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Abstract. Quantum state engineering in solid-state systems is one of the most rapidly developing
areas of research. Solid-state building blocks of quantum computers have the advantages that they
can be switched quickly, and they can be integrated into electronic control and measuring circuits.
Substantial progress has been achieved with superconducting circuits (qubits) based on Josephson
junctions. Strong coupling to the external circuits and other parts of the environment brings, together
with the advantages, the problem of noise and, thus, decoherence. Therefore, the study of sources
of decoherence is necessary. Josephson qubits themselves are very useful in this study: they have
found their first application as sensitive spectrometers of the surrounding noise.
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1. Introduction

Josephson junction based systems are one of the promising candidates for quan-
tum state engineering with solid state systems. In recent years great progress was
achieved in this area. After initial breakthroughs of the groups in Saclay and NEC
(Tsukuba) in the late 90’s, there are now many experimental groups worldwide
working in this area, many of them with considerable previous experience in
nano-electronics. By now the full scope of single-qubit (NMR-like) control is
possible. One can drive Rabi oscillations, observe Ramsey fringes, apply com-
posite pulses and echo technique (Collin et al., 2004). The goal of ‘single shot’
measurements has almost been achieved (Astafiev et al., 2004b; Siddiqi et al.,
2004). There are first reports about 2-bit operations (Yamamoto et al., 2003). The
decoherence times have reached microseconds, which would allow for hundreds
of gates. Finally, a setup equivalent to cavity QED was realized in superconducting
circuits (Wallraff et al., 2004). We refer the reader to the recent reviews (Esteve
and Vion, 2005; Wendin and Shumeiko, 2005).

Despite the great progress decoherence remains the limiting factor in solid
state circuits. Since one wants to manipulate and measure the qubits, some de-
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Figure 1. Charge Qubit.

coherence is unavoidable. There are, however, noise sources which are purely
intrinsic, i.e., they are not related to any controlling or measuring circuitry. Elim-
inating those sources as much as possible is therefore of greatest importance. The
main intrinsic source of decoherence in most superconducting qubits is 1/ f noise
of either the charge, the flux or the critical Josephson current.

On the other hand, the full control of 1-qubit circuits opensthe possibil-
ity to use qubits as efficient noise detectors (Aguado and Kouwenhoven, 2000;
Schoelkopf et al., 2003). The idea is to measure the decoherence times of the
qubit while changing its parameters and extract from the data the noise in the
qubit’s environment. An experiment of this type was performed by (Astafiev et al.,
2004a). Further information about the noise was obtained inrecent studies (Ithier
et al., 2005; Martinis et al., 2005). In this paper we give a short overview of new
and improved understanding of the nature of 1/ f noise.

2. Charge qubit and charge noise

To introduce the basic concepts we consider the simplest charge qubit. The system
is shown in Fig. 1. Its Hamiltonian reads

H =
∑

n

[

Ech(n,Vg)|n〉〈n| +
EJ

2
|n〉 〈n± 1|

]

, (1)

where the charging energy in given by

Ech(n,Vg) =
(2ne− Qg)2

2(Cg +CJ)
, (2)

and the induced gate charge isQg = CgVg. NearQg = e one can consider the
two lowest energy charge states. In the spin-1/2 representation one obtains the
following Hamiltonian

H = −
1
2
∆Ech(Vg) σ̂z−

1
2

EJ σ̂x , (3)
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Introducing an angleη(Vg) such that tanη = EJ/Ech(Vg) we rewrite the Hamilto-
nian as

H = −
1
2
∆E (cosη σ̂z+ sinη σ̂x) . (4)

We now assume that the gate charge has a noisy component, i.e., Qg = CgVg+δQ.
Then the charging energy fluctuates and we obtain

H = −1
2
∆E (cosη σ̂z+ sinη σ̂x) −

1
2

Xσ̂z , (5)

whereX = eδQ/(Cg +CJ). In the eigenbasis of the qubit this gives

H = −
1
2
∆E σ̂z−

1
2

X(cosη σ̂z− sinη σ̂x) . (6)

For sufficiently weak noise with regular spectrumSX(ω), the Bloch-Redfield
theory (Bloch, 1957; Redfield, 1957) gives the dissipative rates. The relaxation
(spin flip) rate is given by

Γ1 ≡
1
T1
=

1
2

sin2 ηSX(ω = ∆E) , (7)

while the dephasing rate

Γ2 ≡
1
T2
=

1
2
Γ1 + Γϕ , (8)

with

Γϕ =
1
2

cos2 ηSX(ω = 0) . (9)

is a combination of spin-flip effects (Γ1) and of the so called ‘pure’ dephasing,
characterized by the rateΓϕ = 1/T∗2. The pure dephasing is usually associated
with the inhomogeneous level broadening in ensembles of spins, but occurs also
for a single spin due to the ‘longitudinal’ (coupling toσz) low-frequency noise.

We now consider the situation where the noiseX is characterized by the
spectral density

SX(ω) =
α

|ω|
(10)

in the interval of frequenciesωir < ω < ωc. In this case Eq. (9) is clearly inap-
plicable. Several models of 1/ f noise and pure dephasing were developed in the
literature (Cottet, 2002; Shnirman et al., 2002; Paladino et al., 2002; Galperin
et al., 2004a). In all of them theT2-decay of the coherences (i.e. of the off-
diagonal elements of the density matrix) is given by decay law e−Γ1t/2 f (t). The
pure decoherence described by the functionf (t) depends on the statistics of the
noise. For our purposes here a very rough estimate is enough.When deriving the
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Figure 2. Asymptotic behavior of noise at low and high frequencies.

Bloch-Redfield results, e.g., Eq. (9), one realizes thatS(ω = 0) should actually
be understood as the noise power averaged over the frequencyband of width
∼ Γϕ aroundω = 0. We, thus, obtain a time scale of the pure dephasing from
the self-consistency conditionΓϕ = SX(Γϕ). This gives

Γϕ ≈
√
α cosη . (11)

For the cases of “strongly non-Gaussian” statistics (Galperin et al., 2004a),α and
Γϕ should be understood as typical rather than ensemble averaged quantities. From
the study of many examples we came to the conclusion that the relation (11) is
universal irrespective of the noise statistics as long asΓϕ > ωir .

3. Analysis of the NEC experiments

(Astafiev et al., 2004a) measured theT1 andT∗2 time scales in a charge qubit. As
the energy splitting∆E and the angleη were independently controlled, they could
extract the noise powerS(ω) in the GHz range using Eq. (7). In addition they
were able to determine the strength of the 1/ f noise,α, using Eq. (11). The results
suggested a connection between the strengths of the Ohmic high-frequency noise,
responsible for the relaxation of the qubit (T1-decay), and the low-frequency 1/ f
noise, which dominates the dephasing (T2-decay). The noise power spectra, ex-
trapolated from the low- and high-frequency sides, turn outto cross atω of order
T. Expressing the high-frequency noise atω > T asSX(ω) = aω, they found
that the strength of the low-frequency noise scales asα = aT2 (see Fig. 2). The
T2 dependence of the low-frequency noise power was observed earlier for the
1/ f noise in Josephson devices (Wellstood, 1988; Kenyon et al.,2000). Further
evidence for theT2 behavior was obtained recently (Astafiev, 2004; Wellstood
et al., 2004). But the fact that the two parts of the spectrum are characterized by
the same constanta was surprising.
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4. Resonances in phase qubits

Additional information was obtained from experiments withphase qubits (current
biased large area Josephson junction) by (Simmonds et al., 2004). These experi-
ments revealed the presence of spurious quantum two-level systems with strong
effects on the high-frequency (∼10 GHz) qubit dynamics. In a phase qubit one
controls the energy splitting between the qubit states by changing the bias current.
It turned out that at certain values of the bias current the system ceased to behave
as a two-level system but showed rather a 4-level dynamics. This phenomenon can
be attributed to the existence of a collection of coherent two-level fluctuators in the
oxide of the tunnel barrier. When the energy splitting of thequbit coincides with
that of one of the fluctuators a pair of states

∣

∣

∣gqubit

〉

|efluctuator〉 and
∣

∣

∣equbit

〉

|gfluctuator〉
are degenerate. Here

∣

∣

∣gqubit

〉

and |gfluctuator〉 denote the ground states of the qubit

and the fluctuator respectively, while
∣

∣

∣equbit

〉

and|efluctuator〉 are the excited states.
This degeneracy is lifted by the qubit-fluctuator interaction, which leads to a gap
(avoided crossing) in the spectroscopy of the qubit. The most surprising was the
observation that the two-level fluctuators are more coherent than the qubit. Hence,
the decoherence of the 4-level system in a resonant situation is dominated by the
decoherence of the qubit.

5. High- and low-frequency noise from coherent TLF’s

Motivated by the above mentioned experiments we have pointed out (Shnirman
et al., 2005) that a set ofcoherenttwo-level systems may produce both high-
and low-frequency noise with strengths that are naturally related. As a model we
consider a set of coherent two-level systems described by the Pauli matricesσp, j,
wherep = x, y, z, and j labels the particular TLF. We write the Hamiltonian of the
set in the basis such that their contributions to the relevant fluctuating quantity,
e.g., the gate charge, areX ≡

∑

j v j σz, j. Then

HTLS =
∑

j

[

−1
2

(

ε jσz, j + ∆ jσx, j

)

+ Hdiss, j

]

. (12)

Here, in the language of tunneling TLSs (TTLS),ε j are the bias energies and∆ j

the tunnel amplitudes between two states. Each individual TLS, j, is subject to
dissipation due to its own bath with HamiltonianHdiss, j. We do not specifyHdiss, j ,
but only assume that it produces the usual relaxation (T1) and dephasing (T2)
processes. We assume that all the TLSs are under-damped, with Γ1, j ≡ T−1

1, j � E j

andΓ2, j ≡ T−1
2, j � E j. HereE j ≡

√

ε2j + ∆
2
j is the energy splitting.
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Our goal in the following is to investigate the noise properties of of the fluctu-
ating fieldX. For that reason we evaluate the (unsymmetrized) correlator

CX(ω) ≡
∫

dt
{

〈X(t)X(0)〉 − 〈X〉2
}

eiωt . (13)

For independent TLSs the noise is a sum of individual contributions,CX =
∑

j v2
j C j,

where

C j(ω) ≡
∫

dt
{

〈σz, j(t)σz, j(0)〉 − 〈σz, j〉2
}

eiωt . (14)

To obtainC j we first transform to the eigenbasis of the TLS. This gives

HTLS =
∑

j

{

−1
2

E jρz, j + Hdiss, j

}

, (15)

and
X =
∑

j

v j (cosθ j ρz, j − sinθ j ρx, j ) , (16)

where tanθ j ≡ ∆ j/ε j . Proceeding in the spirit of the Bloch-Redfield theory (Bloch,
1957; Redfield, 1957) we readily find

C j(ω) ≈ cos2 θ j

[

1− 〈ρz, j〉2
] 2Γ1, j

Γ2
1, j + ω

2

+ sin2 θ j

[

1+ 〈ρz, j〉
2

]

2Γ2, j

Γ2
2, j + (ω − E j)2

+ sin2 θ j

[

1− 〈ρz, j〉
2

]

2Γ2, j

Γ2
2, j + (ω + E j)2

. (17)

In thermal equilibrium we have〈ρz, j〉 = tanh(E j/2T). The first term, due to the
longitudinal part of the coupling, describes random telegraph noise of a thermally
excited TLS. We have assumedΓ1, j � T, so that this term is symmetric (classi-
cal). The second term is due to the transverse coupling and describes absorption
by the TLS, while the third term describes the transitions ofthe TLS with emis-
sion. We observe that TLSs withE j � T contribute toCX only at the (positive)
frequencyω = E j . Indeed their contribution atω = 0 is suppressed by the thermal
factor 1− 〈ρz, j〉2 = 1 − tanh2(E j/2T). Also the negative frequency (emission)
contribution atω = −E j is suppressed. These high-energy TLSs remain always in
their ground state. Only the TLSs withE j < T are thermally excited, performing
real random transitions between their two eigenstates, andcontribute atω = ±E j

and atω = 0. Note that the separation of the terms in Eq. (17) into low- and high-
frequency noise is meaningful only provided the typical width Γ1, j of the low-ω
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Lorentzians is lower than the high frequencies of interest,which are defined, e.g.,
by the qubit’s level splitting or temperature.

For a dense distribution of the parametersε, ∆, andv we can evaluate the low-
and high-frequency noise. For positive high frequencies,ω � T, we obtain

CX(ω) ≈
∑

j

v2
j sin2 θ j

2Γ2, j

Γ2
2, j + (ω − E j)2

≈ N
∫

dεd∆dv P(ε,∆, v) v2 sin2 θ · 2πδ(ω − E) ,

(18)

whereN is the number of fluctuators,P(ε,∆, v) is the distribution function nor-
malized to 1,E ≡

√
ε2 + ∆2, and tanθ = ∆/ε. Without loss of generality we take

ε ≥ 0 and∆ ≥ 0.
At negative high frequencies (ω < 0 and |ω| > T) the correlatorCX(ω) is

exponentially suppressed. On the other hand, the total weight of the low-frequency
noise (up toω ≈ Γ1,max, whereΓ1,max is the maximum relaxation rate of the
TLSs) follows from the first term of (17). (Since we have assumed Γ1, j � E j

we can disregard the contribution of the last two terms of (17).) Each Lorentzian
contributes 1. Thus we obtain

∫

low freq.

dω
2π

CX(ω)

≈
∫

low freq.

dω
2π

∑

j

v2
j cos2 θ j

[

1− 〈ρz, j〉2
] 2Γ1, j

Γ2
1, j + ω

2

≈ N
∫

dεd∆dv P(ε,∆, v) v2 cos2 θ
1

cosh2 E
2T

.

(19)

Equations (18) and (19) provide the general framework for further discussion.
Next we investigate possible distributions for the parametersε, ∆, andv. We

consider a log-uniform distribution of tunnel splittings∆, with densityP∆(∆) ∝
1/∆ in a range [∆min,∆max]. This distribution is well known to provide for the
1/ f behavior of the low-frequency noise (Dutta and Horn, 1981a). It is natural for
TTLSs as∆ is an exponential function of, e.g., the tunnel barrier height (Phillips,
1972), which is an almost uniformly distributed parameter.The relaxation rates
are, then, also distributed log-uniformly,PΓ1(Γ1) ∝ 1/Γ1, and the sum of many
Lorentzians of widthΓ1 centered atω = 0 adds up to the 1/ f noise.

The distribution ofv is rather arbitrary. We only only assume that it is un-
correlated withε and∆. Finally we have to specify the distribution ofεs. First,
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we assume that the temperature is lower than∆max. For the high-frequency part,
T < ω < ∆max, we find, after taking the integral over∆ in Eq. (18), that

CX(ω) ∝ 1
ω

∫ ω

0
Pε(ε)dε . (20)

This is consistent with the observed Ohmic behaviorCX ∝ ω only for a linear
distributionPε(ε) ∝ ε.

Remarkably, this distribution,P(ε,∆) ∝ ε/∆, produces at the same time the
T2 ln(T/∆min) behavior of the low-frequency weight (19), observed in several
experiments (Wellstood, 1988; Kenyon et al., 2000; Astafiev, 2004; Wellstood
et al., 2004). If the low-frequency noise has a 1/ f dependence, the two parts of
the spectrum would cross aroundω ∼ T (Astafiev et al., 2004a).

In the opposite limit,T � ∆max, the high-frequency noise depends on the
detailed shape of the cutoff of P∆(∆) at ∆max. As an example, for a hard cutoff
the Ohmic spectral density implies thatPε ∝ ε3, and the low-frequency weight
scales withT4. For a 1/ f low-frequency behavior, the spectra would cross atω ∼
T2/∆max � T, which is not in agreement with the result of Ref. (Astafiev etal.,
2004a).

A remark is in order concerning the crossing atω ≈ T discussed above. It is
not guaranteed that the spectrum has a 1/ f dependence up toω ∼ T. Rather the
high-frequency cutoff of the low-frequency 1/ f noise is given by the maximum
relaxation rate of the TLSs,Γ1,max� T, as we assumed. Then theextrapolations
of the low-frequency 1/ f and high-frequency Ohmic spectra cross at thisω ∼ T.

We would like to emphasize that the relation between low- andhigh-frequency
noise is more general, i.e., it is not unique to an ensemble oftwo-level systems.
Consider an ensemble of many-level systems with levels|n〉 and energiesEn such
that the coupling is via an observable which has both transverse and longitudi-
nal components. By ‘transverse component’ we mean the part constructed with
operators|n〉〈m|, wheren , m, while the ‘longitudinal component’ is built from
the projectors|n〉〈n|. If the system is under-damped, that is, if the absorption and
emission lines are well defined, the correlator of such an observable will have
Lorentzian-like contributions atω = En − Em as well as atω = 0. An example is
provided by an ensemble of an-harmonic oscillators withX =

∑

j v j x j, wherex j

are the oscillator’s coordinates. Due to the anharmonicityx j acquires a longitudi-
nal component, in addition to the usual transverse one. Thusa relation between
the low- and high-frequency noise would emerge naturally with details depending
on the ensemble statistics.
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Figure 3. Noise spectrum in a selfconsistent model.

6. Self-consistent model

In this section we consider a possibility that theΓ1 decay of each individual TLS
is caused by the other TLSs. This model explains further details of the behavior of
SX(ω). We assume that each individual fluctuator ”feels” the samecharge noise
as the qubit, however reduced by a factorλ < 1 due to the small size of the
fluctuators. That is we assume that the relaxation rate of thefluctuators is given
by

Γ1, j =
λ

2
sinθ2j SX(ω = E j) . (21)

As only the fluctuators withE j ≤ T contribute to the 1/ f noise, we estimate
the maximum possible relaxation rate of the fluctuators to beΓ1,max ∼ λaT. This
leads to a crossover from 1/ f to 1/ f 2 dependence aroundω ∼ Γ1,max ∼ λaT as
indicated in Fig. 3. We note that such a crossover (soft cut-off) is compatible with
the recent experimental data (Ithier et al., 2005).

7. Relation to other work

It is useful to relate our phenomenological results to the recent work of (Faoro
et al., 2005), (de Sousa et al., 2005), (Grishin et al., 2005), and (Faoro and Ioffe,
2005), where physical models of the fluctuators, coupling toand relaxing the
qubit, were considered. In Ref. (Faoro et al., 2005) three models were studied: (I)
a single electron trap in tunnel contact with a metallic gate, (II) a single electron
occupying a double trap, and (III) a double trap that can absorb/emit a Cooper
pair from the qubit or a superconducting gate (‘Andreev fluctuator’). In all mod-
els a uniform distribution of the trap energy levels was assumed. One, then, can
show that the distribution for the two-level systems corresponding to the models
II and III are linear in the energy level splitting,P(ε) ∝ ε. Since the switching
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in these models is tunneling dominated, we find thatP(∆) ∝ 1/∆. Therefore,
both models II and III are characterized by distributionP(ε,∆) ∝ ε/∆, introduced
above, and hence can naturally account for the experimentally observed low- and
high-frequency noises. In contrast, as shown in (de Sousa etal., 2005; Grishin
et al., 2005), single electron traps do not behave as coherent two-level systems.
Depending on the ratio between the hybridization with the metal and the tem-
perature a single trap at the Fermi energy can either show therandom telegraph
noise or, when the hybridization dominates, it makes the qubit to feel the Ohmic
particle-hole spectrum of the metal.

It was argued recently (Faoro and Ioffe, 2005) that one needs an unphysically
high density of fluctuators in order to explain the experimental findings. This
argument is based on an assumption that the traps’ energies are distributed ho-
mogeneously over the energy band of order of the Fermi energy(of order 1 eV).
(Faoro and Ioffe, 2005) proposed an alternative scenario where the low energy
scale needed for qubit relaxation is provided by Kondo physics.

8. Mechanisms of coupling between Josephson qubits and two-level systems

In this section we discuss possible mechanisms of coupling between the TLS
and the Josephson qubits in light of the recent experimentalfindings (Simmonds
et al., 2004; Astafiev et al., 2004a; Martinis et al., 2005). For qubits with strong
domination of the charging energy, like those of Ref. (Astafiev et al., 2004a), the
charge noise considered in Section 2 is the main source of dissipation. In these
qubits the fluctuators are most likely located away from the tunnel junction. This
follows from the fact that a single charge ofe jumping back and forth a distance
of a single atomic bond (∼ 0.1nm) across a 2nm wide tunnel junction (Martinis
et al., 2005) would create charge noise with amplitude (defined as square root of
integrated power) of order 10−2e. A typical amplitude of the charge noise in single
electron devices is smaller,∼ 10−3e. If a fluctuator of this type would happen
to be in the tunnel junction, such an ”unfortunate” sample would, probably, be
discarded by experimentalists. On the other hand, as we havealready mentioned
in Section 4, the coherent two-level systems have been observed in large area
Josephson junctions. There are at least two types of interactions which could be
responsible for lifting the degeneracy between the states

∣

∣

∣gqubit

〉

|efluctuator〉 and
∣

∣

∣equbit

〉

|gfluctuator〉 (Martin et al., 2005). One corresponds to a situation in which
a two-level fluctuator blocks a conducting channel in one of its states and, thus,
influences the Josephson energy of the junction (Simmonds etal., 2004). This can
be expressed by substituting the Josephson energy as

EJ → EJ



















1+
1
2

∑

j

v jσz, j



















, (22)
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wherev j = δG j/G is the ratio of the conductance variationδG j due to the motion
of the fluctuator j to the total tunnel conductanceG of the junction. The other
coupling mechanism (Martin et al., 2005) arises due to a dipole moment of the
fluctuator interacting with the electric field in the junction, i.e., it is directly related
to the charge noise. The interaction energy of this mechanism can be written as
Eint = (1/2)eV

∑

j ṽ jσz, j, whereV is the (operator of) voltage across the junction.
The coupling constants ˜v j are given this time by ˜v j = d j/l, wherel is the width of
the junction andd j is the distance the fluctuator moves across the junction. Recent
studies (Martinis et al., 2005) point towards this couplingmechanism. Thus it is
plausible that the fluctuators producing the charge noise inthe charge qubits and
the coherent fluctuators in the phase qubits are of the same origin. The former
ones are located in the oxide away from the tunnel junction, while the latter ones
reside in the oxide of the tunnel junction.

9. Conclusions

Josephson qubits have found their first application as sensitive meters of their
environment. Measurements of qubit relaxation produced new surprising infor-
mation about the properties of 1/ f noise. Motivated by these experiments, we
have shown that an ensemble of coherent two-level systems with the distribution
function, P(ε,∆) ∝ ε/∆, produces Ohmic high-frequency noise and, at the same
time, 1/ f low-frequency noise with strength which scales with temperature asT2.
The two branches of the noise power spectrum cross atω ∼ T in accordance with
the experimental observation (Astafiev et al., 2004a). Thus, recent experimental
findings (Astafiev et al., 2004a; Martinis et al., 2005) shed anew light on the
nature of the low frequency fluctuations in mesoscopic systems.
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de Sousa, R., Whaley, K. B., Wilhelm, F. K., and von Delft, J. (2005) Ohmic Noise from a Single

Defect Center Hybridized with a Fermi Sea.,Phys. Rev. Lett.95, 247006.
Dutta, P. and Horn, P. M. (1981)a Low-Frequency Fluctuations in Solids,Rev. Mod. Phys.53, 497.
Dutta, P. and Horn, P. M. (1981)b Low-Frequency Fluctuations in Solids: 1/ f Noise, Rev. Mod.

Phys.53, 497.
Esteve, D. and Vion, D. (2005) Solid State Quantum Bits,cond-mat/0505676.
Falci, G., D’Arrigo, A., Mastellone, A., and Paladino, E. (2005) Initial Decoherence in Solid State

Qubits,Phys. Rev. Lett.94, 167002.
Faoro, L., Bergli, J., Altshuler, B. A., and Galperin, Y. M. (2005) Models of Environment andT1

Relaxation in Josephson Charge Qubits,Phys. Rev. Lett.95, 046805.
Faoro, L. and Ioffe, L. B. (2005) Quantum Two Level Systems and Kondo-like Traps as Possible

Sources of Decoherence in Superconducting Qubits.,cond-mat/0510554.
Feng, S., Lee, P. A., and Stone, A. D. (1986) Sensitivity of the Conductance of a Disordered Metal

to the Motion of a Single Atom: Implications for 1/f Noise, Phys. Rev. Lett.56, 1960.
Galperin, Y. M., Altshuler, B. L., and Shantsev, D. V. (2004)a Low-Frequency Noise as a Source

of Dephasing of a Qubit, In I. V. Lerner, B. L. Altshuler, and Y. Gefen (eds.),Fundamental
Problems of Mesoscopic Physics, Dordrecht, Boston, London, Kluwer Academic Publishers,
cond-mat/0312490.

Galperin, Y. M., Kozub, V. I., and Vinokur, V. M. (2004)b Low-Frequency Noise in Tunneling
through a Single Spin,Phys. Rev. B70, 033405.

Grishin, A., Yurkevich, I. V., and Lerner, I. V. (2005) Low-Temperature Decoherence of Qubit
Coupled to Background Charges,Phys. Rev. B72, 060509.

Imry, Y., Fukuyama, H., and Schwab, P. (1999) Low-Temperature Dephasing in Disordered
Conductors: The Effect of ”1/ f ” Fluctuations,Europhys. Lett.47, 608.

Ithier, G., Collin, E., Joyez, P., Meeson, P. J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A.,
Makhlin, Y., Schriefl, J., and Schön, G. (2005) Decoherencein a Superconducting Quantum Bit
Circuit., Phys. Rev. B72, 134519.

Kenyon, M., Lobb, C. J., and Wellstood, F. C. (2000) Temperature Dependence of Low-Frequency
Noise in Al-Al2O3-Al Single-Electron Transistors,J. Appl. Phys.88, 6536.

Kogan, S. M. and Nagaev, K. E. (1984) On the Low-Frequency Current Noise in Metals,Solid State
Comm.49, 387.

Korotkov, A. N. and Averin, D. V. (2001) Continuous Weak Measurement of Quantum Coherent
Oscillations,Phys. Rev. B64, 165310.

Ludviksson, A., Kree, R., and Schmid, A. (1984) Low-Frequency 1/f Fluctuations of Resistivity in
Disordered Metals,Phys. Rev. Lett.52, 950.

Makhlin, Y. and Shnirman, A. (2004) Dephasing of Solid-State Qubits at Optimal Points,Phys.
Rev. Lett.92, 107001.

Martin, I., Bulaevskii, L., and Shnirman, A. (2005) Tunneling Spectroscopy of Two-level Systems
Inside a Josephson Junction.,Phys. Rev. Lett.95, 127002.



1/F NOISE AND TWO-LEVEL SYSTEMS IN JOSEPHSON QUBITS 21

Martinis, J. M., Cooper, K. B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K., Cicak, K.,
Oh, S., Pappas, D. P., Simmonds, R., and Yu, C. C. (2005) Decoherence in Josephson Qubits
from Dielectric Loss.,Phys. Rev. Lett.95, 210503.

Nakamura, Y., Yu. A. Pashkin, Yamamoto, T., and Tsai, J. S. (2002) Charge Echo in a Cooper-Pair
Box, Phys. Rev. Lett.88, 047901.

Paladino, E., Faoro, L., Falci, G., and Fazio, R. (2002) Decoherence and 1/f noise in Josephson
Qubits,Phys. Rev. Lett.88, 228304.

Phillips, W. A. (1972) Tunneling States in Amorphous Solids, J. Low. Temp. Phys.7, 351.
Rabenstein, K., Sverdlov, V. A., and Averin, D. V. (2004) Qubit Decoherence by Gaussian Low-

Frequency Noise,JETP Lett.79, 783.
Redfield, A. G. (1957) On the theory of relaxation processes,IBM J. Res. Dev.1, 19.
Schoelkopf, R. J., Clerk, A. A., Girvin, S. M., Lehnert, K. W., and Devoret, M. H. (2003) Qubits

as Spectrometers of Quantum Noise, In Y. V. Nazarov (ed.),Quantum Noise in Mesoscopic
Physics, Dordrecht, Boston, pp. 175–203, Kluwer Academic Publishers, cond-mat/0210247.

Schriefl, J. (2005),PhD Thesis, University of Karlsruhe.
Shnirman, A., Makhlin, Yu., and Schön, G. (2002) Noise and Decoherence in Quantum Two-Level

Systems,Physica ScriptaT102, 147.
Shnirman, A., Mozyrsky, D., and Martin, I. (2004) Output Spectrum of a Measuring Device at

Arbitrary Voltage and temperature,Europhys. Lett.67, 840.
Shnirman, A., Schön, G., Martin, I., and Makhlin, Y. (2005)Low- and High-Frequency Noise from

Coherent Two-Level Systems,Phys. Rev. Lett.94, 127002.
Siddiqi, I., Vijay, R., Pierre, F., Wilson, C. M., Metcalfe,M., Rigetti, C., Frunzio, L., and Devoret,

M. H. (2004) RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement,Phys.
Rev. Lett.93, 207002.

Simmonds, R. W., Lang, K. M., Hite, D. A., Nam, S., Pappas, D. P., and Martinis, J. M. (2004)
Decoherence in Josephson Phase Qubits from Junction Resonators,Phys. Rev. Lett.93, 077003.

VanHarlingen, D. J., Robertson, T. L., Plourde, B. L. T., Reichardt, P. A., Crane, T. A., and Clarke,
J. (2004) Decoherence in Josephson-junction qubits due to critical current fluctuations,Phys.
Rev. B70, 064517.

Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., and Devoret, M. H.
(2002) Manipulating the quantum state of an electrical circuit, Science296, 886.

Wallraff, A., Schuster, D. I., Blais, A., Frunzio1, L., Huang, R.-S.,Majer, J., Kumar, S., Girvin,
S. M., and Schoelkopf, R. J. (2004) Strong Coupling of a Single Photon to a Superconducting
Qubit using Circuit Quantum Electrodynamics,Nature431, 162.

Wellstood, F. C. (1988),PhD thesis, University of California, Berkeley.
Wellstood, F. C., Urbina, C., and Clarke, J. (2004) Flicker (1/f) Noise in the Critical Current of

Josephson Junctions at 0.09-4.2 K,Appl. Phys. Lett.85, 5296.
Wendin, G. and Shumeiko, V. S. (2005) Superconducting Quantum Circuits, Qubits and Computing,

cond-mat/0508729.
Yamamoto, T., Pashkin, Y. A., Astafiev, O., Nakamura, Y., andTsai, J. S. (2003) Demonstration of

Conditional Gate Operation using Superconducting Charge Qubits., Nature425, 941.
Zimmerli, G., Eiles, T. M., Kautz, R. L., and Martinis, J. M. (1992) Noise in the Coulomb Blockade

Electrometer,Appl. Phys. Lett.61, 237.
Zorin, A. B., Ahlers, F.-J., Niemeyer, J., Weimann, T., Wolf, H., Krupenin, V. A., and Lotkhov, S. V.

(1996) Background Charge Noise in Metallic Single-Electron Tunneling Devices,Phys. Rev. B
53, 13682.




