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A Josephson supercurrent between two singlet superconducting electrodes separated

by an extended region of half-metallic CrO2 has been recently observed. Since in a

half metal only electron pairs with equal spins can carry a supercurrent, there is a

conversion from singlet to triplet currents at the interface. The conversion mechanism

remains, however, unclear. Another unresolved issue is the symmetry of supercon-

ducting correlations in ferromagnets depending on the degree of disorder. In our work

we address both problems. We introduce a conversion mechanism based on a broken

spin-rotation symmetry around the magnetization axis of the half metal. We show that

in the diffusive case the supercurrent is dominated by the product of odd-frequency

s-wave and even-frequency p-wave pairing amplitudes, whereas in the ballistic regime

the admixture of other components becomes relevant. We study the entire crossover

from the ballistic to the diffusive regime.

Half-metallic ferromagnets have great potential in the
field of spintronics as sources of spin-polarized electric
currents. Remarkably, they show conducting or insulat-
ing behavior depending on the direction of the electron
spin. Since only a few such half metals are known, among
them La2/3Ca1/3MnO3 [1] and CrO2 [2], their character-
ization has attracted great attention. Half metals, when
contacted with other materials such as superconductors,
can also be used as well controlled test-laboratories to
study the interplay between different types of orders.

Recently, Keizer et.al [2] reported a Josephson super-
current between two singlet superconducting electrodes
(NbTiN) separated by a wide region of CrO2. In a half
metal only conduction electrons with equal spin can be
paired, since the other spin species is insulating. Cur-
rently, the mechanism involved in the conversion process
between singlet Cooper pairs (|↑↓〉 − |↓↑〉)/

√
2 and equal

spin pairs |↑↑〉 at the interfaces between the materials
remains highly controversial. In the same experiment
[2] a second, seemingly unrelated, observation was made,
namely the presence of a homogeneous biaxial magnetic
asymmetry in the CrO2 film (see Fig. 1).

The symmetries of the relevant pairing correlations
mediating the triplet supercurrent and their dependence
on the amount of disorder is currently debated. It is
claimed [3, 4] that the main source of the triplet Joseph-
son current in diffusive ferromagnets is odd-frequency s-
wave pairing amplitudes. On the other hand, it has been
shown that in clean half metals also p-wave triplet pairing
amplitudes are important [5]. The samples in experiment
[2] are moderately disordered, and a detailed theoretical
study of the crossover from the ballistic to the diffusive
regimes is required.

Here we report an extensive analytical and numerical
investigation of the Josephson effect in the hybrid struc-
ture shown in Fig. 1 and present results for an arbitrary
concentration of impurities in the materials, thereby clar-

ifying the symmetry properties of the superconducting
correlation functions involved. We link the mechanism
for the current conversion to a broken spin-rotation sym-
metry around the magnetization axis M in the half metal.
We argue that the second observation in experiment [2]
of a biaxial magnetic asymmetry can be directly related
to the conversion mechanism of the singlet supercurrent
to the triplet supercurrent.

The mechanism we propose leads to a natural ex-
planation of several findings of the experiment [2]: (i)
hysteretic shifts of the equilibrium phase difference over

FIG. 1: Conversion between singlet and triplet super-

currents. The setup consists of two singlet superconductor
banks separated by a half-metallic ferromagnetic CrO2 layer
with a magnetization vector M aligned along the easy axis
e1. Spin-rotation symmetry around M is broken by the si-
multaneous presence of the second easy axis e2. As a conse-
quence, there is a conversion from a supercurrent of singlet
Cooper pairs (jsinglet, blue lines) in the superconductors to a
supercurrent of triplet Cooper pairs in the half metal (jtriplet,
yellow line). The conversion takes place in the superconduc-
tors in a layer extending about a superconducting coherence
length from the interface, as illustrated by the shading from
blue to yellow.
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the junction depending on the magnetic pre-history; (ii)
Josephson junctions involving half metals are π-junctions
after subtraction of the hysteretic shifts; (iii) sample-to-
sample fluctuations in the magnitude of the critical cur-
rent.

We show that in moderately disordered half metals the
supercurrent is carried predominantly by odd-frequency
s-wave and d-wave amplitudes, multiplied with even fre-
quency p-wave and f -wave amplitudes. In the diffusive
limit the supercurrent is dominated by the product of
the s-wave and the p-wave amplitudes. We find that a
peak in the temperature dependence of the critical cur-
rent, previously predicted for clean half metals [5], is a
robust feature also for disordered half metals.

The Josephson junction we study, shown in Fig. 1, con-
sists of a half metal extending from x1 to x2, sandwiched
between two singlet superconductors. When a phase dif-
ference χ2−χ1 exists between the superconducting order
parameters, an exotic form of Josephson effect occurs: a
singlet supercurrent, jsinglet (blue in Fig. 1), is converted
to an equal-spin triplet supercurrent, jtriplet (yellow in
Fig. 1), within an interface layer extending about a su-
perconducting coherence length into the electrodes. The
equal-spin triplet supercurrent flows through the half-
metallic material, while the singlet part is completely
blocked. The sum of the singlet and triplet currents is
constant, obeying the continuity equation.

The conversion process between the singlet and equal-
spin triplet supercurrents is triggered by two important
phenomena taking place at the interface: (i) spin mixing
and (ii) breaking of spin-rotation symmetry with respect
to the magnetization axis M in the half metal. Spin-
mixing is the result of different scattering phase shifts
that electrons with opposite spin acquire when scattered
(reflected or transmitted) from an interface [6]. It results
from either a spin-polarization of the interface potential,
or differences in the wavevector mismatches for spin up
and spin down particles at either side of the interface, or
both. It is a robust and ubiquitous feature for interfaces
involving strongly spin-polarized ferromagnets.

Broken spin-rotation symmetry leads to spin-flip pro-
cesses at the interfaces. Its origin is more subtle and de-
serves special attention. Here we propose a mechanism
that applies to biaxial ferromagnets with local magnetic
moments coupled to itinerant electrons. Indeed, the fully
spin-polarized CrO2 films used in the experiment [2] have
been shown to be homogeneously biaxial [10]. At the
interfaces with the superconductors, the local moments
are expected to show a certain degree of disorder for two
reasons. First, the coordination number is lowered by
the broken translation symmetry at the interface which
leads to enhanced fluctuations in the direction of the lo-
cal moments from that in the ordered phase. Secondly,
structural disorder leads to vacancies in the lattice of mo-
ments. The exact microscopic distribution of local mo-
ments at the interface is not important for superconduct-
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FIG. 2: Breaking of spin-rotation symmetry at the

interface. (a) Misaligned local moments at the interface in-
volving a magnetic material with biaxial anisotropy prefer the
second easy axis e2, leading to an explicitly broken spin rota-
tion symmetry around the magnetization axis (here parallel
to the easy axis e1. (b) If the magnetization is pointing ex-
actly between the two easy axes, spin-rotation invariance is
possible. (c) However, hysteresis effects usually prevent such
a situation for any orientation of the magnetization vector.

ing phenomena, since Cooper pairs are of the size of the
coherence length ξ which is much larger than the atomic
scale. It is, however, important for the effective interface
scattering matrix, as it can lead to spin-flip terms if the
directional distribution of the local moments breaks the
spin-rotation symmetry around M.

We propose that the presence of two easy axes with
relative angle α leads to a non-trivial distribution of the
moments at the interface, where a majority of the mo-
ments are pointing along the magnetization axis of the
bulk half metal but with a significant number of moments
misaligned but preferably along the second easy axes. For
example, the distribution in Fig. 2(a) leads to a model
where the spin-rotation symmetry around M (satisfied
in the bulk material) is broken near the interface within
a few atomic layers.

To quantify the above discussion, we employ a simple
model that is formulated in terms of an interface scatter-
ing matrix, which connects incoming to outgoing waves
in the asymptotic regions [5],

Ŝ =







e
i
2
ϑ 0 t↑↑e

i(ϑ↑↑+ ϑ
4
)

0 e−
i
2

ϑ t↓↑e
i(ϑ↓↑−

ϑ
4
)

t↑↑e
−i(ϑ↑↑−

ϑ
4
) t↓↑e

−i(ϑ↓↑+ ϑ
4
) −1






.

(1)
Here, t↑↑ and t↓↑ are transmission amplitudes from the
two superconducting spin bands to the conducting half-
metallic spin-↑ band, and ϑ, ϑ↑↑, and ϑ↓↑ are spin-mixing
angles. This scattering matrix is appropriate for the tun-
neling limit, in which case its reflection amplitudes have
unity modulus. The extra phases ±ϑ/4 ensure unitarity
of Ŝ up to linear order in the transmission amplitudes.
For definiteness, we have chosen the spin quantization
axis in the half metal along M, and in the superconduc-
tor such that the reflection amplitude of the scattering
matrix is diagonal in the tunneling limit. In a system
with spin rotation invariance around M these two quan-
tization axes coincide. This is, however, in general not
the case if spin rotation symmetry around M is broken.
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The presence of the spin-flip terms t↓↑e
±iϑ↓↑ in the scat-

tering matrix Eq. (1) is a direct consequence of the broken
spin-rotation symmetry around M at the interface.

In the following we calculate the Josephson current
through the junction in leading order in t↑↑, t↓↑, and
ϑ. As corrections to the singlet order parameter ∆ arise
in second order in ϑ, we can neglect the suppression of
∆ near the interfaces. In this case Anderson’s theorem
[11, 12] holds and ∆ is also insensitive to impurity scat-
tering. For simplicity we consider the case of equal gap
magnitudes in the two superconductors, ∆j = |∆|eiχj ,
for superconductors j = 1 and j = 2, see Fig. 1.

Due to spin mixing at the interfaces a spin triplet (S =
1, m = 0) amplitude ft0j(x) is developed that extends
from the interfaces about a coherence length into each
superconductor,

ft0j(x) = iπ|∆|eiχj ϑj

|εn|ϕs
0j(x) + Ωnϕa

0j(x)

Ω2
n

, (2)

where Ωn =
√

ε2
n + |∆|2. We have separated the influ-

ence of the interfaces from that of the impurity disorder
in the bulk materials by introducing the real functions
ϕs,a

0j (x). The superscript denotes symmetric (s) and an-
tisymmetric (a) components with respect to µ = cos(θp),
where θp is the angle between the Fermi velocity and the

x-axis. In the clean limit, ϕa
0j(x) = − sgn(µ)

2 e−|x−xj|/ξS|µ|

and ϕs
0j(x) = −ϕa

0j(x)sgn(µεn), where ξS = vS/2Ωn, and
vS is the Fermi velocity in the superconductor. For an ar-
bitrary impurity concentration the ϕ-functions are mod-
ified and must be calculated numerically for each given
value of mean free path, as described in the Methods.

Whereas the interface value of fa
t0j does not change

with varying mean free path, the interface value of fs
t0j

increases with decreasing mean free path in the supercon-
ductor, ℓS , as 1/

√
ℓS until it reaches values comparable

with the singlet amplitude. Their decay length in the su-
perconductors decreases, and changes from (ξ−1

S +ℓ−1
S )−1

in the ballistic limit to
√

ξSℓS/3 in the diffusive limit
(see Supplementary Fig. 1). For definiteness, in the re-
maining discussion we use for the mean free path in the
superconductors ℓS = 0.1ξ̃0 with ξ̃0 = vS/2πTc.

The singlet-triplet mixing in the surface layers of the
superconductors described above, together with the pres-
ence of spin-flip tunneling amplitudes, leads to an equal-
spin (m = 1) pairing amplitude f↑↑(x) in the half metal.
We would like to emphasize that it is only the m = 0
triplet component derived above that is coupled via the
spin-active boundary condition to the m = 1 pairing am-
plitude in the half metal. The singlet components in the
superconductor, being invariant under rotations around
any quantization axis, is not directly involved in the cre-
ation of the triplet in the half metal. A picture of an
indirect Josephson effect emerges, therefore, that is me-
diated by the appearance of the m = 0 triplet amplitudes
in the superconductor.

In the tunneling limit it is convenient to split the pair-
ing amplitude in the half metal into contributions in-
duced at the left and right interfaces: f↑↑ = f↑↑1 + f↑↑2,
with momentum-symmetric and antisymmetric compo-
nents

fs,a
↑↑j(x) = 2πi(t↑↑jt↓↑jϑj)|∆|eiχ̄j

|εn|
Ω2

n

ϕs,a
j (x) (3)

where χ̄j = χj − ϑ↑↑j − ϑ↓↑j . Here, like above, we have
separated the contributions from the interface scattering
matrix and the contributions from the disorder in the
half metal by introducing the (real) functions ϕs,a

j .
The Josephson current results from Eq. (16) in Meth-

ods,

Jx = −Jc sin(χ̄2 − χ̄1), (4)

where the critical current density is given by

Jc = J0
T

Tc

∑

εn>0

|∆|2ε2
n

Ω4
n

〈

µA1A2(ϕ
s
2ϕ

a
1 − ϕs

1ϕ
a
2)
〉

. (5)

Here, the current unit is J0 = 4πevHNHTc, NH is the
density of states at the Fermi level in the half metal, e
is the electron charge, Aj = (t↑↑jt↓↑jϑj), and 〈· · · 〉 =
∫ 1

0
dµ · · · . The effective phase on each side j is

χ̄j = χj − (ϑ↑↑j + ϑ↓↑j). (6)

Eqs. (4)-(6) describe an exotic Josephson effect in several
respects. Eq. (6) is related to the phase dependence of
the Josephson effect and can be tested for example by
studying the Fraunhofer pattern in a magnetic field. For
a half metal, there can be extra phases that lead to shifts
of the Fraunhofer pattern [15, 16]. Within our model
there are contributions ϑ↓↑2−ϑ↓↑1 and ϑ↑↑2−ϑ↑↑1 to the
phases that depend on the microscopic structure of the
disordered magnetic moments at the two interfaces. The
microstructure can be affected for example by applying a
magnetic field that leads to hysteretic shifts of the equi-
librium positions depending on the magnetic pre-history.
When subtracting the shifts, the junction shows the typi-
cal characteristics of a π-junction, [14] as revealed by the
minus-sign in Eq. (4). The possibility to manipulate the
shifts with an external field yields a way to measure the
combination ϑ↑↑ + ϑ↓↑ of the spin-mixing angles. This
is important as there have been no experiments to date
that give information about the spin-mixing angles. Fi-
nally, the critical Josephson current is proportional to
the spin-mixing angles ϑ and to the spin-flip rates of the
two interfaces. This points to a strong sensitivity of the
critical Josephson current to interface properties and is
expected to lead to strong sample-to-sample variations.
All these findings are in agreement with the experiment
[2].

We now proceed with a detailed description of the role
of disorder in the materials. Anisotropic superconducting
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FIG. 3: Critical Josephson current. (a) In the crossover
from the ballistic to the diffusive limits the critical current
Jc is monotonically suppressed. (b) In the crossover region,
contributions to the current from higher partial waves (l ≥ 2,
d-wave, f -wave, etc.) of the superconducting Green’s function
are suppressed. In the diffusive limit the current (black line)
is given by a product of s-wave (l = 0) and p-wave (l = 1)
components (the blue line). (c) For given mean free path, Jc is
exponentially suppressed for junction lengths large compared
with the coherence length (ξc = vH/2πT in the ballistic limit

and ξd =
p

ξcℓH/3 in the diffusive limit). Jc is given in units
of J0A1A2/4π. The length unit is ξ0 = ξc(Tc). We assumed
an anisotropy of both t↑↑ and t↓↑ proportional to |µ|.

correlations are sensitive to impurity scattering. From
studies of unconventional superconductivity it is known
that superconductivity disappears at a critical impurity
concentration [13]. This is however not the case for the
proximity induced pairing amplitudes studied here. In
Fig. 3 we show results for the critical Josephson current
as function of the elastic mean free path, normalized to
ξ0 = vH/2πTc. As shown in Fig. 3(a), the critical cur-
rent is monotonously suppressed for decreasing mean free
path, from ballistic (left part of the abscissa in the figure)
to diffusive (right part) transport. The suppression is ex-
ponential in the diffusive region, with a crossover taking
place at a mean free path ℓH comparable with the clean
limit coherence length ξc = vH/2πT .

In order to better understand the nature of the
crossover we show in Fig. 3(b) the decomposition of the
Josephson current into symmetry components. We note
that the current is carried by the product of neighbor-
ing symmetry components of the functions ϕj ≡ Ajϕj

in Eq. (5), i.e. Jc =
∑∞

l=0 Jc;l,l+1. This can be seen by
expanding the pairing amplitudes in Legendre polynomi-
als, ϕj(µ) =

∑∞
l=0 Pl(µ)ϕj,l, leading to terms of the form

ϕ2,lϕ1,l+1 − ϕ1,lϕ2,l+1 in Eq. 5, where l = 0, 1, 2, 3, . . .
denotes the s-, p-, d-, f -wave etc. pairing components.
As all pairing amplitudes involved are spin triplet, the
even l amplitudes are odd in frequency while the odd l
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FIG. 4: Triplet correlation functions in the half metal.

The contribution to the Josephson current from the s-
wave triplet equal spin correlation function always enters
as a product with the p-wave, with one of the two orig-
inating from the left superconductor and the other from
the right. For clean half metals, shown in (a), the p-
wave component is larger than the s-wave. For more dirty
structures, shown in (b), the p-wave component is sup-
pressed compared with the s-wave and the Josephson cur-
rent is suppressed accordingly. The symmetry components

are defined as F s
j (x) = T

P

εn>0
〈f↑↑j(x)〉 |∆|

Ωn
, F p

j (x) =
1

3
T

P

εn>0
〈µf↑↑j(x)〉 |∆|

Ωn
, plotted in units of iAj |∆|eiχj . Am-

plitudes for fixed frequency give a similar picture.

amplitudes are even in frequency [16]. The sum of the
first three contributions (red dashed line), composed from
the s · p (blue), p · d (green), and d · f (purple) compo-
nents, amount already to almost the entire current (black
line). In the diffusive limit, the current is carried almost
exclusively by the product of the even-frequency p-wave
and the odd-frequency s-wave pairing amplitudes. The
crossover region to ballistic transport is characterized by
an onset of contributions from higher order partial waves
l ≥ 2. It is clear from the figure, that for ℓH ≥ ξ0 the
diffusive Usadel approximation breaks down.

In Fig. 3 (c) we show for several mean free paths
the dependence of the critical current on the junction
length L. A rapid exponential suppression of the effect
with junction length is observed in the diffusive region,
whereas in the moderate disordered region a considerable
effect is expected for junction lengths up to 5-10 coher-
ence lengths.

In Fig. 4 we present an analysis of the spatial depen-
dences of the odd-frequency s-wave and even-frequency
p-wave pairing amplitudes in the half metal. We show for
the ballistic case (ℓH = 10ξ0) and for the diffusive case
(ℓH = ξ0/10) the pairing amplitudes induced from the
left and right interfaces. By multiplying the two black
curves with each other and the two red curves with each
other, and summing the two contributions, we obtain a
quantity related to the s · p contribution to the Joseph-
son current [see Eq. (5)]. For ballistic systems the p-
wave amplitudes are larger than the s-wave amplitudes
near the interfaces, while the opposite holds for diffu-
sive systems. Note, however, that the amplitudes are
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FIG. 5: Non-monotonic temperature dependence. (a)
The critical Josephson current has a maximum at a low tem-
perature that for a specific junction length [here L = ξ0 =
ξc(Tc)] depends on the mean free path in the half metal. For
ℓH > ξ0 the peak position roughly coincides with that of the
ℓH = ξ0 curve. The current has been normalized to the zero-
temperature value. In (b) we show the normalized current
as function of junction length L for a fixed mean free path
ℓH = 1.5ξ0. From (a) and (b) it follows that for diffusive sys-
tems the junction becomes effectively long compared with the
diffusive limit coherence length, L = ξ0 ≫ ξd(T ); the current
is then dramatically suppressed [see Fig. 3(a)] and the peak
is shifted to lower temperatures.

tied to each other through the following general relation
between the momentum-antisymmetric and the momen-
tum symmetric parts: fa

↑↑ = −sgn(εn)µξH∂xfs
↑↑, where

ξ−1
H = ℓ−1

H + 2|εn|/vH . In the diffusive limit, there is an

additional relation, fp−wave
↑↑ = −sgn(εn)ℓH∂xfs−wave

↑↑ . It
follows (see Fig. 4) that the magnitudes of the amplitudes
differ (their ratio depends on the amount of disorder)
while the decay lengths of the two are always identical,
crossing over from the ballistic coherence length ξc =
vH/2πT to the diffusive coherence length ξd =

√

ℓHξc/3.

Finally, we discuss the influence of disorder on the tem-
perature dependence of the critical current, see Fig. 5.
We have normalized all Jc(T ) curves to their zero-
temperature value. There is a characteristic peak ap-
pearing at a temperature below ∼ Tc/2 as predicted for
ballistic systems in Ref. [5]. The origin of the peak is
the extra factor ε2

n/Ω2
n in Eq. (5), that results from the

odd-frequency pairing amplitudes on the superconducting

sides of the interfaces being the sources of the equal spin
correlations in the half metal.

In Fig. 5(a) we discuss Jc(T ) for mean free paths in the
half metal ranging from ballistic to diffusive. Clearly,
the peak is observed also in the extreme diffusive case
of ℓH = ξ0/100, but is for a particular junction length
L shifted to lower temperatures with decreasing mean
free path. Since the peak survives the crossover from
the ballistic to the diffusive limits, it serves as a true
fingerprint of equal spin triplet correlations in the half
metal. The peak is readily measurable experimentally
when L is of the order of the coherence length at Tc. For
increasing L the peak is shifted to lower temperatures,
as shown in Fig. 5(b) for ℓH = 1.5ξ0. For long junctions

the current has a characteristic exponential temperature
dependence above the peak.

Turning to Ref. [2], the low-temperature resistivity of
the CrO2 material of 8.9 µΩ cm implies a mean free path
of ℓH ≈ 40 nm. From band structure calculations, the
Fermi velocity for CrO2 is vH ≈ 2.2×105 m/s [17], imply-
ing ξ0 ≈ 27 nm, or ξ0/ℓH ≈ 2/3 (for T = 0.3Tc this gives
ξc ≈ 90 nm and ξd ≈ 35 nm). The CrO2 of Ref. [2] is
therefore moderately disordered, beeing in the crossover
region in Fig. 3(b), rather than in the clean or diffu-
sive limits. With the typical length of CrO2 in [2] of
L ≈ 300 nm ≈ 11ξ0, we can from Fig. 5(b) predict that
if measurements are extended to lower temperatures, or
a shorter junction length is used, a peak in Jc(T ) should
be observed.

In conclusion, we have presented a detailed study
of spin-triplet supercurrents through half-metallic ferro-
magnets. We have pointed out that ferromagnets with
biaxial asymmetry are particularly suitable for creating
such triplet supercurrents. We have studied in detail the
role of disorder and found that the mechanism we propose
is robust. We have clarified the symmetries of the pairing
amplitudes that determine the Josephson current, and
have made predictions that can be tested experimentally.
In particular, there is a robust peak in the temperature
dependence of the critical Josephson current that signals
the involvement of odd frequency pairing amplitudes.

METHODS

We obtain the Josephson current as function of impu-
rity concentration, temperature and junction length us-
ing the quasiclassical Green’s functions technique [8, 9].
The Green’s functions ĝ(pF ,R, εn) depend on the spa-
tial coordinate R, Matsubara energy εn = (2n + 1)πT ,
and the momentum direction on the Fermi surface pF .
In the superconductors, the propagator ĝ is a 4x4 matrix
in combined spin and particle-hole space,

ĝS =

(

gs + gt · σ (fs + f t · σ)iσy

(f̃s + f̃ t · σ∗)iσy g̃s + g̃t · σ∗

)

, (7)

where fs and f t are singlet and triplet pairing ampli-
tudes, gs and gt are spin scalar and spin vector parts
of the diagonal Green function, and the vector σ =
(σx, σy , σz) is composed of Pauli spin matrices. The hole
amplitudes are related the particle amplitudes by the
symmetry f̃(pF , εn) = f(−pF , εn)∗. In the half metal,
only conduction electrons with spin up exist, and the
propagator is a 2x2 matrix in particle-hole space,

ĝH =

(

g↑↑ f↑↑
f̃↑↑ g̃↑↑

)

. (8)

The propagators are connected at the interfaces via the
scattering matrices given in Eq. (1).
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The transport equation governing the supercurrent in
the heterostructure is given by the Eilenberger equation
for the propagator ĝ. Impurities are treated in the Born
approximation using a life time τS of quasiparticles in
the superconductor, and a life time τH in the half metal.
The corresponding mean free paths are ℓS = vSτS , ℓH =
vHτH , with the Fermi velocities vS and vH in the two
materials. The equation of motion for the 4x4 Green’s
function in the superconductors reads,

ivS µ ∂xĝ +

[

iεnτ̂3 − ∆̂ − 1

2πτS
〈ĝ〉, ĝ

]

= 0̂, (9)

where µ = cos(θp), θp is the angle between the Fermi
velocity and the x-axis, τ3 is the third Pauli matrix in
particle-hole space, and ∆̂ = ∆1̂iσy is the singlet order

parameter. The average 〈· · · 〉 =
∫ d cos(θp)dϕp

4π · · · is over
all momentum directions. There is an analogous equation
for the 2x2 Green’s function in the half metal,

ivH µ ∂xĝ +

[

iεnτ̂3 −
1

2πτH
〈ĝ〉, ĝ

]

= 0̂. (10)

Eqs. (9)-(10) are supplemented with the normalization
condition ĝ2 = −π21̂.

We linearize the above equations for small triplet com-
ponents in the superconductor (ft0) and in the half metal
(f↑↑). The normalization condition is then used to elim-
inate the diagonal part of ĝ in favor of a coupled set
of equations for f -functions with positive and negative
momentum directions. We decouple the system of differ-
ential equations by introducing the new triplet functions
ϕ0 and ϕ in Eqs. (2)-(3).

The solutions for the functions ϕs,a
0j , appearing in the

ansatz (2) for the superconductors, are given by

ϕs
01(x) =

sε

2
B01(x) +

∫ x1

−∞

dx′ K1(x, x′)

2|µ|ℓS
〈ϕs

01(x
′)〉 (11)

ϕs
02(x) =

sε

2
B02(x) +

∫ ∞

x2

dx′ K2(x, x′)

2|µ|ℓS
〈ϕs

02(x
′)〉 (12)

with sε = sgn(εn), B0j(x) = e−|x−xj|/ξS |µ|, Kj(x, x′) =

e−|x−x′|/ξS |µ| + e−(|x′−xj |+|x−xj|)/ξS|µ|), and ξS =
vS/(2Ωn+τ−1

S ) with Ωn =
√

ε2
n + |∆|2. The momentum-

antisymmetric parts are obtained by using the identity
ϕa

0j = −µsεξS∂xϕs
0j .

In the half metal the solutions for ϕs,a
j are

ϕs
j(x) =

1

1 − e−2L/ξH |µ|

(sε

2
Bj(x) +

∫ x2

x1

dx′ K(x, x′)

2|µ|ℓH
〈ϕs

j(x
′)〉
)

(13)

with ξH = vH/(2|εn| + τ−1
H ), L = x2 − x1, B1(x) =

ϕs
01(x1)

(

e−(x−x1)/ξH |µ| + e−(L+x2−x)/ξH |µ|
)

, B2(x) =

ϕs
02(x2)

(

e−(x2−x)/ξH |µ| + e−(L+x−x1)/ξH |µ|
)

, K(x, x′) =

e−|x−x′|/ξH |µ| +e−(2L−|x−x′|)/ξH |µ| +e−(x+x′−2x1)/ξH |µ| +
e−(2x2−x−x′)/ξH |µ|. The momentum-antisymmetric parts
are obtained by using the identity ϕa

j = −µsεξH∂xϕs
j .

The integral equations (11)-(13) for 〈ϕs(x)〉 are solved
by replacing ϕ on a spatial grid with a piecewise linear
function. Exact integration of the resulting expressions
reduces the problem to a simple matrix inversion. The
angular averages can be performed analytically and lead
to exponential integrals. This procedure is necessary be-
cause the integration kernel decays on a different length
scale compared with ϕ in the diffusive limit.

The current density in the half metal is given by the
diagonal Green’s function,

Jx(x) = evHNHT
∑

εn

〈µg↑↑(µ, εn, x)〉 (14)

where NH is the density of states at the Fermi level for
the conducting spin band in the half metal, and e is the
electronic charge. It can be shown from the transport
equations (9) and (10) that the current density Jx does
in fact not depend on the spatial coordinate, in agree-
ment with the continuity equation that expresses particle
conservation.

Using the normalization condition in the half metal,
g2
↑↑ = −π2 + f↑↑f̃↑↑, for small triplet amplitudes, one ob-

tains in leading order g↑↑ = −iπsgn(εn)(1− f↑↑f̃↑↑/2π2),
leading to

Jx =
ievHNH

2π
T
∑

εn

〈µf↑↑(µ, εn, x)f̃↑↑(µ, εn, x)〉sgn(εn).

(15)
It is instructive to decompose the anomalous propaga-
tors into their symmetric and antisymmetric part fs,a

↑↑

with respect to µ. Doing this and using the fundamental
symmetries fs

↑↑(−εn) = −fs
↑↑(εn), fa

↑↑(−εn) = fa
↑↑(εn)

we arrive at

Jx = −2evHNH

π
T
∑

εn>0

∫ 1

0

dµ µIm(fs
↑↑f

a∗
↑↑ ). (16)

Substitution of Eq. (3) into Eq. (16) leads to Eqs. (4)-(6).

To study the symmetry properties of the Josephson
current, we expand the pairing amplitudes in Legen-
dre polynomials. Writing ϕj(µ) = Aj(µ)ϕj(µ), the ex-
pansion is ϕj(µ) =

∑∞
l=0 Pl(µ)ϕj,l, with components

ϕj,l = (2l + 1)〈Pl(µ)ϕ(µ)〉. Using that

∫ 1

0

dµ µ(ϕs
2ϕ

a
1 − ϕs

1ϕ
a
2) =

∞
∑

l=0

(−1)l(l + 1)

(2l + 1)(2l + 3)

(

ϕ2,lϕ1,l+1 − ϕ1,lϕ2,l+1

)

,(17)

we can bring Eq. (5) into the form Jc =
∑∞

l=0 Jc;l,l+1.
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SUPPLEMENTARY MATERIAL

In Supplementary Fig. 1 we show solutions of the inte-
gral equations in the superconductor, Eqs. (11)-(12), and
in the half metal, Eq. (13), for several impurity concen-
trations ranging from the ballistic limit to the diffusive
limit. In the left panels we vary the superconducting
mean free path ℓS , and in the right panels the half metal
mean free path ℓH for fixed ℓS . In the inset we also show
the induced spin polarization in the superconductors. It
is calculated from the the diagonal part of the Green’s
function, given by

gzj(x) = −π
|∆|2ϑj

ε2
n + |∆|2 sgn(εn)ϕs

0j(x). (18)

There is, consequently, a surface spin polarization in
the superconductor, that in the clean limit is given by
〈gzj(x)〉 = −π|∆|2〈ϑje

−|x−xj|/ξS|µ|〉/2(ε2
n + |∆|2). The

induced spin magnetization is then

δMz(x) = 2µBNST
∑

εn

〈gzj(x)〉, (19)

where µB is the Bohr magneton and NS is the density of
states in the superconductor.
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FIG. 1: (Supplementary Figure) Spatial dependences of pair-
ing amplitudes in the superconductor and in the half metal
(length L = 2ξ0, only left half shown) for a π-junction. The
odd-frequency s-wave triplet amplitude is shown in the up-
per panel, the even-frequency p-wave triplet amplitude in the
lower panel. In the inset we show the induced spin polariza-
tion of quasiparticles near the interface in the superconductor.
The triplet amplitudes in the superconductor are m = 0 with
respect to the superconducting quantization axis, and in the
half metal are equal-spin m = 1 amplitudes with respect to
the magnetization axis M. The quantization axis in the su-
perconductor can be slightly misaligned with respect to that
in the half metal as result of the breaking of spin-rotation
symmetry around M at the interface.


