31 while (facs[i] == null) {
32 try {
33 facs.wait ();
34 } catch (InterruptedException e) {}
35 }
36 System.out.println(facs[i].value );
37 }
38 }
39 }
40

41 static class Int {
42 int value;
43 public Int(int i) {
44 value = i;
45 }
46 }
47 }

Figure 3.4: Example program with multiple threads
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FacThreads.<init>

Thread.<init>

FacThreads.fac

FacThreads.setValue

FacThreads.setValue

FacThreads.fac FacThreads.setValue

FacThreads$Int.<init>

Object.<init>

Object.notify FacThreads$Int.<init>

FacThreads.main

Thread.start FacThreads.<init> FacThreads.fac

FacThreads.run

PrintStream.println

FacThreads.start

Object.wait

Method Virtual thread nr
FacThreads.main 0
FacThreads.<init> 0
FacThreads.fac 0
FacThreads.setValue 0
FacThreads$Int.<init> 0
FacThreads.run 1,2

Figure 3.5: Call graph and virtual thread numbers for the example program 3.4
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cept FacThreads.run the algorithm will branch to θ(n) ∪= method(θ(c)), thus
they will be assigned thread number 0, which eventually reaches a fixed point.
FacThreads.run is forked from a callsite FacThreads.start, a redefinition of
Thread.start. Therefore the first branch is executed which determines that
there may be several threads spawned from that callsite, as a consequence of
being invoked in a loop. Thus, FacThreads.run is assigned two virtual thread
numbers, 1 and 2.

We use virtual thread numbers as an approximation of θ when computing
interference dependence. Thus, using thread numbers prunes interference de-
pendence for cases violating the second requirement of Definition 3.1.

3.3 Dependence Analysis for Concurrent Programs

Thread numbers give an initial conservative approximation which threads may
execute in parallel. With these numbers, we follow the spirit of Krinke [Kri98,
Kri03b] who assumes all threads executing concurrently from the start to the
program’s termination. But in contrast to previous works, we generalize to
dynamic thread creation instead of working with a statically fixed set of ‘tasks’.

3.3.1 Interference Dependence

One main requirement of analyzing threaded software is to find possible depen-
dences due to shared data being changed by a concurrently executing thread as
presented in Definition 3.1. However, this definition needs refinement to apply
to Java’s memory model:

Definition 3.2. A node r is interference dependent on node d, if θ(d) 6= θ(r)
(d and r may potentially be executed in parallel) and

1. either there is a static field f , such that d defines f and r references f ,

2. or there is a (non-static) field f , such that d defines f of variable v and r
references f of variable w, and v and w are potential aliases.

While this definition is still fairly imprecise when compared to the Java
memory model as previously presented, it improves significantly over previous
works, which did not introduce interference based on aliasing of the base vari-
ables, but on either typing [Zha99,HCD+99] (i.e. all reads of a given field f are
interference dependent on all writes to f , ignoring the base variables) or escape
analysis [RH04] (accesses to a given field f of object o have interference if o is
found to be possibly escaping its thread.9)

Definition 3.2 gives rise to Algorithm 5:
Coming back to our example in Figure 3.4 with the virtual thread num-

bers in the table of Figure 3.5, Algorithm 5 can only find interference between
the methods with number 0 and FacThreads.run and from the latter to itself.
However, FacThreads.run does not contain definitions of shared variables, so

9Ranganath uses a highly efficient but admittedly imprecise unification based escape analy-
sis based on Ruf’s approach [Ruf00].
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Algorithm 5 computeInterference()

1 foreach (i, j) ∈ {(i, j) : 0 ≤ i, j ≤ maxThreadNumber : i 6= j}
2 foreach field f where f is used in thread i and defined in j
3 foreach statement g ∈ thread(i) : f ∈ Ref(s)
4 foreach statement s ∈ thread(j) : f ∈ Def(s)
5 if f is static or s and g are aliased
6 addInterference(s, g);

only methods with thread number 0 can be the source of interference to other
threads. In line (21), an entry of the facs array is written, therefore all reads to
that array in FacThreads.run are interference dependent on it, namely the con-
dition in line (31) and line (36). Another definition can be found in line (44) for
the field value. Again, this statement has interference dependence to line (36).

Other more refined definitions of interference for Java can be imagined, and
Ranganath presents the following:

Definition 3.3 (Interference Dependence [RH04]). Let P be a program, o be
an object with field f , and t1 and t2 be threads such that t1 6= t2. If there exists
an execution trace of P such that f is written at trace state sm by a statement
at program point m executed by thread t1 and read at state sn by a statement at
program point n executed by t2 (with sn occurring after sm) and no write to o.f
occurs between sm and sn, then n is interference dependent on m.

However, it is immediately clear from the undecidability results for concur-
rent programs that such a definition can only be conservatively approximated.
Note that even though this definition was given before the specification of the
new Java memory model, this definition must not contain a clause requiring
that sm and sn are ordered by happens-before, because the Java memory model
allows values to be seen without ordering, it just does not guarantee them to be
seen. So to remain conservative, such a clause must not be included.

3.3.2 Other Concurrency-Related Dependences

Apart from interference, other inter-thread dependences have been found rel-
evant for slicing of multi-threaded Java programs. Cheng [Che93b] proposed
synchronization dependence to reflect if the start or termination of one state-
ment depends on the start or termination of another statement. For a JVM-like
language, Hatcliff et al. [HCD+99] define synchronization dependence from an
access to a shared variable to both the monitor acquisition and release state-
ments of the directly enclosing critical region. Apart from that Hatcliff et al. in-
troduce ready dependence modeling that a monitor or wait/notify statement
may delay the execution of another such statement indefinitely.

Both works combine concurrency-related dependences with weak control de-
pendence [PC90] (which Hatcliff et al. [HCD+99] decompose into standard con-
trol dependence and divergence dependence; for the latter they only provide an
intuitive definition). Hatcliff et al. state (however without correctness proof)
that this set of dependences is guaranteed to produce a correct slice in the sense
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int x;

main() {
cons() || prod ();

}

prod() {
set ();

}

void set() {
x = ...;

}

cons() {
int y = get();
print(y);

}

int get() {
return x;

}

fork

entry prod

set()

entry set

x = ...

entry cons

int y = get()

entry get

return x

print y

fork edges

interference edge

Figure 3.6: A counter example to Zhao’s approach

of a bisimulation-based correctness criterion that extends the classic notion of
projection in the single-threaded case, as originally presented by Weiser [Wei84].

3.4 Slicing the cSDG

Several algorithms have been proposed to slice concurrent SDGs. The most
general and thus trivially correct algorithm is building the transitive closure of
dependences.10 This classical context-insensitive slicing algorithm is, however,
far too conservative, as calling contexts are not taken into account.

Zhao [Zha99,ZL04] proposed leveraging the standard context-sensitive two-
phase slicing algorithm [HRB90] for slicing concurrent SDGs. However, this
may yield incorrect slices, which was first noticed by Nanda [Nan01, NR06].
Figure 3.6 shows a minimalist producer-consumer example with interference be-
tween the producer and the consumer. Two-phase slicing of the print node
misses the invocation of prod.run: In the first phase, all light gray nodes
are traversed starting from print x. The second phase starts at the omitted
parameter-out edge to the return statement and marks this statement and the
header get as part of the slice. As Zhao’s algorithm traverses interference as if
it were a standard dependence edge, it also marks both nodes in the set method
in the second phase. However, since the second phase must not ascend into call-
ing methods, the invocation of set will not be included, even though it clearly
belongs to the slice of the print statement.
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Algorithm 6 Iterative two-phase SummarySlicer

1 Input: The cSDG G, a slicing criterion s.
2 Output: The slice S for s.
3

4 W = {s} //, a worklist
5 M = {s 7→ true} //, a map for marking the contents of W
6 // (true represents phase 1, false phase 2)
7

8 repeat
9 W = W \ {n} //, remove next node n from W

10

11 foreach m→e n //, handle all incoming edges of n
12 // If m wasn’t visited yet or m was visited in phase 2 and we are in phase 1 ...
13 // or traversing an interference edge,
14 if m 6∈ dom M ∨ (¬M(m) ∧ (M(n) ∨ e = id))
15 // if we are in phase 1 or if e is not a call or param−in edge, add m to W
16 if M(n) ∨ e /∈ {pi, c}
17 W = W ∪ {m}
18

19 /∗ Now we determine how to mark m: ∗/
20

21 //If we are in phase 1 and e is a param−out edge, mark m with phase 2
22 if M(n) ∧ e = po
23 M = M ∪ {m 7→ false}
24 //If we are in phase 2 and e is an interference edge, mark m with phase 1
25 elseif ¬M(n) ∧ e = id
26 M = M ∪ {m 7→ true}
27 //Else mark m with the same phase as n
28 else
29 M = M ∪ {m 7→M(n)}
30

31 until W = ∅
32 return dom M
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3.4.1 Iterative two-phase SummarySlicer

A straightforward extension of two-phase slicing makes this algorithm correct
for slicing cSDGs. As a remedy, each time an interference edge is traversed, its
source node (i.e. the node in the other thread) is marked as another synthetic
slicing criterion, which means that it will be processed in the first phase of the
slicing algorithm again, even if the target node of the interference edge was
processed in the second phase. Therefore this algorithm is called iterative two-
phase slicing . A highly optimized pseudocode for it is given in Algorithm 6.
The iterated two-phase slicing traverses each node and edge in the SDG at
most twice, and thus has the same worst case complexity as the original two-
phase slicing algorithm by Horwitz et al. [HRB90]. Its running time can be
minimized, if all nodes that are to be traversed in the first phase are removed
from the worklist before those of phase two, as nodes found in the first phase
will not need to be checked again.

Applied to the example program in Figure 3.6, it initializes its worklist W
to the print node. This node is also included into a map M where it maps to
true, meaning that it has been traversed in phase 1. As nodes for phase 1 are
prioritized, it first marks the same light gray nodes as Zhao’s algorithm. When
traversing the parameter-out edge to the return statement of set, the return
node is marked with false to indicate phase 2. Now no more nodes in phase 1
are available, so this return node is taken from the worklist. Its incoming edges
mark the method header get for phase 2 and the assignment to a.x for phase
1, as it is reached via interference. So this assignment node comes next, and its
header node set is included into the slice marked with phase 1. Now we may
ascend into its calling method and mark prod.run with phase 2. All remaining
nodes in the worklist do not change the slice or marking. So the slice for the
print statement is the whole graph, as expected.

Nanda had presented the first algorithm for iterative two-phase slicing in
[Nan01,NR06]. However, they used an unoptimized version, consisting of two
nested while loops. Iterative two-phase slicing preserves context-sensitivity in
each thread in isolation but breaks the calling contexts when crossing thread
boundaries via interference dependence, thus it is sound but not precise.

3.4.2 Time Travel

Krinke [Kri98] first noticed that interference dependence is not transitive, in
contrast to standard data dependence. With iterated two-phase slicing, it is
possible to reenter a thread via interference that was previously left via inter-
ference. However, as interference is determined without taking possible control
flow into account, traversing interference several times may correspond to con-
trol flow that is impossible in any valid program execution. In practice, the node
of reentrance must execute before the node where that thread was previously
left. Otherwise, this would correspond to a so-called “time travel” situation,
where a value is dependent on a statement that will be executed in the future.

10Provided all necessary dependence types are included.
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int x,y;

main() {
x = 0;
y = 1;
fork(thread_1 );
int p = x - 2;
int q = p + 1;
y = q * 3;

}

thread_1 () {
int a = y + 1;
int b = a * 4;
x = b / 2;

}

entry main

x = 0
2

y = 1
3

fork thread_1

xin = x
5

yin = y

6

4

p = x-2

7

q = p+1

8

y = q*3
9

1

start thread_1

x = xin
11

y = yin

12

a = y + 1

13

b = a - 4

14

x = b / 2

15

fork-in edge

fork edge
10 interference edge

Figure 3.7: Slicing an example cSDG

As an example, consider the program and corresponding graph in Figure 3.7,
where the shaded nodes are the slice for node 14 computed by the iterated two-
phase slicer. The computation leaves thread_1 at node 13 towards node 9 and
later returns to node 15 via the interference edge from node 7. Obviously, node
15 cannot influence the slicing criterion 14, because it cannot execute before 14.

As the exact execution order between threads is undecidable [Ram00,MOS01],
this order cannot be taken into account when computing interference depen-
dence. In contrast, intra-thread dependences like data or control dependence
take control flow into account, making them transitive.

Slicing other Concurrency-Related Dependences Intransitivity has been
regarded for interference only, mainly due to incompatible programming mod-
els. Krinke’s and Nanda’s models do not consider synchronization primitives,
thus they can only argue about interference dependence. Approaches with a
finer-grained concurrency model like those by Cheng and by Hatcliff [Che93b,
HCD+99,RH04] leverage context-insensitive slicing, which ignores intransitivity
issues anyway and thus is oblivious of precision. Dwyer et al. [DCH+99] argue
that it remains unclear whether the gain in precision of context-sensitivity out-
weighs the additional cost.

However, taking all concurrency-related dependences into account, time
travel may occur for all kinds of dependences that cross thread boundaries,
if control flow is ignored during dependence computation. In particular, ready
dependence [HCD+99, RH04] is intransitive when crossing thread boundaries.
Accordingly, the same algorithms that prune time travel situations for interfer-
ence dependence must be applied to get precise slices with ready dependence.
The author is not aware of any work that identifies or targets this problem.

3.4.3 Slicers Disallowing Time Travel

To prune interference traversals that correspond to time travel situations, Krinke
and Nanda [Kri03b, NR06] defined which paths in each thread’s control flow
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graph correspond to a valid program execution. Their slicing algorithms are
effectively exponential symbolic executions that marks all other paths as invalid
such that they are not traversed during slicing.

The threaded control flow graph (TCFG) consists of the ICFGs of each
thread that are connected at fork and join nodes, respectively. Note that
Krinke [Kri03b] and Nanda [NR06] require threads to be disjoint, which is in
general not the case for Java threads. However, one can always duplicate shared
parts of the graph to achieve disjointness, which will be assumed in the sequel.

A threaded interprocedural realizable path P =< n1, . . . , nk > is an ordered
sequence of nodes in the TCFG G such that every projection of P to a thread
θi created in P is either empty or corresponds to an interprocedural realizable
path in the ICFG of θi.

The slice of a cSDG w.r.t. the criterion p, denoted by S(p), consists of all
nodes q on which p transitively depends and there exists an interprocedural
trace witness W in the TCFG G for each such q.

S(p) =

 q

∣∣∣∣∣∣∣∣∣∣
W =< n1, . . . , nk >,

q = n1 →d1 · · · →dk−1 nk,= p, di ∈ {cd, dd, id}, 1 ≤ i ≤ k,
∃P is a threaded interprocedural realizable path in G
where each ni is contained in P in the same order as in W


Krinke’s algorithm [Kri98] was the first to solve the transitivity problem for

programs without method calls11. The effects of synchronization are ignored in
this approach. The idea of his slicing algorithm is to keep track of control flow
that is necessary for an execution to be valid. To this end, each visited node
is annotated with a state tuple Γ containing as many entries as threads. For
each thread, the entry in such a state tuple is its last node on the path from the
slicing criterion to the currently visited node. Initially, the state tuple for the
slicing criterion is empty except for the criterion’s thread, which contains the
slicing criterion s. Empty slots in the tuple are usually denoted ⊥, and do not
impose any restriction on that thread’s control flow.

With each traversal of an dependence edge m → n, m is annotated with
a clone of n’s state tuple, where the entry of m’s thread is replaced by m.
When thread boundaries are crossed via interference, one must check whether
intra-thread control flow from the source of the interference dependence to the
statement last visited in this thread (i.e. the entry in m’s slot of the state tuple
at m) is actually possible. Krinke calls a feasible state tuple a threaded witness.

In our example program of Figure 3.7, this situation arises when the al-
gorithm traverses from node 7 to node 15. As thread_1 had previously been
left via interference dependence from node 13, it is checked whether node 13 is
reachable from node 15 via an interprocedual realizable path in the control flow
graph. This is not the case, so the traversal is rejected due to resulting in an
invalid execution trace, which means that node 15 is not included in the slice
from node 14.

11When methods are inlined, this approach may also be used for programs with method calls,
but may require exponential space, and inlining is not possible for programs with recursion
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3.5 Related Work

Nanda [NR00] adapted this approach for programs where threads are interleaved
with loops. This paper targets cobegin/coend style thread spawning which al-
lows an optimization that may improve precision but only allows a fixed number
of threads. Thus, an adaption to Java’s dynamic creation scheme cannot be eas-
ily done.

Chen and Xu [CX01a] propose another exponential symbolic execution, but
this algorithm, although proposed for Java, suffers from the same deficiencies, as
it, too, was originally [CXY+00] proposed for Ada with a fixed number of threads
and inlining of method calls accessing shared variables. Again this cannot be
done for recursive programs. It remains unclear how their Java version models
threads which may be started an unbounded number of times.

In [Kri03b], Krinke extended his approach to procedural programs. Whilst
this algorithm can handle method calls, it still uses a fixed number of threads
which cannot be applied to Java.

In her thesis [Nan01], Nanda, too, extended her approach to programs with
method calls and fork-join threading. Like all approaches using a fixed number
of threads she duplicates a procedure for every thread from which it is called.
Furthermore she presented a version of her iterative two-phase algorithm which
is context-sensitive and does not allow time travel.

A detailed discussion and evaluation of Krinke’s [Kri03b] and Nanda’s [Nan01,
NR06] precise algorithms can be found in [GH09]. The authors present solutions
to several shortcomings of the previous algorithms, most prominently dynamic
thread creation in loops and recursion, which Krinke and Nanda did not fully
support. In spite of new optimization techniques, precise slicing remains very ex-
pensive (exponential in the number of threads), and the experiments in [GH09]
indicate that preventing time travel should only be applied as a post-processing
step, when cheaper methods like the iterative two-phase slicer fail at establishing
a desired property.

Zhao and Li [ZL04] present the concurrent program dependence graph
(CPDG), featuring the traditional data, control, call and parameter depen-
dences as well as class membership and class inheritance dependences. Further-
more, they introduce interface-membership, package-membership and interface-
inheritance dependences for the intra-thread case. As inter-thread dependences,
they use synchronization and communication dependences of Cheng [Che93b,
Che93a] and introduce synchronized-membership dependence for methods as
opposed to usual membership dependence. Yet, it is unclear how they model
dependences due to field access, and their example program and CPDG clearly
miss these dependences12. Furthermore, they propose to use the two-pass slicing
algorithm proposed in [HRB90] which has been shown incorrect (cf. section 3.4)

Naumovich’s work on may happen in parallel analysis [NAC99] may sig-
nificantly improve computation of interference and ready dependence: Their
definitions require two dependent statements to execute in parallel. Ready de-
pendence itself is completely equal to Naumovich’s notify-edges. However, MHP

12For example there is no data dependence from line s30 to s32 in [ZL04]
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analysis currently has no extension for programs with recursive method calls and
synchronization.

Another approach for eliminating spurious interference and ready depen-
dences is the work on Concurrent Static Single Assignment form in the presence
of Mutual Exclusion based on the work of [NUS98,LPM99].

88



Chapter 4

Information Flow Control

Information flow control (IFC) is a technique that asserts the security of a soft-
ware system with respect to a security specification. Research on IFC is on
the rise due to the ubiquity of mobile code and security-relevant applications.
Information flow control is often verified with special type systems [SM03]. How-
ever, type systems do not exploit the whole repertoire of contemporary program
analysis, thus suffer from restrictive languages and a high annotation burden.
This chapter will present a new approach for information flow control based on
program slicing and the system dependence graph as defined in the last chap-
ters. Contrary to type systems, the presented algorithm is flow-, context-, and
object-sensitive as a result of the underlying slicing technology, reducing false
alarms. Recent advances in program analysis render this technique feasible and
scalable even for realistic languages like full Java bytecode.

Previous results from this effort were published in [HKS06,HKN06,HS08].

4.1 Computer Security

Security in the technical sense is defined as the condition of being protected
against danger or loss, with an emphasis on the protection from dangers that
originate from the outside. In terms of computer science, three main dimensions
of security can be identified, which are commonly depicted in the CIA-triad:

Confidentiality is the assurance of data privacy. Only the intended and au-
thorized recipients — individuals, processes or devices — may read confi-
dential data.

Integrity is assurance of data non-alteration. Data integrity asserts that the
information has not been altered in transmission, from origin to reception,
and includes checks of untrustworthy inputs for validity.

Availability is assurance in the timely and reliable access to data services for
authorized users. It ensures that information or resources are available
when required.

Language-based security derives security properties from the source or in-
termediate code. To this end, it leverages programming languages technology,
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typically a part of compiler technology. As temporal properties cannot be vali-
dated with language-based technologies, they only target confidentiality and/or
integrity.

4.1.1 Information Flow

Information security has traditionally only considered the identity and origin of
a software artifact and its user. An example is Bell and LaPadula [BL73,BL96]
style access control, which has become mandatory in all major operating sys-
tems. Other “classical” means include encryption, code signing, virus scanners,
firewalls, automatic updates. However, all these means cannot assert security
on the whole processing path of data (end-to-end security), but only check for
violations at a certain point in the computation. The problem is that these
classical means only verify the identity and origin, but ignore the semantics of
a piece of software. As an example, access control may only verify whether a
user has the right to access a certain service or confidential data. After releasing
that data, it can no longer control if a program makes confidential data public,
because this would require to analyze the program’s semantics. So with tradi-
tional means, a user must hope that a piece of software does not maliciously
use its data, usually based on a company’s identity and reputation. However,
in the past several incidents have become public, where even renown software
producers have collected data on their users and sent that data back to their
servers.

As a remedy, language based security can verify a certain security policy for
a program’s information flow. An information flow policy defines the security
requirements for a given system, e.g. rights and restrictions how data may be
used in a computation. The most desirable property is end-to-end security ,
where sensitive data is protected along the complete processing path [SRC84],
e.g. from the file system (with access control), through data processing in a
program, until it is finally presented to an authorized user. Since access control
is integrated in all major operating systems, controlling the information flow
during data processing remains the grand challenge.

4.1.2 Channels and Information Flow

Lampson [Lam73] has identified three so called channels by which a program can
transmit information to its environment: Legitimate channels are the declared
formal outputs of the program, storage channels is other storage in the program’s
non-local environment, and covert channels are any other means of transmitting
information (i.e. not involving values in any of the system’s stores). A timing
channel is an example of a covert channel where an attacker can retrieve infor-
mation from measuring a program’s execution time. Timing channels have been
successively exploited, e.g. for RSA using the Chinese Remainder Theorem, to
crack encryption in smart cards [Sch00].

When it comes to transmitting information from a source to a channel, there
are two major means for information flow:
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Explicit Flow from x to y occurs, when y is assigned a value whose computa-
tion contains a reference to x. y = f(x) is an example of explicit flow.

Implicit Flow from x to y emerges from control flow, where the execution of y
depends on the value of x. For example the program if (x==0) y=0 else
y=1; contains implicit flow from x to y. Historically, some authors regarded
implicit flow as a covert channel, however, today, this classification is no
longer found, as implicit flow can easily be checked with language-based
techniques.

4.2 Information Flow Control

A means to control how information flows through the channels of a program
is called information flow control (IFC ). Of the three dimension described in
the CIA-triad, information flow control avers confidentiality and/or integrity.
Often integrity is assumed dual to confidentiality (based on an observation of
Biba [Bib77]), so generally one describes only how to assert confidentiality. In-
formation flow control can be done online (during program execution) or offline
(often at compile time). Both approaches have different advantages and disad-
vantages:

The major advantage of online (dynamic) IFC is that it does not spuriously
reject secure program execution, so it is precise. Its classification of information
may be static (each variable has a fixed security level for the whole execution)
or dynamic (the security level is determined at each assignment). But like most
dynamic program analyses, it cannot show the general security of the program,
and it slows down program execution with runtime tests. Also, dynamic check-
ing can at best prevent illicit flow that is about to happen, but a malicious
adversary might gain the information that the program was terminated due to
a violation of the security policy, so the program leaks at least boolean infor-
mation. Some systems like Fenton’s Data Mark Machine [Fen74] employ special
techniques to avoid this information leak, but these may not be effective in
the presence of side-effects. The most limiting property of runtime IFC arise
in detecting implicit flows. To detect information flow by control structures, a
synthetic variable, called program counter (PC ) (also called process sensitivity
label in [ora85]) keeps track of the security of data in control flow constructs.
However, the security label of a control predicate p does not only restrict the
security level of statements that are controlled by the predicate in a given pro-
gram execution, but also of variables that might change as a consequence of the
predicate p in another execution. But dynamic analysis is characterized by only
analyzing one path of execution, not all possible paths. One approach to detect
all possible implicit flows is to keep the PC at the security level of p for the
rest of the program (and increase with subsequent control structures, an effect
which is called label creep in [SM03]), making dynamic analysis too restrictive
in practice.

By contrast, static (offline) IFC needs to be done only once (usually at
compile time.) If the program can be verified, no program execution can exhibit
illegal information flow, avoiding the overhead of runtime checks. However,
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⊥

x y

>

Figure 4.1: A lattice with incomparable elements

precise static IFC analysis is undecidable [SM03], so all static analyses need to
be conservative. Consequently, there is always a class of secure programs that
will be spuriously rejected.

As a remedy, some IFC systems like Jif [MCN+] offer a hybrid approach: the
compiler certifies as much as is statically possible to limit the number of neces-
sary runtime checks and only inserts dynamic checks at user-specified program
points that cannot be statically verified.

4.2.1 The Lattice Model of Information Flow

Usually, data is classified into a finite set of security domains (also called security
levels or security classes) L = {l1, . . . , ln}. A transitive, reflexive and antisym-
metric interference relation (i.e. a partial order)  : L × L denotes x  y iff
information in class x is permitted to flow into class y. The complement relation,
called noninterference relation, defined by 6 := L2\ means that information
flow between security levels must be prevented. Frequently the security levels
are arranged in a lattice L, in which case  is equivalent to ≤. If the interfer-
ence relation does not form a lattice, it can always be extended to a complete
lattice, so we assume a complete bounded lattice L = (L,≤, ⊥,>,t,u) of secu-
rity levels in the sequel for convenience. The most trivial lattices are given by
linear priority lattices that can be represented as a sequence 0 . . . n, like LOW
(L) ≤ HIGH (H) which can also be written as 0 ≤ 1, or like the well-known mil-
itary classification levels Unclassified (0), Confidential (1), Secret (2) and Top
Secret (3). More complex lattices contain incomparable elements where neither
x < y nor y < x as shown in Figure 4.1. Lattices have been found to naturally
represent the semantics of information flow [Den76]: When information is com-
posed of pieces with different security levels, the supremum operator t specifies
which security class results for the combined information. The operands’ secu-
rity levels are joined using the supremum operator, e.g. if information of the
security levels Confidential and Secret is merged, the result must at least be
Secret again.

4.2.2 Language-Based Information Flow Control

Security lattices are used for both static and dynamic analyses. In this the-
sis, we focus on static information flow control in a language-based setting.
Language-based information flow control [SM03] offers compile-time certifica-
tion of a program that guarantees some information flow policy. It can exploit
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a long history of research on program analysis; for example, type systems, ab-
stract interpretation, dataflow analysis, etc. A correct language based IFC will
discover any security leak caused by software alone (but typically does not con-
sider physical side channels). It is generally undecidable, if an allegedly illegal
execution in a program may actually happen, so correct language based infor-
mation flow control must be conservative and thus may reject secure programs.
Denning and Denning [DD77] were the first to present a static (language-based)
information flow control mechanism. It addresses confidentiality, which is also
known as the confinement problem, i.e it’s goal is to certify that a program’s
non-confidential outputs cannot depend on confidential input data. It comprises
explicit and implicit information flow but no rigorous proof of correctness was
given. Its information flow policy is represented by a lattice of security levels,
where information flow is only allowed to higher security classes. Each stor-
age object — constant, variable, array or file — is labeled in the source with
a security class that does not change during program execution. All unlabeled
program constants are implicitly assumed to be labeled with ⊥.

Language-based IFC can be done with various forms of analyses (see Sabel-
feld and Myer’s overview article [SM03] and the related work section for a more
detailed overview). The predominant kind of analysis was, until recently, type
based information flow control. Type checking goes back to Volpano, Smith
and Irvine [VIS96,VS97, SV98], who rewrote Denning’s analysis as a type sys-
tem to gain a more rigorous system for proving that this mechanism guarantees
confidentiality. The type system offers a formal specification that separates the
security policy from the enforcement mechanism. Type-based IFC is efficient,
compositional, and correctness proofs are not too difficult. Thus, type system
have been a success story, opening the door for the whole field of language-based
IFC. For type-based IFC, the elements of Denning’s security lattice becomes a
set of additional1 types where the interference relation ≤ between security levels
is represented by suptyping. Therefore legal upward information flow is accom-
modated. The information flow policy enforces that a program is well-typed,
iff variables do not interfere with variables of a lower type, which guarantees
confidentiality. Typing rules propagate security levels through the expressions
and statements of a program, guaranteeing to catch illegal information flow.

Most contemporary IFC approaches [SM03] are based on extensions of Vol-
pano’s type system. There was an abundant number of systems proposed to
extend that initial type system to realistic languages with procedures, object-or-
iented features like dynamic dispatch, concurrency or even timing leaks [Aga00],
most approaches define a language that the system can provably certify, instead
of defining a type system for a realistic language. There exist very few imple-
mentations of type systems and their underlying languages, thus these works
present only theoretic results with no impact on security engineering [Zda04].
Only two implementations for realistic core languages have been presented: Flow
Caml [PS03] and Jif [MCN+,ML00]. But even Jif is a special-purpose language
based on Java’s syntax, but significantly different (e.g. there are no static vari-

1in addition to the standard variable types like int
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1 if (confidential ==1)
2 public = 42
3 else
4 public = 17;
5 ... // no output of public
6 public = 0;

Figure 4.2: A secure program fragment

ables nor implicit exceptions). So lifting Java programs to Jif may become
intricate [AS05].

Apart from that, type-based analysis is usually not flow-sensitive, context-
sensitive, nor object-sensitive, leading to false alarms: For example, the well-
known program fragment in Figure 4.2 is considered insecure by type-based
IFC, as type-based IFC is not flow-sensitive. It does not see that the potential
information flow from confidential to public in the if-statement is guaranteed
to be killed2 by the following assignment and thus declares the fragment to be
untypeable.

Classical noninterference [GM82, GM84] however only demands that two
streams of public output of the same program must be indistinguishable even
if they differentiate on secret variables, which is true for this program. Thus
secret data in a public variable is perfectly eligible as long as its content does
not flow to output. Note that the killing statement may be far away from the
supposed illegal flow.

Type-based IFC performs even worse in the presence of unstructured control
flow or exceptions. Therefore, type systems over-approximate information flow
control, resulting in too many secure programs rejected (false positives). First
steps towards flow-sensitive type systems have been proposed, but are restricted
to rudimentary languages like While-languages [HS06], or languages with no
support for unstructured control flow [ABB06].

4.2.3 Dependence Graphs for Information Flow Control

Fortunately, program analysis has much more to offer than just sophisticated
type systems. In particular, the system dependence graph as presented in chap-
ter 2 has become, after 20 years of research, a standard data structure allowing
various kinds of powerful program analyses – in particular, efficient program
slicing [Wei84]. Apart from that, commercial SDG tools for full C are avail-
able [ART03], which have been used in a large number of real applications. We
present a novel IFC algorithms based on the dependence graph defined in this
thesis.

The first IFC algorithm based on SDGs was presented by Snelting in 1996
[Sne96]. But more elaborate algorithms were needed to make the approach work
and scale for full C and realistic programs [RS02,SRK06]. The latter article con-
tains a theorem connecting dependence graphs to the classical noninterference

2For a definition see section 2.1.2
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criterion (see also section 4.3). Later, we developed a precise SDG for full Java
bytecode as described in chapter 2, which is much more difficult than construct-
ing the SDG for C due to the effects of inheritance and dynamic dispatch, and
due to the concurrency caused by thread programming. Today, we can handle
realistic C and Java programs and thus have a powerful tool for IFC available
that is more precise than conventional approaches. In particular, it handles
Java’s exceptions and unstructured control flow precisely.

In this chapter, we augment PDGs and SDGs with Denning-style security
level lattices and explain the equations which propagate security levels through
the program in details. When declassification is introduced in called methods,
the original slicing-based approach only yields conservative results, which may
result in false positives. Therefore, this thesis contains a precise interprocedural
analysis for declassification in called methods, which generates precise results.

4.3 Dependence Graphs and Noninterference

The soundness of our PDG construction guarantees that a missing path from a
to b in a PDG implies that there is no influence from a to b. This asserts that
information flow which is not caused by hidden physical side channels such as
timing or termination leaks is impossible. It is therefore not surprising that tra-
ditional technical definitions for secure information flow such as noninterference
are related to PDGs.

Noninterference as presented by Goguen and Meseguer [GM82, GM84] is
defined with respect to an abstract automaton3 M = (S,A,O, step, output, s0)
representing state transitions of a program. The generally infinite set of program
states S contains an initial state s0 ∈ S, the set of actions A can be thought
of as the program’s instructions, and the set of outputs O represent all possible
outputs. step : S × A → S is the state transition function, which in our case
is induced by the program semantics, and output : S × A → O is the output
function. We derive the function run : S × A∗ → S as the natural extension of
step to sequences of actions in A∗ in the standard manner: run(s, ε) = s; run(s, a·
α) = run(step(s, a), α).

The security level of action a ∈ A is dom(a) ∈ L. Given a statement
sequence α and a security domain d, the function purge : A∗×L→ A∗ removes
from α all statements which must not influence security level d: purge(α, d) =
〈a ∈ α|dom(a) d〉.

A system is considered safe according to the Goguen/Meseguer noninterfer-
ence criterion if, for all statement sequences α that are possible according to
the control flow graph and all final statements a (executed after α has been
processed),

output(run(s0, α), a) = output(run(s0, purge(α, dom(a))), a) (4.1)

Thus noninterference requires that the final program output must be un-
changed if every statement is deleted which – according to its security level –
must not influence the final program state.

3We will use the notation of Rushby [Rus92] instead of the original notation.
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If the criterion is not satisfied, then the outputs for the final statement
a differ between the actual run α and α with all supposedly non-influential
statements removed – thus there is an influence from a statement s in α to a
even though this is forbidden due to dom(s) 6 dom(a). We see that the notion
of security is based on observational behavior and not on the source code.

Type systems based approaches usually define the notion of noninterference
in a more compact form. In its simplest variant – which assumes only security
levels Low and High – it reads

s ∼=Low s′ =⇒ JcKs ∼=Low JcKs′ (4.2)

where c is a statement or program, s, s′ are two initial program states, and
JcKs, JcKs′ are the corresponding final states after executing c. s ∼=Low s′ means
that s and s′ are Low equivalent : they must coincide on variables which have
Low security, but not on variables with High security. Thus variation in the high
input variables does not affect low output, and hence confidentiality is assured.
Note that various extensions of elementary noninterference have been defined,
such as possibilistic or probabilistic noninterference; some of them based on
PER relations [SS01]. Pistoia et al. [PCFY07] already noted that Goguen/Me-
seguer noninterference is more general than the criterion of secure information
flow of equation 4.2 and its descendants, because the former only considers ob-
servational behavior and does not constrain implicit and explicit flow at each
statement. The approach presented in the sequel only considers observational
behavior, and thus adheres to the original Goguen/Meseguer definition.

The following theorem connects PDGs to the original Goguen/Meseguer
definition and demonstrates how PDGs can be used to check for noninterference.

Theorem 4.1. If

s ∈ BS(a) =⇒ dom(s) dom(a) (4.3)

then the noninterference criterion is satisfied for a.
Proof. See [SRK06].

Thus if dom(s) 6 dom(a) (s and a have noninterfering security levels), there
must be no PDG path s→∗ a, otherwise a security leak has been discovered.

The generality of the theorem stems from the fact that it is independent of
specific languages or slicing algorithms; it just exploits a fundamental property
of any correct slice. The theorem is valid even for imprecise PDGs and slices, as
long as they are correct. Applying the theorem results in a linear-time noninter-
ference test for a, as all s ∈ BS(a) must be traversed once. More precise slices
result in less false alarms. However, as we will see later, it is not possible to
use declassification in a purely slicing based approach, thus later we will present
extended versions of Theorem 4.1.

4.4 Examples for Slicing-based IFC

In the following, we assume some familiarity with slicing technology, as presented
in chapter 2. Our Java PDG is based on bytecode rather than source text for
the following reasons:
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1 class PasswordFile {
2 private String [] names;
3 /*P: confidential */
4 private String [] passwords;
5 /*P: secret */
6 // Pre:all strings are interned
7 public boolean check(String user ,
8 String password /*P: confidential */) {
9 boolean match = false;

10 try {
11 for (int i=0; i<names.length; i++) {
12 if (names[i]== user
13 && pass words[i]== password) {
14 match = true;
15 break;
16 }
17 }
18 }
19 catch (NullPointerException e) {}
20 catch (IndexOutOfBoundsException e) {};
21 return match; /*R: public */
22 }
23 }

Figure 4.3: A Java password checker

• Bytecode must be considered the ultimate definition of a program’s mean-
ing and potential flows.

• The bytecode is much more stable than the source language (see e.g. gener-
ics in Java 5, which did not change the bytecode instructions).

• the bytecode is already optimized, and artifacts such as dead code are
removed and cannot generate spurious flow.

4.4.1 Exceptions

As presented in section 2.4.2, our dependence graphs contain a sound model of
control flow due to implicit and explicit exceptions. For security, such a model
is of the utmost importance. Figure 4.3 shows a fragment of a Java class for
checking a password (taken from [MCN+]) which uses fields and exceptions. The
P and R annotations will be explained in section 4.5. The initial PDG for the
check method is shown in Figure 4.4. Solid lines represent control dependence
and dashed lines represent data dependence. Node 0 is the method entry with
its parameters in nodes 1 and 2 (we use “pw” and “pws” as a shorthand for “pass-
word” and “passwords”). Nodes 3 – 6 represent the fields of the class, note that
because the fields are arrays, the reference and the elements are distinguished4.

4See section 2.4.3
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Figure 4.4: PDG for check in Figure 4.3

Nodes 7 and 8 represent the initializations of the local variables match and i in
lines (9) and (11). All these nodes are immediately control dependent on the
method entry. The other nodes represent the statements (nodes 12, 13, and 14)
and the predicates (nodes 9, 10, and 11).

This PDG is still incomplete, as it does not include exceptions. Dynamic
runtime exceptions can alter the control flow of a program and thus may lead
to implicit flow, in case the exception is caught by some handler on the call-
stack, or else represent a covert channel in case the exception is propagated to
the top of the stack yielding a program termination with stack trace. This is
why many type-based approaches disallow (or even ignore) implicit exceptions.
Our analysis conservatively adds control flow edges from bytecode instructions
which might throw unchecked exceptions to an appropriate exception handler
[CPS+99], or percolates the exception to the callee which in turn receives such
a conservative control flow edge. Thus, our analysis does not miss implicit
flow caused by these exceptions, hence even the covert channel of uncaught
exceptions is checked. The resulting final PDG is shown in Figure 4.5. (For
better readability, the following examples will not show the effects of exceptions.)

4.4.2 Context-Sensitivity and Object-Sensitivity in Action

To improve precision, we made the SDG object-sensitive by representing nested
parameter objects as trees. Unfolding object trees stops once a fixed point
with respect to the points-to situation of the containing object is reached, as
presented in chapter 2.

Figure 4.6 shows another small example program, and Figure 4.7 shows
its SDG. Note that we (again) identify node numbers by the statement’s line
number. For brevity we omitted the PDGs of the set and get methods. The
effects of method calls are reflected by summary edges (shown as dashed edges in
Figure 4.6) between actual-in and actual-out parameter nodes, which represent
a transitive dependence between the corresponding formal-in and formal-out
node pair. For example, the call to o.set(sec) contains two summary edges,
one from the target object o and one from sec to the field x of o; representing
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Figure 4.5: PDG with exceptions for Figure 4.3

the side-effect that the value of sec is written to the field x of the this-pointer
in set. Summary edges enable context-sensitive slicing in SDGs in time linear
to the number of nodes [HRB90].

In the program, the variable sec is assumed to contain a secret value, which
must not influence printed output. First a new A object is created where field
x is initialized to sec. However, this object is no longer used afterward as
the variable is overwritten (“killed”) with a new object whose x field is set to
pub. Now context-sensitive analysis of set discovers that x of the new object
is not influenced by sec. Thus there is no SDG path (13) →∗ (19) from the
initialization of sec to the first print statement (i.e. the leftmost println node).
Instead, we have a path from the initialization of pub to this output node. Hence
the sec variable does not influence the output. This example demonstrates
that the x fields in the two A objects are distinguished (object-sensitivity), the
side-effects of different calls to set are not merged (context-sensitivity), and
flow-sensitivity kills any influence from the sec variable to the first println.

The next statements show an illegal flow of information: Line (21) checks
whether sec is zero and creates an object of class B in this case. The invocation
of o.set is dynamically dispatched: If the target object is an instance of A
then x is set to zero; if it has type B, x receives the value one. (21) - (23) are
analogous to the following implicit flow:

if (sec==0 && ...) o.x = 0 else o.x = 1;
In the PDG we have a path from sec to the predicate testing sec to o.set() and
its target object o. Following the summary edge one reaches the x field and the
second output node. Thus the PDG discovers that the printed value in line 24
depends on the value of sec. In the next section, we will formally introduce
security levels and demonstrate that this example contains an illegal flow.
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1 class A {
2 int x;
3 void set() { x = 0; }
4 void set(int i) { x = i;}
5 int get() { return x; }
6 }
7 class B extends A {
8 void set() { x = 1; }
9 }

10 class InfFlow {
11 void main(String [] a){
12 //1. no information flow
13 int sec = 0 /*P:High*/;
14 int pub = 1 /*P:Low*/;
15 A o = new A();
16 o.set(sec);
17 o = new A();
18 o.set(pub);
19 System.out.println(

::::::::
o.get());

20 //2. dynamic dispatch
21 if (sec==0 && a[0]. equals("007"))
22 o = new B();
23 o.set();
24 System.out.println(

::::::::
o.get());

25 //3. instanceof
26 o.set (42);
27 System.out.println(

:
o

:::::::::::::
instanceof

::
B);

28 }
29 }

Figure 4.6: Another Java program

But even if the value of x was not dependent on sec (after statement 26) an
attacker could exploit the runtime type of o to gain information about the value
of sec in line 27. This implicit information flow is detected by our analysis as
well, since there is a PDG path (13)→∗ (27).

4.5 Analyzing Information Flow

The noninterference criterion prevents illegal flow, but in practice one wants
more detailed information about security levels of individual statements. Thus
theoretical models for IFC such as Bell-LaPadula [BL96] or Noninterference
[GM84] utilize a lattice L = (L;≤,t,u,⊥,>) of security levels, the simplest
consisting just of two security levels High and Low . The programmer needs
to specify a lattice, as well as annotations defining the security level for some
(or all) statements. In practice, only input and output channels need such
annotations.

Arguing about security also requires an explicit attacker model. For our
approach, we assume:
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main

o o o

x

o o o

x

secure pub o = new B() o o

xo

secure = 0pub = 1 A o = new A() o.set(secure) o = new A() o.set(pub) println(o.get()) o.set() println(o.get())secure==0

o o

x

o.set(42) println(o instanceof B)

Figure 4.7: SDG for the program in Figure 4.6

• Attackers cannot control the execution of the JVM including its security
settings.

• The code generated from source (e.g. bytecode) is known to the attacker
(maybe through disassembling), but cannot be altered (e.g. via code sign-
ing).

• Therefore, the content of variables (local as well as in the heap) is not
directly available to the attacker. Such an assumption would allow to
learn all secrets as soon as they are stored.

• As a consequence, only input and output of the system with a certain
security level (e.g. assigned by the OS) can be controlled (resp. observed).

4.5.1 Fundamental Flow equations

For a correct IFC, the actual security level of every statement must be com-
puted, and this computation must respect the programmer-specified levels as
well as propagation rules along program constructs. The huge advantage of
PDG-based IFC is that the PDG already defines the edges between statements
or expressions, where a flow can happen; as explained, explicit and implicit
flow between unconnected PDG nodes is impossible. Thus it suffices to provide
propagation rules along PDG edges. We begin with the intraprocedural case.

The security level of a statement resp. its PDG node x is written S(x), where
S : N → L.5 Confidentiality requires that an information receiver x must have
at least the security level of any sender y [BL96]. In a PDG G, where pred
and succ are the predecessor and successor functions induced by →, resp., this
fundamental property is easily stated as

y → x ∈ G =⇒ S(x) ≥ S(y) (4.4)

and thus by the definition of a supremum

S(x) ≥
⊔

y∈pred(x)

S(y) (4.5)

5Remember that N is the set of PDG nodes. Note that our S is called dom in the original
Goguen/Meseguer noninterference definition, but we need dom for partial functions.
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This fundamental constraint ensures S(y)  S(x).6 Remember that confiden-
tiality and integrity are dual to each other [Bib77], hence the dual condition for
integrity is

S(x) ≤
l

y∈pred(x)

S(y) (4.6)

In the following, we concentrate on confidentiality, as all equations for integrity
are obtained by duality.

Equation (4.5) assumes that every statement resp. node has a security level
specified, which is not realistic. In practical applications, one wants to specify
security levels not for all statements, but for certain selected statements only.7

The provided security level specifies that a statement sends information with
the provided security level, i.e. represents an input channel. The required secu-
rity level requires that only information with a smaller or equal security level
may reach that statement,8 i.e. it represents an output channel of the specified
security level. From these values the actual security levels can be computed.

Provided security levels are defined by a partial function P : N 7→ L. The
required security levels are defined similarly as a partial function R : N 7→ L.
Thus, P (s) specifies the security level of the information generated at s (also
called “the security level of s”), and R(s) specifies the maximal allowed security
level of the information reaching s.

The actual security level S(x) for a node x must thus not only be greater
than the levels of its predecessors, but also greater than its own provided security
level. Thus equation (4.5) refines to

S(x) ≥


P (x) t

⊔
y∈pred(x)

S(y), if x ∈ dom(P )⊔
y∈pred(x)

S(y), otherwise (4.7)

Note that R does not occur in this constraint for S. We need an additional
constraint to specify that incoming levels must not exceed a node’s required
level:

∀x ∈ dom(R) : R(x) ≥ S(x) (4.8)

We can now formally define confidentiality:

Definition 4.1. Let a program’s PDG be given. The program maintains confi-
dentiality, if for all PDG nodes equations (4.7) and (4.8) are satisfied.

As mentioned earlier, we are preparing a machine-checked proof [qui] that
Definition 4.1 implies noninterference. For the time being, Definition 4.1 is
treated as an axiom, which however, as discussed above, is well-founded in
correctness properties of PDGs and classical definitions of confidentiality.

6In fact, the Goguen/Meseguer notion S(y) S(x) is the same as S(y) ≤ S(x) in modern
terminology.

7For practicability of an analysis, it is important that the number of such annotations is
as small as possible.

8The term “required” may be misleading here—it is actually more like a limit or maximum
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Later, we will provide an interprocedural generalization of this definition
(Definition 4.2 in section 4.6), which additionally exploits the fact that it is
sufficient to consider the backward slices of all output ports instead of the whole
PDG; this observation again reduces spurious flow and the risk for false alarms.
For the time being, we demand (4.7) and (4.8) for the whole PDG, which is still
a correct (if slightly less precise) definition.

For simplicity in presentation, we extend P and R to total functions P ′ and
R′ such that all nodes have a provided and required security level:

P ′(x) =
{
P (x), if x ∈ dom(P )
⊥, otherwise (4.9)

R′(x) =
{
R(x), if x ∈ dom(R)
>, otherwise (4.10)

Note that ⊥ is the neutral element for t, and > is the neutral element for u.
Now equation (4.7) simplifies to

S(x) ≥ P ′(x) t
⊔

y∈pred(x)

S(y) (4.11)

and equation (4.8) simplifies to

R′(x) ≥ S(x) (4.12)

4.5.2 Solving Flow equations

Equation (4.11) is satisfied in the most precise way, and hence the risk that
equation (4.8) is violated is minimized, if the inequality for S turns into equality:

S(x) = P ′(x) t
⊔

y∈pred(x)

S(y) (4.13)

Of course (4.13) also satisfies (4.11), and can be read as an algorithm which
computes S(x) from P (x) and x’s predecessors S values. Thus equation (4.13)
defines a forward propagation: it shows what happens if all the P values are
propagated through the PDG (while ignoring R).

We will now show that equation (4.13) corresponds to a well-known concept
in program analysis, namely a monotone dataflow analysis framework [KU77]
as presented in section 2.1.1, which allows efficient fixpoint computation. Such
frameworks start with a lattice of abstract values, which in our case is L. For
every x ∈ N , a so-called transfer function fx : L → L must be defined, which
typically has the form fx(l) = gxt(lukx).9 In our case, gx = P ′(x) and kx = ⊥,
thus fx(l) = P ′(x) t l. Furthermore, for every x ∈ N , the framework defines
out(x) = fx(in(x)) and in(x) =

⊔
y∈pred(x) out(y). In our case,

out(x) = fx(in(x)) = P ′(x) t
⊔

y∈pred(x)

S(y) = S(x)

9where gx, kx ∈ L. kx denotes boolean complement, as many dataflow methods run over a
powerset L; in our case we have just a lattice but all we need is ⊥ = >.
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The theory demands that all fx are monotone, which in our case is trivial.
The theory also states that if the fx are distributive, the analysis is more precise.
In our case fx(l1 t l2) = P ′(x) t (l1 t l2) = (P ′(x) t l1) t (P ′(x) t l2) =
fx(l1)t fx(l2), hence distributivity holds. The theory finally states that the set
of equations for S (resp out) always has a solution in form of a minimal fixpoint,
that this solution is correct, and in case of distributive transfer functions it
is precise. This is another reason why our IFC is more precise than other
approaches.10 Efficient algorithms to compute this fixed point are well known.
We will show examples for fixpoints later; here it suffices to say that it defines
values for S(x) ∈ L which simultaneously satisfy equations (4.13) and thus (4.5)
for all x ∈ N .

Thus the computed fixpoint for S, together with equation (4.8), ensures
confidentiality. If a fixpoint for S exists, but the condition for R cannot be
satisfied, then a confidentiality violation has been discovered: For any l = R(x)
such that l 6≥ S(x) we have a violation at x because S(x) 6 l (the security level
of S(x) is not allowed to influence level l). Note that it is 6≥ and not < because
l and S(x) might not be comparable.

From a program analysis viewpoint, our transfer functions fx are quite sim-
ple; in fact they are so simple that an explicit solution for the fixpoint can be
given which will be exploited later:

Theorem 4.2. For all x ∈ N , let S(x) be the least fixpoint of equation (4.13).
Then

S(x) =
⊔

y∈BS(x)

P ′(y) (4.14)

Proof. Let x ∈ N . (4.13) implies S(x) ≥ P ′(x) and S(x) ≥ S(y) for all
y ∈ pred(x). By induction, this implies for any path y →∗ x (i.e. y ∈ BS(x)):
P ′(y) ≤ S(x). By definition of a supremum, S(x) ≥

⊔
y∈BS(x) P

′(y).
On the other hand, (4.14) is a solution of (4.13):⊔

y∈BS(x)

P ′(y) = P ′(x) t
⊔

y∈pred(x)
z∈BS(y)

P ′(z)

= P ′(x) t
⊔

y∈pred(x)

⊔
z∈BS(y)

P ′(z)

and since S is the least fixpoint we have S(x) ≤
⊔
y∈BS(x) P

′(y). Thus equality,
as stated in the theorem, follows.

4.5.3 The PDG-Based Noninterference Test

We will now exploit this intermediate result to prove the correctness of our
PDG-based confidentiality check. The following statement is a restatement of
Theorem 4.1 in terms of P and R:

10Note that we thus have total precision for the S solutions, but not for the underlying
PDG.
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Figure 4.8: PDG for Figure 4.3 with computed security levels

Theorem 4.3. If

∀a ∈ dom(R) : ∀x ∈ BS(a) ∩ dom(P ) : P (x) ≤ R(a) (4.15)

then confidentiality is maintained for all x ∈ N .

That is, the backward slice from a node a with a required security level R(a)
must not contain a node x that has a higher security level P (x).
Proof. Let x ∈ N . We need to show that (4.7) and (4.8) are valid for x.
From the premise we know ∀x ∈ BS(a) : P ′(x) ≤ R(a), as P ′(x) ≤ P (x) if
x ∈ dom(P ). Thus R(a) ≥

⊔
x∈BS(a) P

′(x), hence R(a) ≥ S(x) by theorem 4.2.
Hence (4.8) is satisfied. Furthermore, by definition of the fixpoint for S, S
satisfies (4.13) and thus (4.11) and (4.7).

The theorem can easily be transformed into an algorithm that checks a
program for confidentiality:
PDG-Based Confidentiality Check. For every node in the dependence graph
that has a required security level specified, compute the backward slice, and check
that all nodes in the slice have lower or equal provided security levels specified.

Once the PDG has been computed, each backward slice and thus confiden-
tiality check has worst case complexity O(|N |). Usually, the number of nodes
that have a specified security level R(a) is bounded and not related to |N |; typ-
ically just a few output statements have R(a) defined. Thus overall complexity
can be expected to be O(|N |) as well.

Checking each node separately allows a simple yet powerful diagnosis in the
case of a security violation: If a node x in the backward slice BS(a) has a
provided security level that is too large or incomparable (P (x) 6≤ R(a)), the
responsible nodes can be computed by a so-called chop CH(x, a) = FS(x) ∩
BS(a).11 The chop computes all nodes that are on a path from x to a, thus
it contains all nodes that may be involved in the propagation from x’s security
level to a.

As an example, consider again the PDG for the password program (Fig-
ure 4.4). We choose a three-level security lattice: public, confidential , and
secret where public ≤ confidential ≤ secret

11FS, the forward slice is defined as FS(x) = {y | x→∗ y}.
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The program contains P -annotations for input variables, and an R-annota-
tion for the result value. Thus the list of passwords is secret , i.e. P (3) = secret∧
P (4) = secret . The list of names and the parameter password is confidential ,
because they should never be visible to a user. Thus, P (1) = confidential ∧
P (5) = confidential ∧ P (6) = confidential .

No confidential or secret information must flow out of check, thus we re-
quire R(14) = public. Remember that the PDG has additional dependences for
exceptions (see Figure 4.5). In order to prevent an implicit flow from check to
the calling method via uncaught exceptions, the node of the calling method rep-
resenting any uncaught exception, m, is annotated with R(m) = public. Thus
an implicit flow via an uncaught exception, where the exception is dependent
on a secret variable, will be detected at m.

Starting with these specifications for R and P , the actual security levels
S(x), as computed according to equation (4.13), are depicted in Figure 4.8
(white for public, light gray for confidential , and gray for secret12). Let us
now apply the PDG-based confidentiality check. It turns out that 3 ∈ BS(14)
where R(14) = public, P (3) = secret . Thus the criterion fails. Indeed a security
violation is revealed: S(14) = secret 6≤ public = R(14), thus equation (4.8) is
violated. The chop CH(3, 14) contains all nodes contributing to the illegal flow.

It is however unavoidable that match has to be computed from secret in-
formation. Declassification was invented to handle such situations, and will be
discussed later.

4.6 Inter-procedural propagation of security levels

Let us now discuss interprocedural IFC. To understand the problem of context-
sensitivity, consider the program fragment and its SDG in Figure 4.9. In this
fragment, P (secret) = P (1) = High, P (public) = P (2) = Low , and R(p) =
R(5) = Low . Let us first assume that backward slices are computed just as in the
intraprocedural case, that is, all nodes which have a path to the point of interest
are in the slice. This naive approach treats interprocedural SDG edges like data
or control dependence edges, and as a result will ignore the calling context. In
the example, 3 ∈ BS(5) due to the SDG path 3 → 3i → a → b → 4o → 5
(where 3i is the actual parameter of the first call, and 4o is the return value
of the second call). By equation (4.13), S(4o) = S(5) = S(p) = High, and
R(p) 6≥ S(p). However, semantically secret cannot influence p.

4.6.1 Context-Sensitive Slicing

To avoid such false alarms, an approach based on context-sensitive slicing (see
section 2.2.2) must be used: not every SDG path is allowed in a slice, but only re-
alizable paths. Realizable paths require that the actual parameter nodes to/from
a function, which are on the path, must belong to the same call statement.13

12Ignore that node 14 is only half shaded for the moment.
13or more precisely, parameter-in/-out nodes must form a “matched parenthesis” structure,

since calls can be nested.
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1 secret = 1;
2 public = 2;
3 s = f(secret );
4 x = f(public );
5 p = x; f

a b

x

1 2 3 4 5

3i 3o 4i 4o

Figure 4.9: Example for context-sensitivity with corresponding SDG. The state-
ment x computes the return value b from the formal input parameter a.

The reason is that a parameter from a specific call site cannot influence the result
of a different call site, as all side-effects are represented as parameters. This fun-
damental idea to obtain context-sensitivity was introduced in [HRB90,RHSR94]
and is called HRB slicing. In the example, the path 3→ 3i→ a→ b→ 4o→ 5
is not realizable and thus not context-sensitive, as actual parameter 3i and
return parameter 4o do not belong to the same call site.

Interprocedural propagation of security levels is basically identical to in-
traprocedural propagation, but is based on the HRB backward slice which only
includes realizable paths. Equation (4.13) and Theorem 4.3 still hold.14

Equations (4.13) and (4.8) can again be interpreted as a dataflow framework.
But for reasons of efficiency, we will generate all instances of these equations
simultaneously while computing the HRB backward slice. This results in a set
of constraints for the S(x), which is solved by an offline fixpoint iteration; the
latter being based on the same principles as in dataflow frameworks.

The details of the HRB algorithm are shown in Algorithm 7.15 Remember
that backward slice computation, and thus propagation of security levels is done
in two phases:

1. The first phase ignores interprocedural edges from a call site into the called
procedure, and thus will only traverse to callees of the slicing criterion (i.e.
is only ascending the call graph). Due to summary edges, which model
transitive dependence of parameters, all parameters that might influence
the outcome of a returned value are traversed, as if the corresponding
path(s) through the called procedure were taken.

14in fact they hold for the naive backward slice as well, because even the naive interproce-
dural backward slice is correct; it is just too imprecise.

15For the time being, replace the test “v 6∈ D” (line 32) by “true”, as in this section D = ∅;
D will be explained in section 4.7.
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Algorithm 7 Algorithm for context-sensitive IFC, based on the precise inter-
procedural HRB slicing algorithm

1 procedure MarkVerticesOfSlice(G, x)
2 input G : a system dependence graph
3 x : a slicing criterion node
4 output BS : the slice of x (sets of nodes in G)
5 C : the generated set of constraints
6 /∗ D, R, P are assumed to be global read only data ∗/
7 begin
8 C := ∅
9 /∗ Phase 1: slice without descending into called procedures ∗/

10 BS′ ←MarkReachingVertices(G, {x}, {parameter-out})
11 /∗ Phase 2: slice called procedures
12 without ascending into call sites ∗/
13 BS ←MarkReachingVertices(G,BS′, {parameter-in, call})
14 end
15

16 procedure MarkReachingVertices(G,V,Kinds)
17 input G : a system dependence graph
18 V : a set of nodes in G
19 Kinds : a set of kinds of edges
20 output M : a set of nodes in G which are marked by this phase
21 (part of the precise backward slice)
22 C : a set of constraints
23 begin
24 M := V
25 WorkList := V
26 while WorkList 6= ∅ do
27 select and remove node n from WorkList
28 M ∪= n
29 foreach w ∈ G such that w 6∈M and G contains an edge w → v
30 whose kind is not in Kinds do
31 WorkList ∪= w
32 if v 6∈ D then
33 C ∪= {“S(w) ≤ S(v)”} // cf. eq. (4.13) or (4.16)
34 if v ∈ dom(R) then
35 C ∪= {“S(v) ≤ R(v)”} // cf. eq. (4.8) or (4.16)
36 if w ∈ dom(P ) then
37 C ∪= {“P (w) ≤ S(w)”} // cf. eq. (4.13) or (4.17)
38 else
39 C ∪= {“P (v) ≤ S(v)”} // cf. eq. (4.19)
40 C ∪= {“S(w) ≤ R(v)”} // cf. eq. (4.20)
41 fi
42 od
43 od
44 return M
45 end
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2. In the second phase, starting from the edges omitted in the first phase,
the algorithms traverses all edges except call and parameter-in edges (i.e.
is only descending the call graph.) As summary edges were traversed in
the first phase, there is no need to re-ascend. Again, summary edges are
used to account for transitive dependences of parameters.

For propagation of security levels, Algorithm 7 generates constraints involving
S, P , and R. These constraints are derived from equations (4.7) and (4.8). We
will show later that a solution to these constraints enforces confidentiality.

The summary edges have an essential effect, because they ensure that secu-
rity levels are propagated (based on the generated constraints) as if they were
propagated through the called procedure. In the first phase, no security level
is propagated into called procedures and in the second phase, no computed se-
curity level is propagated from the called procedure to the call site. Due to
summary edges, no security level is “lost” at ignored edges, i.e. they ensure that
the security level is propagated along transitive dependences for this calling
context, but it cannot change the computed security level at another call site.

We will now argue that Algorithm 7 generates correct and sufficient con-
straints.

Definition 4.2. Let a program’s SDG be given. The program maintains confi-
dentiality, if for every a ∈ dom(R) and its HRB backward slice BS(a), equations
(4.7) and (4.8) are satisfied.

Again we postpone the proof that this definition implies noninterference
(equation (4.2)), but point out that the definition – as Definition 4.1 –is solidly
based on SDG correctness properties and fundamental definitions for confiden-
tiality.

The latter are expressed in equations (4.7) and (4.8). Restricting these
equations to the (context-sensitive) backward slices of all points ∈ dom(R)
avoids spurious flow, and is sufficient as these slices contain all nodes affecting
equation (4.8). Thus Theorem 4.3 is still valid in the interprocedural case, and
the proof remains the same.16 Thus the PDG-based confidentiality check also
works on SDGs: for any a ∈ dom(R), compute the HRB backward slice BS(a)
and check whether all y ∈ dom(P )∩BS(a) have P (y) ≤ R(x). Remember that
this check is valid for any correct backward slice – but the more precise the slice,
the less false alarm it generates.

Let us now argue that Algorithm 7 is correct.

Theorem 4.4. For every a ∈ dom(R), Algorithm 7 (where D = ∅) generates a
set of constraints which are correct and complete, and thus enforce confidentiality
according to Definition 4.2.

Proof. We may assume that the HRB algorithm itself computes a correct
(and precise) backward slice BS(a) for any a ∈ dom(R).

1. For any w, v ∈ BS(a) where w → v, the algorithm generates a constraint
S(w) ≤ S(v), which is necessary according to equation (4.13) and sufficient as
edges outside BS(a) cannot influence a.

16In fact we need a version of theorem 4.2 working on SDGs and backward slices.
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Constraints Minimal Fixpoint

S(1) ≤ S(3i) S(1) = Low/High

S(2) ≤ S(4i) S(2) = Low

S(3) ≤ S(3i) ∧ S(3) ≤ S(3o) ∧ S(3) ≤ S(f) S(3) = Low/High

S(3i) ≤ S(3o) ∧ S(3i) ≤ S(a) S(3i) = Low/High

S(3o) ≤ > S(3o) = High

S(4) ≤ S(4i) ∧ S(4) ≤ S(4o) ∧ S(4) ≤ S(f) S(4) = Low

S(4i) ≤ S(4o) ∧ S(4i) ≤ S(a) S(4i) = Low

S(4o) ≤ S(5) S(4o) = Low

S(f) ≤ S(a) ∧ S(f) ≤ S(b) s(f) = Low

S(a) ≤ S(x) S(a) = Low

S(x) ≤ S(b) S(x) = Low

S(b) ≤ S(3o) ∧ S(b) ≤ S(4o) S(b) = Low

S(5) ≤ R(5) ∧R(5) = Low S(5) = Low

P (1) ≤ S(1) ∧ P (1) = High
P (2) ≤ S(2) ∧ P (2) = Low

Figure 4.10: Constraint system for Figure 4.9 generated by Algorithm 7. Parts
in gray are only generated for context-insensitive analysis.

2. Furthermore for any w ∈ dom(P ) ∩ BS(a), P (w) ≤ S(w) is generated
which is necessary due to equation (4.13) and sufficient as nodes outside BS(a)
cannot influence a. Note that line 36 tests for w ∈ dom(P ) and not v ∈ dom(P ),
as otherwise nodes ∈ dom(P ) without predecessors would not generate a P -
constraint.

3. Finally, for any v ∈ dom(R) ∩ BS(a), R(v) ≥ S(v) is generated which
is necessary due to equation (4.8) and sufficient as nodes outside BS(a) cannot
influence a. Note that line 34 tests for v ∈ dom(R) and not w ∈ dom(R), as
otherwise nodes ∈ dom(R) without successor would not generate a R-constraint.

Thus Algorithm 7 generates exactly the constraints required by (4.8), and
constraints exactly equivalent to (4.7). Hence they have the same fixpoint, and
fulfill the requirements of Definition 4.2.

For pragmatic reasons, the fixpoint computation ignores the constraints in-
volving R; these are only incorporated in the SDG-based confidentiality check
after a solution for S has been found. The reason is that otherwise illegal flows
will show up as an unsolvable constraint system – which is correct, but prevents
user-friendly diagnosis. If the R constraints are checked later and one (or more)
will fail, chops can be computed for diagnosis as described in section 4.5.3.

For the example above (Figure 4.9), Algorithm 7 computes BS(5) = {5, 4o,
4i, 4} in the first phase and adds {b, x, a} in the second phase, thus avoiding
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to add 3i or 1 to BS(5). This is context-sensitivity. The corresponding con-
straints are S(5) ≤ R(5), S(4o) ≤ S(5), S(4i) ≤ S(4o), S(4) ≤ S(4i), S(4) ≤
S(4o), S(b) ≤ S(4o), S(x) ≤ S(b), s(a) ≤ S(x). Constraints for BS(3) are com-
puted similarly. Figure 4.10 presents the complete list of constraints. It also
presents additional constraints which would be added by naive interprocedural
slicing (printed in gray). The fixpoint for S (without P constraints) is pre-
sented in Figure 4.10 (right column; again results based on naive slicing are
shown in gray). The precise solution correctly computes S(1) = High, and in-
deed P (1) = High ≤ S(1). The naive solution would compute S(1) = Low and
generates a false alarm due to P (1) 6≤ S(1).

4.6.2 Backward Flow Equations

Note that equation (4.13) in fact employs a forward propagation approach: it
shows how to compute S(x) if the S(y) for the predecessors y of x are known.
The HRB algorithm essentially works just the other way, namely backwards. For
reasons of implementation efficiency, previous work has presented flow equations
that follow this backward propagation approach.

In this section, we will show how to transform equations (4.13) and (4.8) into
an equivalent form which mirrors this backward propagation, while Theorem 4.3
still holds. This will allow a more efficient implementation in connection with
the HRB algorithm. The equivalent backward form is based on the following
observation: equation (4.5) demands that for every x ∈ N and y ∈ pred(x),
S(x) ≥ S(y) and thus S(x) ≥

⊔
y∈pred(x) S(y). The same set of constraints

can be expressed as follows: for every x ∈ N and y ∈ succ(x), S(x) ≤ S(y)
(equation (4.11)), and as a consequence,

S(x) ≤ R′(x) u
l

y∈succ(x)

S(y) (4.16)

In analogy, for equation (4.8) (a ∈ dom(R), S(a) ≤ R(a)), one gets:

∀a ∈ dom(P ) : P (a) ≤ S(a) (4.17)

Theorem 4.5. For the same PDG resp. (intraprocedural) slice, the collected
instances of equations (4.11) and (4.8) generate the same set of constraints as
the collected instances of equations (4.16) and (4.17).

Proof. The individual constraints in Algorithm 7 are equivalent due
to the duality a ≤ b ⇔ a t b = b ⇔ a u b = a, which has been exploited
in the construction of equations (4.16) and (4.17). In forward propagation,
we are using a two-phase algorithm that initially ignores constraints involving
R in the fixpoint iteration and subsequently checks the omitted constraints
with the computed fixpoint of S. In backward propagation, the fixpoint for
S is determined without constraints involving P constraints, which again are
checked in a second phase. Therefore it is obvious that the fixpoint for S in
forward propagation differs from the fixpoint in backward propagation, however,
both methods check that the whole set of constraints generated on all paths
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between all nodes in dom(P ) and all nodes in dom(R) is satisfied and are thus
equivalent.

Computing a minimal fixpoint for S(x) from constraints involving S and
R and subsequent checking constraints involving P (backward propagation) is
therefore equivalent to computing S’s fixpoint from S and P with subsequent
checking of R-constraints (forward propagation).

4.7 Declassification

IFC as described so far is too simplistic because in some situations one might ac-
cept that information with a higher security level flows to a “lower” channel. For
instance, information may be published after statistical anonymization, secret
data may be transferred over the Internet using encryption, and in electronic
commerce one needs to release secret data after its purchase. Declassification
allows to lower the security level of incoming information as a means to relax
the security policy. The password checking method presented earlier is another
example: as password tables are encrypted, it does not matter that informa-
tion from the password table flows to the visible method result, and hence a
declassification to public at node 14 (where the illegal flow was discovered, see
section 4.5) is appropriate – a password-based authentication mechanism nec-
essarily reveals some information about the secret password.17

When allowing such exceptions to the basic security policy, one major con-
cern is that exceptions might introduce unforeseen information release. Several
approaches for a semantics of declassification were proposed, each focusing on
certain aspects of “secure” declassification. The current state of the art describes
four dimensions to classify declassification approaches according to where, who,
when and what can be declassified [SS05]. Apart from that, some basic princi-
ples are presented that can serve as “sanity checks” for semantic security policies
allowing declassifications. These principles are 1. semantic consistency, which
is basically invariance under semantics-preserving transformations; 2. conserva-
tivity, i.e. without declassification, security reduces to noninterference; 3. mono-
tonicity of release, which states that adding declassification should not render
a secure program insecure; 4. non-occlusion which requires that declassification
operations cannot mask other covert information release.

4.7.1 Declassification in SDGs

We model declassification by specifying certain SDG nodes to be declassification
nodes. Let D ⊆ N be the set of declassification nodes. A declassification node
x ∈ D must have a required and a provided security level:

x ∈ D =⇒
(
x ∈ dom(P ) ∩ dom(R)

)
∧
(
R(x) ≥ P (x)

)
(4.18)

Information reaching x with a maximal security level R(x) is lowered (de-
classified) down to P (x) (note that R(x) 6≥ P (x) does not make any sense,

17We all know that password crackers can exploit this approach in case weak passwords are
used, hence just adding a declassification seems too naive. Additional techniques to protect
the table are needed.
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as declassification should lower a level, not heighten it). Now a path from
node y to a with P (y) > R(a) is not a violation, if there is a declassifica-
tion node x ∈ D on the path with P (y) ≤ R(x) and P (x) ≤ R(a) (assum-
ing that there is no other declassification node on that path). The actual se-
curity level S(x) will be between P (x) and R(x). In the password example,
D = {14}, R(14) = secret , P (14) = public; and the illegal flow described earlier
disappears.

According to Sabelfeld and Sands [SS05], this policy for expressing inten-
tional information release is describing where in the system information is re-
leased: The set D of declassification nodes correspond to code locations—
moreover, in the implemented system the user has to specify the code locations,
which are mapped to declassification nodes by the system.

In terms of the propagation equations, a declassification simply changes the
computation of S. Equation (4.11) must be extended as follows:

S(x) ≥

 P (x) if x ∈ D
P ′(x) t

⊔
y∈pred(x)

S(y) otherwise (4.19)

Thus the incoming security levels are ignored and replaced by the declassification
security level.

Of course, equation (4.8) is still valid for non-declassification nodes, but for
x ∈ D it must be modified as S(x) is the declassified value:

∀x ∈ dom(R) \D : R(x) ≥ S(x) ∧ ∀x ∈ D : R(x) ≥
⊔

y∈pred(x)

S(y) (4.20)

which expresses that normal flow of S is interrupted at x ∈ D.
The following definition resembles Definition 4.2, but incorporates the mod-

ified flow equations:

Definition 4.3. Let a program’s SDG be given. The program maintains confi-
dentiality, if for all a ∈ dom(R) equations (4.19) and (4.20) are satisfied.

Theorem 4.6. For every a ∈ dom(R), Algorithm 7 (where D 6= ∅) generates a
set of constraints which are correct and complete, and thus enforce confidentiality
according to Definition 4.3.

Proof. We have already argued (proof for Theorem 4.4) that for non-
declassification nodes the generated constraints correspond exactly to equations
(4.8) and (4.7), and thus to the non-declassification cases in equations (4.19) and
(4.20). For declassification nodes d ∈ D, Algorithm 7 does no longer generate
constraints S(w) ≤ S(d), which is indeed required by (4.19), case x ∈ D. Instead
it generates R(d) ≥ S(w) for w ∈ pred(d), which is equivalent to the constraints
required in (4.20), case x ∈ D. Furthermore, it generates S(d) ≥ P (d) which is
exactly required by (4.19), case x ∈ D.

Thus Algorithm 7 generates exactly the constraints required by (4.19) and
(4.20). Hence they have the same fixpoint, and fulfill the requirements of Defi-
nition 4.3.

In case D = ∅, Algorithm 7 by theorem 4.4 checks noninterference without
declassification. Thus we obtain for free the
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Corollary 4.7 (Conservativity of Declassification). Algorithm 7 is conservative,
that is, without declassification it reduces to standard noninterference.

Let us finally point out a few special situations. It is explicitly allowed to
have two or more declassification on one specific path, e.g. x→∗ d1 →∗ d2 →∗ y.
But this only makes sense if P (d1) ≤ R(d2), as otherwise no legal flow is possible
on the path, and P (d2) ≤ P (d1), as otherwise the second declassification is
redundant.

In case there are several declassifications on disjoint paths from x to y, for
example x →∗ d1 →∗ y, x →∗ d2 →∗ y, x →∗ d3 →∗ y, ..., it is possible
to approximate all these declassifications conservatively by introducing a new
declassification d where R(d) =

d
iR(di) and P (d) =

⊔
i P (di). Any flow which

is legal through d is also legal through (one of) the di, hence the approximation
will not introduce new (illegal) flows. This observation seems unmotivated,
but will be the source for an more precise interprocedural IFC, as described in
section 4.8.

4.7.2 Monotonicity of Release

Another useful property is monotonicity of release, which states that introduc-
tion of an additional declassification should not make previously secure programs
insecure (i.e. generate additional illegal flow). Formally, this can be defined as
follows:

Definition 4.4. Let a program satisfy confidentiality according to Definition 4.3
and let d ∈ N where d 6∈ D ∪ dom(R) ∪ dom(P ). Replace d by d′ ∈ D where
d′ has the same connecting edges as d, but d′ is annotated with R and P . Re-
compute the actual security levels according to (4.19), yielding S′(x) for x ∈ N .
Declassification d′ respects monotonicity of release, if equation (4.20) still holds
for all S′(x).

The following theorem states that if the annotations comply with some basic
sanity checks, then monotonicity of release can be guaranteed:

Theorem 4.8. If R(d′) ≥
⊔
y∈pred(d′) S(y), and P (d′) ≤

⊔
y∈pred(d′) S(y), then

for x ∈ N , S′(x) ≤ S(x).

The first premise avoids that previously legal flow (where R′(d′) = > as
d′ 6∈ dom(R)) is now blocked by a too low or arbitrary R(d′). Note that P (d′) ≤
R(d′) is required anyway in equation (4.18). The above premise is more precise
and avoids that a declassification generates new illegal flows as the outgoing
declassification level is too high, or the incoming limit too low. In practice,
both requirements are easy to check and do not restrict sensible declassification.

Proof. In the original SDG,
⊔
y∈pred(d′) S(y) ≤ S(d′) ≤

d
y∈succ(d′) S(y),

hence in the new PDG S′(d′) = P (d′) ≤ S(d′) =
⊔
y∈pred(d′) S(y) by assump-

tion and equation 4.19. Furthermore, S′(d) ≤ S(d′) ≤
d
y∈succ(d′) S(y) ≤

S(y) for all y ∈ succ(d′). Hence S(y) ≥
d
z∈pred(y) S(y) ≥ S′(y) = S′(d′) t⊔

z 6=d′∈pred(y) S(z). The same argument works for the successors of y. By induc-
tion18 S′(x) ≤ S(x) follows for all x.

18technically, a well-known fixpoint induction
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1 int foo(int x) {
2 y = ... x ... // compute y from x
3 return y; /*D:confidential -> public */
4 }
5

6 int check () {
7 int secret = ... /*P:secret */
8 int high = ... /*P:confidential */
9 int x1, x2;

10 x1 = foo(secret );
11 x2 = foo(high);
12 return

:::
x2; /*R:public */

13 }

Figure 4.11: Example for declassification

Corollary 4.9. Under the assumptions of theorem 4.8, declassification d′ re-
spects monotonicity of release.

Proof. For the original SDG, (4.8) and (4.19) are valid for S. In the new
PDG, (4.19) is by construction valid for S′, and (4.8) is valid for S′ since by the
theorem S′(x) ≤ S(x).

4.7.3 Confidentiality check with declassification

The original SDG-based confidentiality criterion no longer works with declas-
sification, as information flow with declassification is no longer transitive and
slicing is based on transitive information flow. Thus a P (x) in BS(a) where
P (x) 6≤ R(a) is not necessarily an illegal flow, as P (x) can be declassified under
way. Instead, the criterion must be modified as follows:
Confidentiality Check With Declassification. For every a ∈ dom(R) \
D, compute S(x) for all x ∈ BS(a) by Algorithm 7, and check the following
property:

∀x ∈ dom(P ) ∩BS(a) : P (x) ≤ S(x) (4.21)

Theorem 4.6 guarantees that the constraints generated by Algorithm 7 and
thus the S values (being their minimal fixpoint) are correct. Hence the criterion
is satisfied iff Definition 4.3 is satisfied. If the criterion is not satisfied, equation
(4.19) is violated and an illegal flow has been detected. As described in sec-
tion 4.6.1, the S values are computed first, and the criterion (4.21) is checked
in a second phase; this allows to generate diagnostics by computing chops.

Let us return to the example in Figures 4.3 and 4.8 and assume R(14) =
public. As described in section 4.5.3, the analysis reveals an illegal flow 3→∗ 14.
We thus introduce a declassification: 14 ∈ D, R(14) = secret , P (14) = public
(represented as two colors). Now S(14) = secret ≤ R(14), so the confidentiality
check will no longer reveal an illegal flow. This may be desirable depending
on the security policy, since only a small amount of information leaks from
password checking.
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Figure 4.12: System Dependence Graph for Figure 4.11

As another example consider Figure 4.11. In line 3 a declassification D :
confidential → public is present. Hence 3 ∈ D, R(3) = confidential and P (3) =
public. It seems that a secret value can flow from line 10 to line 3, hence in
line 3 an illegal flow seems possible (R(3) 6≥ S(3)) because in line 3 we can
declassify from confidential to public but not from secret to public. But in fact
the return value in line 3 is only copied to x1 at line 10, and x1 is dead (never
used afterwards and never output). Thus intuitively, the program seems secure.

The SDG for this program is shown in Figure 4.12. By Algorithm 7 x1
is not in the context-sensitive backward slice for line 12, and thus the SDG-
based confidentiality criterion will not generate a false alarm, but determine
that confidentiality is guaranteed. This example demonstrates once more how
context-sensitive backward slices improve precision.

4.8 Improving Interprocedural Declassification

Algorithm 7 is correct, but in the presence of declassifications, its precision
still needs to be improved. The reason is that Algorithm 7 essentially ignores
the effect of declassifications in called procedures: summary edges represent a
transitive information flow between pairs of parameters, whereas declassification
is intransitive. Using them for computation of the actual security level S(x)
implies that every piece of information flowing into a procedure with a given
provided security level l will be treated as if it flowed back out with the same
level. If there is declassification on the path between the corresponding formal
parameters, this approach is overly conservative and leads to many false alarms.

As an example, consider Figure 4.12 again: The required security level for
node 11 is Low as specified. Algorithm 7 computes S(2) = S(8) = S(10) =
S(11) = Low due to the summary edge. This will result in a false alarm because
the declassification at node 15 is ignored.

4.8.1 Summary Declassification Nodes

In order to respect declassifications in called procedures, and achieve maximal
precision, an extension of the notion of a summary edge is needed. The funda-
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Figure 4.13: SDG for Figure 4.11 with summary declassification nodes

mental idea is to insert a new “summary” declassification node into the summary
edge, which represents the effect of declassifications on paths in the procedure
body.

Thus the summary edge x→ y, representing all paths from the correspond-
ing formal-in node x′ to the formal-out node y′, is split in two edges, with a
declassification node d ∈ D in between. This new declassification node d repre-
sents the declassification effects on all paths from x′ to y′.

The constraints onR(d) and P (d) are chosen such that any legal flow through
the procedure body is also a legal flow through x → d → y. In particular, if
there is a declassification free path from x′ to y′, there must not be a summary
declassification node, as information flow might be transitive in that case. It is
not trivial to determine R(d) and P (d) such that precision is maximized and
correctness is maintained, as we will see later. However, once these values have
been fixed, Algorithm 7 proceeds as usual.

Figure 4.13 shows the SDG with summary declassification nodes for the
example in Figure 4.12. The actual-in nodes 4 and 8 are connected to their
corresponding formal-in node 13 with parameter-in edges. The formal-out node
15 is connected to corresponding actual-out nodes 6 and 10 with parameter-
out edges. The call nodes 3 and 7 are connected to the called procedure at
its entry node 12 with a call edge. The actual-in nodes 4 and 8 are connected
via summary edges and summary declassification nodes 5 and 9 to the actual-
out nodes 6 and 10. This Figure contains only one declassification at node 15
(R(15) = confidential , P (15) = public), so for the path between node 13 and
15 the summary declassification nodes 5 and 9 will be set to R(5) = R(9) =
confidential and P (5) = P (9) = ⊥. (The algorithm for this will be presented in
the next section.)

Exploiting the summary declassification nodes, algorithm 7 will a) determine
that node 1 is not in the backward slice of node 11 and thus cannot influence
node 11, and b) confidential = P (8) ≤ S(8) ≤ S(8) ≤ R(9) = confidential
and ⊥ = P (9) ≤ S(9) ≤ S(10) ≤ R(11) = public, thus no security violation
is found in check. In the second slicing phase, there is no violation either:
S(13) ≤ S(14) ≤ R(15) = confidential and public = P (15) ≤ S(10) ≤ R(11) =
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public. Note that the constraint P (15) ≤ S(10) is checked in the second phase,
such that the trivial constraint P (9) = ⊥ is sufficient for asserting security, and
R(5) = R(9) = confidential is exactly the maximal possible value of S(13).
This observation leads to the following algorithm for computing P and R for
summary declassification nodes.

4.8.2 Computation of R(d) for Summary Declassification Nodes

Algorithm 8 Computation of R(d) for Summary Declassification (backward
propagation)

1 procedure SummaryDeclassification(G,L,R)
2 input G: a system dependence graph
3 L: a security lattice
4 R: the required annotations
5 output: the set of summary declassification nodes (included in G)
6 begin
7 pathEdges = ∅ // set of transitive dependences already seen
8 foreach formal−out node o in G do
9 pathEdges∪= (o, o,¬(o ∈ D),>)

10 od
11 workList := pathEdges
12 while workList not empty do
13 remove (x, y, f, l) from workList
14 if x is an formal−in node then
15 addSummaries(x, y, f, l)
16 else
17 foreach edge w → x ∈ G do
18 addToPathEdges(extendPathEdge((x, y, f, l), w))
19 od
20 fi
21 od
22 end
23

24 procedure addToPathEdges(x, y, f, l)
25 input (x, y, f, l): a path edge tuple
26 begin
27 if (x, y, f ′, l′) ∈ pathEdges where f ′ 6= f or l′ 6= l then
28 remove (x, y, f ′, l′) from pathEdges
29 fi
30 if (x, y, f, l) 6∈ pathEdges then
31 pathEdges∪= (x, y, f, l)
32 workList∪= (x, y, f, l)
33 fi
34 end

As summary declassification nodes represent the effect of declassifications
on paths in the procedure body, and these can in turn call procedures (even
recursively), a simple transitive closure between formal parameters does not
yield a correct solution for summary declassification nodes [HRB90,RHSR94].
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Algorithm 9 Auxiliary procedures for Summary Declassification Nodes

35 procedure extendPathEdge((x, y, f, l), w)
36 input: (x, y, f, l): a path edge tuple
37 w the extension node
38 output: a path edge extended by w
39 begin
40 if pathEdges contains a tuple (w, y, f ′, l′) then
41 retrieve (w, y, f ′, l′) from pathEdges
42 else
43 l′ = >, f ′ = false
44 fi
45 if x ∈ D then
46 l′ = l′ uR(x)
47 else
48 l′ = l′ u l
49 fi
50 f ′ = f ′ ∨ (w 6∈ D ∧ f)
51 return (w, y, f ′, l′)
52 end
53

54 procedure addSummaries(x, y, pf, l)
55 input: (x, y, f, l): a path edge tuple
56 begin
57 foreach actual parameter pair (v, w) corresponding to (x, y)
58 if f then
59 add summary edge v →sum w to G
60 n := v
61 else
62 add summary declassification node d and edges v →sum d
63 and d→sum w where R(d) = l and P (d) = ⊥
64 fi
65 foreach (w, z, f ′, l′) ∈ pathEdges do
66 addToPathEdges(extendPathEdge((w, z, f ′, l′), d))
67 od
68 od
69 end
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Instead, a specialized algorithm for summary edges must be leveraged where
the computation of the security levels for summary declassification nodes can
be integrated. The result can be seen in Algorithms 8 and 9, which incorporate a
backward IFC propagation into the algorithm described by Reps et al. [RHSR94]
as presented in Algorithm 2 on page 35.

As an example, consider Figure 4.11 again. Here, Algorithm 8 starts with
adding node 15 as (15, 15, false,>) into pathEdge. Note that the third element
of this tuple is false, because 15 is a declassification node. When this tuple
is removed from the workList , all predecessors of 15 are processed, in particu-
lar node 14. For this node, extendPathEdge will not find a previous tuple in
pathEdges and thus initializes l′ and f ′ to the neutral elements for u, resp. ∨.
As node 15 is in D, l′ = l′ u R(15) = R(15) and f ′ = f ′ ∨ false = false, which
yields a pathEdge tuple (14, 14, false, confidential). For its predecessor 13, we
get a pathEdge tuple (13, 13, false, confidential) and no other path leads to 13.
Since 13 is a formal-in node, addSummaries will add a summary declassification
node d where R(d) = confidential and P (d) = ⊥ between the corresponding
actual parameters 4 and 6, and 8 and 10, exactly as we defined these nodes in
the previous section.

Theorem 4.10. IFC with Algorithm 7 and summary declassification nodes de-
termined according to Algorithms 8 and 9 is sound and precise.

Proof We want to show that Algorithms 8 and 9 results in a superset of the
constraints generated for all interprocedurally realizable paths. This guarantees
soundness. To demonstrate precision, we show that the additional constraints
are trivially satisfied by choosing P (d) = ⊥ for all summary declassification
nodes d, and thus do not change the computed fixpoint. As these algorithms
are straightforward extensions of the algorithm presented in [HRB90,RHSR94],
we can assume that these algorithms traverse all interprocedurally realizable
paths between formal-in and formal-out edges, including recursive calls. For
soundness, we need to show two subgoals:

1. If there is an interprocedurally realizable path between a formal-in and a
formal-out parameter of the same call-site that does not contain a declassi-
fication node, then the algorithm will only generate a traditional summary
edge, but no summary declassification node. Due to transitivity of infor-
mation flow on that path, the summary information must conservatively
obey transitivity as well. Algorithm 9 adheres to this requirement using
the flag f in line 59. An induction over the length of the pathEdge will
show this property:

If the length of the pathEdge is 0 (x = y), line 9 asserts that if x ∈ D
then the flag f is false, else true. So let’s assume f correctly represents
the fact if the pathEdge (x, y, f, l) contains no declassifications. Then line
50 asserts that f ′ in the extended pathEdge (w, y, f ′, l′) is true(i.e. there
is no declassification on the path w → y), if w 6∈ D ∧ f holds. Note that
if there have been other paths between w and y previously explored (the
condition in line 40 holds), we will only remember if there is any path
without declassification due to the disjunction in line 50.
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2. Otherwise, if all paths between a formal-in and a formal-out parameter
of the same call-site contain a declassification, we need to show that for
each interprocedurally realizable path, the HRB algorithm with summary
declassification nodes computes a superset of the constraints generated
for that path. As a consequence of not traversing parameter-in edges,
the constraint S(act-in) ≤ S(form-in) is not directly generated by Al-
gorithm 7, and thus must be imposed by the summary declassification
node d. As the value of R(d) is determined by computing S(form-in)
with the same constraints as in Algorithm 7, we only need to show that
using S(form-out) = > we get the same result as with the constraint
S(form-out) ≤ S(act-out), which is generated by the HRB algorithm.
But this follows from the independence of S(form-in) and S(form-out),
as each path in-between contains a declassification node which induces
no constraint of the form S(w) ≤ S(v) for an edge w → v but only
S(w) ≤ R(v).

4.8.3 Beyond PDGs

While SDG precision improves steadily due to ongoing research, precision can
also be improved by non-SDG means, as developed in program analysis.

As an example, consider the fragment
“if (h > h) then l = 0”

Naive slicing as well as security type systems will assume a transitive dependence
from h to l, even though the if body is dead code. Thus, semantic consistency
as postulated in [SS05] is violated. This is not in discrepancy with Theorem 4.1,
but comes from analysis imprecision.

Fortunately, SDGs today come in a package with other analyses originally
developed for code optimization, such as interprocedural constant propagation,
static single assignment form, symbolic evaluation, and dead code elimination.
These powerful analyses are performed before SDG construction starts, and will
eliminate a lot of spurious flow. The easiest way to exploit such analyses is
by constructing the SDG from bytecode or intermediate code. For the above
example, any optimizing compiler will delete the whole statement from machine
code or bytecode, as it is dead code. Note that the bytecode must be considered
the ultimate definition of the program’s meaning, and remaining flows in the
bytecode – after all the sophisticated optimizations – must be taken all the more
seriously.

In addition, we propose an even stronger mechanism on top of SDGs, called
path conditions (see chapter 5). Path conditions are necessary and precise con-
ditions for flow x→∗ y, and reveal detailed circumstances of a flow in terms of
conditions on program variables. If a constraint solver can solve a path condi-
tion for the program’s input variables, feeding such a solution to the program
makes the illegal flow visible directly; this useful feature is called a witness. As
an example, consider the fragment

1 a[i+3] = x;
2 if (i>10)
3 y = a[2*j-42];
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Here, a necessary condition for a flow x→∗ y is ∃i, j.(i > 10)∧(i+3 = 2j−42) ≡
false, proving that flow is impossible even though the PDG indicates otherwise.

4.9 Related Work

4.9.1 SDGs and IFC

Several papers have been written about SDGs and slicers for Java, but to our
knowledge only the Indus slicer [JRH05] is—besides ours—fully implemented
and can handle full Java. Indus is customizable, embedded into Eclipse, and
has a very nice GUI, but is less precise than our slicer. In particular, it does not
fully support context-sensitivity but only k-limiting of contexts, and it allows
time traveling for concurrent programs.

The work described in this paper improves our previous algorithm [HKS06],
which was not able to handle declassification in called procedures precisely.
However, that work also describes the generation and use of path conditions
for Java PDGs (i.e. necessary conditions for an information flow between two
nodes), which can uncover the precise circumstances under which a security
violation can occur.

While a close connection between IFC and dataflow analysis had been no-
ticed very early [BC85], Abadi et al. [ABHR99] were the first to connect slicing
and noninterference, but only for type system based slicing of a variant of λ-
calculus. It is amazing that our Theorem 4.3 from Section 4.3 (which holds
for imperative languages and their PDGs) was not discovered earlier. Only
Anderson et al. [ART03] presented an example in which chopping can be used
to show illegal information flow between components which were supposedly
independent. They do not employ a security lattice, though.

Yokomori et al. [YOT+02] were probably the first to propose and implement
an IFC analysis based on program slicing for a procedural language. It checks for
traditional noninterference, and supports the minimal lattice Low < High only.
Their analysis is flow-sensitive, but not context-sensitive nor object-sensitive.

Hammer et al. combined static and dynamic PDG analysis for detection
of illegal information flow [HGK06]. It allows the a-posteriori analysis of pro-
grams showing unexpected behavior and the computation of an exact witness
for reconstruction of the illegal information flow.

4.9.2 Security type systems

Volpano and Smith [VS97] presented the first security type system for IFC.
They extended traditional type systems in order to check for pure noninterfer-
ence in simple while-languages with procedure calls. The procedures can be
polymorphic with respect to security classes allowing context-sensitive analysis.
They proof noninterference in case the system reports no typing errors. An
extension to multi-threaded languages is given in [SV98].

Myers [ML00] defines Jif, an extension of the Java language with a type
system for information flow. The JIF compiler [MCN+] implements this lan-
guage. We already discussed in Section 4.3 that type systems are less precise,
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but are more efficient. JIF supports generic classes and the decentralized la-
bel model [ML00]; labels and principals are first class objects. Note that our
PDG-based approach can be generalized to utilize decentralized labels.

Barthe and Rezk [BR05] present a security type system for strict nonin-
terference without declassification, handling classes and objects. NullPointer-
Exception is the only exception type allowed. Only values annotated with Low
may throw exceptions. Constructors are ignored, instead objects are initialized
with default values. A proof showing the noninterference property of the type
system is given.

Strecker [Str03] formulated a non-deterministic type system including the
noninterference proof in Isabelle [NPW02]. It handles major concepts of Micro-
Java such as classes, fields and method calls, but omits arrays and exceptions.

Mantel and Reinhard [MR07] defined the first type system for a multi-
threaded while language that controls the what and the where dimension of
declassification simultaneously. The type system is based on a definition for the
where dimension that supersedes their previous definition of intransitive non-
interference [MS04], and two variants of a definition for the what dimension
similar to selective dependency [Coh78]. However, they do not show whether
their approach is practically viable.

4.9.3 Verification and IFC

Amtoft et al. [ABB06] present an interprocedural flow-sensitive Hoare-like logic
for information flow control in a rudimentary object-oriented language. Casts,
type tests, visibility modifiers other than public, and exception handling are not
yet considered. Only structured control flow is allowed.

The Pacap case study [BCM+00] verifies secure interaction of multiple Java-
Card applets on one smart card. They employ model checking to ensure a
sufficient condition for their security policy, which is based on a lattice similar
to noninterference without declassification. Implicit exceptions are modeled,
but such unstructured control flow may lead to label creep (cf. [SM03, Sect. II
E]).

Genaim [GS05] defines an abstract interpretation of the CFG looking for
information leaks. It can handle all bytecode instructions of single-threaded
Java and conservatively handles implicit exceptions of bytecode instructions.
The analysis is flow- and context-sensitive but does not differentiate fields of
different objects. Instead, they propose an object-insensitive solution folding all
fields of a given class. In our experience [HS04] object-insensitivity yields too
many spurious dependences. The same is true for the approximation of the call
graph by CHA. In this setting, both will result in many false alarms.

An area uncovered by our system is security policies, defining under which
circumstances declassification is allowed. Li and Zdancewic [LZ05] define a
framework for downgrading policies for a core language with conditionals and
fixed-points, yielding a formalized security guarantee with a program equiva-
lence proof.

123



CHAPTER 4. INFORMATION FLOW CONTROL

4.9.4 Static analysis for security

Static analysis is often used for source code security analysis [CM04]. For ex-
ample, information flow control is closely related to tainted variable analysis.
There are even approaches like the one from Pistoia et al. [PFKS05] that use
slicing for taint analysis or the one from Livshits and Lam [LL03, LL05] that
uses IPSSA, a representation very similar to dependence graphs. However, these
analyses only use a trivial security level (tainted/untainted) with a trivial de-
classification (untaint) and could greatly benefit from our approach. Scholz et
al. [SZC08] present a static analysis that tracks user input on a data structure
similar to a dependence graph. Like our analysis, it is defined as a dataflow
analysis framework and reduce the constraint system using properties of SSA
form. Again, this analysis is targeted to bug tracking and taint analysis.

Pistoia et al. [PCFY07] survey recent methods for static analysis for soft-
ware security problems. They focus on stack- and role-based access control,
information flow and API conformance. A unified access-control and integrity
checker for information-based access control, an extension of Java’s stack-based
access control mechanism has been presented in [PBN07]. They show that an
implicit integrity policy can be extracted from the access control policy, and
that the access control enforces that integrity policy.

Another approach is to use path conditions (as sketched in section 4.8.3)
in order to obtain more semantically convincing characterizations and context
constraints for sound declassification. Our approach to declassification does
currently not offer per-se checks of semantic properties as stipulated by [SS05],
but will rely on path conditions to provide precise necessary conditions for a
declassification to take place. This approach falls into the category “how” de-
classification may occur, which has not yet been extensively researched.

For multithreaded programs, PDGs need not only check for classical nonin-
terference, but eventually for possibilistic or probabilistic noninterference. De-
tails of this novel technique will be presented by Giffhorn and Lochbihler [GL].
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Chapter 5

Path Conditions

5.1 Introduction

The previous chapter presented our precise approach for information flow con-
trol. But no matter how precise the information flow analysis is, it will always
answer a binary question only — whether illegal flow between two program
points is possible, or whether this is definitely not the case. It may even be able
to track down the source point making trouble, but still lack to provide insight
into the specific conditions of the security violation. In particular, information
flow control mechanisms do not provide "counter examples", e.g. in the form of
input values that make the security violation visible.

This chapter will present two approaches that do exactly that, based on
the concept of a static path condition [Sne96,RS02,SRK06], which is a precise
condition that needs to be satisfiable for information flow between two given
program points to be possible. Such a condition can be fed into a constraint
solver system which either finds the formula unsatisfiable, which means that the
given information flow is definitely impossible and was a false positive in the
original analysis, or it may eventually simplify the condition to input variable
bindings that trigger that information flow. This chapter extends this notion in
two dimensions: First, this concept of a static path condition is extended to the
object-oriented features of Java, which impose additional difficulties due to the
dynamic nature of type tests of instanceof, dynamic dispatch and exceptions.
However, our new approach relies solely on static program analysis and thus
allows generating precise conditions for illicit information flow, that say why
this flow takes place, together with a set of input values that allow reproduction
of that illicit flow.

Second, a dynamic variant of path conditions is presented that combines
traditional static path conditions with dynamic analyses like dynamic slicing
and information collected by program instrumentation. Dynamic slicing yields
significantly smaller sets of statements than static slicing, therefore the dynamic
path conditions allow a precise post-mortem analysis of a failed program run
and might even be leveraged for analyzing how illicit information flow occurred,
after prevention by a dynamic information flow control mechanism.
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1 a = u();
2 while (n>0) {
3 x = v();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;

Start

1 2

3 4

5 7

9

Figure 5.1: A small program and its dependence graph

Both extensions have been implemented in a prototype tool based on the
Valsoft infrastructure [Rob05]. Previous results from this effort have been de-
scribed in [HGK06,HSS08].

5.2 Foundations of Path Conditions

Program dependence graphs (PDG) as presented in chapter 2 are a standard
tool to model information flow through a program. Program statements or
conditions are represented by the nodes, the edges represent data and control
dependences between statements or conditions. A path x →∗ y means that
information can flow from x to y; if there is no path, it is guaranteed that there
is no information flow. In particular, all statements (possibly) influencing y (the
so-called backward slice) are easily computed as BS(y) = {x | x→∗ y}

For the small program and its dependence graph in Figure 5.1, there is a
path from statement 1 to statement 9, indicating that input variable a may
influence output variable z. Since there is no path 1→∗ 4, there is definitely no
influence from a to x.

A chop for a chopping criterion (x, y) is the set of nodes that are part of an
influence of the (source) node x on the (target) node y. This is the set of nodes
that lie on a path from x to y in the PDG: CH(x, y) = {z | x→∗ z →∗ y}. For
convenience, we will also use CH(x, y) for the set of paths between x and y.

5.2.1 Intraprocedural Path Conditions

In order to make program slicing more precise, Snelting introduced path condi-
tions [Sne96], which are necessary conditions for information flow between two
nodes. The formulae for the generation of path conditions are quite complex
(for details, see [SRK06]), and only the most fundamental formulae will be given
here:

PC(x, y) =
∨

Path P=x→∗y

∧
z∈P

E(z) where

E(z) =
∨

P Control Path Start→cd∗z

∧
ν→cdµ∈P

c(ν → µ) (5.1)
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PC(x, y) is a necessary condition for flow from x to y, and E(z) is a necessary
condition for the execution of z. A control path is a path that consists of
control dependence edges only. Thus, E(x) is computed along all control paths
from the Start node of the function to x based on the conditions c(ν → µ)
associated with dependence edge ν → µ. For control dependences, c(ν → µ)
is typically a condition from a while- or if-statement. Program variables in
a path condition are (implicitly) existentially quantified, as they are necessary
conditions for potential information flow.

Because the paths between the criterion nodes are based on the computed
chops, we will be interested in the set of paths P1, P2, · · · ∈ CH(x, y) and a
slightly relaxed notation for path conditions is used:

PC(x, y) =
∨

P∈CH(x,y)

∧
z∈P

E(z)

In [SRK06] Snelting et al. argue why this formula is correct and precise, and
why it improves slicing considerably. They also show that cycles in CH(x, y)
can safely be eliminated for computation of PC(x, y), such that the formula is
always finite. For the example in Figure 5.1, the following execution and path
conditions are computed:

c(2→ 3) ≡ c(2→ 4) ≡ (n > 0), c(4→ 5) ≡ (x > 0),
c(4→ 7) ≡ (x ≤ 0),

E(1) ≡ true, E(3) ≡ (n > 0), E(5) ≡ (n > 0) ∧ (x > 0),
PC(1, 5) ≡ E(1) ∧ E(5) ≡ (n > 0) ∧ (x > 0)

In the presence of data structures like arrays or pointers, additional con-
straints will be generated. For data dependences, Φ(ν → µ) is a condition
constraining information flow through data types. As an example we con-
sider arrays (a full presentation can be found in [SRK06]): A data dependence
ν → µ between an array element definition a[E1] = . . . and a usage . . . = a[E2]
generates Φ(ν → µ) ≡ E1 = E2; all other data dependences will generate
Φ(ν → µ) ≡ true. The equation to compute a path condition now becomes:

PC(x, y) =
∨

P∈CH(x,y)

(∧
z∈P

E(z) ∧
∧

u→v∈P
Φ(u→ v)

)
(5.2)

For clarification consider the following program fragments and their path con-
ditions:

1 a[i+3] = x;
2 if (i>10)
3 y = a[2*j-42];

PC(1, 3) ≡ (i > 10) ∧ (i+ 3 = 2j − 42)

which, apart from the execution condition, contains a term that requires the
two index expressions to be equal, and
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1 x = a;
2 while (x < 7) {
3 x = y + x;
4 if (x == 8)
5 p(x);
6 }

1 x 1 = a;
2 while (x 2 =Φ(x 1 ,x 3 ),x 2 <7){
3 x 3 = y + x 2 ;
4 if (x 3 == 8)
5 p(x 3 );
6 }

Figure 5.2: Multiple variable assignments

1 a[i+3] = x;
2 if ((i >10)&&(j<5))
3 y = a[2*j-42];

PC(1, 3) ≡ (i > 10) ∧ (j < 5) ∧ (i+ 3 = 2j − 42)
≡ false

which is not satisfiable, as the index expression term and the execution condi-
tions contradict.

These examples indicate that path conditions give precise conditions for
information flow, and can sometimes determine that such flow is impossible
even though there is a path in the graph. Note that in practice path conditions
tend to be large and a constraint solver is used to simplify them.

Multiple Variable Assignments

Computing path conditions based on the original program text may render the
condition unsatisfiable even if the influence is possible. As an example, consider
the code in Figure 5.2 (left) and the (primitive) path condition

PC(1, 5) ≡ (x < 7) ∧ (x = 8)

between a in line 1 and x in line 5. This condition is unsatisfiable, although
there is definitely a way how line 1 can influence line 5. The problem is that
the program contains multiple assignments to the variable x that this path
condition cannot distinguish. For static path conditions this problem is solved
by using a variant of SSA-form [CFR+91] of the program. That way, different
variable definitions are distinguished and eventually brought together using the
φ operator, thus replacing multiple variable assignments with single assignments.
Figure 5.2 (right) shows the SSA form of the original program (left).

The SSA form makes our path condition solvable by distinguishing between
different definitions of the variable x:

PC(1, 5) ≡ (x2 < 7) ∧ (x3 = 8)

Transforming a program into SSA form, however, modifies the code repre-
sentation and is thus not desirable for dependence graphs in ValSoft which are
close to the source code structure. In order to maintain the code structure, an
assignment form similar to the SSA form is used: Index numbers represent the
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node numbers in the dependence graph, allowing a precise distinction between
different variable occurrences. Path conditions as

(e_puf [idx ] == ” + ”)

are thus written as
(e_puf 99[idx 98] ==97 ” + ”101)

The φ operator does not occur in the code structure itself, but is only used
for computing path conditions.

Weak and Strong Path Conditions

For a given chop between two statements x, y, one can usually define more
than one path condition. Still, every single instance is a necessary condition for
information flow along the chop. To argue about quality, a partial order1 ≤ is
defined for the pair (x, y)

PC ′(x, y) ≤ PC(x, y) iff PC(x, y)⇒ PC ′(x, y)

In such a case PC(x, y) is called stronger than PC ′(x, y). Stronger path condi-
tions are usually easier to solve by the constraint solver and thus more favorable.

Note that the precision of the underlying chop affects the strength of the
path condition: if two chops exist where one is more precise than the other
CH(x, y) ⊂ CH ′(x, y), then every path P ∈ CH(x, y) in the smaller chop is
also a path in the larger chop. Thus, the smaller chop generates a stronger path
condition, since the disjunction in the path condition runs over fewer paths:∨

P∈CH(x,y)

∧
z∈P

E(z)⇒
∨

P∈CH′(x,y)

∧
z∈P

E(z)

This fact forms the theoretic basis for Section 5.4.2, as the dynamic chop is
usually smaller than the static chop.

Adding another conjunctive term R to the path condition is a different way
to strengthen it. In Section 5.4.3 logical formula will be generated from dynamic
trace data and conjunctively combined with the original path condition, yielding
a stronger (or equal) path condition:

PC(x, y) ∧R ≥ PC(x, y)

5.2.2 Interprocedural Path Conditions

In analogy to interprocedural slicing and chopping, interprocedural path con-
ditions need to be restricted to realizable [Kri05] paths. Intuitively, this means
that a path in the system dependence graph (SDG) [HRB90] — i.e. several
PDGs connected by interprocedural edges according to the call graph — that
enters a procedure through a certain invocation site must not leave it at a differ-
ent invocation site. As an illustration, consider Figure 5.3. Here, there are only

1In fact, path conditions form only a preorder. Modulo equivalence one obtains a partial
order [SRK06,Ram94].
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fA

a b c d

fB

e f g h

f

u v x y

Figure 5.3: Abstract structure of multiple invocations of method f

two realizable paths at call site A (left), namely from parameter a to d and from
b to c. These transitive dependences, stemming from dependences in method
f, are represented in the SDG as summary edges (dashed in Figure 5.3). The
path from a to h is invalid, as parameters from one invocation cannot influence
another invocation.

In the following, we will focus on path conditions where start and end node
are in the same method (same-level), and will concentrate on object-oriented
constructs. The general case, where start and end node of the path condition
lie in different methods, can be constructed from concatenating several same-
level conditions. However, this is not specific to Java and has been addressed
in previous work [SRK06].

Path conditions factor out common subpaths with virtual decomposition
[SRK06]; common subpaths between formal parameters connected by a sum-
mary edge have been found good candidates for such decomposition. Virtual
decomposition ignores call and parameter-passing edges but includes summary
edges instead. A specific Φ condition (which is conjunctively added to the
execution condition) represents the condition for information flow along a sum-
mary edge [SRK06]. This condition is induced by the path condition between
the corresponding formal parameters combined with conditions that represent
parameter binding. In Figure 5.3 the condition between a and d would be:

Φ(a→ d) ≡ u = a ∧ PC(u, y) ∧ d = y

Thus PC(u, y) can be reused at other call sites with a different parameter bind-
ing.

Details of path condition generation are not presented here, but the reader
should be aware that making path conditions work for full C and realistic pro-
grams required years of theoretical and practical work [Sne96, RS02, Rob05,
SRK06]. The major steps include that programs must be transformed into sin-
gle assignment form first (see above); and while PDG cycles can be ignored,
due to the high number of cycle-free PDG paths in realistic programs, interval
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analysis for irreducible graphs must be exploited to obtain a hierarchy of nested
sub-PDGs; BDDs are needed to minimize the size of path conditions. Today,
the implementation ValSoft can handle C programs up to approx. 10000 LOC
and generate path conditions in a few seconds or minutes.

5.3 Static Path Conditions for Java

In this section, we present the first path condition generator for Java which relies
solely on static program analysis. Naturally, the main problem in generalizing
path conditions from procedural languages like C to Java was the treatment of
object-oriented features such as dynamic dispatch and dynamic type checks.

5.3.1 Overview

Path conditions are generated according to all possible dependence paths from
the source to the target point and a constraint solver reduces these conditions
to input values that trigger information flow between these two points. Such
input values have been named “witnesses” in [SRK06], and may be quite helpful
e.g. in law suits concerning security violations. However, [SRK06] only defines
path conditions for procedural languages. A naive integration of object-oriented
constructs in path conditions suffers from these conditions containing dynamic
type checks, which constraint solvers cannot simplify statically. Thus witnesses
cannot be generated, rendering these path conditions only a first step towards
realistic applications.

This section presents a detailed study of object-oriented language constructs
based on Java’s language specification, as well as solutions for their integration
into a path condition that contains only program variables and values. We
start discussing dynamic type checks à la instanceof and extend the solutions
found there to dynamic dispatch and exception handling. All these constructs
are based on dynamic type checks. These checks can either be approximated
conservatively, or — using program slicing — be transformed into a subcondition
that no longer involves the program’s types but ranges over program variables.
Thus we present the first approach to generate realistic path conditions for
Java. These conditions give more practical information than the conditions for
dynamic dispatch presented in [HKS06], and allow constraint solvers to find
input values that satisfy these conditions.

5.3.2 Dynamic Type Tests

In this section, we explore the precise semantics of the instanceof operator in
order to utilize it in path conditions. Informally, the result of the expression
e instanceof T is true iff the value of the expression e is not null and e has a
runtime type that is below the type constant T in the type hierarchy [GJSB05].
A compile time error occurs, when no path exists in the type hierarchy from T
to the static type of e. The language thus allows e to have a static type which
is equal to or below T in the hierarchy, even though in that case, unless e is

131



CHAPTER 5. PATH CONDITIONS

null, the expression will always evaluate to true. All this is well known, but
path conditions require a precise formalization of the instanceof semantics.

Precise semantics for instanceof

Java’s reference types are identical to the defined classes (and interfaces) in a
program, so the terms type and class (interface) are used interchangeably. We
write A <: B if A is a subclass of B. A type hierarchy is the transitive closure of
the subclass (<:) relation. Let C be the set of class types, I the set of interface
types, R = C∪I the set of reference types, P the set of primitive types and A the
set of array types. Further let S = {java.io.Serializable, Cloneable, Object}.
The notation e : τ denotes that e has dynamic/runtime type τ , and e :: τ denotes
static typing, respectively.

The type hierarchy induces concrete sets of types that satisfy the instanceof
operator: Let Γτ denote the set of types in the hierarchy that evaluate to true
in the instanceof τ expression, i.e.

e instanceof τ ≡ e : ρ ∧ ρ ∈ Γτ (5.3)

For brevity, we assume a special null-type with Γnull = ∅. Then the definition
of instanceof in the JLS [GJSB05] requires:
If τ ∈ R then

ρ ∈ Γτ iff (ρ ∈ C ∧ ρ ≤: τ) ∨ (ρ ∈ A ∧ τ ∈ S) (5.4)

else if τ ∈ A then

ρ ∈ Γτ iff ρ = ρ′[ ] ∧ τ = τ ′[ ] ∧ ρ′ ∈ Γτ ′ (5.5)

else if τ ∈ P then
ρ ∈ Γτ iff ρ = τ (5.6)

The last term of equation (5.5) corresponds to Java’s covariant array anom-
aly, that may result in type safety problems when storing into arrays. When the
complete type hierarchy is given at analysis time, Γτ can easily be computed
from the type hierarchy with e.g. class hierarchy analysis (CHA) [DGC95] or
more refined analyses like rapid type analysis (RTA) [BS96] and the XTA algo-
rithm [TP00]. A few special cases of Γτ are of high importance:

ΓObject = C ∪ A, which is infinite in principle2 due to A (5.7)

ΓCloneable = {X | X <: Cloneable} ∪
⋃

c∈R∪A∪P

c[ ] (5.8)

Γτ [ ] =
⋃
c∈Γτ

c[ ] (5.9)

The last equation hereby describes how to resolve an array type (τ [ ]) based
on the Γτ of its base type.

2In Java, the number of array dimensions is bounded by 255 [LY99].
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1 // pre: B extends A
2 public class InstanceOfExample {
3 static boolean pred = true;
4 public static void main(String [] args) {
5 A a = pred ? new A() : new B();
6 System.out.println(instanceOf(a));
7 }
8 public static int instanceOf(A sel) {
9 int result = 0;

10 if (sel instanceof B)
11 result = 42;
12 return result;
13 }
14 }

Figure 5.4: An example for the instanceof operator

5.3.3 Path Conditions for instanceof

The Γτ constructed in the previous section are necessary to describe the genera-
tion of precise path conditions for instanceof. Note that these path conditions
still contain dynamic type tests of the form expr : ρ; these will be removed by
transformation in the next section.

Algorithm 10 Path condition for instanceof
Input: An expression expr instanceof τ
Output: Corresponding path condition with dynamic type tests.

1: if τ = Object ∨ (τ ∈ S ∧ expr :: τ ′[ ]) ∨ (τ = τ ′[ ] ∧ τ ′ ∈ P) then
2: return expr 6= null
3: else
4: return expr 6= null ∧ (

∨
γi∈Γτ

expr : γi)
5: end if

Algorithm 10 presents how path conditions for instanceof expressions are
computed; the algorithm is based on the precise instanceof semantics above.
The differences between equations (5.4)–(5.6) and the algorithm stem from opti-
mizations which are done at compile time, see the JLS [GJSB05]. For example,
Γint[] = {int[]}, therefore the type test is done at compile time and no further
runtime constraint is required but the test for null.

Obviously, the more refined Γτ is determined, the more precise the condi-
tion for the instanceof expression becomes. As points-to analysis is usually a
prerequisite for precise slicing, points-to results can be leveraged to increase
precision of Γτ . If the number of possible runtime types thereby reduces to less
than or equal to 1, the path condition can immediately be reduced to true (if
the remaining type is an instance of τ , provided that the expression can never
be null) or false. As usual, determining Γτ requires whole-program analysis
either without reflection, or using conservative approximations (e.g. [LWL05]).
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For the example program in Figure 5.4, the initial path condition between
the parameter in line 8 and the return value in line 12 is

PC(sel8, result12) ≡ sel instanceof B

as no other path between these program points exists in the PDG. Since B is
no special type, Algorithm 1 replaces this condition by

PC(sel8, result12) ≡ sel 6= null ∧ sel : B

Exploiting backward slices in type tests

Path conditions for instanceof, as described so far, are of limited practical
value, as they may contain type tests with no link to variable values (e.g. sel : B),
and thus cannot serve as a witness. This section presents a novel technique to
transform such conditions into a form containing only program variables and
values, which thus can be used to generate witnesses. The fundamental idea is
to replace variables in runtime type checks by their backward slice.

The conditions in the last section contained terms of the form
∨
i∈Γτ

(e : γi)
for some type τ , that are essentially runtime checks. Program slicing offers
a means to replace these conditions with terms that only reference program
variables. The term e : γi depends on the last definition of e and will evaluate
to true only if e had been assigned an instance of γi. The program dependence
graph allows to resolve places from which γi-allocations reach a given statement.
This value flow is contained in the so-called backward data slice [BGS97], or
more precisely, the statements in a thin slice [SFB07]. In a backward data
slice, only data dependences and parameter edges are traversed, but control
dependences are not. This variant yields only those statements whose value
may have an influence on the slicing criterion. The thin slice is even more
restrictive, in that it only computes value flow, i.e. those statements that define
a value that is used at the criterion node, which is exactly what we are interested
in.

The following steps are to be taken to generate this refined path condition:

1. Determine the basic path condition p according to Algorithm 10 in sec-
tion 5.3.2

2. Compute the backward data slice or thin slice for the parameter e of the
e instanceof τ operator

3. For each type in p extract the allocation sites of that type from the slice

4. Concatenate the path conditions from the program’s start node to each
of these allocation sites and from there to the instanceof expression with
logical or

5. Replace the dynamic type checks in the basic path condition with the term
generated in the last step.
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Formally, with Ji := {ai,j ∈ BSthin(e) | ai,j is an allocation
site of type γi} we obtain the fundamental equation

e : γi ⇒
|Ji|∨
j=1

(
PC(Start, ai,j) ∧ PC(ai,j , e)

)
(5.10)

Informally, when e has runtime type γi, the program must have passed an
allocation site of that type, and this is only possible at one of the allocation sites
that reach expression e. Interprocedural reaching definitions are modeled in the
thin slice. PC(Start, ai,j) in equation (5.10) is necessary to reach allocation site
ai,j (included in the thin slice) from the program’s beginning, and PC(ai,j , e)
is required to get from there to expression e. Note that taking one of these
paths (i.e. PC(Start, ai,j) ∧ PC(ai,j , e) holds) does not guarantee that e has
dynamic type ai,j as slicing may be conservative, so equation (5.10) is only an
implication.

This equation has the additional advantage that the number of terms be-
comes finite due to the finite number of allocation sites, as opposed to the
theoretically infinite sets Γτ [ ]. If the program representation contains all de-
fault initializations of variables explicitly, tests for null can be omitted if the
backward data slice does not contain such a value.

Considering the example in Figure 5.4 again, the condition from Algorithm
10 (sel 6= null ∧ sel : B) needs to be refined using equation (5.10). The test
for null is redundant, as all program paths define sel with a non-null value.
The backward data slice of sel yields both allocations in line 5, where only the
second has appropriate type. Hence equation (5.10) collapses to

PC(sel8, result12) ≡ sel : B ≡
(
(pred = true)∧!pred ∧ true

)
≡ false (5.11)

Thus the parameter sel cannot influence the outcome of this method, even
though the program slice says so.

5.3.4 Dynamic Dispatch

Dynamic dispatch has great influence on path conditions: In contrast to stati-
cally bound methods, a virtual method call might have multiple possible target
methods, one of which is executed at runtime according to the type of the tar-
get object. As an example, Figure 5.5 shows a method invocation site for a
target object of static type A, which could dispatch either to A.f() or B.f().
The invocation site holds two parameter nodes a and b where two summary
edges (dashed) model the transitive flow that is possible between the formal
parameters in the possible target methods.

A naive path condition

Since it is statically unknown which target method is executed, one might obtain
the following naive path condition for dynamic dispatch of method f, which
simply disjuncts all possible cases:
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fA

a b

A.f

c d

B.f

c’ d’

Figure 5.5: Virtual method call with two possible targets and summary edges

PCf(x, y) ≡
n∨
i=1

PCγi.f(x, y) (5.12)

where x and y are in general two actual parameters of the call (connected by a
summary node), PCγi.f(x, y) is the condition of the invocation target for type
γi between the formal parameter nodes corresponding to x and y. Note that
not all subclasses must redefine f, so γi.f might in fact reference a definition of
f in a superclass of γi. For example, if C <: B <: A and only C and A (re)define
f, then B.f is actually A.f.

For Figure 5.5, equation (5.12) yields

PC(a, b) ≡
(
(c = a) ∧ PCA(c, d) ∧ (b = d)

)
∨
(
(c′ = a) ∧ PCB(c′, d′) ∧ (b = d′))

For the example program in Figure 5.6, the path condition between x and y on
line 11 would be:

PC(x, y) ≡ PCA(x, y) ∨ PCB(x, y) ∨ PCC(x, y)
≡ x < 1 ∨ x < 2 ∨ x < 3 ≡ x < 3 (∗)

where PCA, PCB, PCC are the standard path conditions for the three (re)defi-
nitions of f between the formal parameter nodes corresponding to x and y.

While this path condition is correct (it is a necessary condition for infor-
mation flow) and easy to build, it is too imprecise since the program semantics
disallows more than one target method. We will therefore develop an approach
to handle dynamic dispatch similar to the instanceof expression in the last
section.

Exploiting slices again

Previous work [HKS06] already presented a first step towards interprocedural
path conditions, precisely expressing the semantics of dynamic dispatch. The
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1 class A {
2 int result = 42;
3 int f(int x) {
4 if (x < 1)
5 result = x;
6 return result;
7 }
8 public static void main(String [] args) {
9 A o = new B();

10 int x = 2;
11 int y = o.f(x);
12 }}
13 class B extends A{
14 int f(int x) {
15 if (x < 2)
16 result = x;
17 return result;
18 }}
19 class C extends A {
20 int f(int x) {
21 if (x < 3)
22 result = x;
23 return result;
24 }}

Figure 5.6: Example program for dynamic binding

basic terms essentially become implications on the target object’s runtime type.3

For the example program in Figure 5.6, the path condition between x and y on
line 11 would be:

PC(x, y) ≡ (o : A⇒ PCA(x, y)) ∧ (o : B ⇒ PCB(x, y))
∧ (o : C ⇒ PCC(x, y)) (∗∗)

In general, for a dynamically dispatched call y = o.f(x), the JLS [GJSB05]
induces the following fundamental condition:

PCf(x, y) ≡
n∧
i=1

(o : γi ⇒ PCγi.f(x, y)) (5.13)

An alternative formulation of this condition is:

PCf(x, y) ≡
n∨
i=1

(o : γi ∧ PCγi.f(x, y)) (5.14)

Theorem 5.1. Let o 6= null. Then
n∧
i=1

(o : γi ⇒ PCγi.f(x, y)) ≡
n∨
i=1

(o : γi ∧ PCγi.f(x, y))

3 [HKS06] used ’instanceof’ in the example, which might be misleading due to Java’s
instanceof operator. The formulae in this work present the exact semantics.

137



CHAPTER 5. PATH CONDITIONS

Proof. 1. “⇒”: Let
∧n
i=1(o : γi ⇒ PCγi.f(x, y)). As exactly one of the potential

target methods of dynamic dispatch will be executed, we know ∃! k. o : γk (where
γk is the run-time type of o). Thus from the premise we conclude PCγk.f(x, y).
Hence o : γk ∧ PCγk.f(x, y),4 therefore

∨n
i=1(o : γi ∧ PCγi.f(x, y)).

2. “⇐”: Let
∨n
i=1(o : γi ∧ PCγi.f(x, y)). As above we know that ∃! k. o : γk.

Then also ∃! k. o : γk ∧ PCγk.f(x, y) holds. Now let i ∈ 1..n. If i 6= k, then
¬(o : γi), thus the implication o : γi ⇒ PCγi.f (x, y) holds trivially. If i = k, by
assumption PCγi.f(x, y) holds and hence the implication o : γi ⇒ PCγi.f(x, y).5

Thus
∧n
i=1(o : γi ⇒ PCγi.f(x, y)).

The proof for theorem 5.1 relies on the fact that not more than one of the
disjunctions can be satisfied at the same time, and holds provided o 6= null. In
case o = null, formula (5.14) is more precise than (5.13), as it correctly evaluates
to false: a flow of information through the method body is impossible, since an
exception is thrown. Equation (5.14) is therefore stronger [SRK06] (i.e. more
favorable) than (5.13) and especially than equation (5.12), as we add conjunctive
terms in equation (5.14).

However, both path conditions are of limited practical value, as they again
contain dynamic type tests and thus cannot serve as a witness. But again
equation (5.10) is applicable to this condition, so the dynamic type tests can be
transformed to a complex path condition with no explicit type tests. In general,
we obtain the equation

PCf(x, y) ≡
n∨
i=1

(( |Ji|∨
j=1

PC(Start, ai,j) ∧ PC(ai,j , o)
)
∧ PCγi.f(x, y)

)
(5.15)

Note that the condition of equation (5.15) is slightly weaker (but still con-
servative) than equation (5.14), as equation (5.10) is no equivalence but an
implication. For Figure 5.6, we obtain:

PC(x, y) ≡ (false ∧ PCA(x, y)) ∨ (true ∧ PCB(x, y)) ∨ (false ∧ PCC(x, y))
≡ x < 2 (∗∗∗)

as the backward data slice contains only the allocation in line 9, so this condition
is more precise than the basic formula (5.12). Note that (∗∗) was already more
precise than (∗), while (∗ ∗ ∗) now collapses to a simple condition without type
tests “x < 2”, which is more precise than the “x < 3” in (∗).

5.3.5 Exceptions

In principle any subtype of Throwable can be caught in Java, even subtypes of
Error. The latter indicate a VM failure from which recovery is typically not
possible, so catching Errors or Throwable is discouraged and not discussed in
this paper.

4Note that in general ((A⇒ B) ∧A)⇒ (A ∧B)
5Note that in general (A ∧B)⇒ (A⇒ B).
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1 public static void main(String [] args) {
2 System.out.println(exceptionMethod (1));
3 }
4 public static int exceptionMethod(int i) {
5 try {
6 return 5/i;
7 } catch (ArithmeticException e) {
8 return 0;
9 } catch (RuntimeException e) {

10 return Integer.MAX_VALUE;
11 }}

Figure 5.7: Example for exception handling

As finally blocks are always executed, they can be incorporated into the
CFG as usual and do not impose new challenges for path conditions. However,
catch blocks can alter the control and data flow and must therefore be treated
accordingly. It is possible to have multiple catch blocks for the same try block.
In this case, the appropriate handler is determined according to the exception’s
class. The (textually) first catch block a thrown exception matches handles that
exception, matching is done according to the instanceof relation [LY99].

In order to generate appropriate path conditions for this well-known excep-
tion behavior pattern, we model multiple catch as follows: Multiple catch blocks
can be translated to a typeswitch construct which is branched to when an excep-
tion is raised. This modeling results in control dependences labeled with type
boundaries, for which execution conditions based on instanceof expressions can
be leveraged in a straightforward manner. If multiple blocks would match, it is
conservative to have multiple conditions evaluate to true. However, to represent
Java’s semantics precisely and to achieve maximum precision, we need to ensure
that types that are caught in previous catch blocks may not evaluate to true.

Formally, let E =< e1, . . . , ek > be the sequence of exception handlers
associated with a try block with type boundaries ei. Then the control condition
for the typeswitch branch involves a dynamic type test of the form e : ρ∧ρ ∈ Γei .
Using the adjusted definition of Γ′ei = Γei \ (

⋃i−1
j=1 Γej ) represents the exact

semantics of exception handling and thus will report more precise results when
applied to Algorithm 10 and equation (5.10).

As an example consider Figure 5.7, where the path condition between pa-
rameter i and the second catch block is to be computed. The original path
condition yields:

i = 0 ∧ exc1 ∈ ΓRuntimeExc

≡ i = 0 ∧ (exc1 : RuntimeExc ∨ exc1 : ArithmethicExc)
≡ i = 0 ∧ (i = 0 ∨ false) ≡ i = 0

as no other exception but ArithmeticException can be thrown in exceptionMethod,
while Algorithm 10 with the refined Γ′ will result in the condition
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i = 0 ∧ exc1 ∈ Γ′RuntimeExc ≡ i = 0 ∧ exc1 : RuntimeExc ≡ i = 0 ∧ false ≡ false

showing that this catch block is actually dead code.

Interprocedural Exceptions

Java supports two types of exceptions: Unchecked and checked exceptions.
The former are any subtype of RuntimeException with the main purpose
of signaling a problem of bytecode interpretation. Most bytecode instruc-
tions involved with object references and array access may for example throw
NullpointerExceptions or ArrayIndexOutOfBoundsExceptions. Nearly every
method in Java might throw an exception, and this needs special attention
when modeling interprocedural exception handling. For each invocation site,
our SDG contains two return value nodes (one for the usual return value and
one for an uncaught exception), and two successors: one if method invocation
terminated normally and the other for abrupt termination due to an uncaught
exception [CPS+99]. Those two successors are control dependent on the call site.
However, the predicate of the call site is not the result of the call but induced by
the semantics of our model. In our SDG it corresponds to the term exc 6= null,
where exc is the variable that stores the uncaught exception. Therefore, the
control dependences can be viewed as summarizing the conditions which lead
or do not lead to abrupt termination.6 In a conservative approximation, these
conditions can be set to true, assuming that both cases are feasible.

A more precise modeling retraces the conditions for abrupt termination to
occur. This corresponds to generating the subconditions between the invocation
node and the return value node for normal termination, and the exception node
for abrupt termination, respectively. Considering Figure 5.7 again, the print
statement is only executed, if exceptionMethod terminates normally. As we
have already seen, all exceptions in exceptionMethod are caught, so the print
statement is always executed, the PC for normal termination of exceptionMethod
reduces to true.

5.3.6 Concurrency

Another important language feature of Java, namely concurrency, has been
addressed in previous work already. Two approaches have been proposed in
[SRK06] to generate conditions in the presence of concurrency: Interference de-
pendence (inter-thread data dependence) can either be treated like usual data
dependence. However, since interference is not transitive, this will result in
overly conservative conditions. Alternatively, only possible program executions,
so-called threaded witnessthreaded witnesses, are considered valid paths for path
condition computation, which requires more expensive slicing and chopping al-
gorithms. An evaluation of precise concurrent slicing algorithms can be found
in Giffhorn and Hammer’s work [GH09].

6This is equivalent to manually checking for error codes in C
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5.3.7 Path Conditions for Information Flow Control

When we discover an interference at a statement s where the required security
level R(s) is not larger than the actual (computed) security level S(s), we can
investigate the source of this interference. We distinguish between immediate
and transitive interference. The immediate interference exists between s and
its predecessors which lead to the computed security level S(s). Usually, only a
subset of the predecessors is responsible for the interference—it is the minimal
subset N ⊆ pred(s) that lead to S(s): S(s) =

⊔
y∈N S(y).

Path conditions give the condition PI of the immediate interference and we
can compute it through

PI =
∧
y∈N PC(y, s).

Often, we are more interested in the transitive interference, i.e. the interfer-
ence between a statement s with a required security level of l and a statement x
with a provided security level p, where there is a path x→∗ s which “transmits”
p to s. To investigate the transitive interference, we use the correspondence
between slicing and noninterference. The first step is to compute the backwards
slice BS(s) that contains all statements that may influence s. From BS(s)
we extract all statements with a provided security level as the possible set of
information sources:

T = {x ∈ BS(s) | x ∈ dom P}

The computed security level cannot be smaller as (or not comparable to) any
provided security level at its sources: ∀x ∈ T : P (x) ≤ S(s). Again, we
need the minimal subset T ′ of T that computes S(s): S(s) =

⊔
y∈T ′ S(y).

Path conditions give the condition PT of the transitive interference and we can
compute it through

PT =
∧
y∈T ′

PC(y, s)

Note that there may exist multiple minimal subsets N and T ′ and we might
want to examine all of them.

5.4 Dynamic Path Conditions in Dependence Graphs

The previous sections developed analyses that statically enforce a certain secu-
rity policy. Ensuring that security breaches are impossible at compile time is
favorable to registering a violation at runtime, where at least the information
is leaked, that some illicit event has happened. Still, static checks can only
assert the validity of the specified properties. For unforeseen incidents security-
sensitive modules usually contain some sort of “flight recorder”. It allows the a
posteriori reconstruction of problems leading to a—possibly fatal—error.

This section presents a new approach leveraging data recorded during pro-
gram execution—the program trace—for the a posteriori detection and isolation
of problem causes. The trace is used to improve precision in two ways, which
may as well be combined: First, a dynamic slicing algorithm identifies all state-
ments that actually influenced the fatal statement during program execution.
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The dynamic slice is generally much smaller than the static slice and thus, a
smaller set of statements has to be examined. If a statement in the slice is sus-
picious, a path condition can be computed between the suspicious and the fatal
statement. Path condition generation is based on a chop between the suspicious
and the fatal statement. The dynamic chop between these statements is, again,
generally much smaller than the static chop (chops contain the statements that
participate in an influence from a source to a target statement). Thus, a dy-
namic chop contains a smaller number of paths between the two statements,
leading to a less conservative path condition. Second, the observed values of
program variables are transformed into additional logical constraints, which,
conjunctively combined, improves the precision of path conditions.

This dynamic path condition allows the precise reconstruction of the sce-
nario that lead to the fatal error (post-mortem analysis). If the dynamic path
condition is unsatisfiable, there was definitely no influence between the given
statements even though the dynamic chop indicated otherwise. But if the path
condition is satisfiable, it serves as a “witness” for the illegal information flow: A
constraint solver will resolve the path condition to input values which triggered
the illegal flow. These input values can be given to the program again and the
influence becomes visible once more. In case of safety violations, these input
values thus serve as witnesses for the illegal behavior.

5.4.1 Program Tracing

Trace data, also known as a runtime protocol of variable bindings and their
def-use locations, plays a role for dynamic slicing (cf. Section 5.4.2) and for
refinement of path conditions (cf. Section 5.4.3).

To collect trace data one has to execute the program in a controlled environ-
ment, which motivated the employment of a standard debugger like the gdb. We
implemented a debugger driver that abstracts away from the actual debugger
in use, offering the tracer a standard interface for controlled execution.

The used tracing approach is based on a static dependence graph. Any in-
formation that the tracer (and the debugger) needs for controlled execution, like
where to set break points and used/defined variables, are extracted from a fine-
grained system dependence graph (SDG). Fine-grained means that statement
nodes are expanded to an Abstract Syntax Tree (AST ) [Kri03a]. This fine-
grained structure forms a prerequisite for building path conditions in general.
It also allows detailed tracing of variable bindings, where variables that need to
be recorded before statement execution (variables used for the computation) are
distinguished from the variable(s) defined by the statement, which is recorded
after execution. Thus every statement is mapped to a set of variables and their
role (Definition, Use). The control dependence information is extracted from
the SDG.

In the tracing phase, the program is executed statement by statement, where
for every statement the attached variables are traced, either before or after the
execution of the statement. For procedure calls the tracer maps the actual
parameters to the formal parameters. This implies a Use and Definition role at
the same time, which are traced before the execution of the method call. Note
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1 LINE 11
2 USE Z
3 DEF X
4 LINE 12
5 USE X
6 LINE 13
7 USE Y
8 DEF X
9 LINE 14

10 USE X

1 LINE 11
2 USE Z
3 DEF X
4 LINE 12
5 USE X
6 LINE 13
7 USE Y
8

9 LINE 14
10 USE X

Figure 5.8: Incorrect dependence by gap in protocol

that a trace ‘inlines’ the called procedures and thus, is automatically context-
sensitive.

Third Party Code

A problem well known in static program analysis arises for dynamic analyses
as well: Libraries (especially provided by a third party) usually do not provide
source code nor the debugging information needed to collect tracing data. I.e.
any side-effect produced by a library call does not generate the tracing informa-
tion to produce correct dynamic dependences. When the debugging information
is extracted from the static SDG that problem arises already during construc-
tion of the SDG. But even if one did not depend on a static dependence graph
would one face the same problem.

A possible solution has been employed by static analysis designers for some
years now: One writes stubs for those library methods and conservatively adds
the summary dependences at the invocation point.

Incomplete Traces

Besides the problem of third party code, other reasons exist, why a trace could
be incomplete: Either the tracer looses information, maybe on purpose for re-
stricted memory, or because of limitations of the tracing approach. But it
depends on the purpose whether the detail of the traced data suffices to gain
sound results. As mentioned at the beginning of this section, our goals are
dynamic slicing resp. chopping (cf. Section 5.4.2) and the refinement of path
conditions with dynamic variable data (cf. Section 5.4.3).

Dynamic slicing does not depend on the actual values of variables but on the
def-use relations of variables. Missing entries in the trace will most probably
lead to false dependences and thus incorrect dynamic slices. As an example
consider Figure 5.8. While in the left protocol line 10 depends on the definition
in line 8, this entry has been missed in the protocol on the right. The dynamic
slice will determine a dependence to line 3 then, which is incorrect.

With gdb controlling the program execution and the fine-grained variable
tracing, one cannot guarantee the correctness of the program trace in all cases:
First one has to assert that one line of source code has not more than one
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statement. Code like x = a + x; x++; will not result in a detailed protocol since
the debugger works only line-based and will thus report only one definition and
one use of x instead of two, respectively. Tools like GNU indent produce code
that circumvents these problems.

Multiple assignments to the same variable in one statement like x = a + x++
are undefined in ANSI-C and will thus be ignored. Under certain circumstances,
however, our technique will produce fragmentary traces in special cases: a state-
ment with two method calls like x = f(a) + g(b) may yield an incorrect value
for b as the debugger cannot stop between the method calls to allow accurate pa-
rameter tracing. A solution to this problem is the combination of static slicing
and dynamic slicing similar to [ZG04]. Another solution would be to trans-
form the source program to a program that has at most one assignment or one
function call per statement.

5.4.2 Dynamic Slicing

Dynamic program slicing was introduced by Korel and Laski [KL88]. Dynamic
slicing builds a dynamic dependence graph (DDG) computed from the real de-
pendences arising during program execution. Therefore, a dynamic dependence
graph usually is considerably smaller than a static dependence graph, which has
to relay on conservative approximations not to relinquish soundness.

For illustration consider Figure 5.1 again. If the execution trace is 1,2,3,4,7,9
then the static backward slice of node 9 is the whole graph. The dynamic slice
of 9 does, in contrast, not contain the statements 1 and 5 as those did not
contribute to the value of z in the given run.

Once a program trace has been collected, dynamic slicing typically falls to
two tasks: In the preprocessing phase a dynamic dependence graph is generated
by processing the collected data. In the slicing phase this graph is traversed to
build the dynamic slice for the given slicing criteria.

A naive approach to dynamic slicing would mark all statements encountered
during program execution, reduce the static dependence graph to the corre-
sponding nodes, and do static slicing on that graph. This approach is, however,
imprecise which can be illustrated on Figure 5.1: With the execution trace
1,2,3,4,7,2,3,4,5,9 the naive algorithm would mark all nodes visited, yielding a
dynamic slice that contains the whole graph. Node 5 had no effect on node 7,
though, as the definition of b took place after the use. So, nodes 1 and 5 should
not be in the dynamic slice.

As a remedy, Agrawal [AH90] proposed not to work on the static dependence
graph but on the tracing protocol, which shows a linear program with all loops
unrolled. From that data the dynamic dependence graph needs to be computed.
Its nodes usually represent basic blocks rather than single statements, which
build the nodes of the static variant. Dependences point from a variable use to
its last definition. It may be a bit confusing that dynamic edges are reversed
compared to static edges. Dynamic (backward) slicing thus follows all edges
starting from the slicing criterion:

dBS(y) = {x | y →∗ x}

144



5.4. DYNAMIC PATH CONDITIONS IN DEPENDENCE GRAPHS

x=a

x<7

x=y+x

x==8

p(x)

(2,1)

(3,1)

(4,3)

(5,3)

(6,3)

(7,6)

(8,6)

Figure 5.9: Dynamic data dependence graph for figure 5.2. Control dependence
edges are omitted for readability

Since the length of the runtime protocol is in principle unbounded, the space
requirement of the context-sensitive dynamic dependence graph for long pro-
gram runs explodes. Therefore several ways to compact this graph were pro-
posed.

Agrawal [AH90] noted that the number of statements in a program
is bounded and hence, the number of different slices must be bounded,
too. He found that nodes with the same transitive dynamic dependences
could be merged. This graph was called dynamic dependence graph!reduced
(RDDG)Reduced Dynamic Dependence Graph. While this representation is
quite compact and gives a program slice in O(1) (the transitive dependences
are stored in every node), different instances of the same node (e.g. in a loop)
cannot be distinguished. So the reduced size of the graph results in a loss of
precision.

Context-sensitivity is a property that is not granted with such an approach.
As a consequence of the linearity of the trace, however, dynamic slicing can be
done in a context-sensitive manner, if labels are added to the edges [ZGZ03,
ZGZ05]. The labels contain additional information to disambiguate the distinct
execution instances of the statements that the edge links. Zhang et al. call this
dynamic graph the dynamic data dependence graph. As an example consider
Figure 5.2 together with the execution trace 1,2,3,4,2,3,4,5. The graph contains
edge labels that capture the execution time of the involved statements. The
check whether x<7 on line 2 is executed at time 2 and depends on the value of x
computed in line 1 at time 1. Thus the edge contains these timestamps: (2, 1).
The node corresponding to line 3 (we will use the terms node/statement/line
interchangeably for this example) is dependent on the execution of statement 1
in the first instance of the while-loop, represented by an edge marked (3, 1); in
the second it is dependent on the last instance of itself: the loop edge is marked
with the execution times (6, 3).

The dynamic program slice is computed in the dynamic data dependence
graph using the following formula (let x→l y denote the edge from x to y with
the timestamp label l = (t1, t2)):
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dBScs(y, t) = {x | ∃ Path p : (y = x0 →l0 · · · →ln−1 xn = x) :
l0 = (t, t0) ∧
∀0 < i < n− 1 : li = (ti−1, ti) ∧ li+1 = (ti, ti+1)}

In our example, the dynamic slice of the first execution of line 2 (with times-
tamp 2) is line 2 itself and line 1. Line 3 is not included, as the edge with
timestamp 5 is not followed. Starting from line 2 with timestamp 5, however,
we will have to include line 3 and come back to line 1. This small example
already illustrates the power of edge labels.

Similar to the dynamic program slice, it is possible to define a dynamic
program chop in the dynamic data dependence graph:

dCHcs(x, y, tx, ty) = {xi | ∃ Path p : (y = x0 →l0 · · · →ln−1 xn = x) :
l0 = (ty, t0) ∧ ln−1 = (tn−2, tx) ∧
∀0 < i < n−1 : li = (ti−1, ti) ∧ li+1 = (ti, ti+1)}

A dynamic chop contains all nodes that are part of a path from x to y in the
dynamic data dependence graph that starts at y with timestamp ty and ends
at x with timestamp tx.

The dynamic data dependence graph is not restricted in space, though,
and the graph can only be built if the runtime protocol is entirely processed
which may take too much time for long-running applications. Zhang et al.
[ZGZ03, ZGZ05] thus proposed—apart from this full preprocessing algorithm
(FP)—two variants that do not build the graph beforehand: no preprocessing
(NP) and limited preprocessing (LP). The NP algorithm entirely forbears from
constructing the dependence graph and, when slicing, runs back the linear trace
to find the most recent definition of the given variable. Hence, NP has a worst
case complexity of O(N2) which is unacceptable for large slices or for many
slicing criteria. Even with the use of caching by marking statements already in
the slice not to be followed again, this complexity cannot be lowered. The best
compromise between the FP and NP algorithms is, according to the authors, the
LP algorithm, which introduces summary information at a given offset between
two such entries in the tracing protocol. Still, the complexity cannot be reduced
by an order of magnitude but only by a constant factor.

We implemented all the mentioned algorithms for dynamic slicing and eval-
uated them on our test suite (cf. Section 7.4.2). Our experiments approve the
results of Zhang et al. [ZGZ03, ZGZ05]. On average over 100 slicing criteria
for agrep, the cached LP algorithm was, with about 20 seconds and 4.7 MB
memory, faster than NP with about 21 sec and FP with 26 sec, consuming in-
significantly more memory than the NP algorithm, which used 4.4 MB ram, and
better than FP needing 6.4 MB.
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5.4.3 Dynamic Path Conditions

Refinement by Dynamic Chopping

When constructing a path condition from a statement to another, all paths be-
tween those two statements are determined with a chop in the static dependence
graph. As mentioned in Section 5.2.1, the accuracy of the path condition for
the executed program can be increased if a dynamic chop is used instead. The
dynamic dependence graph usually contains only the dependence edges that ac-
tually took place and thus the dynamic chop will yield a much smaller number
of paths between those two statements.

As an example, consider Figure 5.1 again. If the execution trace is 1,2,3,4,7,9
then the dynamic chop between 2 and 9 is 2,3,4,7,9. Statement 5 is never
executed in this setting and thus can be removed from the dynamic chop. A
static chop would conservatively have to add it. With the dynamic chop one
omits the paths 2,3,4,5,7,9 and 2,4,5,7,9 in the path condition between 2 and 9.

Although our path condition generator reuses partial information and thus
half the number of paths does not yield a 50% shorter path condition, this small
example already shows the impact of this refinement.

Refinement by Traced Values

In order to strengthen a given path condition PC with runtime information, the
trace is analyzed to retrieve the variable assignments. As the analyzed program
went through a series of assignment states during runtime, all of them have to
be captured in a restrictive clause R. This clause, in turn, can be used to make
path conditions stronger.

First, the intersection V of variables used in the path condition PC and the
trace T is determined:

V = {v | v ∈ var(T ) ∩ var(PC)}

For each variable v the values it carried during the trace are extracted, let β(v)
be the set of values wi that variable v has contained:

β(v) = (v = w1) ∨ (v = w2) ∨ . . .

Now the restrictive clause R can be described as the conjunction of all variable
value sets:

R =
∧
vi∈V

β(vi)

In order to make the path condition PC stronger, the results from Section 5.2.1
are used and both clauses are conjunctively combined

PC ′ = PC ∧R

yielding the stronger and thus more precise path condition PC ′.
Because of the SSA-like form, variables only match if their index numbers are

the same, so that multiple assignments are handled. This makes it mandatory
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1 LINE 1
2 USE a_2 2
3 DEF x_1 2
4 LINE 2
5 USE x_3 2
6 LINE 3
7 USE y_5 2
8 USE x_6 2
9 DEF x_4 4

10 LINE 4
11 USE x_7 4
12 LINE 2
13 USE x_3 4
14 LINE 3
15 USE y_5 2
16 USE x_6 4
17 DEF x_4 6
18 LINE 4
19 USE x_7 6
20 LINE 2
21 USE x_3 6
22 LINE 3
23 USE y_5 2
24 USE x_6 6
25 DEF x_4 8
26 LINE 4
27 USE x_7 8
28 LINE 5
29 USE x_8 8
30 LINE 2
31 USE x_3 8

Figure 5.10: A simple program trace for Figure 5.2

for the program trace to list variables along with their respective node numbers
as in Figure 5.10 which shows a simple trace for a run of the program from
Figure 5.2.

Note that the node numbers are different to the SSA-numbers from Fig-
ure 5.2 and thus, the path condition for a flow from line 1 to line 5 is
PC(1, 5) = (x3 < 7) ∧ (x7 = 8). For this path condition the trace yields
the variable assignments

R = (x3 = 2 ∨ x3 = 4 ∨ x3 = 6 ∨ x3 = 8) ∧ (x7 = 4 ∨ x7 = 6 ∨ x7 = 8)

Again, both clauses are conjunctively combined to PC ′ = PC ∧ R yielding
the stronger and thus more precise path condition PC ′:

PC ′ = (x3 = 2 ∨ x3 = 4 ∨ x3 = 6) ∧ (x7 = 8)
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Correctness of Dynamic Path Conditions

Sometimes only fragments of a trace are available due to a "defective recorder"
or intentionally to save memory. While fragmented traces are generally useless
for dynamic slicing (see Section 5.4.1), they still hold valuable information for
strengthening path conditions.

However, incomplete tracing information is prone to lead to wrong path
conditions. For example, consider the simple path condition (x > 1) for a
program where the trace yields the restrictive clause

(x = 0 ∨ x = 1)

while the variable assignment states actually were

(x = 0 ∨ x = 1 ∨ x = 2)

The restricted path condition

PC ′ = (x > 1) ∧ (x = 0 ∨ x = 1) ≡ false

would be in contradiction to the actual program state (x = 2) and thus definitely
rules out data dependence where it may actually be possible.

To avoid unsound path conditions, it is conservatively assumed that there is
an additional unknown value ⊥ for each variable representing the assignments
which occurred but were not traced due to some reason. This measure yields
a correct conservatively restricted path condition being as precise as the frag-
mentation of the trace allows. For our example, the resulting path condition
is

(x > 1) ∧ (x = 0 ∨ x = 1 ∨ x =⊥)
≡ (x > 1 ∧ x =⊥) ≡ x > 1

Only if the completeness of the trace (at least for certain variables, see Sec-
tion 5.4.1) can be guaranteed, one may abandon this conservative measure (for
those variables).

It may seem that using this trick one doesn’t gain any additional information
of dynamic variable data. To show the advantage of variable traces containing
unknown values, consider the path condition PC(1,5) of Figure 5.1. With a
fragmented variable trace forming the conservative restrictive clause (x = 5∨x =
⊥) ∧ (n = 3 ∨ n =⊥) the improved path condition from 1 to 5 will be:

PC(1, 5) ≡ (n > 0 ∧ x > 0) ∧ (x = 5 ∨ x =⊥) ∧ (n = 3 ∨ n =⊥)

It is immediately clear that the traced variable values x = 5 and n = 3 may
trigger an influence from line 1 to line 5.

This tiny example shows that while conservative restrictive clauses cannot
be used to evaluate a clause of the path condition to false, they may reveal input
values that triggered an illegal information flow.
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5.4.4 Related Work

Symbolic execution is a technique that executes a program with symbols instead
of concrete values for the parameters. During execution, a predicate Φ (initially
true) is built that constrains the values. When a branch is taken, the predi-
cate is updated to reflect the condition for that branch. As it represents the
conditions for taking the current path through the CFG, it is often called path
condition as well, however as it only represents the condition for taking a spe-
cific path, it is more like an execution condition in our work. Today’s systems
for symbolic execution are mainly based on theorem provers or model check-
ing. Theorem prover based systems like in ESC/Java [FLL+02] require manual
annotations to generate verification conditions, while our path conditions an-
alyze a given chop fully automatically. Other systems rely on model checkers
e.g. [DRH07] which are semi-automatic but need to cope with state explosion.
Most symbolic execution systems perform a per-method analysis only, while our
approach automatically generates precise interprocedural path conditions.

Recent work by Jhala has been focusing on path slicing [JM05]. It takes
as input one particular path in the CFG and eliminates all the operations that
are irrelevant towards the reachability of the target location. The result is a
condition for the reachability of the target location, its infeasibility is sufficient
for the infeasibility of the path. The technique does not work on the PDG but
on the CFG only. It has shown effective for elimination of counterexamples
provided by the model checker Blast. For our application this approach does
not seem beneficial as it needs to check every single path on its own, while path
conditions produce a necessary condition for all paths between two statements
and share common subterms.

Parametric program slicing [FRT95] allows specification of constraints over
the program’s input. A term rewriting system extracts a program slice satisfying
these constraints. Conditioned program slicing [CCL98] is a similar technique
that slices based on a first order logic formula on the input variables. The
conditioned slice is based on deleting statements while preserving the program’s
behavior. Both approaches differ from path conditions in that they do not
determine input values but take them as input. In contrast, path conditions
provide a logic formula that must be satisfied for an information flow to be
feasible. Constraint solvers reduce this condition to input values that satisfy
the formula.

Boolean path conditions as presented in this work and in [Sne96, RS02,
Rob05, SRK06] cannot express temporal properties. For example, they can-
not express that it is necessary for a specific flow that a loop condition holds
and later it does no longer, such that the loop terminates. Boolean conditions
become conservative when analyzing loops and conditions that involve loop
variables. A recent approach by Lochbihler and Snelting [LS09] extends path
conditions with temporal logic to circumvent these imprecisions. Witnesses are
created by model checking instead of constraint solvers.

Dynamic Analyses Correctly and efficiently collecting trace data is a non-
trivial task. Several solutions have been proposed in literature:
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Venkatesh [Ven95] implemented a low-level approach for tracing C programs.
His prototype implementation called SLICE instruments the source code to
write a program trace during execution. With this experience, the authors
recommend object-code instrumentation for future implementations together
with several reasons. Nonetheless, this implementation is faster than tracing
with a traditional debugger.

Zhang et al. [ZGZ03] follow a different low-level approach to create a program
trace: The program source is compiled with the Trimaran system, a compiler for
the Explicitly Parallel Instruction Computing (EPIC). An interpreter takes the
generated object code and creates the program trace during execution. Since
C programs are normally not interpreted, this approach is valid mostly for
theoretical evaluations.

All low-level approaches usually do not slow down program execution as
much as a debugger does. However, as our work is based on the static depen-
dence graph which must be mappable to source, these approaches did not suit
our needs.

Dynamic program slicing has been a topic in active research for several years
now. Various approaches, either for dynamic slicing on its own, or combined
with static elements have been proposed. To mention all of them would be out
of scope of this work.

Chen et al. [CX01b] describe a dynamic slicing algorithm that is based on a
static PDG providing the information where to set break points for the debugger.
The static dependence graph is confined to the nodes and edges that have been
visited to build the dynamic dependence graph. Slicing is done following all
edges in that graph.

Tip [Tip95] embarks on a different strategy: He uses the abstract syntax tree
(AST) instead of a dependence graph and interprets the program. The approach
is language independent but only available for the custom-built language “L”.

Zhang et al. recently proposed another way to reduce the vast amount of
data that is stored in the program trace. They compute the dynamic slices
during program execution and store them in binary decision diagrams (BDDs)
[ZG04].

Wang et al. [WR04] presented a dynamic slicing technique for Java that
compresses the program trace on-the-fly and obtains two to three orders of
magnitude compression with little overhead. A lossless compression algorithm
finds a high repetition pattern in the sequence of (memory and control) ad-
dresses captured by the tracer separately. They also propose a dynamic slicing
algorithm which operates directly on the compressed data and can thus save
the uncompressing time. Such an algorithm may not only be suitable for lan-
guages with extensive pointer usage. We expect the repetition pattern for our
variable trace to yield a similar compression rate. Since the slicing algorithm
runs on the compressed data with no dynamic dependence graph used, multiple
slicing requests require traversing the trace multiple times at a significant time
overhead.
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Implementation

All the analyses described in this thesis have been implemented. Figure 6.1
shows the architecture of the Valsoft/Joana system. This set of tools comprises
several techniques for precise analysis of security properties. Other applications
for the base techniques like slicing have been proposed in literature (see [BG96,
dL01,HH01,BH04,Kri05,MM07]) but are beyond the scope of this thesis. The
components of this diagram are described in more detail in the following sections.

6.1 Frontends

Currently, SDGs can be constructed for both C and Java code. For C, we ex-
tended the commercial slicer system CodeSurfer [ART03] with a plugin that
creates files compatible with our graph format. This approach complements
the Valsoft SDG generator created previously in our group [Kri03a]. Adding
a commercial product to our tool suite allows cross-checking of results; one
would naturally assume the commercial product more mature, if differences
appear. However, CodeSurfer may admittedly become unsound for very large
programs [And08]. The challenge in converting CodeSurfer dependence graphs
arises as slicing forms a base technology for path conditions. Path conditions
require a fine-grained SDG structure similar to an abstract syntax tree, but
CodeSurfer supports only coarse-grained SDGs. Yet, CodeSurfer grants access
to a control flow graph, such that postprocessing of its dependence graph to-
gether with the CFG yields the desired information.

For Java, this thesis defines a precise representation of bytecode programs
(see chapter 2), and our generator reflects this design. It is based on the Har-
poon/Flex compiler frontend from MIT.1 This framework offers an SSA-based
intermediate representation of bytecode, and inserts explicit checks at all in-
structions possibly throwing exceptions, such that control flow due to implicit
and explicit exceptions is conservatively modeled. From there, our tool gener-
ates fine-grained (for path conditions) and coarse-grained (for all other analyses)
system dependence graphs. First, a pointer analysis determines the call graph
and points-to relations, after that the dependence graph for each method is

1This library has been abandoned by now, and is currently being replaced by a generator
based on WALA (wala.sourceforge.net)
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created and interprocedural side-effects are incorporated. Finally data depen-
dences due to these side-effects are inserted and optionally summary edges are
computed. Interference dependences (see chapter 3) are added as requested.

6.1.1 Stubs

The Harpoon frontend accepted full bytecode for Java up to version 1.4. We
found that the changes in executable bytecode for Java 1.5 were so marginal,
that a small patch to that library now allows to parse bytecode up to version
1.6. However, the library is another issue. It is well known that as of JDK
1.4.2, even the simplest “Hello world” program loads 248 library classes! And
for later versions the library is even bigger and more classes are loaded. Yet,
many of these classes do not contribute to the transitive dependences of the
analyzed program. For example, it does not matter how a special locale deter-
mines the upper and lower case version for a given character. What matters
is that the resulting character depends on the input parameter. Such a tran-
sitive dependence can be modeled via method stubs. A stub is a placeholder
method that models the necessary semantics of the original method such that
all possible dependences are included into the dependence graph. Type systems
use a quite similar technique to represent the effects of library calls, e.g. in
Jif, library methods need to be annotated in accordance to their semantics.2

Providing these annotations is equally error-prone as writing stubs for libraries
(e.g. Askarov [AS05] reports a false annotation discovered in his experiments).
Still, in principle all analyses need to model library methods to avoid excessive
analysis cost.

For our analyses, we created stubs for native methods and important library
methods for two versions of Java:

• First, we created stubs for all native methods of JavaCard 2.2. Java-
Card is an implementation for very restrictive execution environments
like smartcards. Therefore, JavaCard contains only the sequential parts of
Java and the library has been pruned. With the stubs for native methods
and the ability to analyze the bytecode of the library, our experiments in
chapter 7 include all effects of user and library code.

• Second, we provided stubs for the essential parts of the standard library.
In particular, the effects of java.lang are included in our stubs except for
very problematic constructs like dynamic class loading. Such constructs
are well beyond the scope of this thesis, solutions can be found e.g. in
Livshits et al. [LWL05]. At certain points we cut parts of the call graph,
when dependences can be included without loading a myriad of other li-
brary classes (see the Locale example above). Still, these stubs induce
conservative approximations of the original dependences and remove ex-
cessive analysis burden.

2A second reason for the need for Jif’s annotation mechanism is that it lacks the ability to
analyze bytecode, therefore the standard library cannot be analyzed.
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Figure 6.2: The graph viewer with an example PDG

6.2 Analyses based on SDGs

The generated dependence graphs are stored on disk, from where they are
parsed with an ANTLR3 grammar, and stored in the open source graph library
JGraphT.4 When we decided to use that library, the author first contributed
Java 1.5’s generics to that library, resulting in type-safe graphs (specifically no
explicit downcasts for node and edge types) for our custom algorithms. The
Joana library is based on JGraphT and provides a long list of algorithms for
slicing, chopping, and related analyses. In particular, all analyses presented and
implemented in the original Valsoft [Kri03a] have been integrated. This core li-
brary therefore forms the basis for nearly all other libraries and Eclipse plugins
presented in the sequel.

6.3 Graph Viewer

The Valsoft infrastructure [Kri03a] already contained a visualization component
for dependence graphs. However, a crucial library of that program had been pro-
vided by a company in binary form only, such that graphs with new features like
interference dependence could not be parsed and displayed with that software.
Therefore we decided to re-implement the viewer based on the JGraph5 library,

3http://www.antlr.org/
4http://jgrapht.sourceforge.net
5http://www.jgraph.com/
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as an adapter for JGraphT existed. Furthermore, JGraph contains some free
layout algorithms, which we extended by a new layouter using the Brandes/Köpf
algorithm [BK01] in a Sugiyama setting. This layouter corresponds well to the
structure of our PDGs.

Figure 6.2 shows an example PDG in the graph viewer. Note that interpro-
cedural edges are visualized by edges from/to tiny rectangles. These rectangles
represent nodes in another method, which is opened when the tiny rectangle is
double-clicked. Note that a spanning tree of the control dependences yields the
layers for the Sugiyama layout (shown as orange edges). The horizontal position
in these layers is determined according to node numbers. Thus the program or-
der in basic blocks is preserved from left to right. The data dependences are
inserted between the layers as blue broken edges in a Manhattan layout.

6.4 Path Conditions

For both static and dynamic path conditions presented in chapter 5, a prototype
implementation has been integrated into the original framework [Rob05].

We have implemented a prototype path condition generator for Java based
on the existing implementation for C and the dependence graph generator for
Java presented in chapter 2, and demonstrate the feasibility of our extensions
with preliminary case studies. For the implementation, we concentrated on the
new concepts and automatically benefited from all constructs that share a com-
mon representation with C. For the prototype, the fine-grained Java SDG was
adapted to interface with the C path condition generator. Thus the procedural
Java constructs are tackled by the existing path condition machinery. For the
object-oriented constructs, we concentrated on dynamic dispatch — the most
characteristic feature of object oriented programming — according to equa-
tion (5.15). At the time of this writing, the precise conditions for instanceof
and exceptions are not yet integrated and are approximated conservatively; the
same is true for some other Java constructs. The precise formulae for these
constructs will be integrated in the near future. Still, all conditions presented
in the evaluation (chapter 7) have been generated by the current prototype.

The dynamic path conditions have also been integrated into the existing
implementation. To collect the dynamic trace data, the standard debugger gdb
was leveraged. A debugger driver abstracts away from the actual debugger in
use, so we might as well replace gdb by another debugger. The tracer thus offers
a standard interface for controlling the execution. The breakpoints and other
data needed for control of the debugger is extracted from the fine-grained SDG.
In the tracing phase, the program is executed statement by statement, and all
required information is traced. From that trace, a dynamic slice is built that is
generally more precise than the static slice.
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Figure 6.3: The slicing plugin with an example program.
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6.5 Eclipse Plugins

As a GUI for the Joana library, several Eclipse6 plugins have been cre-
ated [GH08]. The first GUI provides access to all slicing and chopping algo-
rithms of the Joana library. The computed slices and chops are highlighted in
the source code. Highlighting requires a mapping between bytecode instructions
and source locations. Fortunately, most class files contain rudimentary debug
information, which the compiler inserts into class files. In most cases, this de-
bug information can serve as a mapping which corresponds to the intuition.
But note that this information was not meant for highlighting but debugging
purposes only, so for some cases the highlighted regions may deviate from the
expected parts of the programs. In our plugin structure, the SDG generation
and highlighting are outsourced to the Source Highlighting plugin, which allows
access from both plugins that require this service, namely the slicing and IFC
GUI (described later).

The example in Figure 6.3 shows a simple conversion method, that calculates
the double value of a string parameter. The slice from the second error = true
statement (depicted in light blue) is shown in darker blue. Note that for this
example, the precise source positions from our custom extension of javac have
been taken. Otherwise, the whole line would be highlighted once a node of that
line is contained in the slice. The slice points out that only part of the conversion
method influences the error checking code of the slicing criterion: The result
and precision variables have no influence on that statement but constitute a
separate result of that method. In fact, the method returns the special value
−1 if an error occurs, in all other cases it returns the computed value.

For detailed manual inspection of SDGs, the SDGView presents the SDG
nodes in a tree view with predecessors, successors, and parents, as an alternative
to the graphical SDG viewer. Therefore, this view allows manual reconstruction
of how one statement influences another. As an example consider Figure 6.4,
which shows the entries for node 55 depicted in Figure 6.2. For navigating
quickly through the SDG, the root node can be specified, and the standard
home, forward and backward buttons provide the well-known functionality.

6.5.1 Plugins for Information Flow Control

We have implemented SDG-based IFC, including declassification, as described in
chapter 4. The prototype is an Eclipse plugin, which allows interactive definition
of security lattices, automatic generation of SDGs, annotation of security levels
to SDG nodes via source annotation and automatic security checks. At the time
of this writing, the Java slicer and security levels are fully operational.

We implemented the lattice editor based on the GEF graph editing frame-
work of Eclipse. The lattice elements are represented as bit vectors [GMR94,AK-
BLN89] to support fast infimum/supremum operators when checking for illegal
information flow. It is worth noting that the algorithm of Ganguly et al. com-
putes incorrect results without adding synthetic nodes into edges that span more
than one level (where levels are defined in terms of the longest path between

6http://eclipse.org
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Figure 6.4: The SDGView for node 55 in Figure 6.2

Figure 6.5: The lattice editor in Eclipse with illegal graph
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Figure 6.6: Example of Figure 4.11 without declassification in our Eclipse plugin

two nodes). The authors were not very specific concerning this restriction. For-
tunately, these synthetic nodes can safely be removed from the lattice after
conversion to a bit vector. Our editor attempts to convert the given graph to
such a lattice. If this fails, the user is notified that the graph does not represent
a valid lattice. Otherwise the lattice can be saved on disk for annotations. Fig-
ure 6.5 shows an example of a non-trivial graph. But the lattice conversion fails
for this graph, as the elements “a 4” and “a 6” do not have a unique upper bound:
Both “a 2” and “a 5” are upper bounds for these elements, which violates a cru-
cial property of lattices. The problem view at the bottom displays a detailed
message to the user that describes the violation. If one of the relation edges
between those four elements were removed, a valid lattice would be generated,
which can be leveraged for annotating the source code.

The IFC algorithm was implemented in a two-stage version: As the first step,
the summary declassification nodes are computed. If the dependence graph al-
ready contained summary edges, these need to be removed first. Still, generating
summary edges during SDG generation was not in vain: As summary declas-
sification nodes can only arise between nodes that used to be connected by a
summary edge, we can omit building the transitive closure of dependences for
all nodes that are not target of a summary edge. Algorithm 8 of chapter 4
is therefore only initialized with these actual-out nodes. Note that this opti-
mization does not improve the worst case complexity of the algorithm, but it
reduces analysis time in practice (see section 7.3.5). As a second step, the IFC
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constraints are propagated through the backward slice of each output channel
according to Algorithm 7 of chapter 4. Our implementation does not generate
these constraints explicitly, but performs a fixed point analysis as presented in
section 4.5.2.

Figure 6.6 shows the example program of Figure 4.11 but without declassi-
fication in the foo method. The Eclipse plugin features a full-fledged view for
annotations and security violations. User annotations are shown in the Joana
IFC Annotations view at the bottom of the figure. The message shows the kind
of annotation (ANN stands for provided security level, OUT for required secu-
rity level, and RED for declassification with both). Next to the message, the R
and P annotations are shown. The rest of the entries describe the annotated
source position and the ID of the SDG node. Another View, called “Joana IFC
Marker/SDGNode Matching” allows precise matching of the selected source to
its respective SDG node according to the debug information provided in the
class file. The last view, depicted on the right in Figure 6.6 lists all violations
found by the last IFC checking. For the example program, a run of the IFC
algorithm determines a security violation between nodes 36 (P (36) = secret)
and 49 (R(49) = public) because of the missing declassification in foo. When
this declassification from confidential to public is introduced, no illicit flow is
detected.
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Chapter 7

Evaluation

The previous chapters defined several precise analyses which can be leveraged
for security purposes. This chapter now presents empirical evidence of their
practicability, scalability, and precision. First, we will evaluate the precision
of our new side-effect analysis for program slicing (see chapter 2). Second, we
assess the effectiveness of our improved algorithm that determines interference
dependence (see chapter 3), and contrast it to previous definitions, which did
not take points-to information into account.

Next, we evaluate our slicing-based definition of information flow control
(see chapter 4). To analyze practicability, we thoroughly present Jif, the only
implementation of an information flow type system, and compare it to our sys-
tem. The gain in precision is examined by a case study with an example Jif
program, which we converted back to standard Java. A detailed evaluation of
our IFC algorithm on a set of benchmark programs illustrates its scalability.

Finally, we present case studies for path conditions (see chapter 5). Both
static path conditions for Java with its object-oriented language constructs, and
dynamic path conditions for C are presented. These studies illustrate that both
extensions provide precise results for realistic programs.

7.1 Slicing Java Programs

Our initial presentation of the Java slicer [HS04] aimed at an evaluation of
the imprecision between an approximate modeling of parameter objects and our
precise object trees. However, we could not learn from Liang and Harrold [LH98]
how sound k-limiting works. So we fell back to comparing our sound model
with unsound k-limiting, i.e. we measured the effect of omitting the dependences
induced by deeper levels all-together. As a matter of fact, we found that unsound
k-limiting may miss up to 90% of the nodes in the correct slice. While this
evaluation showed that deeper nested levels have great impact on slicing of
Java programs, this comparison was not what we originally had in mind. But
even after several years we could not find a sound approximation for the missed
dependences of k-limiting.

However, the Indus/Kaveri slicer [JRH05] propagates an alternative ap-
proach to data dependence computation: They essentially add data dependences
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Nr Name LOC Nodes Edges Time Summary
1 Dijkstra 618 2281 4999 4 1
2 Enigma 922 2132 4740 5 1
3 Lindenmayer 490 2601 195552 5 10
4 Network Flow 960 1759 3440 6 1
5 Plane-Sweep 1188 14129 386507 24 13
6 Semithue 909 19976 595362 24 33
7 TSP 1383 6102 15430 15 2
8 Union Find 1542 13169 990069 36 103
9 JC Wallet 252 18858 68259 8 9
10 JC Purse 9835 135271 1002589 145 742
11 mp 4750 271745 2405312 141 247

Table 7.1: Data for benchmark programs

between all definition statements to all matching use statements of a given field
and ignore method boundaries for that purpose. It should be straightforward to
prove such a model correct for context-insensitive slicing. Therefore, this thesis
shows the effectiveness of our object trees in comparison to method-spanning
data dependences.

Note that data dependences that cross method boundaries violate a precon-
dition for two-phase slicing, for context-sensitive slicing in such a model one
needs extra context recovery at method boundaries each time a slice is com-
puted. We did not include such a complex1 analysis. Instead, we compare our
context-sensitive slicer to the context-insensitive slicer using our SDG and to the
context-insensitive slicer for the relaxed notion of dependences graph described
above.

Table 7.1 shows the benchmark programs for this experiment. We evaluated
a benchmark of 8 student programs with an average size of 1kLoc, and two
medium-sized JavaCard applets. The student programs use very few API calls,
and for nearly all we designed stubs (see section 6.1.1) as to not miss essential
dependences. One JavaCard applet is called “Wallet”,2 the “Purse” applet is from
the “Pacap” case study [BCM+00]. Both applet SDGs contain all the JavaCard
API PDGs, native methods have been added as stubs.

For every program, the LOC and SDG size (nodes and edges) is given. The
time to construct these SDGs has been split into two numbers: the column ’time’
displays the time for building the SDG and the intermediate representation
and pointer analysis. The next column shows the time to insert the summary
edges. This number is given separately, as summary edge computation has cubic
complexity.

Figure 7.1 shows the average slice slices as a percentage of the graph size,
which is 100%. For the slice and graph sizes, only true instruction nodes were
counted in order to make the comparison independent from additional parame-
ter nodes. For each of these instruction nodes, a backward slice was computed

1Krinke [Kri02] shows that explicitly context-sensitive slicing is very expensive.
2http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard.html
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all dd cis sd dd cis sd

1

2

3

4

5

6

7

8

9

10

avg

dijkstra 2122 1892 1892 1900 89,16% 89,16% 89,54%

enigma 1818 1031 1552 1596 56,71% 85,37% 87,79%

lindenmayer 1264 891 1085 1090 70,49% 85,84% 86,23%

networkflow 4376 4116 4128 4129 94,06% 94,33% 94,36%

planesweep 2881 1840 2623 2623 63,87% 91,04% 91,04%

semithue 1956 1749 1767 1767 89,42% 90,34% 90,34%

tsp 7277 6113 6404 6430 84,00% 88,00% 88,36%

unionfind 3195 2887 2927 2977 90,36% 91,61% 93,18%

wallet 7249 5999 6688 6729 82,76% 92,26% 92,83%

purse 23689 21400 22326 22493 90,34% 94,25% 94,95%

avg 80,22% 90,34% 91,01%

46026 49500 88,80% 88,15%

92,98% 112,61% 113,45%
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Figure 7.1: Evaluation of context-sensitive slicing with object trees

for three variants of graph and slicing algorithm. The first variant (dd) takes
the SDG presented in chapter 2 together with context-sensitive two-phase slic-
ing; the second (cis) uses the same graph but applies context-insensitive slicing
(i.e. the transitive closure of dependences); and the third variant applies context-
insensitive slicing to an interprocedural program dependence graph, where data
dependences for fields may span method boundaries. Remember that we could
not apply context-sensitive slicing on this graph as it is not compatible to an
SDG. The results show that context-sensitive slices are on average 13% smaller
than context-insensitive slices. The differences between the context-insensitive
variants are, as expected, negligible: On average, slicing the graph with object
trees resulted marginally smaller slices (the difference is about one basis point)
than with method-spanning data dependences.

7.2 Evaluating Interference Dependence

Apart from usual data dependences our SDG contains interference dependence
caused by memory access in different threads. To compare the effectiveness of
our algorithm of chapter 3, which computes a safe approximation of interference
dependence, we measured the number of interference edges and compared this
number with the one reported in Ranganath and Hatcliff [RH04] and type-based
approaches as used in [HCD+99]. Table 7.2 shows the result of our analysis: We
examined the same programs as in [RH04], i.e. a suite of benchmarks from the
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JavaGrande Forum.3 These programs consist of a range of programs, from very
small to medium-sized. Especially the smaller programs allow manual inspec-
tion to verify which interferences are spurious and which real. This does not
only allow relative comparisons but also how far we are from the (undecidable)
minimal number. The left hand side of the table shows the result from [RH04],
the columns showing, from left to right, the number of interference edges when
only taking typing information into account, when using the specialized escape
analysis developed in that paper, and when using entity information, respec-
tively. The next columns display our results for these benchmarks: They display
the number of interference dependences, from left to right, using type informa-
tion only, with thread numbers and aliasing as presented in chapter 3, and after
pruning spurious interference dependences with a simple happens-before analy-
sis [GH09]. The last column shows the number of interference dependences as
determined by manual inspection (where possible).

The first three benchmarks in Table 7.2 are micro-benchmarks with the only
purpose to test and evaluate a virtual machine implementation’s synchronization
constructs. Therefore, the absolute number of interference dependences in these
examples is relatively low, one benchmark ForkJoin does not even expose a
single one. Nevertheless, both Ranganath and our analysis report a considerable
number of dependences. Manual inspection of our results yields that we have
spurious reports mainly due to cases where a field is defined in a constructor
of a thread object that is subsequently started. When these two operations are
embedded in a loop, our happens-before analysis, developed for precise slicing
of concurrent programs [GH09], will merge both statements for being in the
same strongly connected component. Thus the constructor appears to happen
in parallel to the started thread. However, the constructor only handles data
that is local to its object. Therefore, these dependences are already modeled
as fork-in dependences (which are equivalent to parameter dependences) at the
statement starting the thread such that adding interference dependence here is
redundant. Currently, our analysis does not feature a thread-locality analysis
that detects these false positives.

Still, our analysis based on thread numbers and a simple happens-before
analysis results in significantly less interference edges than Ranganath’s escape
analysis. This is not surprising, as aliasing is more precise than escape analysis.

The next four benchmarks, are essentially SIMD4 programs, i.e. several in-
stances of a thread class operate on independent portions of data. But some of
the benchmarks require communication of intermediate results, so the number
of interference dependence reflects mainly the communication effort. A manual
inspection of these programs reveals that LUFact’s and SOR’s contribute 139 and
85 interference dependences, respectively. It is surprising, that Ranganath re-
port only 24 and 23 dependences here, maybe they did not report the number
of dependences due to array access, which is the main source of interference in
these benchmarks. Including array access, our analysis reports 212 and 115 de-

3http://www.javagrande.org/
4Single Instruction, Multiple Data
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pendences, respectively. The difference to the real number again results mainly
to constructors before thread creation.

Crypt, Series and SparseMatmult do not communicate extensively. Thus
their real number of interferences is nearly zero, and our analysis only reports 95,
8 and 12 dependences, respectively. With a context-sensitive pointer analysis,
64 dependences can be pruned for Crypt, resulting in a total of 31 interferences,
which again excels Ranganath’s reports.

Comparing our results with Ranganath’s, aliasing clearly excels over es-
cape analysis results as a base for interference computation. An interest-
ing result is that context-insensitive alias analysis may perform worse than
a rather cheap but context-sensitive escape analysis as presented in [RH04].
So context-sensitivity seems more mandatory than aliasing analysis. However,
context-sensitive aliasing information gives a significant gain in precision over
escape information only. Benchmarks with array access are clearly not modeled
in [RH04], so a fair comparison for these is impossible.

Table 7.2: Evaluation of interference dependence in comparison to [RH04]
Result from [RH04] Our results
type escape entity type thread# + HB real

Barrier 117 29 29 56 37 17 7
ForkJoin 1929 155 16 17 12 11 0
Sync 122 36 36 44 32 26 6
Crypt 1228 180 58 1023 325 95/31 0
LUFact 3624 181 24 1358 291 276 139
SOR 2318 162 23 541 144 115 85
Series 2138 157 8 105 22 8 0
SparseMatmult 3833 183 14 236 22 11 1
MolDyn 8026 373 209 8794 5340 5288 ?
MonteCarlo 5245 309 11 516 263 126 ?
RayTracer 1330 171 166 1059 412 221 ?

7.3 Information Flow Control

This section presents empirical studies about precision, scalability, and practi-
cability of our new information flow analysis developed in chapter 4. It starts
with an elaboration on the current state of the art in language-based informa-
tion flow control. The language Jif is the only implementation of a Java-like
language with built-in information flow control. We will show that the appli-
cability diminishes significantly, as the language design is centered around the
information flow control type system. Traditional Java programs therefore need
significant refactoring for compliance with Jif’s constraints (see e.g. [AS05]).
The later parts of this section concentrate on empirical evaluations of accuracy
and scalability.
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7.3.1 JIF

The only implementation of a type system for a non-trivial imperative language
is Jif [MCN+], originally called JFlow. It provides a Java-like language extended
by labeled types, comprising an ordinary Java type like String, and a security
label which is part of the program’s security policy. Each security label restricts
the information that may flow into the annotated variable. The labels implicitly
form a complete lattice in the decentralized label model [ML00]. This model
allows multiple principals that form some sort of access control on the informa-
tion they own. They can allow other principals to read that data, declassify
data and transfer authority to other principals and code. In version 3, Jif’s
decentralized label model was augmented with integrity checking.

The major advantages of security type systems can be found in Jif as well:
Type checking is cheap and compositional. It is therefore possible to check each
class in isolation and compose an application of the pieces later without the
need to analyze the program as a whole. In principle, compositionality applies
to libraries as well. However, due to the sheer size of Java’s standard classes
and the lack of publicly available source code, Jif does not provide security
annotation but for the most central classes. And even for these, there is no
semantic guarantee (see the paragraph on libraries below).

But first, we evaluate the dimensions of analysis precision of Jif’s type sys-
tem.

Flow-insensitivity

Like most type-based approaches, Jif partitions the set of variables and fields
into disjoint sets (such as secure and public data). If information illicitly flows
e.g. from the secure to the public partition, Jif already considers that program
insecure, even if the public variable is no longer alive after that flow. This can
be seen in the program fragment in Figure 4.2 on page 90, which is intuitively
secure, as the assignments from the if-block are killed by the subsequent defini-
tion. Type systems like Jif will spuriously reject that code because confidential
information has an influence on the value in a public variable.

Based on the original definition of noninterference [GM82,GM84] (see sec-
tion 4.3), however, this program fragment is secure: Classic noninterference
states that the two streams of (public) output of the program should be indis-
tinguishable even if they differentiate on (secret) input. In other words, secure
input is not allowed to flow to public output channels. This definition is reflected
in our slicing-based approach, which only checks for secret data that might flow
to public output. But type systems cannot check that precise property since it
requires data flow analysis like in our slicing approach.

Context-Insensitivity

Partitioning variables and fields into disjoint sets has the additional disadvan-
tage that the analysis becomes context-insensitive: As a result, data structures
or even simple utility methods cannot be reused for different security levels.
One would need to write one Vector class or cosine-method for each security
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level, and this would even be worse for multi-parameter methods. As a remedy,
Jif supports various kinds of polymorphism to allow reusable code, similar to
Java 5’s generics for collections. But like these, the programmer needs to an-
notate all data structures with type parameters when they are to be used in
different security policies. Jif offers defaults to relief that burden, but this can
be both a blessing and a curse as these defaults may be inconsistent with the
semantics. A recent case study for Jif [AS05] found that a Java library wrapper
had insufficient annotation, which may result in undetected security violations.
Apart from that, polymorphic classes are subject to certain restrictions (see
type discriminants on page 167) which limits their applicability.

Object-Insensitivity

Similar to contexts, different objects might want to store data with different
security labels. However, type systems label each field statically with a single
security label. Again, some remedy can be achieved by polymorphism, with the
same problems as before. Another way to achieve object-sensitivity are runtime-
labels, but these require program instrumentation, which induces an additional
execution time and space overhead.

Differences to Java

Even though Jif compiles down to standard Java (but requires an additional
runtime system provided as a jar library), there are certain differences between
Jif and Java. Some of these limitations are standard in any kind of language-
based IFC analyses:

Threads Like most languages, Jif does not prevent threads from communicat-
ing information via the timing of modification of shared variables or syn-
chronization. Such channels can only be controlled by possibilistic [SV98]
and probabilistic [SS00a,Smi06] IFC. No implementation of a type system
for these security policies has been reported. However, our slicing-based
IFC can be extended to probabilistic noninterference [GL]. We are cur-
rently integrating a checker for this security policy in our system.

Finalizers run in a separate thread in Java and could exploit the shared varia-
ble covert channel. Therefore, Jif does not support finalizers. Most static
analyses also ignore them, as they are rarely needed in Java and their ex-
act execution time is unknown. Java only guarantees that their execution
happens when the garbage collector finds an object no longer reachable
from the program’s active state. However, there is no guarantee that a fi-
nalizer will be run at all. However, some program analyses treat finalizers
conservatively, e.g. [LH03].

Timing channels are extremely hard to counter if an adversary has access to
a clock independent from the system. These physical side channels are
not covered by language-based information flow control except for Agat’s
type system [Aga00] and Sabelfeld and Sand’s strong security [SS00a].
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Resource exhaustion like OutOfMemoryError or StackOverflowError can be
used as a information leak. Jif treats these Errors as fatal such that at most
one bit of information can leak per program execution. Code that tries
to catch such errors can easily be identified with program analysis. Since
an error is not meant to be recovered in [GJSB05], it is straightforward to
disallow code which catches errors. Thus the JVM terminates upon such
a problem.

Termination channels Like timing channels, this type of channel is very hard
to suppress. It is usually undecidable how long a program will remain in
a certain block of code, or — in the extreme — whether it will terminate
at all. Jif does not control these channels. However, for slicing-based IFC
there are alternative definitions of control dependence [PC90, RAB+07,
Amt08] that make all subsequent statements dependent on possibly non-
terminating statements. With these definitions, termination leaks will be
discovered but the analysis becomes more conservative than with standard
control dependence. This may result in more false positives, as termination
is undecidable.

Other limitations of the Jif language make conversion of Java classes to Jif
difficult:

Final arguments In contrast to Java, method arguments are always implic-
itly final in Jif, allowing them to be used as type parameters for Jif’s
annotations. This pragmatic design decision does not significantly restrict
the programmer, since Java only supports call-by-value parameter pass-
ing. But it may require refactoring of legacy Java code to produce legal
Jif source.

HashCode The default implementation of java.lang.Object can be used to
communicate information covertly, thus Jif requires each class to redefine
this method. This restriction is overly strong in practice. As hashCode
is supposed to map different objects to different values [GJSB05], a field-
value based implementation may result in poor performance of HashMaps
and HashSets.

Static variables can also be exploited as a covert channel based on the the
order of their invocation through the class loader. Therefore, Jif inhibits
all static variables (but not static methods). Even though static variables
can be refactored to normal variables, all realistic programs and especially
libraries make use of that concept, in particular for defining constants,
which improves code modularization. Since most static variables are only
initialized once in their defining classes’ static initializer, simple checks
can be used to eliminate covert channels without ruling out the whole
concept.

Unchecked exceptions In Java, all subclasses of java.lang.Runtime-
Exception do not have to be declared in a method’s throws clause. These
exceptions can also be defined by a Java program but they are mainly
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used by the virtual machine to trap problems like array-out-of-bounds,
null pointers and other common problems that are implicitly checked dur-
ing bytecode interpretation. These exceptions might be thrown by so
many bytecode instructions that requiring their declaration or inclusion
in try/catch blocks seemed overly burdensome for the designers of the
Java language. But Jif requires exactly that! Slicing-based information
flow control can track the exceptions from where they are thrown to a
matching catch clause and raises a security policy violation only if such a
flow transmits secret information to public channels. Therefore the pro-
grammer is not overwhelmed by dealing with usually trivial exceptions.

As an example, consider the password checking example in Figure 4.3
on page 93, taken from [ML00]. Even this trivial code requires two catch-
blocks, for NullPointer- and IndexOutOfBoundsExceptions. Both apply the
dreaded catch-all-do-nothing anti-pattern, that empirical evidence shows
to make bug-detection a lot harder. It is in total contradiction to Dijk-
stra’s principle of the weakest precondition and may produce hard-to track
inherited errors.

Type discrimination on parameters In casts or instanceof expressions, Jif
allows no classes that are parametrized with a security label. Like Java’s
generics, this information is erased during compilation. This seems overly
restrictive since parametrized classes are so essential for code reuse [ML00,
AS05]. Parameterized expressions could be permitted if the parameters
where statically known to be matched, but this is currently not supported.

Libraries Existing libraries are not annotated with security labels and so can-
not be flow-checked with Jif. While Jif provides wrapper classes to the
most important library classes like collections, many other libraries are not
supported even if the source or bytecode is provided. Since Java’s popu-
larity is based to a big extent on the availability of a large standard library
and numerous custom libraries, such restrictions impede the proliferation
of security typed languages.

Regarding the limitations listed above, it becomes evident why language-
based information flow control did not gain real impact on security engineering
in more than ten years of its existence. Zdancewic states that “despite this large
body of literature and considerable, ongoing attention from the research com-
munity, information flow based enforcement mechanisms have not been widely
(or even narrowly!) used” [Zda04]. Only recently some programs have been
written in the Jif language, however, only in the academic field [MCN+]. We
argue that for practical use, a realistic language must be analyzable without
major restrictions.

7.3.2 Slicing-Based Information Flow Control

The remainder of this section will concentrate on our new form of information
flow control based on program slicing as presented in chapter 4. We will compare
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its features to Jif and also point out directions where a closer integration of other
work on information flow control is required.

7.3.3 Flow-, Context- and Object-Sensitivity

Program dependence graphs can be constructed to allow flow-, context- and
object-sensitive analysis. For flow-sensitive analysis various derivatives of SSA-
form have been presented in literature, and even an SSA-form for heap ob-
jects [FKS00] was proposed. Two-phase-slicing of the system dependence
graph [HRB90] is context-sensitive, mainly due to summary edges, which sub-
sume transitive dependence between method parameters. For object-sensitive
results, the field structure of parameters passed to method calls need to be
represented according to the references and modifications in this method and
transitively called methods (see chapter 2). A precise analysis of these parame-
ters requires points-to analysis. Several publications on points-to analysis in the
last decade have improved the performance and scalability enormously and thus,
today flow-, context- and object-sensitive analyses for realistic programs are fea-
sible [MRR02,LH03,LL03,WL04,LH08], which again sustains the precision of
dependence graphs.

Another benefit of slicing based information flow control is that once the
graph is built, the checker is independent of the actual source language, which
facilitates building of reusable checkers. The Valsoft infrastructure contains
frontends for C and Java so all these languages can be checked with the same
infrastructure when the dependence graph is annotated with security levels.

Noninterference

Theorem 4.1 on page 92 states that for two nodes n, a in the dependence graph if
n /∈ BackwardSlice(a) ∨ label(n) ≤ label(a) then the noninterference criterion
is satisfied between n and a. Thus, if there exists a path n→∗ a and label(n) 6≤
label(a) then a (potential) security violation has been found. While the proof
is independent of the specific language or slicing criterion, it is clear that a
more precise slicer will have a lower false positive rate. Thus flow-, context-
and object-sensitive slicing as described earlier allow very precise results that
outdo those computed by Jif’s type system, without the additional burden of
annotating classes and methods with polymorphic security types.

As data and control dependence are formally defined in terms of reaching
definitions resp. post-dominance in the control flow graph [FOW87], program
slicing is indeed no less formal than type systems, in the contrary, it has been
shown that dependence graphs accurately represent the semantics of a program
(see section 2.2.2). Even more, a machine-checked proof of the correctness of
our information flow control mechanism is in preparation [qui].

Information flow checking in dependence graphs is similar to type systems
but not the same: Denning-style security labels are attached to nodes in the
graph, not to variables. So even if the annotations in line 13 and 14 of Figure 4.6
on page 96 look similar to a type declaration, the semantics is totally different;
another definition of the same variables might get a completely different label or
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none at all. Note that this has nothing to do with dynamic labeling, where labels
are created at runtime. Here labels are statically determined, but variables are
not partitioned into disjoint sets according to their label. Therefore, we can
leverage the original and more general notion of noninterference of Goguen and
Meseguer [GM82,GM84].

7.3.4 Case Studies

As an initial micro-benchmark to compare our approach with type-based IFC,
let us reconsider the program from Figure 4.6 on page 96. Remember that PDG-
based IFC guarantees that there is no flow from the secure variable (annotated
P (11) = High to the first output statement in line 19. Hence we analyzed the
program from Figure 4.6 using Jif [MCN+]. Jif uses a generalization of Denning’s
lattices, the so-called decentralized label model. It allows to specify sets of
security levels (called “labels” based on “principals”) for every statement, and to
attach a set of operations to any label. This is written e.g. {o1 : r1, r2; o2 : r2; r3}
and combines access control with IFC. Our approach could in principle be
generalized to use the decentralized label model as well.

But note that even decentralized labels can not overcome the imprecision
of type-based analysis. As an example, we adapted the first part of Figure 4.6
to Jif syntax and annotated the declaration of o and both instantiations of A
with the principal {pp:}. The output statement was replaced by an equivalent
code that allowed public output. Jif reports that secure data could flow to that
public channel and thus raised a false alarm. In fact, no annotation is possible
that makes Jif accept the first part of Figure 4.6 without changing the source
code.

A JavaCard Applet

As another case study for IFC we chose the JavaCard applet called Wallet5.
It is only 252 lines long but with the necessary API parts and stubs the PDG
consists of 18858 nodes and 68259 edges. The time for PDG construction was
8 seconds plus 9 for summary edges.

The Wallet stores a balance that is at the user’s disposal. Access to this
balance is only granted after supplying the correct PIN. We annotated all
statements that update the balance with the provided security level High and
inserted a declassification to Low into the getBalance method. The methods
credit and debit may throw an exception if the maximum balance would be
exceeded or if there is insufficient credit, resp. In such cases JavaCard applets
throw an exception, and the exception is clearly dependent on the result of
a condition involving balance. The exception is not meant to be caught but
percolates to the JavaCard terminal, so we inserted declassifications for these
exceptions as well. Besides this intended information flow, which is only pos-
sible upon user request and after verifying the PIN, our analysis proved that
no further information flow is possible from the balance to the output of the
JavaCard.

5see Table 7.1 on page 160
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all

player other

noOne

Figure 7.2: The lattice for analyzing the battleship example

Note that this JavaCard applet — while operating on a restricted variant of
Java — leverages many features of this standard: In particular we analyzed quite
a few static variables and included all control flow due to implicit exceptions into
our analysis without the need to explicitly declare or catch these. Therefore,
this benchmark, again, cannot be certified with Jif.

The Battleship Example

The previous experiments demonstrated that our new approach is more general
than Jif, because we can analyze realistic programming languages and accept a
larger number of secure programs due to increased precision. The next step in
our evaluation will examine a native Jif program to get a direct comparison of
practicability between these two systems. As a benchmark program, we chose
the battleship example, which comes with every Jif installation and implements
a non-GUI version of the popular battleship game. In this game, two players
place ships of different lengths on a rectangular board and subsequently “bom-
bard” random cells on the opponents board until one player has hit all the cells
covered by adversary ships.

The source code of this program consists of about 500 lines plus the required
libraries and stubs. These yield an SDG consisting of 10207 nodes and 77290
edges. For this example we use a standard diamond lattice, where all ≤ player ≤
noOne and all ≤ other ≤ noOne but neither player ≤ other nor other ≤ player
(see Figure 7.2). This ensures that secret information of one player may not be
seen by the other player and vice versa.

Before this example program could be analyzed by our IFC analysis, it had
to be converted back to regular Java syntax. This included removal of all secu-
rity types in the program, conversion of all syntactic anomalies like parentheses
in throws clauses, and replacing all Jif peculiarities like its own runtime sys-
tem. Most of this process required manual conversion. We annotated the ship
placement strategy in the players initialization method with the security level
P (n) = player . The three declassification statements of the original Jif program
are modeled as declassifications from player to all in our system as well. Then
we annotated all parameters to System.out.println with R(x) = all , which
corresponds to the original program’s variable annotation.

When we checked the program with this security policy, illicit information
flow was discovered to all output nodes. Manual inspection found that all these
violations were due to implicit information flow from the players initialization
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1 /**
2 * Initialize the board by placing ships to cover numCovered coords.
3 */
4 void init /*{P:}**/(int /*{}**/ numCovered) {
5 // Here what we would do in a full system is make a call to
6 // some non -Jif function , through the runtime interface , to
7 // get the position of the ships to place. That function would
8 // either return something random , or would implement some
9 // strategy. Here , we fake it with some fixed positions for

10 // ships.
11 final Ship /*[{P:}]**/ [] myCunningStrategy = {
12 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(1, 1), 1, true),
13 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(1, 3), 2, false),
14 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(2, 2), 3, true),
15 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(3, 4), 4, false),
16 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(5, 6), 5, true),
17 new Ship /*[{P:}]**/(new Coordinate /*[{P:}]**/(5, 7), 6, false),
18 };
19

20 Board /*[{P:}]**/ board = this.board;
21 int i = 0;
22 for (int count = numCovered; count > 0 && board != null; ) {
23 try {
24 Ship /*[{P:}]**/ newPiece = myCunningStrategy[i++];
25 if (newPiece != null && newPiece.length > count) {
26 // this ship is too long!
27 newPiece = new Ship /*[{P:}]**/(newPiece.pos ,
28 count ,
29 newPiece.isHorizontal );
30 }
31 board.addShip(newPiece );
32 count -= (newPiece ==null ?0: newPiece.length );
33 }
34 catch (ArrayIndexOutOfBoundsException ignored) {}
35 catch (IllegalArgumentException ignored) {
36 // two ships overlapped. Just try adding the next ship
37 // instead.
38 }
39 }
40 }

Figure 7.3: Initialization method of a Player in Battleship
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methods, more precisely, due to possible exceptions thrown in these methods.
However, closer inspection found that all of these exceptional control flow paths
are in fact impossible.

As an example consider the initialization method in Figure 7.3. If the pro-
gram checks whether an SSA variable is null, and only executes an instruction
involving this variable if it is not (cf. line 25), then no null-pointer exception
may ever be thrown at that instruction. However, our intermediate representa-
tion currently does not detect that fact, even if two identical checks for null are
present in the intermediate representation, one directly succeeding the other. Jif
seems to support such local reasoning. But also less trivial examples, where a
final variable is defined in the constructor, such that it may never be null in any
instance method. With more analysis effort, such cases can be detected, even
in the interprocedural case [Hub08]. Jif can only support non-local reasoning
with additional user annotations.

Apart from null-pointer problems we found exceptional control flow due to
array stores, where Java must ensure that the stored value is an instance of the
array components, because of Java’s covariant array anomaly. When a variable
of an array type a[ ] is assigned an array of a subtype b[ ] where b ≤ a, then
storing an object of type a into that variable throws an ArrayStoreException (see
lines 11-17 in Figure 7.3). Here Jif seems to have some local reasoning to prune
trivial cases. Our intermediate representation does currently not prune such
cases, however, with the pointer analysis results we use for data dependences,
such impossible flow could easily be removed.

Lastly, for interprocedural analysis, we found that our intermediate repre-
sentation models exceptional return values for all methods, even if a method is
guaranteed to not throw any exception. A more precise modeling of such cases
can render the control flow in calling methods more precise and remove spurious
implicit flow. Jif requires user annotations for such cases, as all possibly thrown
exceptions must either be caught or declared, even RuntimeExceptions, which
do not have to be declared in usual Java.

Currently, our tool does not offer such analysis, so there are only external
means to detect such spurious cases: Either by manual inspection, theorem prov-
ing (e.g. pre-/post-conditions), or path conditions. After verifying that such flow
is impossible, we can block the corresponding paths in the dependence graphs,
and we do that with declassification. In contrast to normal declassifications,
where information flow is possible but necessary, this declassification models
the guarantee that there is no information flow. As future work, we plan to in-
tegrate analyses which prune impossible control flow to reduce the false positive
rate and thus the burden of external verification.

After blocking information flow through exceptions in Player’s initializa-
tion, our IFC algorithm proved the battleship example secure with respect to
the described security policy. No further illicit information flow was discovered.
During the security analysis, based on only four declassifications, 728 summary
declassification nodes were created. This result shows that summary declassifi-
cation nodes essentially affect analysis precision, as they allow context-sensitive
slicing while blocking transitive information flow at method invocation sites.
Instead they introduce a declassification that summarizes the declassification
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effects of the invoked methods. Note that the original Jif program contained
about 150 annotations (in Figure 7.3 these are shown as gray comments), most
of which are concerned with security typing. Some of these annotations model,
however, principals and their authority. This is a feature of the decentralized
label model that we currently do not support. Still the number of annotations
is at least an order of magnitude higher than with our analysis. For a program
that contains only 500 lines of code (including comments), this means that the
annotation burden in Jif is considerable.

One of the reasons, why slicing-based IFC needs less annotations than type
systems is that side-effects of method calls are explicit in dependence graphs, so
no end-label (which models the impact of side-effects on the program counter)
is required, neither are return-value or exception labels. Those are computed as
summary information representing the dependences of called methods.

Apart from these labels, Jif requires explicit annotations to verify any non-
trivial property about exceptional control flow. In particular, many precondi-
tions like non-nullness need to be included into the program text instead of
its annotations, e.g. explicit tests for null pointers or catch clauses, which are
typically followed by empty handlers as in the example shown in Figure 4.6
on page 96. Preconditions are therefore included as runtime tests to enable
local reasoning. Such coding style is an ordeal from the software engineering
perspective, as it impedes source comprehension and may conceal violated pre-
conditions. What one really wants to have is verification that such cases cannot
happen in any execution and thus do not need to be included into the source
code.

7.3.5 Scalability

The last sections demonstrated the precision and practicability of our approach.
To validate the scalability of our new slicing-based information flow control, we
measured execution times on a number of benchmarks with varying numbers of
declassification and using lattices based on different characteristics. The bench-
mark programs are the same as those in Table 7.1 on page 160, except for the
the program mp which is the implementation of a mental poker protocol [AS05].
This program displays the following characteristics: Its source code is about
4750 lines long (18801 including all necessary libraries and stubs), the gener-
ated SDG contains 271745 nodes and 2405312 edges and takes about 36MB on
disk. The time for building the SDG was 141 sec plus 247 sec for the summary
edges.

Table 7.3 shows the characteristics of the lattices we used in our evaluations:
The first column displays the number of nodes in the lattice, the next column
the maximal height of the lattice. The number of impure nodes in the lattice,
which is shown in the next column, represents all nodes that have more than
one parent in the lattice. The final column displays the number of bits needed
in the efficient bitset encoding of Ganguly et al. [GMR94]. This encoding allows
near-constant6 computation of infima (greatest lower bounds), which will turn

6The infimum computation is in fact constant, but we need hashing to map lattice elements
to bitsets.
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nodes height impure bits

Lattice A 5 5 0 6

Lattice B 8 4 1 5

Lattice C 8 6 2 10

Lattice D 12 8 2 14

Lattice E 24 11 7 25

Lattice F 256 9 246 266

Table 7.3: Characteristics of the lattices in the evaluation.
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Figure 7.4: Average execution time (y-axis, in seconds) of IFC analysis for the
unionfind benchmark with different lattices and varying numbers of declassifi-
cations (x-axis)

out to be essential for our evaluation. The lattices for evaluation have been
designed such that they cover different characteristics equally: Lattice A is a
traditional chain lattice, lattice B is more flat and contains an impure node.
Lattice F has been automatically generated by randomly removing edges from
a complete subset lattice of 9 elements. Conversion to bitset representation is
only possible for the Hasse diagram, i.e. the transitive reduction partial order,
which is not guaranteed by random removal of order edges. So we included a
reduction phase before bitset conversion. Interestingly, Table 7.3 illustrates that
the bitset conversion usually results in a representation with size linear in the
number of lattice nodes.

Figure 7.4 shows the average execution time of 100 IFC analyses (y-axis, in
seconds) for the unionfind benchmark of Table 7.1 using the lattices of Table 7.3.
We chose the unionfind benchmark here, as it had the longest execution time,
and the other benchmarks essentially show the same characteristics. For all IFC
analyses we annotated the SDGs with 100 random security levels as provided
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Figure 7.5: Time for summary declassification nodes (in seconds) of unionfind
with different lattices and varying numbers of declassifications (x-axis)

and required security level, respectively. Moreover, we created 5 to 500 ran-
dom declassifications to measure the effect of declassification on IFC checking
(shown on the x-axis). The numbers illustrate that our IFC algorithm is quite
independent of the lattice structure and size. In particular, we got a sub-linear
increase in execution time with respect to the lattice (and bitset) size. Apart
from that, the increase with the number of declassifications is also clearly sub-
linear, since the number of declassifications increases more than linear in our
experiments (see y-axis). Figure 7.5 depicts the execution time for computing
summary declassification nodes, which is a prerequisite for precise IFC checking
(see section 4.8), therefore they have been acquired once for each combination
of program, lattice, and declassifications. They were determined with the same
random annotations as the numbers of Figure 7.4. Note that we did only com-
pute summary information between nodes that were originally connected by
summary edges. These numbers expose the same sub-linear correlations be-
tween time and lattice size or numbers of declassifications, respectively.

Figure 7.6 and 7.7 show the average execution time (y-axis, in seconds) of
100 IFC analyses and the time for summary declassification node computation,
respectively, for all benchmark programs using the largest lattice and varying
numbers of declassifications. Lines in this graph use the scale depicted on the
right, while bars use a different scale, such that we included the numbers into
each bar. For most programs, the analyses took less than a minute, only three
programs required more time, namely semithue, purse and unionfind. Again, we
found the correlation between execution time and numbers of declassifications
sub-linear. In fact, the execution time for many benchmarks was lower with 500
declassifications than with 100. These number clearly illustrate the scalability
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Figure 7.6: Average execution time (y-axis, in seconds) of IFC analysis for all
benchmark programs with the largest lattice and varying numbers of declassifi-
cations (x-axis). Bars use a different scale.

of our information flow control analysis. There is no clear correlation between
the number of nodes in the dependence graph and analysis time.

However, there seems to be a correlation between the number of edges in
the SDG and the execution time. Unlike slicing, our IFC analysis is not linear
in the number of SDG nodes and edges, but must find a fixed point in the
constraint system with respect to the given lattice. Therefore, it may traverse a
cycle in the SDG as often as the lattice is high, and when cycles are nested this
effect may even get worse. Our current implementation does not circumvent
these effects, so one observes that the programs with most edges yield to a
substantial increase in analysis time. But note that the largest program, mp,
does not belong to the outliers but behaves good-naturedly. One reason might be
the different program structure, which can also be seen from original summary
edge computation (see Table 7.1), which is considerably lower than for other
large programs. This program does — unlike JavaCard applets and our student
programs — not have a big loop in the main method which may invoke nearly
all functionality. Concluding, we assume that the program’s structure plays a
bigger role than the pure number of nodes or edges for analysis time.

While future work must evaluate the impact of standard slicing optimiza-
tions on this technique for faster fixed point computation, we think that 1 minute
execution time, as observed by the majority of our test cases, is definitely rea-
sonable for a security analysis. But even the three outliers require maximally 1.5
hours (including summary declassification analysis), which should be acceptable
for a compile-time analysis that usually needs to be done only once.
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Figure 7.7: Time for summary declassification nodes (y-axis, in seconds) for all
benchmark programs with the largest lattice and varying numbers of declassifi-
cations (x-axis). Bars use a different scale.

7.3.6 Future Work

While we presented evidence for precision, scalability, and practicability, there is
still room for further improvements: In particular, we expect that optimizations
for slicing, e.g. as presented by Binkley et al. [BHK07], apply to our information
flow analyses as well. These techniques produce up to 71% reduction in run-
time and thus significantly improve scalability. Further research must evaluate,
which of these techniques are applicable to information flow control.

7.4 Case Studies for Path Conditions

Path conditions are precise necessary conditions for information flow control
between two statements. Therefore they can invalidate or specify the exact
conditions for information flow as determined by the techniques presented in
the last section. Furthermore they provide insight on the circumstances that
lead to declassification, which supplies semantic justification for such constructs.
This section presents case studies that demonstrate the feasibility and precision
of the extensions presented in chapter 5. First, we will focus on static path
conditions for Java as described in section 5.3, later dynamic path conditions
(see section 5.4) for C will be evaluated. Note that all conditions presented in
this section have been generated by the current prototype.
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1 public class Weighing {
2 public static final int NORMAL = 0;
3 public static final int PAPER_OUT = 1;
4 public static void main(String [] args) {
5 char input = args [0]. charAt (0);
6 weigh(PAPER_OUT , 1.0f, input);
7 }
8 public static void weigh(int status ,
9 float kal_kg , char input) {

10 float u = 1.0f; // calibration factor
11 float u_kg = 0.0f; // initial value
12 while (true) {
13 u_kg = u * kal_kg;
14 if (status == PAPER_OUT) {
15 if (input == ’+’) {
16 kal_kg = 1.1f;
17 }
18 if (input == ’-’) {
19 kal_kg = 0.9f;
20 }
21 }
22 print(u_kg);
23 }
24 }
25 public static void print(float u_kg) {...}
26 }

Figure 7.8: Simplified weighing machine controller

1 ( NOT Weighing.print ((1.0 * kal_kg ))
2 ++ (input = 43)
3 ++ (1 = 1) )
4 OR
5 ( NOT Weighing.print ((1.0 * kal_kg ))
6 ++ (input 6= 43)
7 ++ (input = 45)
8 ++ (1 = 1) )

Figure 7.9: Path condition of Figure 7.8 from line 9 (input) to 22
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1 public class PCExc {
2 int secret;
3 public static void main(String [] args) {
4 System.out.println(excMethod (1));
5 }
6 public static int excMethod(int check) {
7 try {
8 PCExc pce = new PCExc ();
9 pce.secret = check;

10 throw pce;
11 } catch (PCExc pce) {
12 return pce.secret;
13 }
14 }}

1 exc_0 instanceof PCExc
2 ++ (exc_0 6= null)

Figure 7.10: Illicit information flow through an exception and corresponding
path condition

7.4.1 Static Path Conditions for Java

Before entering the peculiarities of Java, an example program will demonstrate
that shared language constructs of Java and C also share the analysis in path
conditions. Therefore as a first case study, we considered the example in Fig-
ure 7.8, which is a Java version of a weighing machine controller and does not
use dynamic dispatch. The example shows that procedural Java constructs are
handled quite similar to the C case. Thus the path condition in Figure 7.9
naturally supports standard Java and finds the illicit paths from the keyboard
buffer to the printed weight. The first line says that the print method may not
throw an exception, so the while loop may execute another time. (The current
implementation does not yet replace interprocedural exception handling with
the corresponding summarizing path condition, as presented in section 5.3.5.)
The second line says that input must be the ASCII of ’+’, and the third that
status equals PAPER_OUT. Note that values are often substituted for variables
when they have been found constant by the SSA-form. The terms after the
disjunction represent the analogous case, where the input is ’-’.

Now, we can inspect object-oriented constructs: As a second example, we
examined the program from Figure 5.4 on page 129 with our prototype which
yields

PC(sel8, result12) ≡ (new class A) : B

Since A is not a subtype of B, this condition is not satisfiable, and the PDG
contains no other dependence between sel and result. Thus the parameter sel
cannot influence the return value, even though the program slice says so.

Figure 7.10 demonstrates precise exception handling. The program indi-
rectly transmits a secret value via a caught exception, which is then made public
by printing it to the screen. This illicit flow is detected by the path condition,
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1 public class A {
2 public int foo(int x) {
3 if (x < 17) {
4 return x;
5 } else {
6 return 0;
7 }
8 }
9 }

10 public class B extends A {
11 public int foo(int x) {
12 if (x > 42) {
13 return x;
14 } else {
15 return 0;
16 }
17 }}
18 public class SolvableDynDispatch {
19 int main_decd;
20 int main_inp;
21 public static void main (...) {
22 System.out.println(
23 dynDisp(main_decd , main_inp ));
24 }
25 static int dynDisp(int dcd ,int in){
26 A dynamic;
27 int result;
28 if (dcd == 1) {
29 dynamic = new A();
30 } else
31 dynamic = new B();
32 result = dynamic.foo(in);
33 return result;
34 }}

Figure 7.11: Example for dispatch

which checks information flow between line 6 (check) and the return value in
line 12. The first line represents the catch block that only accepts a PCExc, and
the second line requires this exception not to be null. Both conditions are al-
ways true in this catch block, so the path condition reduces to true, illustrating
that the illicit flow will always take place.

The last program in Figure 7.11 illustrates exploitation of backward slices
for dynamic dispatch of the method call in line 32. The condition computed
by our tool between in and result on this line is shown in Figure 7.12. It is
determined based on the detailed path condition presented in section 5.3.4. Two
cases are possible for the virtual bound method: Either the target object has
type A (upper case), or B (lower case). A third case contains conflicting terms
and is therefore omitted in Figure 7.12 as it will be removed by automatic
constraint solvers. A closer examination of the conditions reveals: Line 1 stems
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1 ( (17 > x)
2 ++ dynamic = new class A
3 ++ (dcd = 1) )
4 OR
5 ( (x > 42)
6 ++ dynamic = new class B
7 ++ (dcd 6= 1) )
8 OR ...

Figure 7.12: Excerpt of path condition for Figure 7.11

from the condition in A.foo, the next two lines show the subcondition from
dynamic binding: line 3 stems from line 28. The term after the disjunction
represents the analogue condition for a B object.

This condition can easily be transformed to input values that trigger output
of the second input value by a constraint solver, e.g (dcd, in) = (1, 16) creates
an A object, and (0, 43) a B object. These inputs can serve as a witness for
information flow from the input to the result.

Generating this path condition takes less than a second on a standard PC.
Although the implementation of precise conditions for Java features is not fin-
ished yet, we expect that generating Java path conditions takes about the same
time as traditional ones. Empirical evaluation in previous work has shown that
this is possible within a few minutes even for larger programs [SRK06].

7.4.2 Dynamic Path Conditions for C

Five case studies will show the impact of dynamic information on path con-
ditions for actual programs. Table 7.4 lists the programs used for evaluation
purposes together with lines of code and the number of nodes and edges in the
(static) SDG. The programs ptb_like and mergesort are included in this the-
sis (Figures 7.13 and 7.19). The remaining programs are taken from the GNU
project.

Program LOC Nodes in SDG Edges in SDG
ptb_like 35 134 334
mergesort 59 244 640
cal 678 2388 6149
agrep 3990 22961 81203
patch 7998 30774 246754

Table 7.4: Example programs for case studies

Our first goal was to show the impact of dynamic chopping in contrast to
static chopping. Remember from sections 5.2.1 and 5.4.3 that smaller chop sizes
result in more precise path conditions. Table 7.5 shows the number of nodes and
edges for the static chop followed by these numbers for the dynamic chop. The
chopping criterion is given in the format from: line-column, to: line-column. For

185



CHAPTER 7. EVALUATION

Program static dynamic criterion
ptb_like 65 173 49 124 9-8, 33-53
mergesort 123 299 97 216 45-14, 21-8
cal 240 648 0 0 228-10, 281-18

134 315 44 92 367-12, 551-3
agrep 13170 40324 0 0 605-15, 638-7
(sgrep.c) 13138 40144 961 2345 96-14, 121-9
patch 16529 246754 6314 81365 825-23, 935-10

Table 7.5: Evaluation of static vs. dynamic chop sizes

the program agrep the criteria refer to the file sgrep.c. They were chosen in a
way to find statements in the code which involve several variables that possibly
influence each other, preferably in loops. The goal was to produce interesting
path conditions. For example, the static chop in the program ptb_like (listed
in Figure 7.13) from line 9 to line 33 (u_kg) contains 65 nodes connected by
173 edges. The dynamic chop, however, 49 nodes and 124 edges. It is clear
that the latter subgraph contains a noticeable smaller number of paths than the
subgraph induced by the static chop. Sometimes the dynamic chop can rule out
a dependence between two statements completely: Consider the first lines of the
programs cal and agrep. One can see that the dynamic chop for these criteria
is empty. The following evaluation of using traced variable values to improve
precision in dynamic path conditions contains another example of that kind.
In all these cases there was definitely no (illegal) information flow between the
chopping criteria although the static chop indicated so.

After showing that dynamic chopping can considerably reduce the number
of paths and thus yield a more precise path condition, that narrows down the
reasons for an (illicit) influence, we will present excerpts of path conditions
and augment them with the restriction condition, which is based on trace data
(partly using incomplete traces). Again, this information reveals variable values
which may have contributed to the necessary condition that triggered an illegal
information flow.

The first example ptb_like, shown in Figure 7.13, is taken from a weighing
machine controller7. Such a program represents perfectly the security relevant
software we have in mind for this approach: There is a part of the program, the
so-called calibration path, that contains all paths from the sensor (p_ab) to the
value display, in this case the weight stored in u_kg (line 33). For a certificate
that the machine is correctly calibrated one needs to assure that there is no
way to influence the calculation of the weight, for example from the keyboard.
Consider the static path condition between the keyboard buffer p_cd in line 9
and the display of u_kg, the actual weight, in line 33. The final path condition
is shown in Figure 7.14. Note that & represents bitwise logical and. An illegal
information flow could only happen, if the keyboard buffer p_cd contained one of
the special characters ‘+’ or ‘-’. Since our run uses an keyboard buffer containing
only ones, we expect the dynamic path condition to evaluate to false.

7It is actually the original program to the Java version in Figure 7.8
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1 #define TRUE 1
2 #define CTRL2 0
3 #define PB 0
4 #define PA 1
5 void printf ();
6 void main()
7 {
8 int p_ab [2] = {0, 1};
9 int p_cd [2] = {1, 1};

10 char e_puf [8] =
{’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’};

11 int u = 0;
12 int idx = 0;
13 float u_kg = 0.0;
14 float kal_kg = 1.0;
15

16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10 )==0) {
18 u = ((p_ab[PB] & 0x0f) << 8) +

(unsigned int)p_ab[PA];
19 u_kg = (float) u * kal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx =0;idx <7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_puf[idx] == ’+’)
26 kal_kg *= 1.01; /* illegal */
27 else if (e_puf[idx] == ’-’)
28 kal_kg *= 0.99; /* illegal */
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Article:␣%7.7s\n" +

"␣␣␣%6.2f␣kg␣␣␣␣",e_puf ,u_kg);
34 }
35 }

Figure 7.13: ptb_like
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1 ( ((p_cd [0] & 0x01) != 0)
2 ∧ ((p_cd [0] & 0x10) != 0)
3 ∧ ((p_ab [0] & 0x10) == 0)
4 ∧ (e_puf[idx] == ’+’)
5 ∧ (idx < 7) )
6 ∨
7 ( ((p_cd [0] & 0x01) != 0)
8 ∧ ((p_cd [0] & 0x10) != 0)
9 ∧ (e_puf[idx] == ’-’)

10 ∧ ((p_ab [0] & 0x10) == 0)
11 ∧ (e_puf[idx] != ’+’)
12 ∧ (idx < 7) )

Figure 7.14: Static path condition for ptb_like

1 ... ∨
2 ( e_puf == <unknown >
3 ∧ idx == 0
4 ∧ p_cd == {1, 1}
5 ∧ p_ab == {0, 1}
6 ∧ ((p_cd [0] & 0x01) != 0)
7 ∧ ((p_cd [0] & 0x10) != 0)
8 ∧ (e_puf[idx] == ’-’)
9 ∧ ((p_ab [0] & 0x10) == 0)

10 ∧ (e_puf[idx] != ’+’)
11 ∧ (idx < 7) )
12 ∨ ...

Figure 7.15: Excerpt of a dynamic path condition for ptb_like
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1 ((p_cd [0] & 0x01) != 0)
2 ∧ ((p_cd [0] & 0x10) != 0)
3 ∧ ((p_ab [0] & 0x10) == 0)
4 ∧ (e_puf[idx] == ’+’)
5 ∧ (idx < 7)

Figure 7.16: Dynamic path condition of illegal flow in ptb_like

Using a dynamic chop immediately reveals this fact: the static path condi-
tion describes a path that was not taken during runtime, the precise dynamic
path condition yields false. The dynamic path condition based on the static
chop, in contrast, consists of ten conjunctive blocks, one of which is shown in
Figure 7.15. Dynamic trace data is shown in bold, e_puf has not been traced
(incomplete trace). As one can see, the particular predicates

p_cd == {1, 1}

and

((p_cd [0] & 0x10) 6= 0)

contradict each other, so that the given block evaluates to false. The same goes
with the other blocks and we get the expected result false. The path condition
cannot be fulfilled; the necessary path was not taken. This result proves that
the keyboard buffer had no influence on the output presented to the consumer.

In another scenario, the input p_cd = {0xff, ’+’} (instead of line 9) has
been traced. Upon entering ‘+’ on the keyboard, the displayed value is too high.
With the dynamic path condition the detection of the illicit influence is done
automatically: Figure 7.16 shows the path condition for the adapted program
based on the dynamic rather than the static chop. With the traced input one
can exactly determine why the illicit information flow took place. Together with
the definition of e_puf[idx] in line 23, adding the restrictive condition yields:

1 (p_cd [0] == 0xff)
2 ∧ (p_ab [0] == 0)
3 ∧ (p_cd [1] == ’+’)
4 ∧ (idx < 7)

This path condition already shows why there was an illegal information
flow during program execution giving detailed information why the program
produced incorrect output (the weight on the machine): The display was in-
fluenced by some debug flags and the input of ‘+’ during the 7 rounds of the
for-loop. The programmers simply had forgotten to remove the debugging code
from the final version. This information can act as a witness to reproduce the
illicit behavior. In this small example one can easily see that the calibration
factor u_kg is increased in line 26 by such an input. For larger examples a human
would most probably not detect illegal statements so easily.

As another example, consider the program mergesort from Figure 7.19.
Figure 7.17 shows the statically computed path condition between 999 in line 45
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1 (left < right)
2 ∧ (idx1 <= ((left + right) / 2))
3 ∧ (data[idx1] >= data[idx2])
4 ∧ (idx2 <= right)

Figure 7.17: Static path condition for mergesort

1 right == 4
2 ∧ left == 4
3 ∧ data == 1
4 ∧ idx2 == 5
5 ∧ ((left + right) / 2) == 3
6 ∧ idx1 == 3
7 ∧ (left < right)
8 ∧ (idx1 <= ((left + right) / 2))
9 ∧ (data[idx1] >= data[idx2])

10 ∧ (idx2 <= right)

Figure 7.18: Excerpt of a dynamic path condition for mergesort

and temp in line 21. This time, using a dynamic chop does not help strengthening
the path condition as the dynamic chop is identical to the static chop regarding
the paths relevant to the path condition. The dynamic path condition, however,
yields 40 conjunctive blocks, one of which is shown in Figure 7.18. Dynamic
trace data is again shown in bold. Due to contradictions within the particular
blocks, the condition can be fully evaluated to false: there was no program state
traced which would have fulfilled the static path condition.

As our examples show, dynamic path conditions are usually a good deal big-
ger than their statically computed counterparts, but also more precise as they
hold more information. Each dynamic path condition is tied to a particular pro-
gram run, though. If a dynamic path condition evaluates to false this does not
necessarily hold for each program execution, especially if user input is involved.
But dynamic path conditions are a precise means for finding witnesses for illegal
program behavior.

Omission errors

Dynamic slices can only show that some influence took place or not. Some-
times one would like to know why an expected influence did not happen during
program execution. In literature [AHKL93,GABF99,WR04] several approaches
were proposed to enrich the dynamic slice with the “culpable” control predicates,
i.e. those predicates that triggered a branch to an execution path on which the
expected potential data dependence did not come into effect. But adding only
the predicates to the slice does not reveal what actually went wrong. Our ap-
proach returns the exact conditions for a data flow to happen. The static path
condition augmented with the restrictive clause can be fed into a constraint
solver to detect the contradictions between the variable trace and the values
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1 int data [100];
2 int temp [100];
3

4 void move (int *from , int fst , int lst ,
5 int *to, int idx) {
6 while (fst <= lst)
7 to[idx++] = from[fst ++];
8 }
9

10 void merge (int fst , int mid , int lst) {
11 int idx , idx1 , idx2;
12

13 idx = 0;
14 idx1 = fst;
15 idx2 = mid + 1;
16

17 while ((idx1 <= mid) && (idx2 <= lst)) {
18 if (data[idx1] < data[idx2])
19 temp[idx ++] = data[idx1 ++];
20 else
21 temp[idx ++] = data[idx2 ++];
22 }
23

24 if (idx1 > mid)
25 move (data , idx2 , lst , temp , idx);
26 else
27 move (data , idx1 , mid , temp , idx);
28

29 move (temp , 0, lst - fst , data , fst);
30 }
31

32 void mergesort (int left , int right) {
33 int m;
34 m = (left + right) / 2;
35 if (left < right) {
36 mergesort (left , m);
37 mergesort (m + 1, right);
38 merge (left , m, right );
39 }
40 }
41

42 int main () {
43 int i;
44

45 data [0] = 999;
46 data [1] = 1;
47 data [2] = 23;
48 data [3] = 55;
49 data [4] = 44;
50

51 mergesort (0, 4);
52

53 for (i = 0; i < 5; ++i) {
54 printf ("%d␣", data[i]);
55 }
56 printf ("\n");
57

58 return 0;
59 }

Figure 7.19: mergesort
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expected by the predicates. In Figure 7.18, the subclauses 1 and 2 contravene
the sub-clause 7. That is the reason why the path(s) yielding that conjunctive
block have not been executed. As pointed out in the description of mergesort,
the dynamic chop is identical to the static chop. Adding only the control pred-
icates as proposed by previous solutions would just reveal the conditions shown
in Figure 7.17. The user would have to find those conditions in the slice and
interpret them to find the information he or she was really looking for: the
condition in Figure 7.18. The dynamic path conditions thus helps localizing
flaws in the program by detecting contradictions between expected and actual
execution paths.
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Conclusion

This thesis presented several algorithms for precise analysis of programs in re-
alistic programming languages like Java or C. It extends program dependence
graphs to all features of Java bytecode, most prominently method parameters
with nested field structures. In contrast to other slicers for Java, our system
generates a system dependence graph, for which the standard two-phase context-
sensitive slicing algorithms can be leveraged.

For multi-threaded Java, we defined a precise approximation of interference
dependence (with respect to the presented undecidability results), which arises
when a shared variable is defined in one thread and used in another thread.
Based on the new Java memory model, our definition leverages points-to in-
formation, which improves precision compared to previous definitions based on
type or escape information.

When the binary information, whether one statement might influence an-
other given statement is not sufficient, path conditions yield the detailed cir-
cumstances of the influence and can even eliminate false positives. This thesis
found that for object-oriented constructs one needs to include detailed infor-
mation on variable types to gain conditions suitable for automatic constraint
solvers. The described techniques extend the traditional path conditions, and
allow precise conditions for all object-oriented features. Furthermore, dynamic
trace data allows a ’flight recorder’ principle and improves the precision of path
conditions for a specific program execution.

The main contribution of this work is a novel approach for information flow
control based on system dependence graph as defined in this thesis. The flow-
sensitivity, context-sensitivity, and object-sensitivity of our slicer extends natu-
rally to information flow control and thus excels over the predominant approach
for information flow control, namely security type systems.

The evaluation section showed that our new algorithm for information flow
control dramatically reduced annotation burden compared to type systems, due
to its elevated precision. Furthermore, empirical evaluation showed the scala-
bility of this approach. While it is clearly more expensive than security type
systems, the evaluation demonstrates that security kernels are certified in rea-
sonable time. As this certification process is only needed once at compile time,
even an analysis that takes hours is acceptable when it guarantees security for
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the whole lifetime of a software artifact. As a consequence, this thesis makes
recent developments in program analysis applicable to realistic programming
languages. The presented system implements the first information flow control
analysis for a realistic language, namely Java bytecode.
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Appendix

The following tables show the details of the execution times depicted in sec-
tion 7.3.5 for comparison purposes.

Table A.1: Execution time (in sec) of summary declassifica-
tion node computation with different numbers of declassifica-
tions

program lattice 0 5 10 50 100 500
dijkstra A 0 0 0 0 0 0
enigma A 0 0 0 0 0 0
wallet A 0 7 8 11 15 12
purse A 0 8552 8368 8378 14386 15622
lindenmayer A 0 5 5 6 7 9
mp A 0 3 3 3 3 5
networkflow A 0 4 4 8 7 10
planesweep A 0 16 16 24 26 40
semithue A 0 57 60 138 156 180
tsp A 0 6 6 10 11 10
unionfind A 0 23147 26417 39514 40017 43183
dijkstra B 0 0 0 0 0 0
enigma B 0 0 0 0 0 0
wallet B 0 8 8 9 17 15
purse B 0 8951 8491 13352 13327 9679
lindenmayer B 0 5 5 6 6 9
mp B 0 4 3 3 3 5
networkflow B 0 4 4 7 7 10
planesweep B 0 16 16 26 32 39
semithue B 0 58 65 160 162 164
tsp B 0 6 6 10 11 11
unionfind B 0 21659 26523 37051 42094 39401
dijkstra C 0 0 0 0 0 0
enigma C 0 0 0 0 0 0
wallet C 0 8 8 9 17 18
purse C 0 9015 7874 8111 12921 12899
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program lattice 0 5 10 50 100 500
lindenmayer C 0 5 5 7 6 11
mp C 0 3 3 3 3 5
networkflow C 0 4 5 7 7 14
planesweep C 0 15 13 22 26 39
semithue C 0 61 72 157 199 192
tsp C 0 5 5 10 12 11
unionfind C 0 19950 25905 36508 38639 44684
dijkstra D 0 0 0 0 0 0
enigma D 0 0 0 0 0 0
wallet D 0 8 9 14 18 21
purse D 0 8398 7701 11548 11913 14634
lindenmayer D 0 5 6 8 7 13
mp D 0 3 3 3 4 5
networkflow D 0 4 4 9 8 14
planesweep D 0 13 13 19 27 39
semithue D 0 67 67 196 192 220
tsp D 0 5 6 11 12 12
unionfind D 0 21499 27810 49010 49312 50244
dijkstra E 0 0 0 0 0 0
enigma E 0 0 0 0 0 0
wallet E 0 8 8 12 12 22
purse E 0 8758 8734 9037 13682 21963
lindenmayer E 0 5 6 7 8 13
mp E 0 3 3 3 3 4
networkflow E 0 4 4 8 8 13
planesweep E 0 14 14 20 30 43
semithue E 0 71 81 222 215 246
tsp E 0 6 5 13 12 14
unionfind E 0 21951 27321 51800 53477 60051
dijkstra F 0 0 0 0 0 0
enigma F 0 0 0 0 0 0
wallet F 0 7 9 14 21 20
purse F 0 8984 8565 12820 13117 10368
lindenmayer F 0 4 5 9 9 10
mp F 0 4 3 3 4 5
networkflow F 0 4 4 8 8 13
planesweep F 0 16 16 27 36 49
semithue F 0 65 74 212 240 234
tsp F 0 6 6 12 15 15
unionfind F 0 20658 27037 53967 55846 52176
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Table A.2: Average execution time (in sec) of 100 IFC analy-
ses with different numbers of declassifications

program lattice 0 5 10 50 100 500
dijkstra A 0.02 0.02 0.01 0.01 0.01 0.01
enigma A 0.01 0.01 0.01 0.01 0.01 0.01
wallet A 0.09 0.2 0.19 0.24 0.27 0.22
purse A 0.91 86.44 84.79 84.97 144.97 157.4
lindenmayer A 0.03 0.07 0.08 0.09 0.09 0.12
mp A 0.05 0.09 0.09 0.09 0.1 0.1
networkflow A 0.08 0.13 0.12 0.17 0.15 0.19
planesweep A 0.07 0.25 0.25 0.32 0.34 0.47
semithue A 0.16 0.76 0.84 1.63 1.79 2.02
tsp A 0.17 0.24 0.27 0.32 0.31 0.28
unionfind A 1.44 233.63 266.46 397.64 402.54 434.48
dijkstra B 0.02 0.02 0.01 0.01 0.01 0.02
enigma B 0.01 0.01 0.01 0.01 0.01 0.01
wallet B 0.1 0.19 0.18 0.2 0.27 0.25
purse B 0.93 90.55 85.94 134.57 134.45 97.83
lindenmayer B 0.03 0.08 0.08 0.08 0.08 0.12
mp B 0.06 0.1 0.09 0.09 0.09 0.1
networkflow B 0.09 0.14 0.13 0.17 0.16 0.2
planesweep B 0.07 0.24 0.24 0.34 0.4 0.47
semithue B 0.16 0.77 0.86 1.79 1.81 1.83
tsp B 0.18 0.25 0.25 0.32 0.29 0.29
unionfind B 1.38 218.83 267.43 372.61 423.26 396.63
dijkstra C 0.01 0.02 0.01 0.01 0.02 0.02
enigma C 0.01 0.01 0.01 0.01 0.01 0.01
wallet C 0.1 0.18 0.18 0.22 0.29 0.29
purse C 1.04 91.13 79.72 82.2 130.24 130.13
lindenmayer C 0.03 0.08 0.08 0.09 0.09 0.14
mp C 0.06 0.09 0.09 0.08 0.09 0.11
networkflow C 0.09 0.15 0.14 0.17 0.17 0.25
planesweep C 0.06 0.23 0.21 0.3 0.35 0.46
semithue C 0.16 0.83 0.93 1.79 2.2 2.14
tsp C 0.19 0.25 0.25 0.29 0.32 0.29
unionfind C 1.52 201.9 261.38 367.28 388.54 449.57
dijkstra D 0.02 0.02 0.02 0.02 0.02 0.02
enigma D 0.01 0.01 0.01 0.01 0.01 0.01
wallet D 0.11 0.2 0.2 0.27 0.31 0.32
purse D 0.84 84.92 77.95 116.39 120.06 147.32
lindenmayer D 0.03 0.08 0.09 0.11 0.1 0.15
mp D 0.05 0.08 0.08 0.09 0.09 0.1
networkflow D 0.1 0.15 0.14 0.19 0.17 0.24
planesweep D 0.07 0.21 0.21 0.26 0.35 0.46
semithue D 0.19 0.9 0.9 2.19 2.15 2.42
tsp D 0.21 0.27 0.3 0.37 0.33 0.32
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program lattice 0 5 10 50 100 500
unionfind D 1.35 217.15 280.77 492.6 495.55 505.41
dijkstra E 0.02 0.02 0.01 0.01 0.02 0.02
enigma E 0.01 0.01 0.01 0.01 0.01 0.01
wallet E 0.1 0.18 0.17 0.23 0.23 0.32
purse E 0.93 88.59 88.38 91.42 137.88 220.73
lindenmayer E 0.03 0.08 0.09 0.1 0.11 0.16
mp E 0.06 0.09 0.1 0.09 0.1 0.1
networkflow E 0.1 0.15 0.15 0.18 0.18 0.24
planesweep E 0.07 0.23 0.23 0.29 0.38 0.52
semithue E 0.19 0.95 1.04 2.45 2.39 2.7
tsp E 0.19 0.28 0.28 0.35 0.37 0.34
unionfind E 1.47 221.85 275.65 520.44 537.56 603.67
dijkstra F 0.02 0.02 0.01 0.01 0.02 0.02
enigma F 0.01 0.01 0.01 0.01 0.01 0.01
wallet F 0.09 0.2 0.22 0.26 0.32 0.3
purse F 0.98 91.86 66.129 37.132 29.104 65.
lindenmayer F 0.03 0.07 0.08 0.12 0.12 0.13
mp F 0.06 0.09 0.09 0.09 0.1 0.1
networkflow F 0.09 0.13 0.13 0.17 0.16 0.23
planesweep F 0.07 0.25 0.25 0.35 0.43 0.56
semithue F 0.17 0.88 0.97 2.34 2.61 2.54
tsp F 0.22 0.28 0.27 0.33 0.35 0.33
unionfind F 1.55 208.88 272.9 542.11 560.84 525.3
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