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Abstract

Consider a random measure £ on a locally compact Abelian group G acting on
some random element X. Mass-stationarity — introduced in [6] — means (informally)
that the origin is a typical location for (X,¢{) in the mass of . It is an intrinsic
characterization of Palm versions w.r.t stationary random measures. In this paper
we show that mass-stationarity w.r.t. discrete ¢ is characterized by distributional
invariance under shifts of the origin by certain mass-preserving transports involving
a Bernoulli randomization of the group-identity and an allocation rule. We also
show that mass-stationarity w.r.t. a general £ is characterized by mass-stationarity
w.r.t. a Cox process driven by &.

1 Introduction

Let ¢ be a random measure on a locally compact Abelian group G. Mass-stationarity is
a formalization of the intuitive idea that the origin is a typical location in the mass of
&, just like stationarity means that the origin is a typical location in the space G. The
formal definition is given in Section 2 below. Actually, we will consider ¢ jointly with a
random element X which G acts on, for instance a random field indexed by G. Then
(X, &) is mass-stationary if the origin is a typical location for (X, &) in the mass of &.

The word ‘typical’ needs some explanation. If £ is finite and S is a random element in
G with conditional distribution £/£(G) given £, then we say that S is a typical location
in the mass of £&. We also say that the origin is a typical location in the mass of the
shifted measure (- — S). Further, if S has conditional distribution £/£(G) given (X, §),
then we say that S is a typical location for (X, ¢) in the mass of £, and also that the
origin is a typical location in the mass of (- — 5) for the pair (X, ) shifted by S. In this
introduction we use the term ‘typical’ even for infinite £ in order to explain informally
the basic ideas of the paper.

Mass-stationarity was introduced in [6] as an extension to random measures of point-
stationarity, which in turn was introduced in [8] for simple point processes in R¢ having a



point at the origin. Point-stationarity formalizes the intuitive idea that the point at the
origin is a typical point of the point process (think of the Poisson process on the line with
an extra point added at the origin: shifting the origin to the n'* point on the right — or to
the n'* point on the left — does not change the fact that the inter-point distances are i.i.d.
exponential). The definition in [8] involved an external randomization, but in [1] (and in
2] for the group case) it is shown that point-stationarity can be defined as ‘distributional
invariance under shifts of the origin by preserving allocation rules’: an allocation rule T
is a map taking each location s € G to another location 7(s) € G depending on £(- — s),
and 7 is preserving if the image of & under 7 is ¢ itself. In fact, [1] and [2] show that
‘matchings’ suffice for the definition: an allocation rule 7 is a matching if 7 is its own
inverse.

In [8] it was shown that point-stationarity is an intrinsic characterization of Palm
versions of stationary point processes, and the same is proved in [6] for mass-stationarity
and random measures. In this paper we will derive further characterizations of mass-
stationarity.

The term ‘Bernoulli transport’ refers to a randomized allocation rule that allows stay-
ing at a location s with a probability p(s) depending on (- — s), and otherwise chooses
another location according to a (non-randomized) allocation rule. This makes it possi-
ble to preserve discrete point-masses even if there are point-masses of different sizes. In
Section 3 we show that mass-stationarity of discrete random measures can be reduced to
distributional invariance of ¢ under shifts of the origin by preserving Bernoulli transports,
Theorem 3.2. A similar result holds for random pairs (X, £).

A Cox process ( is a Poisson process with a random intensity measure . Such a
process can be thought of as a collection of points scattered independently over the space
G according to the mass distribution of £, so these points are at typical locations in the
mass of €. Thus if £ is mass-stationary and we add a point at the origin to the Cox process
to obtain (° := ¢ + &y, then also the points of ¢V are at typical locations in the mass of
€. In fact, one might expect that the new point at the origin is a typical point of ¢°, in
other words that ¢° is point-stationary, and even that the pair (£, ¢°) is point-stationary.
Actually, one might expect that the pair (£, (%) is point-stationary if and only if & is
mass-stationary. In Section 4 we show that this is indeed the case. In fact, the result
extends to random pairs (X, &), Theorem 4.1.

The term ‘Cox transport’ refers to applying an allocation rule to a Cox process driven
by a general random measure (think of the mass of the random measure being represented
by the points of the Cox process). In particular, mass-stationarity of £ then reduces to
point-stationarity with respect to ¢°, Theorem 4.1. Also, it follows that mass-stationarity
is characterized by applying preserving Bernoulli transports to the Cox process, Corollary
4.3. Finally, for diffuse random measures mass-stationarity is characterized by applying
matchings to the Cox process, Corollary 4.4.

2 Transports and mass-stationarity

We consider a topologial Abelian group G that is assumed to be a locally compact, second
countable Hausdorff space with Borel o-field G and Haar measure A. Let M denote the set
of all locally finite measures on G equipped with the cylindrical o-field M. Let (92, F,P)



be a o-finite measure space. Although P need not be a probability measure, we still use a
probabilistic language. A random measure is a random element £ in M. We use the kernel
notation {(w, ) := &(w)(+), w € Q. We equip (M, M) with a measurable flow 05 : M — M,
s € G, defined by 0,u(B) := (B + s), where B € G and B+ s :={t+ s:t € B}. Then
(i, s) — 6Osu is a measurable mapping, 6y is the identity on M, and we have the flow

property
98 o) et = es—i-ta S,t €q. (21)

Here 0 denotes the neutral element in G and o denotes composition. Together with & we
consider a random element X in a measurable space (W, W). We assume that this space
is equipped with a measurable flow 6, : W — W, s € (G, having the properties listed
above. (Denoting this flow again by 6, s € G, will cause no risk of ambiguity.)

Next we adapt some terminology from [6] to the setting established above. This makes
some of the definitions more cumbersome. However, the present setting is closer to chapter
11 of [4] and chapter 9 of [9] and will allow for a more convenient formulation of our main
results in Section 4. In the remainder of this paper we consider a pair (X, ) as introduced
above such that P((X,&) € -) is o-finite and P({(G) = 0) = 0. We call (X, &) stationary
if P(05(X,¢) € -) = P((X,€) € -) for all s € G. Here we define 6,(w, 1) := (0w, 05p)
for s € G and (w,u) € W x M. If (X,¢) is stationary, then we also call P((X,¢&) € )
inwvariant. In this case the measure

Pye(A) = A(B)™ // 14 (0s(X (@), £(@))1p(s) E(w, ds) P(dw), AEWS M, (2.2)

is called the Palm measure of (X, ) (with respect to P), see [7]. Here B € G has 0 <
A(B) < oo. This measure is o-finite. As the definition (2.2) is independent of B, we can
use a monotone class argument to conclude the refined Campbell theorem

[ 10, ¢@D.9) 6, d5) Pl = [ [ 10, dsPxtdla )

for all measurable f: W x M x G — [0, 00), where ds refers to integration with respect
to the Haar measure \. Using a standard convention in probability theory, we write this
as

Er { [ reux, £>,s>£<ds>} —Er,. [ [ rexes) ds} , (23

where Ep and Ep, . denote integration with respect to I’ and Px ¢, respectively.

Next we define mass-stationarity of (X,£). Let C' € G be a relatively compact set
having A(C') > 0 and A\(OC) = 0, where 0C denotes the boundary of C. Let U,V be
random elements in G, possibly obtained by extending (€2, F,P). Assume that (X, &) and
U are independent, U has the uniform distribution on C' (w.r.t. Haar measure), and that
the conditional distribution of V' given (X, &,U) is uniform in the mass of £ on C' — U.
Then (X, &) is called mass-stationary if

(0v(X,€), U+ V) £ (X,£,U) (2.4)



holds for all such C. In this case we call the distribution P((X,&) € -) mass-stationary.
By Theorem 6.3 in [6] this is equivalent to the validity of the Mecke equation

e | [ 00000, ~5) (0] =B | [ g0x.€.9) 600 (25)

for all measurable g : W x M x G — [0,00).

Remark 2.1. The random element X is stationary if P(6,X € ) = P(X € ) for all
s € G and if this measure is o-finite. Mass-stationarity generalizes this concept. Indeed,
assuming (2.5) for £ = X\ we easily get that P(6,X € ) = P(X € -) for Ma.e. s € G.
Assuming that W is a metric space with Borel o-field W and that s — 6,X is P-a.e.
continuous, we obtain stationarity of X.

Remark 2.2. By definition, mass-stationarity of (X, &) is equivalent to mass-stationarity

of ((X,€),¢).

For the next definitions it is convenient to abbreviate €' := W x M and F' := W M.
A weighted transport-kernel is a kernel T from Q' x G to G such that T'(«', s, ) is locally
finite for all (u',s) € ' x G. If T is Markovian, then it is called transport-kernel. A
weighted transport-kernel is invariant if T(0,w',0,B — s) = T'(W', s, B) for all (u',s) €
Q' x G and B € G. An allocation rule is a measurable mapping 7 : ' x G — G which is
covariant, i.e. which has 7(0,w’,0) = 7(w', s) — s for all W', s. A weighted transport-kernel
T is mass-preserving if

/ T(w, 1,5,) pu(ds) = () (2.6)

holds for all (w, 1) € €. An allocation rule is mass-preserving if

[ et € putds) = ut) (2.7
holds for all (w, ) € €. If these relations hold almost everywhere w.r.t. some measure
Q on ¥, then we say that T (resp. 7) is Q-a.e. mass-preserving.

Remark 2.3. Let T be a locally finite kernel from W x M x G to GG. Assume that there
is some A € W ® M such that

/ T(w, 1, 5,) plds) = (), 2.8)

holds for all (w, u) € A. Then we can redefine T on (W x M)\ A)xG by T'(w, p, s, ) := Js,
to obtain a kernel T satisfying (2.8) for all (w, u) € W x M. If A is invariant (i.e. ;A = A,
s € ) and T is invariant, then the modified T is an invariant kernel too. A similar remark
applies to allocation rules.

By Theorem 7.2 in [6] (X, &) is mass-stationary, iff

Ep {/ 1{0,(X,€) € AAT(X,€,0,dt)| =P((X,6) € A), AeF, (2.9)



holds for all invariant mass-preserving weighted transport-kernels 7.
A measure € M is discrete if

p= > n{s}s

s:ipu{s}>0

and diffuse if p{s} = 0 for all s € G. Lemma 2.2 in [3] shows that any p € M can
be measurably and uniquely written as the sum of a discrete measure pu? and a diffuse
measure 1¢. The proof of this result shows that the mapping p — (u?, u¢) is covariant in
the obvious sense. Therefore the characterization (2.5) of mass-stationarity together with
€ = &4+ ¢ implies the following result.

Proposition 2.4. If (X, &%) and (X, £°) are both mass-stationary, then (X,€) is mass-
stationary.

3 Bernoulli transports
A Bernoulli transport-kernel is a transport-kernel 1" of the form
T(’LU,,U, 57') :p(wa:u> 5)68+ (1 _p(wa:u> s))éT(w7M78)7 (wnua S) € W X M X G> (31)

where p : W x M x G — [0, 1] is measurable and 7 : W x M x G — G is a measurable
mapping. Invariance of Bernoulli transport-kernels can easily be characterized as follows.

Lemma 3.1. Let T' be a Bernoulli transport-kernel as in (3.1) such that for all (w, p) €
W x M it holds that p(w, u, s) = 1 iff T(w, u, s) = s. Then T is invariant iff T is covariant
and p(w, p, s) = p(Os(w, ), 0) for all (w,pu,s) € W x M x G.

Recall that (X, &) is a random pair such that P((X, &) € -) is o-finite and P({(G) =
0) = 0. We will show that the validity of (2.9) for all invariant Bernoulli transport-kernels
is sufficient for mass-stationarity of (X,&). The support of a measure p € M is denoted
by supp p. Here we need to make the weak assumption, that (W, W) is a Borel space, i.e.
Borel isomorphic to a Borel subset of [0, 1], see e.g. Appendix Al in [4].

Theorem 3.2. Assume that (W, W) is a Borel space, that P(0 ¢ supp§) = 0, and that
P(¢ # ¢%) = 0. Assume also that (2.9) holds for all invariant mass-preserving Bernoulli
transport-kernels T. Then (X, &) is mass-stationary.

Our proof of Theorem 3.2 requires the following generalization of a result in [2]. A
proof can be found in [5]. A matching is an allocation rule 7 such that the following holds
for all (w,u) € W x M: 7(w,pu,s) € supp u and 7(w, p, 7(w, p, s)) = s for all s € supp p,
and 7(w, p, s) = s for all s ¢ supp p.

Lemma 3.3. Assume that (W, W) is a Borel space. Then there exist invariant matchings
Tk, k € N, such that for all (w, ) € W x M with supp u locally finite and 0 € supp p

{0} Ut € supp 2 O, (w, 1) # (w, p)} < {7(w, 1, 0) - k € N} (3.2)



For n € N and yu € M we define u,, € M by

pn(B) = /B 1{1/n < p{s} <n}u(ds), BeGg.

Then 1/n < p,{s} < n, s € supp p,, and supp p, is locally finite. We will use the
following version of Lemma 3.3.

Lemma 3.4. Assume that (W, W) is a Borel space and let n € N. Then there exist
invariant matchings 1y, k € N, such that for all (w,p) € W x M with 0 € supp iy,

{0} U {t € supp pn : Os(w, p) # (w, )} C {m(w, 1, 0) : k € N}. (3.3)

Furthermore, the 1, can be chosen such that the following holds for all (w,p) € W x M.
If s ¢ supp p, then m(w, pu,s) = s and if s € supp pu,, then 1x(w, i, s) € SUPD fiy-

Proof. We apply Lemma 3.3 with W replaced by W x M. This gives matchings 7y,
k € N, such that for all (w, u,v) € W x M x M with supp v locally finite and 0 € supp v

{0y U {t € suppv : O(w, p,v) # (w, u,v)} C {m.((w, p),v,0): k € N}.

For any k£ € N we define a mapping 7, : W x M x G — G by 7.(w, ) := 7, ((w, i), fin)-
Then (3.3) holds. (Note that 0,(w, u, i) = (w, p, pn) iff O;(w, p) = (w, p).) It is now easy
to see that the 7 are invariant matchings with the properties stated in the lemma. [

Proof of Theorem 3.2. 1t is convenient (and no restriction of generality) to assume
that (U, F) = (W x MW@ M), P =P((X,§) € ), and that (X,¢) is the identity on
W x M. We will prove the Mecke equation (2.5). Satz 2.5 in [7] (see also Section 2 in [6])
shows that IP is the Palm measure of (X, ¢) w.r.t. a o-finite invariant measure on 2. By
Theorem 7.3 in [6] this is equivalent to mass-stationarity of (X, &).

In the sequel we fix n € N. Let 7 be an invariant matching with the properties listed
after (3.3). Define a Bernoulli transport-kernel T" by

o e pr ()}
T S = B P R e 34)

if s € supp py,, and T'(w, p, s, ) := s, otherwise. Here and below we skip the argument
(w, u) whenever possible. This transport-kernel is of the form (3.1) with

=1{7(s) # s s} T(s) =s
) = Ur(s) # 8} o 1) = s (35)
where we recall that 7(s) = s for s ¢ supp u,,. We have
0,1{0}

p(‘gsa O) = 1{7(987 0) 7£ 0}

Gi07 + o7 (0. oy 70, 0) =0k

Since 7(0s,0) = 7(s) — s and O,u{t} = p{t + s}, t € G, we obtain that p(6,,0) = p(s).
Lemma 3.1 implies that 7" is invariant.



We next prove that 7' is mass-preserving, i.e.

/T(w,,u, s, {t})u(ds) = p{t}, teG weW, pe M. (3.6)

Fix w € W and p € M, and take t € G. Assume first that ¢ ¢ supp p,. Then 7(t) = ¢
and T'(t,{t}) = 1. Let s € G\ {t}. If s & supp p, then 7(s) = s and T'(s,{t}) = 0. If
S € Supp [y, then T'(s, {t}) > 0 is only possible if 7(s) = ¢, i.e. 7(t) = s. As this would
contradict 7(t) = ¢, we again get T'(s,{t}) = 0. Hence T'(s,{t}) = 1{s = t}, implying
(3.6) for t & supp py,.

Assume now that ¢t € supp u,. Then T'(s,{t}) = 0 for s ¢ supp p,,. (Otherwise we
would obtain that 7(s) =t # s.) For s € supp pu,, we can have T'(s, {t}) > 0 only if s =¢
or 7(s) = t. The latter equality implies 7(¢) = s. If 7(¢t) = ¢ then T'(s,{t}) = 0 for all
s € supp iy, \ {t} and thus (3.6) holds. The only non-trivial case is 7(t) # t. Then the
left-hand side of (3.6) equals

pyT (8 A{L}) + {7 ()3T (7 (1), {t})

p{t}
MOy T
where we have again used that 7(7(t)) = t.

We have established that 7' is an invariant mass-preserving Bernoulli transport-kernel
and will now head towards (2.5). Let us define the mass-shift 0, : Q@ — Q by 6. (w) =
0r(w,0)(w). (We also define the random measure 0,& by 0,§(w) := 07(,,0)&(w); the random
measure 0.&, = (0.£), is defined in the same way.) A quick consequence of the matching
property of 7 is

pit}
p{t} + p{r(t)}

= p{t},

7(0;,0) = —7(0). (3.7)
In particular we have
14(0-) = 14, (3.8)

where A := {7(0) # 0}. Note that A C {0 € supp&,, 7(0) € supp&,}. Let f: Q — [0, 00)
be measurable with Ep[f] < co. Let B € G and define g(w,s) := f(w)1{s € B}. By
assumption and the facts established above we can apply (2.9) for our specific T', to obtain

E]P’[]-Ag(90> T(O))S{T(O)}] = E]P’ |:/ ]-A(es)g(esa 7'(98, 0))5(9& {7_(957 0)} T(O7 dS)

= Ep [1ag(0o, 7(0))§{7(0)}p(0)] + Ep [Lag(67, —7(0))(0r, {—7(0)}) (1 — p(0))],

where we have used (3.8) and (3.7) for the second equality. (We suppress the dependence
on (X, &) in the notation; for instance we use 65 as a shorthand for 6,(X,&).) Recalling
the definition of p and using 0,.£{—7(0)} = £{0}, we get

Ep[14g(00, 7(0))€{7(0)}]

§{03E{7(0)}
{0} + &{7(0)}

§{03E{7(0)}
{0} +&{r(0)} ]

— B [149(00,7(0) | + B2 [1ag(0r,r(0)



Since for 0 € supp &, and 7(0) € supp &,

§{0}¢{r(0)}
{0} + &{7(0)
and Ep[f] < 0o, we get by subtraction
§{7(0)}¢{r(0)}
{0} +¢{7(0)}

Consider the function g : Q x G — [0, 00) given by

g(s) := 1{0 € supp&,, s € supp fn}%

9(6o,7(0))

S 00T O)ELO) <

{7(0)3€{0}

Ep |149(60, 7(0)) {0} +&{r(0)} ]

(3.9)

} _E, [1,49(97, —7(0))

We have

0-6{0} + 0-6{—7(0)}
0:6{—7(0)}

E{r(0)} + £{0}
oy

Since §(6y, 7(0)) < 2n? and g(6,, —7(0)) < 2n?, we can apply (3.9) with ¢ - g instead of g.
Together with monotone convergence this gives for all measurable g : 2 x G — [0, 00):

Ep [1{7(0) # 0}g(60, 7(0))&:{7(0)}] = Ep [1{7(0) # 0}g(0-, —7(0))&.{7(0)}]. ~ (3.10)
We now apply Lemma 3.4. If 0 € supp ¢, then (3.3) yields that

9(0-, =7(0)) = 1{0 € supp -&n, —7(0) € supp 6, }

= 1{7(0) € supp&,, 0 € supp &, }

/ BOLLO(X. ) # (X.6)) €adt) = 3 h(X, &, (O (0)E{m(0))  (3.11)

keN

for all measurable b : W x G — [0, 00), where
hi(t) = 1{0,(X, &) £ (X, )}1{n(0) £t for 1 <1<k — 1}.
We claim that
hi(0:, (X, €), —7,(0)) = hu(X, €, 7(0)), K € N, (3.12)

Indeed, for k > 2 and [ < k — 1 we have by covariance of 7, that 7(0,,,0) = —7(0) iff
71(1%(0)) = 0. By the matching property of 7; this is in turn equivalent to 74(0) = 7,(0).
From (3.11), (3.10) and (3.12) we obtain

Es [ [ 10 € supp810X.€) # (X)X, ) ulat

= 3 Ee [ha(X. € m(0)g(X, € (0D {(0))]

keN

= 3 Er [ (X, € 7 (0))g bty (X, ).~ (0))Eu{m(0))].

keN



Using (3.12) again we arrive at

Es { / 1{0 € supp & 04(X, €) £ (X, €)}g(X, E.) £,(d)

—Er [ 10 € supp&u, (X, €) £ (X.O}(0,(X,€). ~0)u(dr). (313
Let ¢ € supp &, be such that 6,(X,¢) = (X, ). Then &, = 0_,, and

Therefore,

Ep [ / 1{0 € supp & 60X, €) = (X, €)}g(X, €.) £,(d)

_E [ / 1{0 € supp &, 0,(X, ) = (X, €)}g(0,(X, €), —t) £a(dt)] .

Adding this to (3.13) and taking the limit as n — oo, yields (2.5) and hence the assertion
of the theorem. O

Remark 3.5. The last part of the preceding proof (starting with (3.12)) coincides with
the second half of the proof of Theorem 1.1 in [2]. But it does also close a gap in the
latter proof in that it is using Lemma 3.3 instead of the (slightly) weaker Theorem 3.6 in
[2]. This theorem is not sufficient for the conclusion made in [2].

The definitions of the previous section apply in particular in the case where W is a
singleton. In this case we can identify W x M with M and abbreviate the set of all mass-
preserving invariant weighted transport-kernels as T and the set of all mass-preserving al-
location rules as A. Moreover, the set of all mass-preserving invariant Bernoulli transport-
kernels (a subset of T) is denoted by T}, while the set of all invariant matchings (a subset
of A) is denoted by A,,.

The proof of Theorem 3.2 yields the following result without a Borel assumption on

the space W.

Proposition 3.6. Assume that P(0 ¢ supp&) = 0 and P(¢ # £%) = 0. Assume further
that

Be | (100X, € A T(E 0,00 ~H(XO €4, AcWoM (310
holds for all T € Ty. Then, for all measurable g : W x M x G — [0,00),

Er [ [ 10 # 916,50, £<dt>} —E: { [ 10 # 9atx.c0 £<dt>} . (315)

Proof: Let n € N. We apply Lemma 3.4 in the case where W is a singleton. We can
then proceed as in the proof of Theorem 3.2, to obtain as at (3.13)

Er { [ 10 # 9otx.c0 s;<dt>] —E: [ [ 10 # 910,91 s;<dt>} .

9



where &, (dt) = 1{0 € supp &, }&,(dt). Letting n — oo gives the assertion. O

Let N C M be the set of all discrete measures p on G having pu{s} € {0,1} for all
s € GG. Strengthening the assumptions of Proposition 3.6, we can use a simplified version
of the proof of Theorem 3.2 to get the following result. We refer here also to Theorem
1.1 in [2].

Proposition 3.7. Assume P(0 ¢ supp&) =0, P(¢ ¢ N) =0, and that
PO (X, §) e A)=P((X,{) € A), AWM, (3.16)

holds for all T € A, where 0. : W x M — Q) is defined by 0-(w, p) := 0,0 (w, ). Then
(3.15) holds for all measurable g : W x M x G — [0, 00).

A measure p € M is called periodic if 0, = p for some ¢t # 0. A measure Q on M is
called aperiodic if it is supported by the set of all measures 1 € M that are not periodic.
Since the Mecke equation (2.5) implies mass-stationarity, Propositions 3.6 and 3.7 give
the following result.

Proposition 3.8. Assume that P(0 ¢ supp&) = 0 and P(§ # ¢?) = 0. Assume further
that P(§ € -) is aperiodic. If either (3.14) holds for all T € Ty or P(¢ ¢ N) = 0 and
(3.16) holds for all T € A,,, then (X, &) is mass-stationary.

Remark 3.9. Assume that P(0 ¢ supp&) = 0 and P(¢ # ¢9) = 0. If (3.14) holds for all
T € T, we conjecture that (X, &) is mass-stationary without the additional aperiodicity
assumption.

Remark 3.10. Let P satisfy the assumptions of Proposition 3.8 and assume in addition
that P(§ ¢ N) = 0. If P(§ € +) is not aperiodic, then Proposition 3.8 does not apply.
However, we might assume that (3.16) holds for all 7 € A. We believe that this implies
mass-stationarity of (X,¢). In case G = R? this was established in Theorem 4.1 in [1].

Remark 3.11. Let the assumptions of Proposition 3.7 be satisfied. Example 7.1 in [6]
shows that invariance of P((X, &) € -) under mass-preserving allocation rules (in the sense
of (3.16)) is not enough to imply mass-stationarity of (X, ¢). Therefore Theorem 3.2 does
not only solve Problem 7.3 in [6] for discrete random measures (up to the fact that in
case of periodicities we have to allow the weighted transport-kernels to depend on X)
but is also the natural (and minimal) extension of Theorem 1.1 in [2] to discrete random
measures.

4 Cox transports

For any a« € M we let 11, denote the distribution of a Poisson process with intensity mea-
sure «. It is convenient to consider 11, as a probability measure on M. It is concentrated
on those p € M having locally finite support and p{s} € Ny, s € G. We consider a Cozx
process (see e.g. [4]) driven by (X, ¢), i.e. a random measure ¢ on G satisfying

P60 € ) =B | [ 1{X,60) € Y 1tla)] (@.)

Possibly extending (2, F,P), the existence of ¢ can be assumed without loss of generality.
Let €% := ( + dp and define 1% := [ 1{p+ §y € -} I (dp), o € M.
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Theorem 4.1. Assume that P(X € -) is o-finite. Then (X,£) is mass-stationary iff
(X, %) is mass-stationary. In this case even ((X,€),(%) is mass-stationary.

We will prove this theorem later in this section.

Remark 4.2. Assume that P(X € -) is o-finite and that (X, ) is mass-stationary. Then
Theorem 4.1 and (2.9) imply

Ey [ J[1a0x.0.6000 T(X 6 10,05 H@(dm} —E [ [ nan| @2)

for all A e W ® M ® M and all mass-preserving invariant weighted transport-kernels T’
from (W x M) x M x G to G.

Combining Theorem 4.1 with Proposition 3.8 gives the following characterization of
mass-stationarity via Bernoulli transport-kernels. Recall the definitions of the sets T, T,
A, and A,, given before Remark 2.3.

Corollary 4.3. Assume that P(X € -) is o-finite. Then (X, &) is mass-stationary iff

Be | [[ 140X, 00 700,05 W] =B | [ 10X )] (a3

holds for all A € W @ M and all T € Ty,

Proof: If (X,€) is mass-stationary then (4.3) follows as a special case of (4.2). Con-
versely, assume that (4.3) holds. The properties of a Poisson process imply

2 ({pn€ M : O,u = i for some s € suppp \ {0}}) =0, «a€ M. (4.4)

It follows that P(¢° € -) is aperiodic. Hence we obtain from Proposition 3.8 that (X, ¢°)
is mass-stationary. Theorem 4.1 yields mass-stationarity of (X, ¢). O

For diffuse random measures the condition (4.3) can be simplified as follows.

Corollary 4.4. Assume that P(X € -) is o-finite and that P(§ # £°) = 0. Then (X,§) is
mass-stationary iff

Ep l / 14(0r 000 X B oy 1) Hg(du)] B [ / 14(X, 1) Hg(du)} L AeWoM, (45)

holds for all T € A,,.

Proof: Using the second part of Proposition 3.8, the result can be proved as Corollary
4.3. ]

Remark 4.5. Equation (4.3) can be written as
Ep U 14(0,X,0,()T(¢°,0,ds)| =P((X,¢") € A), AcWM. (4.6)

The point here is that the random measure £ is not entering this equation explicitly, but
only implicitly, as random intensity measure of (.

11



Remark 4.6. Assume that P(X € -) is o-finite. Let T be a transport-kernel. Define
another transport-kernel 7" by

T(w,a,s,-):= /T(w,u+5s,s,~)ﬂa(du). (4.7)

Then (4.8) below implies invariance of 7", while (4.9) easily implies that 7" is mass-
preserving. If (X, &) is mass-stationary, then Remark 4.2 yields

Be | (106,060 € }T0X.6.0.09) | = B((X.) € ).

We do not know whether the validity of this equation for all such Cox transport-kernels
T’ is enough to imply mass-stationarity of (X,£). We refer here also to Problem 7.3 in
[6].

Remark 4.7. Take 7 € A, and let V := 7(¢%,0). Then (4.5) can be written as
(0vX,0v¢%) = (X, ().

Remark 4.8. Assuming that P(§ € -) is o-finite is stronger than only assuming that

P((X,&) € -) is o-finite. If, for instance, X is a constant, P(X € -) can only be o-finite,

if IP is a finite measure. We do not know, whether the results of this section remain true
in the more general case, where only P((X,¢) € -) is o-finite.

Proof of Theorem 4.1: First we recall that

/1{u € -} p,o(dp) = / {0, € -} 11, (dp), a€ M, seQG, (4.8)

and
[ 1469 € Y@ ) = [[ 11+ 0.5 € Ya@ Mald), aear wo)
The first equation comes directly from the definition of II,, while the second is from [7].

Assume now that (X, §) is mass-stationary. By Theorem 6.3 in [6] there is a stationary
o-finite measure Q on W x M such that

PO €)= AB) " [ [ a0t w)1a(o) ulds) Qdlw ). A€ We M, (110
where 0 < A(B) < oo. This means that P((X, &) € -) is the Palm measure of the projection
from W x M onto M with respect to Q, cf. (2.2).

Consider the measurable space (Q*, F*) := (2 x M x M, F @ M ® M) equipped with
the measurable flow 0% (w, a, p) := (05w, Osa, Ospt). Define a measure Q* on (2, F*) by

0 = [[ 1w 0 € I Laldn) Qld(w, ). (4.11)
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Since Q is o-finite, so is Q*. Using (4.8), we get for any measurable f : Q* — [0, 00)

/ F(6: (w, e, 1)) Q*(d(w, @, 1) = / / F (0.0, 81, 1) g (dpr) Q(d (0, )

~ [ #0000,
where the second equality comes from stationarity of Q. Hence Q* is invariant under the
flow {0% : s € G}.
Denote by (X*,&*,¢*) the identity on Q*. Our next aim is to compute the Palm

measure of ((X*,&*),¢*) wr.t. Q. Using (4.8) and (4.9), we obtain for all measurable
[ x G —[0,00) that

J[ #0000, 0.9 utds) @ (e, 0,10
=[] 16.00.0).6.1.5) n(ds) Nala) Q. )
— [[] 6.00.00.0.0u+ 8., 5) a(as) M) Q0,0
_ / / / F(O:(w, ), 11+ b, ) Mg, (dpr) a(ds) Q(d(w, o))

///f (w, ), p+ o, 8) Ha(du) ds P((X, §) € d(w, ),

where the final equality is due to (4.10) and the refined Campbell theorem (2.3) for the
pair (Q,P((X,¢) € -)). Therefore

[[ttw.am e Y@ B(x. € dw.a) = PX £ ey @1

is the Palm measure of ((X*,£*),¢(*) w.r.t. Q*. Theorem 6.3 in [6] implies that ((X,&),¢°)
is mass-stationary and that

e | [00.x.8.00. -9 9] =5 | [acxe @] @)

for any measurable g : W x M x M x G — [0,00). In particular we have

Be | [ 900.06,60) ~9) (as)] = 3 | [g0x.¢%0) s (114)

for any measurable g : W x M x G — [0,00). As o-finiteness of P(X € -) entails the same
property of P((X,(°) € -), we conclude that (X, ¢°) is mass-stationary.

To prove the other implication, we assume that (X, (°) is mass-stationary. Since
mass-stationarity is equivalent to the Mecke equation (4.14), we have

e | [[ 10X 004 80 5) e a9 )
—E: [ [ 7ta+005) -+ 30) ) T
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for all measurable f: W x M x G — [0,00). If Ep[[ f(X, u + 80,0) e(dp)] < oo, we
obtain

Ep { [ 16X 001+ 5.0 -5) uias) Hg<du>] —Ep { [ 5t b)) T

Since P(X € -) is o-finite, this remains true for any measurable f: W x M x G — [0, 00).
Using (4.9) and then (4.8) we get

e | [ 50X, 6 60 —9) el )

B V/ F(X, 11+ 6y + 8o, 5) TTe(dp) f(ds)] |

We apply this with f(w, u, s) := H{u{s} > 1, {0} > 1} f1(w, p — 05 — o, s) for a measur-
able function f; : W x M x G — [0, 00). It follows that

e | [[ 0.0 -9 Tactan) st0s)| = B2 | [[ 0t oy as)|. 419

Take B € G and measurable functions hy : W — R and h : M — R. Equation (4.15)
implies

B [ [ m@xm6.0150-5 s<ds>} — Eplln (X)E(B)I (€], (4.16)

where the measurable function A* : M — [0, 00] is defined by

h*(a) = / BT (dp). (4.17)

Our next aim is to show that the class of measurable functions defined by (4.17) is
rich enough, to conclude from (4.16) that

B [ [ m@x)90.0150-5 5<ds>] — Eeln(X)E(B)g(e) (4.18)

holds for all measurable g : M — R. For n € N and € M we define a measure (™ on
G" by

u(C) = / - / Lo(S1, s 50) tog o (@52) - iy (ds) pu(dsy),

where, for 1 <k <n — 1, the measure y,, ., on G is defined by

.....

Uy sy = 1{p =0 — ... =, ({51, -, 86}) >0} (u— 05, — ... — 0s,).

A well-known property of a Poisson process (following from (4.9) and induction) is
/ WO (C) T (dp) = a™(C), C € G® a € M.
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For k,1q,...,7, € N and relatively compact sets By, ..., By € G this gives

/u<i1+---+ik>(3? X ... x B Mo(dp) = a(By)™ - .. .- aBg)™. (4.19)
Now we consider the measurable function
h(p) ==co+ Y iy o T(BE x L x BiY), (4.20)
D] 5eeey i €N

.....

for all x1,...,2; > 0. Let the entire function f : R¥ — R be given by

U] geeny i €N

Then (4.19) and dominated convergence implies that

h'(e) = f(a(B1),....a(Br)), a€M, (4.21)
where we recall the definition (4.17) of h*. Let B € G be relatively compact and ¢ > 0.
Consider the function f(z1,...,2541) == f(21,...,2k)e "1 29, ..., 2y € R, where f

is as in (4.21). Define h as in (4.20) with (B, ..., By) replaced by (By, ..., By, B) and
with the appropriate coefficients ¢;, € R. Then h*(a) = f(a(B)),...,a(B))e B
and we get from (4.16) that

7777 ik+1

Ep { / m<esX>h<esg>1B<—s>e—cf<3+s>£<ds>} = Ep[hy (X)R(E)E(B)e P (4.22)

holds for all ¢ > 0 and all functions h in the class H of bounded measurable functions
of the form (4.21). Assume that Ep[|hi(X)|] < co. Applying (4.22) with h = 1 and hy
replaced with |hy], yields

B { [ n@x) 1=y s<ds>} — Eol[hn (X)]€(B)e ] < oo,

Therefore the class of all bounded measurable functions h satisfying (4.22) is a vector space
containing the constant functions and being closed under monotone bounded convergence.
Since H is stable under multiplication and generates the o-field M, we can apply a well-
known functional version of the monotone class theorem to obtain that (4.22) holds for
any bounded measurable function h. Assume that A > 0. Since P(X € -) is o-finite,
(4.22) remains true for any measurable hy : W — [0,00). Moreover, for ¢ — 0 we get
from monotone convergence the desired equation (4.18), and in particular

Er { [1ae.x.0-5) s<ds>} _E { [1axes s<ds>} , (4.23)

for all A € W ® M ® M that are of product form. The measure on the right-hand side
of (4.23) is finite on product sets of the form C' x {a € M : a(B) < k} x B, where
Q(X € C) < 00, B € G is compact, and k € N. Since W x M x G is the monotone union
of countably many such sets, (4.23) extends to all A € W ® M ® M. This is equivalent
to the Mecke equation (2.5) and hence to mass-stationarity of (X, &). O
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