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Abstract

Consider a random measure ξ on a locally compact Abelian group G acting on
some random element X. Mass-stationarity – introduced in [6] – means (informally)
that the origin is a typical location for (X, ξ) in the mass of ξ. It is an intrinsic
characterization of Palm versions w.r.t stationary random measures. In this paper
we show that mass-stationarity w.r.t. discrete ξ is characterized by distributional
invariance under shifts of the origin by certain mass-preserving transports involving
a Bernoulli randomization of the group-identity and an allocation rule. We also
show that mass-stationarity w.r.t. a general ξ is characterized by mass-stationarity
w.r.t. a Cox process driven by ξ.

1 Introduction

Let ξ be a random measure on a locally compact Abelian group G. Mass-stationarity is
a formalization of the intuitive idea that the origin is a typical location in the mass of
ξ, just like stationarity means that the origin is a typical location in the space G. The
formal definition is given in Section 2 below. Actually, we will consider ξ jointly with a
random element X which G acts on, for instance a random field indexed by G. Then
(X, ξ) is mass-stationary if the origin is a typical location for (X, ξ) in the mass of ξ.

The word ‘typical’ needs some explanation. If ξ is finite and S is a random element in
G with conditional distribution ξ/ξ(G) given ξ, then we say that S is a typical location
in the mass of ξ. We also say that the origin is a typical location in the mass of the
shifted measure ξ(· − S). Further, if S has conditional distribution ξ/ξ(G) given (X, ξ),
then we say that S is a typical location for (X, ξ) in the mass of ξ, and also that the
origin is a typical location in the mass of ξ(· − S) for the pair (X, ξ) shifted by S. In this
introduction we use the term ‘typical’ even for infinite ξ in order to explain informally
the basic ideas of the paper.

Mass-stationarity was introduced in [6] as an extension to random measures of point-

stationarity, which in turn was introduced in [8] for simple point processes in Rd having a
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point at the origin. Point-stationarity formalizes the intuitive idea that the point at the
origin is a typical point of the point process (think of the Poisson process on the line with
an extra point added at the origin: shifting the origin to the nth point on the right – or to
the nth point on the left – does not change the fact that the inter-point distances are i.i.d.
exponential). The definition in [8] involved an external randomization, but in [1] (and in
[2] for the group case) it is shown that point-stationarity can be defined as ‘distributional
invariance under shifts of the origin by preserving allocation rules’: an allocation rule τ
is a map taking each location s ∈ G to another location τ(s) ∈ G depending on ξ(· − s),
and τ is preserving if the image of ξ under τ is ξ itself. In fact, [1] and [2] show that
‘matchings’ suffice for the definition: an allocation rule τ is a matching if τ is its own
inverse.

In [8] it was shown that point-stationarity is an intrinsic characterization of Palm
versions of stationary point processes, and the same is proved in [6] for mass-stationarity
and random measures. In this paper we will derive further characterizations of mass-
stationarity.

The term ‘Bernoulli transport’ refers to a randomized allocation rule that allows stay-
ing at a location s with a probability p(s) depending on ξ(· − s), and otherwise chooses
another location according to a (non-randomized) allocation rule. This makes it possi-
ble to preserve discrete point-masses even if there are point-masses of different sizes. In
Section 3 we show that mass-stationarity of discrete random measures can be reduced to
distributional invariance of ξ under shifts of the origin by preserving Bernoulli transports,
Theorem 3.2. A similar result holds for random pairs (X, ξ).

A Cox process ζ is a Poisson process with a random intensity measure ξ. Such a
process can be thought of as a collection of points scattered independently over the space
G according to the mass distribution of ξ, so these points are at typical locations in the
mass of ξ. Thus if ξ is mass-stationary and we add a point at the origin to the Cox process
to obtain ζ0 := ζ + δ0, then also the points of ζ0 are at typical locations in the mass of
ξ. In fact, one might expect that the new point at the origin is a typical point of ζ0, in
other words that ζ0 is point-stationary, and even that the pair (ξ, ζ0) is point-stationary.
Actually, one might expect that the pair (ξ, ζ0) is point-stationary if and only if ξ is
mass-stationary. In Section 4 we show that this is indeed the case. In fact, the result
extends to random pairs (X, ξ), Theorem 4.1.

The term ‘Cox transport’ refers to applying an allocation rule to a Cox process driven
by a general random measure (think of the mass of the random measure being represented
by the points of the Cox process). In particular, mass-stationarity of ξ then reduces to
point-stationarity with respect to ζ0, Theorem 4.1. Also, it follows that mass-stationarity
is characterized by applying preserving Bernoulli transports to the Cox process, Corollary
4.3. Finally, for diffuse random measures mass-stationarity is characterized by applying
matchings to the Cox process, Corollary 4.4.

2 Transports and mass-stationarity

We consider a topologial Abelian group G that is assumed to be a locally compact, second
countable Hausdorff space with Borel σ-field G and Haar measure λ. Let M denote the set
of all locally finite measures on G equipped with the cylindrical σ-field M. Let (Ω,F , P)
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be a σ-finite measure space. Although P need not be a probability measure, we still use a
probabilistic language. A random measure is a random element ξ in M . We use the kernel
notation ξ(ω, ·) := ξ(ω)(·), ω ∈ Ω. We equip (M,M) with a measurable flow θs : M → M ,
s ∈ G, defined by θsµ(B) := µ(B + s), where B ∈ G and B + s := {t + s : t ∈ B}. Then
(µ, s) 7→ θsµ is a measurable mapping, θ0 is the identity on M , and we have the flow
property

θs ◦ θt = θs+t, s, t ∈ G. (2.1)

Here 0 denotes the neutral element in G and ◦ denotes composition. Together with ξ we
consider a random element X in a measurable space (W,W). We assume that this space
is equipped with a measurable flow θs : W → W , s ∈ G, having the properties listed
above. (Denoting this flow again by θs, s ∈ G, will cause no risk of ambiguity.)

Next we adapt some terminology from [6] to the setting established above. This makes
some of the definitions more cumbersome. However, the present setting is closer to chapter
11 of [4] and chapter 9 of [9] and will allow for a more convenient formulation of our main
results in Section 4. In the remainder of this paper we consider a pair (X, ξ) as introduced
above such that P((X, ξ) ∈ ·) is σ-finite and P(ξ(G) = 0) = 0. We call (X, ξ) stationary

if P(θs(X, ξ) ∈ ·) = P((X, ξ) ∈ ·) for all s ∈ G. Here we define θs(w, µ) := (θsw, θsµ)
for s ∈ G and (w, µ) ∈ W × M . If (X, ξ) is stationary, then we also call P((X, ξ) ∈ ·)
invariant. In this case the measure

PX,ξ(A) := λ(B)−1

∫∫

1A(θs(X(ω), ξ(ω)))1B(s) ξ(ω, ds) P(dω), A ∈ W ⊗M, (2.2)

is called the Palm measure of (X, ξ) (with respect to P), see [7]. Here B ∈ G has 0 <
λ(B) < ∞. This measure is σ-finite. As the definition (2.2) is independent of B, we can
use a monotone class argument to conclude the refined Campbell theorem

∫∫

f(θs(X(ω), ξ(ω)), s) ξ(ω, ds) P(dω) =

∫∫

f(x, µ, s) ds PX,ξ(d(x, µ))

for all measurable f : W × M × G → [0,∞), where ds refers to integration with respect
to the Haar measure λ. Using a standard convention in probability theory, we write this
as

EP

[
∫

f(θs(X, ξ), s) ξ(ds)

]

= EPX,ξ

[
∫

f(X, ξ, s) ds

]

, (2.3)

where EP and EPX,ξ
denote integration with respect to P and PX,ξ, respectively.

Next we define mass-stationarity of (X, ξ). Let C ∈ G be a relatively compact set
having λ(C) > 0 and λ(∂C) = 0, where ∂C denotes the boundary of C. Let U, V be
random elements in G, possibly obtained by extending (Ω,F , P). Assume that (X, ξ) and
U are independent, U has the uniform distribution on C (w.r.t. Haar measure), and that
the conditional distribution of V given (X, ξ, U) is uniform in the mass of ξ on C − U .
Then (X, ξ) is called mass-stationary if

(θV (X, ξ), U + V )
d
= (X, ξ, U) (2.4)
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holds for all such C. In this case we call the distribution P((X, ξ) ∈ ·) mass-stationary.
By Theorem 6.3 in [6] this is equivalent to the validity of the Mecke equation

EP

[
∫

g(θs(X, ξ),−s) ξ(ds)

]

= EP

[
∫

g(X, ξ, s) ξ(ds)

]

(2.5)

for all measurable g : W × M × G → [0,∞).

Remark 2.1. The random element X is stationary if P(θsX ∈ ·) = P(X ∈ ·) for all
s ∈ G and if this measure is σ-finite. Mass-stationarity generalizes this concept. Indeed,
assuming (2.5) for ξ = λ we easily get that P(θsX ∈ ·) = P(X ∈ ·) for λ-a.e. s ∈ G.
Assuming that W is a metric space with Borel σ-field W and that s 7→ θsX is P-a.e.
continuous, we obtain stationarity of X.

Remark 2.2. By definition, mass-stationarity of (X, ξ) is equivalent to mass-stationarity
of ((X, ξ), ξ).

For the next definitions it is convenient to abbreviate Ω′ := W ×M and F ′ := W⊗M.
A weighted transport-kernel is a kernel T from Ω′ × G to G such that T (ω′, s, ·) is locally
finite for all (ω′, s) ∈ Ω′ × G. If T is Markovian, then it is called transport-kernel. A
weighted transport-kernel is invariant if T (θsω

′, 0, B − s) = T (ω′, s, B) for all (ω′, s) ∈
Ω′ × G and B ∈ G. An allocation rule is a measurable mapping τ : Ω′ × G → G which is
covariant, i.e. which has τ(θsω

′, 0) = τ(ω′, s)− s for all ω′, s. A weighted transport-kernel
T is mass-preserving if

∫

T (w, µ, s, ·) µ(ds) = µ(·) (2.6)

holds for all (w, µ) ∈ Ω′. An allocation rule is mass-preserving if
∫

1{τ(w, µ, s) ∈ ·}µ(ds) = µ(·) (2.7)

holds for all (w, µ) ∈ Ω′. If these relations hold almost everywhere w.r.t. some measure
Q on Ω′, then we say that T (resp. τ) is Q-a.e. mass-preserving.

Remark 2.3. Let T be a locally finite kernel from W ×M ×G to G. Assume that there
is some A ∈ W ⊗M such that

∫

T (w, µ, s, ·) µ(ds) = µ(·), (2.8)

holds for all (w, µ) ∈ A. Then we can redefine T on ((W×M)\A)×G by T (w, µ, s, ·) := δs,
to obtain a kernel T satisfying (2.8) for all (w, µ) ∈ W×M . If A is invariant (i.e. θsA = A,
s ∈ G) and T is invariant, then the modified T is an invariant kernel too. A similar remark
applies to allocation rules.

By Theorem 7.2 in [6] (X, ξ) is mass-stationary, iff

EP

[
∫

1{θt(X, ξ) ∈ A} T (X, ξ, 0, dt)

]

= P((X, ξ) ∈ A), A ∈ F ′, (2.9)

4



holds for all invariant mass-preserving weighted transport-kernels T .
A measure µ ∈ M is discrete if

µ =
∑

s:µ{s}>0

µ{s}δs

and diffuse if µ{s} = 0 for all s ∈ G. Lemma 2.2 in [3] shows that any µ ∈ M can
be measurably and uniquely written as the sum of a discrete measure µd and a diffuse
measure µc. The proof of this result shows that the mapping µ 7→ (µd, µc) is covariant in
the obvious sense. Therefore the characterization (2.5) of mass-stationarity together with
ξ = ξd + ξc implies the following result.

Proposition 2.4. If (X, ξd) and (X, ξc) are both mass-stationary, then (X, ξ) is mass-

stationary.

3 Bernoulli transports

A Bernoulli transport-kernel is a transport-kernel T of the form

T (w, µ, s, ·) = p(w, µ, s)δs + (1 − p(w, µ, s))δτ(w,µ,s), (w, µ, s) ∈ W × M × G, (3.1)

where p : W × M × G → [0, 1] is measurable and τ : W × M × G → G is a measurable
mapping. Invariance of Bernoulli transport-kernels can easily be characterized as follows.

Lemma 3.1. Let T be a Bernoulli transport-kernel as in (3.1) such that for all (w, µ) ∈
W ×M it holds that p(w, µ, s) = 1 iff τ(w, µ, s) = s. Then T is invariant iff τ is covariant

and p(w, µ, s) = p(θs(w, µ), 0) for all (w, µ, s) ∈ W × M × G.

Recall that (X, ξ) is a random pair such that P((X, ξ) ∈ ·) is σ-finite and P(ξ(G) =
0) = 0. We will show that the validity of (2.9) for all invariant Bernoulli transport-kernels
is sufficient for mass-stationarity of (X, ξ). The support of a measure µ ∈ M is denoted
by supp µ. Here we need to make the weak assumption, that (W,W) is a Borel space, i.e.
Borel isomorphic to a Borel subset of [0, 1], see e.g. Appendix A1 in [4].

Theorem 3.2. Assume that (W,W) is a Borel space, that P(0 /∈ supp ξ) = 0, and that

P(ξ 6= ξd) = 0. Assume also that (2.9) holds for all invariant mass-preserving Bernoulli

transport-kernels T . Then (X, ξ) is mass-stationary.

Our proof of Theorem 3.2 requires the following generalization of a result in [2]. A
proof can be found in [5]. A matching is an allocation rule τ such that the following holds
for all (w, µ) ∈ W × M : τ(w, µ, s) ∈ supp µ and τ(w, µ, τ(w, µ, s)) = s for all s ∈ supp µ,
and τ(w, µ, s) = s for all s /∈ supp µ.

Lemma 3.3. Assume that (W,W) is a Borel space. Then there exist invariant matchings

τk, k ∈ N, such that for all (w, µ) ∈ W × M with supp µ locally finite and 0 ∈ supp µ

{0} ∪ {t ∈ supp µ : θt(w, µ) 6= (w, µ)} ⊂ {τk(w, µ, 0) : k ∈ N}. (3.2)
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For n ∈ N and µ ∈ M we define µn ∈ M by

µn(B) :=

∫

B

1{1/n ≤ µ{s} ≤ n}µ(ds), B ∈ G.

Then 1/n ≤ µn{s} ≤ n, s ∈ supp µn, and supp µn is locally finite. We will use the
following version of Lemma 3.3.

Lemma 3.4. Assume that (W,W) is a Borel space and let n ∈ N. Then there exist

invariant matchings τk, k ∈ N, such that for all (w, µ) ∈ W × M with 0 ∈ supp µn

{0} ∪ {t ∈ supp µn : θt(w, µ) 6= (w, µ)} ⊂ {τk(w, µ, 0) : k ∈ N}. (3.3)

Furthermore, the τk can be chosen such that the following holds for all (w, µ) ∈ W × M .

If s /∈ supp µn then τk(w, µ, s) = s and if s ∈ supp µn then τk(w, µ, s) ∈ supp µn.

Proof. We apply Lemma 3.3 with W replaced by W × M . This gives matchings τ ′
k,

k ∈ N, such that for all (w, µ, ν) ∈ W ×M ×M with supp ν locally finite and 0 ∈ supp ν

{0} ∪ {t ∈ supp ν : θt(w, µ, ν) 6= (w, µ, ν)} ⊂ {τ ′
k((w, µ), ν, 0) : k ∈ N}.

For any k ∈ N we define a mapping τk : W × M × G → G by τk(w, µ) := τ ′
k((w, µ), µn).

Then (3.3) holds. (Note that θt(w, µ, µn) = (w, µ, µn) iff θt(w, µ) = (w, µ).) It is now easy
to see that the τk are invariant matchings with the properties stated in the lemma.

Proof of Theorem 3.2. It is convenient (and no restriction of generality) to assume
that (Ω,F) = (W × M,W ⊗ M), P = P((X, ξ) ∈ ·), and that (X, ξ) is the identity on
W ×M . We will prove the Mecke equation (2.5). Satz 2.5 in [7] (see also Section 2 in [6])
shows that P is the Palm measure of (X, ξ) w.r.t. a σ-finite invariant measure on Ω. By
Theorem 7.3 in [6] this is equivalent to mass-stationarity of (X, ξ).

In the sequel we fix n ∈ N. Let τ be an invariant matching with the properties listed
after (3.3). Define a Bernoulli transport-kernel T by

T (w, µ, s, ·) :=
µ{s}

µ{s} + µ{τ(s)}
δs +

µ{τ(s)}

µ{s} + µ{τ(s)}
δτ(s) (3.4)

if s ∈ supp µn, and T (w, µ, s, ·) := δs, otherwise. Here and below we skip the argument
(w, µ) whenever possible. This transport-kernel is of the form (3.1) with

p(s) := 1{τ(s) 6= s}
µ{s}

µ{s} + µ{τ(s)}
+ 1{τ(s) = s}, (3.5)

where we recall that τ(s) = s for s /∈ supp µn. We have

p(θs, 0) = 1{τ(θs, 0) 6= 0}
θsµ{0}

θsµ{0} + θsµ{τ(θs, 0)}
+ 1{τ(θs, 0) = 0}.

Since τ(θs, 0) = τ(s) − s and θsµ{t} = µ{t + s}, t ∈ G, we obtain that p(θs, 0) = p(s).
Lemma 3.1 implies that T is invariant.
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We next prove that T is mass-preserving, i.e.
∫

T (w, µ, s, {t}) µ(ds) = µ{t}, t ∈ G, w ∈ W, µ ∈ M. (3.6)

Fix w ∈ W and µ ∈ M , and take t ∈ G. Assume first that t /∈ supp µn. Then τ(t) = t
and T (t, {t}) = 1. Let s ∈ G \ {t}. If s /∈ supp µn then τ(s) = s and T (s, {t}) = 0. If
s ∈ supp µn, then T (s, {t}) > 0 is only possible if τ(s) = t, i.e. τ(t) = s. As this would
contradict τ(t) = t, we again get T (s, {t}) = 0. Hence T (s, {t}) = 1{s = t}, implying
(3.6) for t /∈ supp µn.

Assume now that t ∈ supp µn. Then T (s, {t}) = 0 for s /∈ supp µn. (Otherwise we
would obtain that τ(s) = t 6= s.) For s ∈ supp µn we can have T (s, {t}) > 0 only if s = t
or τ(s) = t. The latter equality implies τ(t) = s. If τ(t) = t then T (s, {t}) = 0 for all
s ∈ supp µn \ {t} and thus (3.6) holds. The only non-trivial case is τ(t) 6= t. Then the
left-hand side of (3.6) equals

µ{t}T (t, {t}) + µ{τ(t)}T (τ(t), {t})

= µ{t}
µ{t}

µ{t} + µ{τ(t)}
+ µ{τ(t)}

µ{t}

µ{t} + µ{τ(t)}
= µ{t},

where we have again used that τ(τ(t)) = t.
We have established that T is an invariant mass-preserving Bernoulli transport-kernel

and will now head towards (2.5). Let us define the mass-shift θτ : Ω → Ω by θτ (ω) :=
θτ(ω,0)(ω). (We also define the random measure θτξ by θτξ(ω) := θτ(ω,0)ξ(ω); the random
measure θτξn = (θτξ)n is defined in the same way.) A quick consequence of the matching
property of τ is

τ(θτ , 0) = −τ(0). (3.7)

In particular we have

1A(θτ ) = 1A, (3.8)

where A := {τ(0) 6= 0}. Note that A ⊂ {0 ∈ supp ξn, τ(0) ∈ supp ξn}. Let f : Ω → [0,∞)
be measurable with EP[f ] < ∞. Let B ∈ G and define g(ω, s) := f(ω)1{s ∈ B}. By
assumption and the facts established above we can apply (2.9) for our specific T , to obtain

EP[1Ag(θ0, τ(0))ξ{τ(0)}] = EP

[
∫

1A(θs)g(θs, τ(θs, 0))ξ(θs, {τ(θs, 0)} T (0, ds)

]

= EP [1Ag(θ0, τ(0))ξ{τ(0)}p(0)] + EP [1Ag(θτ ,−τ(0))ξ(θτ , {−τ(0)})(1 − p(0))] ,

where we have used (3.8) and (3.7) for the second equality. (We suppress the dependence
on (X, ξ) in the notation; for instance we use θs as a shorthand for θs(X, ξ).) Recalling
the definition of p and using θτξ{−τ(0)} = ξ{0}, we get

EP[1Ag(θ0, τ(0))ξ{τ(0)}]

= EP

[

1Ag(θ0, τ(0))
ξ{0}ξ{τ(0)}

ξ{0}+ ξ{τ(0)}

]

+ EP

[

1Ag(θτ ,−τ(0))
ξ{0}ξ{τ(0)}

ξ{0} + ξ{τ(0)}

]

.
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Since for 0 ∈ supp ξn and τ(0) ∈ supp ξn

g(θ0, τ(0))
ξ{0}ξ{τ(0)}

ξ{0} + ξ{τ(0)}
≤ f

n3

2
, g(θ0, τ(0))ξ{τ(0)} ≤ fn,

and EP[f ] < ∞, we get by subtraction

EP

[

1Ag(θ0, τ(0))
ξ{τ(0)}ξ{τ(0)}

ξ{0} + ξ{τ(0)}

]

= EP

[

1Ag(θτ ,−τ(0))
ξ{τ(0)}ξ{0}

ξ{0} + ξ{τ(0)}

]

. (3.9)

Consider the function g̃ : Ω × G → [0,∞) given by

g̃(s) := 1{0 ∈ supp ξn, s ∈ supp ξn}
ξ{0} + ξ{s}

ξ{s}
.

We have

g̃(θτ ,−τ(0)) = 1{0 ∈ supp θτξn,−τ(0) ∈ supp θτξn}
θτξ{0} + θτξ{−τ(0)}

θτξ{−τ(0)}

= 1{τ(0) ∈ supp ξn, 0 ∈ supp ξn}
ξ{τ(0)} + ξ{0}

ξ{0}
.

Since g̃(θ0, τ(0)) ≤ 2n2 and g̃(θτ ,−τ(0)) ≤ 2n2, we can apply (3.9) with g · g̃ instead of g.
Together with monotone convergence this gives for all measurable g : Ω × G → [0,∞):

EP [1{τ(0) 6= 0}g(θ0, τ(0))ξn{τ(0)}] = EP [1{τ(0) 6= 0}g(θτ ,−τ(0))ξn{τ(0)}] . (3.10)

We now apply Lemma 3.4. If 0 ∈ supp ξn, then (3.3) yields that
∫

h(t)1{θt(X, ξ) 6= (X, ξ)} ξn(dt) =
∑

k∈N

hk(X, ξ, τk(0))h(τk(0))ξn{τk(0)} (3.11)

for all measurable h : W × G → [0,∞), where

hk(t) := 1{θt(X, ξ) 6= (X, ξ)}1{τl(0) 6= t for 1 ≤ l ≤ k − 1}.

We claim that

hk(θτk
(X, ξ),−τk(0)) = hk(X, ξ, τk(0)), k ∈ N. (3.12)

Indeed, for k ≥ 2 and l ≤ k − 1 we have by covariance of τl that τl(θτk
, 0) = −τk(0) iff

τl(τk(0)) = 0. By the matching property of τl this is in turn equivalent to τk(0) = τl(0).
From (3.11), (3.10) and (3.12) we obtain

EP

[
∫

1{0 ∈ supp ξn, θt(X, ξ) 6= (X, ξ)}g(X, ξ, t) ξn(dt)

]

=
∑

k∈N

EP [hk(X, ξ, τk(0))g(X, ξ, τk(0))ξn{τk(0)}]

=
∑

k∈N

EP

[

hk(X, ξ, τk(0))g(θτ(k)(X, ξ),−τk(0))ξn{τk(0)}
]

.
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Using (3.12) again we arrive at

EP

[
∫

1{0 ∈ supp ξn, θt(X, ξ) 6= (X, ξ)}g(X, ξ, t) ξn(dt)

]

= EP

∫

1{0 ∈ supp ξn, θt(X, ξ) 6= (X, ξ)}g(θt(X, ξ),−t) ξn(dt). (3.13)

Let t ∈ supp ξn be such that θt(X, ξ) = (X, ξ). Then ξn = θ−tξn and

ξn{t} = θtξn{0} = θ−tξn{0} = ξ{−t}.

Therefore,

EP

[
∫

1{0 ∈ supp ξn, θt(X, ξ) = (X, ξ)}g(X, ξ, t) ξn(dt)

]

= EP

[
∫

1{0 ∈ supp ξn, θt(X, ξ) = (X, ξ)}g(θt(X, ξ),−t) ξn(dt)

]

.

Adding this to (3.13) and taking the limit as n → ∞, yields (2.5) and hence the assertion
of the theorem.

Remark 3.5. The last part of the preceding proof (starting with (3.12)) coincides with
the second half of the proof of Theorem 1.1 in [2]. But it does also close a gap in the
latter proof in that it is using Lemma 3.3 instead of the (slightly) weaker Theorem 3.6 in
[2]. This theorem is not sufficient for the conclusion made in [2].

The definitions of the previous section apply in particular in the case where W is a
singleton. In this case we can identify W ×M with M and abbreviate the set of all mass-
preserving invariant weighted transport-kernels as T and the set of all mass-preserving al-
location rules as A. Moreover, the set of all mass-preserving invariant Bernoulli transport-
kernels (a subset of T) is denoted by Tb, while the set of all invariant matchings (a subset
of A) is denoted by Am.

The proof of Theorem 3.2 yields the following result without a Borel assumption on
the space W .

Proposition 3.6. Assume that P(0 /∈ supp ξ) = 0 and P(ξ 6= ξd) = 0. Assume further

that

EP

[
∫

1{θt(X, ξ) ∈ A} T (ξ, 0, dt)

]

= P((X, ξ) ∈ A), A ∈ W ⊗M, (3.14)

holds for all T ∈ Tb. Then, for all measurable g : W × M × G → [0,∞),

EP

[
∫

1{θtξ 6= ξ}g(θt(X, ξ),−t) ξ(dt)

]

= EP

[
∫

1{θtξ 6= ξ}g(X, ξ, t) ξ(dt)

]

. (3.15)

Proof: Let n ∈ N. We apply Lemma 3.4 in the case where W is a singleton. We can
then proceed as in the proof of Theorem 3.2, to obtain as at (3.13)

EP

[
∫

1{θtξ 6= ξ}g(X, ξ, t) ξ′n(dt)

]

= EP

[
∫

1{θtξ 6= ξ}g(θt(X, ξ),−t) ξ′n(dt)

]

.
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where ξ′n(dt) = 1{0 ∈ supp ξn}ξn(dt). Letting n → ∞ gives the assertion.

Let N ⊂ M be the set of all discrete measures µ on G having µ{s} ∈ {0, 1} for all
s ∈ G. Strengthening the assumptions of Proposition 3.6, we can use a simplified version
of the proof of Theorem 3.2 to get the following result. We refer here also to Theorem
1.1 in [2].

Proposition 3.7. Assume P(0 /∈ supp ξ) = 0, P(ξ /∈ N) = 0, and that

P(θτ (X, ξ) ∈ A) = P((X, ξ) ∈ A), A ∈ W ⊗M, (3.16)

holds for all τ ∈ Am, where θτ : W ×M → Ω is defined by θτ (w, µ) := θτ(µ,0)(w, µ). Then

(3.15) holds for all measurable g : W × M × G → [0,∞).

A measure µ ∈ M is called periodic if θtµ = µ for some t 6= 0. A measure Q on M is
called aperiodic if it is supported by the set of all measures µ ∈ M that are not periodic.
Since the Mecke equation (2.5) implies mass-stationarity, Propositions 3.6 and 3.7 give
the following result.

Proposition 3.8. Assume that P(0 /∈ supp ξ) = 0 and P(ξ 6= ξd) = 0. Assume further

that P(ξ ∈ ·) is aperiodic. If either (3.14) holds for all T ∈ Tb or P(ξ /∈ N) = 0 and

(3.16) holds for all τ ∈ Am, then (X, ξ) is mass-stationary.

Remark 3.9. Assume that P(0 /∈ supp ξ) = 0 and P(ξ 6= ξd) = 0. If (3.14) holds for all
T ∈ Tb we conjecture that (X, ξ) is mass-stationary without the additional aperiodicity
assumption.

Remark 3.10. Let P satisfy the assumptions of Proposition 3.8 and assume in addition
that P(ξ /∈ N) = 0. If P(ξ ∈ ·) is not aperiodic, then Proposition 3.8 does not apply.
However, we might assume that (3.16) holds for all τ ∈ A. We believe that this implies
mass-stationarity of (X, ξ). In case G = Rd this was established in Theorem 4.1 in [1].

Remark 3.11. Let the assumptions of Proposition 3.7 be satisfied. Example 7.1 in [6]
shows that invariance of P((X, ξ) ∈ ·) under mass-preserving allocation rules (in the sense
of (3.16)) is not enough to imply mass-stationarity of (X, ξ). Therefore Theorem 3.2 does
not only solve Problem 7.3 in [6] for discrete random measures (up to the fact that in
case of periodicities we have to allow the weighted transport-kernels to depend on X)
but is also the natural (and minimal) extension of Theorem 1.1 in [2] to discrete random
measures.

4 Cox transports

For any α ∈ M we let Πα denote the distribution of a Poisson process with intensity mea-
sure α. It is convenient to consider Πα as a probability measure on M . It is concentrated
on those µ ∈ M having locally finite support and µ{s} ∈ N0, s ∈ G. We consider a Cox

process (see e.g. [4]) driven by (X, ξ), i.e. a random measure ζ on G satisfying

P((X, ξ, ζ) ∈ ·) = EP

[
∫

1{(X, ξ, µ) ∈ ·}Πξ(dµ)

]

. (4.1)

Possibly extending (Ω,F , P), the existence of ζ can be assumed without loss of generality.
Let ζ0 := ζ + δ0 and define Π0

α :=
∫

1{µ + δ0 ∈ ·}Πα(dµ), α ∈ M .
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Theorem 4.1. Assume that P(X ∈ ·) is σ-finite. Then (X, ξ) is mass-stationary iff

(X, ζ0) is mass-stationary. In this case even ((X, ξ), ζ0) is mass-stationary.

We will prove this theorem later in this section.

Remark 4.2. Assume that P(X ∈ ·) is σ-finite and that (X, ξ) is mass-stationary. Then
Theorem 4.1 and (2.9) imply

EP

[
∫∫

1A(θsX, θsξ, θsµ) T (X, ξ, µ, 0, ds) Π0
ξ(dµ)

]

= EP

[
∫

1A(X, ξ, µ) Π0
ξ(dµ)

]

(4.2)

for all A ∈ W ⊗M⊗M and all mass-preserving invariant weighted transport-kernels T
from (W × M) × M × G to G.

Combining Theorem 4.1 with Proposition 3.8 gives the following characterization of
mass-stationarity via Bernoulli transport-kernels. Recall the definitions of the sets T, Tb,
A, and Am given before Remark 2.3.

Corollary 4.3. Assume that P(X ∈ ·) is σ-finite. Then (X, ξ) is mass-stationary iff

EP

[
∫∫

1A(θsX, θsµ) T (µ, 0, ds) Π0
ξ(dµ)

]

= EP

[
∫

1A(X, µ) Π0
ξ(dµ)

]

(4.3)

holds for all A ∈ W ⊗M and all T ∈ Tb.

Proof: If (X, ξ) is mass-stationary then (4.3) follows as a special case of (4.2). Con-
versely, assume that (4.3) holds. The properties of a Poisson process imply

Π0
α({µ ∈ M : θsµ = µ for some s ∈ supp µ \ {0}}) = 0, α ∈ M. (4.4)

It follows that P(ζ0 ∈ ·) is aperiodic. Hence we obtain from Proposition 3.8 that (X, ζ0)
is mass-stationary. Theorem 4.1 yields mass-stationarity of (X, ξ).

For diffuse random measures the condition (4.3) can be simplified as follows.

Corollary 4.4. Assume that P(X ∈ ·) is σ-finite and that P(ξ 6= ξc) = 0. Then (X, ξ) is

mass-stationary iff

EP

[
∫

1A(θτ(µ,0)X, θτ(µ,0)µ) Π0
ξ(dµ)

]

= EP

[
∫

1A(X, µ) Π0
ξ(dµ)

]

, A ∈ W ⊗M, (4.5)

holds for all τ ∈ Am.

Proof: Using the second part of Proposition 3.8, the result can be proved as Corollary
4.3.

Remark 4.5. Equation (4.3) can be written as

EP

[
∫

1A(θsX, θsζ
0) T (ζ0, 0, ds)

]

= P((X, ζ0) ∈ A), A ∈ W ⊗M. (4.6)

The point here is that the random measure ξ is not entering this equation explicitly, but
only implicitly, as random intensity measure of ζ .
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Remark 4.6. Assume that P(X ∈ ·) is σ-finite. Let T be a transport-kernel. Define
another transport-kernel T ′ by

T ′(w, α, s, ·) :=

∫

T (w, µ + δs, s, ·) Πα(dµ). (4.7)

Then (4.8) below implies invariance of T ′, while (4.9) easily implies that T ′ is mass-
preserving. If (X, ξ) is mass-stationary, then Remark 4.2 yields

EP

[
∫

1{θs(X, ξ) ∈ ·}T ′(X, ξ, 0, ds)

]

= P((X, ξ) ∈ ·).

We do not know whether the validity of this equation for all such Cox transport-kernels

T ′ is enough to imply mass-stationarity of (X, ξ). We refer here also to Problem 7.3 in
[6].

Remark 4.7. Take τ ∈ A, and let V := τ(ζ0, 0). Then (4.5) can be written as

(θV X, θV ζ0)
d
= (X, ζ0).

Remark 4.8. Assuming that P(ξ ∈ ·) is σ-finite is stronger than only assuming that
P((X, ξ) ∈ ·) is σ-finite. If, for instance, X is a constant, P(X ∈ ·) can only be σ-finite,
if P is a finite measure. We do not know, whether the results of this section remain true
in the more general case, where only P((X, ξ) ∈ ·) is σ-finite.

Proof of Theorem 4.1: First we recall that

∫

1{µ ∈ ·}Πθsα(dµ) =

∫

1{θsµ ∈ ·}Πα(dµ), α ∈ M, s ∈ G, (4.8)

and
∫∫

1{(µ, s) ∈ ·}µ(ds) Πα(dµ) =

∫∫

1{(µ + δs, s) ∈ ·}α(ds) Πα(dµ), α ∈ M. (4.9)

The first equation comes directly from the definition of Πα, while the second is from [7].
Assume now that (X, ξ) is mass-stationary. By Theorem 6.3 in [6] there is a stationary

σ-finite measure Q on W × M such that

P((X, ξ) ∈ ·) = λ(B)−1

∫∫

1A(θs(w, µ))1B(s) µ(ds) Q(d(w, µ)), A ∈ W ⊗M, (4.10)

where 0 < λ(B) < ∞. This means that P((X, ξ) ∈ ·) is the Palm measure of the projection
from W × M onto M with respect to Q, cf. (2.2).

Consider the measurable space (Ω∗,F∗) := (Ω×M ×M,F ⊗M⊗M) equipped with
the measurable flow θ∗s(w, α, µ) := (θsw, θsα, θsµ). Define a measure Q∗ on (Ω∗,F∗) by

Q∗ :=

∫∫

1{(w, α, µ) ∈ ·}Πα(dµ) Q(d(w, α)). (4.11)

12



Since Q is σ-finite, so is Q∗. Using (4.8), we get for any measurable f : Ω∗ → [0,∞)
∫

f(θ∗s(w, α, µ)) Q∗(d(w, α, µ)) =

∫∫

f(θsw, θsα, µ) Πθsα(dµ) Q(d(w, α))

=

∫∫

f(w, α, µ) Πα(dµ) Q(d(w, α)),

where the second equality comes from stationarity of Q. Hence Q∗ is invariant under the
flow {θ∗s : s ∈ G}.

Denote by (X∗, ξ∗, ζ∗) the identity on Ω∗. Our next aim is to compute the Palm
measure of ((X∗, ξ∗), ζ∗) w.r.t. Q∗. Using (4.8) and (4.9), we obtain for all measurable
f : Ω∗ × G → [0,∞) that

∫∫

f(θs(w, α), θsµ, s)µ(ds) Q∗(d(w, α, µ))

=

∫∫∫

f(θs(w, α), θsµ, s) µ(ds) Πα(dµ) Q(d(w, α))

=

∫∫∫

f(θs(w, α), θs(µ + δs), s) α(ds) Πα(dµ) Q(d(w, α))

=

∫∫∫

f(θs(w, α), µ + δ0, s) Πθsα(dµ) α(ds) Q(d(w, α))

=

∫∫∫

f(θs(w, α), µ + δ0, s) Πα(dµ) ds P((X, ξ) ∈ d(w, α)),

where the final equality is due to (4.10) and the refined Campbell theorem (2.3) for the
pair (Q, P((X, ξ) ∈ ·)). Therefore

∫∫

1{(w, α, µ) ∈ ·}Π0
α(dµ) P((X, ξ) ∈ d(w, α)) = P((X, ξ, ζ0) ∈ ·) (4.12)

is the Palm measure of ((X∗, ξ∗), ζ∗) w.r.t. Q∗. Theorem 6.3 in [6] implies that ((X, ξ), ζ0)
is mass-stationary and that

EP

[
∫

g(θs(X, ξ), θsζ
0,−s) ζ0(ds)

]

= EP

[
∫

g(X, ξ, ζ0, s) ζ0(ds)

]

(4.13)

for any measurable g : W × M × M × G → [0,∞). In particular we have

EP

[
∫

g(θs(X, ζ0),−s) ζ0(ds)

]

= EP

[
∫

g(X, ζ0, s) ζ0(ds)

]

(4.14)

for any measurable g : W ×M ×G → [0,∞). As σ-finiteness of P(X ∈ ·) entails the same
property of P((X, ζ0) ∈ ·), we conclude that (X, ζ0) is mass-stationary.

To prove the other implication, we assume that (X, ζ0) is mass-stationary. Since
mass-stationarity is equivalent to the Mecke equation (4.14), we have

EP

[
∫∫

f(θsX, θsµ + δ−s,−s) (µ + δ0)(ds) Πξ(dµ)

]

= EP

[
∫∫

f(X, µ + δ0, s) (µ + δ0)(ds)) Πξ(dµ)

]
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for all measurable f : W × M × G → [0,∞). If EP[
∫

f(X, µ + δ0, 0) Πξ(dµ)] < ∞, we
obtain

EP

[
∫∫

f(θsX, θsµ + δ−s,−s) µ(ds) Πξ(dµ)

]

= EP

[
∫∫

f(X, µ + δ0, s) µ(ds) Πξ(dµ)

]

.

Since P(X ∈ ·) is σ-finite, this remains true for any measurable f : W ×M ×G → [0,∞).
Using (4.9) and then (4.8) we get

EP

[
∫∫

f(θsX, µ + δ−s + δ0,−s) Πθsξ(dµ) ξ(ds)

]

= EP

[
∫∫

f(X, µ + δs + δ0, s) Πξ(dµ) ξ(ds)

]

.

We apply this with f(w, µ, s) := 1{µ{s} ≥ 1, µ{0} ≥ 1}f1(w, µ− δs − δ0, s) for a measur-
able function f1 : W × M × G → [0,∞). It follows that

EP

[
∫∫

f1(θsX, µ,−s) Πθsξ(dµ) ξ(ds)

]

= EP

[
∫∫

f1(X, µ, s) Πξ(dµ) ξ(ds)

]

. (4.15)

Take B ∈ G and measurable functions h1 : W → R and h : M → R. Equation (4.15)
implies

EP

[
∫

h1(θsX)h∗(θsξ)1B(−s) ξ(ds)

]

= EP[h1(X)ξ(B)h∗(ξ)], (4.16)

where the measurable function h∗ : M → [0,∞] is defined by

h∗(α) :=

∫

h(µ)Πα(dµ). (4.17)

Our next aim is to show that the class of measurable functions defined by (4.17) is
rich enough, to conclude from (4.16) that

EP

[
∫

h1(θsX)g(θsξ)1B(−s) ξ(ds)

]

= EP[h1(X)ξ(B)g(ξ)] (4.18)

holds for all measurable g : M → R. For n ∈ N and µ ∈ M we define a measure µ(n) on
Gn by

µ(n)(C) :=

∫

· · ·

∫

1C(s1, . . . , sn) µs1,...,sn−1
(dsn) · . . . · µs1

(ds2) µ(ds1),

where, for 1 ≤ k ≤ n − 1, the measure µs1,...,sk
on G is defined by

µs1,...,sk
:= 1{µ − δs1

− . . . − δsk
({s1, . . . , sk}) ≥ 0}(µ − δs1

− . . . − δsk
).

A well-known property of a Poisson process (following from (4.9) and induction) is
∫

µ(n)(C) Πα(dµ) = αn(C), C ∈ G⊗n, α ∈ M.
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For k, i1, . . . , ik ∈ N and relatively compact sets B1, . . . , Bk ∈ G this gives
∫

µ(i1+...+ik)(Bi1
1 × . . . × Bik

k ) Πα(dµ) = α(B1)
i1 · . . . · α(Bk)

ik . (4.19)

Now we consider the measurable function

h(µ) := c0 +
∑

i1,...,ik∈N

ci1,...,ikµ
(i1+...+ik)(Bi1

1 × . . . × Bik
k ), (4.20)

where c0 ∈ R and the numbers ci1,...,ik ∈ R satisfy
∑

i1,...,ik∈N

|ci1,...,ik |x
i1
1 · . . . · xik

k < ∞

for all x1, . . . , xk ≥ 0. Let the entire function f : Rk → R be given by

f(x1, . . . , xk) := c0 +
∑

i1,...,ik∈N

ci1,...,ikx
i1
1 · . . . · xik .

Then (4.19) and dominated convergence implies that

h∗(α) = f(α(B1), . . . , α(Bk)), α ∈ M, (4.21)

where we recall the definition (4.17) of h∗. Let B ∈ G be relatively compact and c > 0.
Consider the function f(x1, . . . , xk+1) := f(x1, . . . , xk)e

−cxk+1, x1, . . . , xk+1 ∈ R, where f
is as in (4.21). Define h̃ as in (4.20) with (B1, . . . , Bk) replaced by (B1, . . . , Bk, B) and
with the appropriate coefficients ci1,...,ik+1

∈ R. Then h̃∗(α) = f(α(B1), . . . , α(Bk))e
−cα(B)

and we get from (4.16) that

EP

[
∫

h1(θsX)h(θsξ)1B(−s)e−cξ(B+s) ξ(ds)

]

= EP[h1(X)h(ξ)ξ(B)e−cξ(B)] (4.22)

holds for all c > 0 and all functions h in the class H of bounded measurable functions
of the form (4.21). Assume that EP[|h1(X)|] < ∞. Applying (4.22) with h ≡ 1 and h1

replaced with |h1|, yields

EP

[
∫

|h1(θsX)|1B(−s)e−cξ(B+s) ξ(ds)

]

= EP[|h1(X)|ξ(B)e−cξ(B)] < ∞.

Therefore the class of all bounded measurable functions h satisfying (4.22) is a vector space
containing the constant functions and being closed under monotone bounded convergence.
Since H is stable under multiplication and generates the σ-field M, we can apply a well-
known functional version of the monotone class theorem to obtain that (4.22) holds for
any bounded measurable function h. Assume that h ≥ 0. Since P(X ∈ ·) is σ-finite,
(4.22) remains true for any measurable h1 : W → [0,∞). Moreover, for c → 0 we get
from monotone convergence the desired equation (4.18), and in particular

EP

[
∫

1A(θsX, θsξ,−s) ξ(ds)

]

= EP

[
∫

1A(X, ξ, s) ξ(ds)

]

, (4.23)

for all A ∈ W ⊗M⊗M that are of product form. The measure on the right-hand side
of (4.23) is finite on product sets of the form C × {α ∈ M : α(B) ≤ k} × B, where
Q(X ∈ C) < ∞, B ∈ G is compact, and k ∈ N. Since W ×M ×G is the monotone union
of countably many such sets, (4.23) extends to all A ∈ W ⊗M⊗M. This is equivalent
to the Mecke equation (2.5) and hence to mass-stationarity of (X, ξ).
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