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Abstract. We show the existence and uniqueness of the (asymptotically)

almost periodic solution to parabolic evolution equations with inhomoge-

neous boundary values on R and R±, if the data are (asymptotically) almost

periodic. We assume that the underlying homogeneous problem satisfies

the ‘Acquistapace–Terreni’ conditions and has an exponential dichotomy.

If there is an exponential dichotomy only on half intervals (−∞,−T ] and

[T,∞), then we obtain a Fredholm alternative of the equation on R in the

space of functions being asymptotically almost periodic on R+ and R−.

1. Introduction

In the present paper we study the almost periodicity of the solutions to the
parabolic inhomogeneous boundary value problem

u′(t) = Am(t)u(t) + g(t), t ∈ R,
B(t)u(t) = h(t), t ∈ R,

(1.1)

for linear operators Am(t) : Z → X and B(t) : Z → Y on Banach spaces
Z ↪→ X and Y . Typically, Am(t) is an elliptic partial differential operator acting
in, say, X = Lp(Ω), and B(t) is a boundary operator mapping Z = W 2

p (Ω) into

a ‘boundary space’ like W 1−1/p
p (∂Ω), where p ∈ (1,∞), see Example 5.6. We

want to show that the solutions u : R → X of (1.1) inherit the (asymptotic)
almost periodicity of the inhomogeneities g : R→ X and h : R→ Y . Our basic
assumptions say that Am(·) and B(·) are (asymptotically) almost periodic in
time and that the restrictions A(t) of Am(t) to the kernels of B(t) satisfy the
‘Acquistapace–Terreni’ conditions (2.1) and (2.2). In particular, the operators
A(t) are sectorial and they generate a parabolic evolution family U(t, s), t ≥ s,
which solves the homogeneous problem (1.1) with g = h = 0, see Section 2.

If U has an exponential dichotomy on R, then we show that for each al-
most periodic g and h there is a unique almost periodic solution of (1.1), see
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Proposition 5.2. Our main results concern the more complicated case that the
evolution family U has exponential dichotomies on (possibly disjoint) time in-
tervals (−∞,−T ] and [T,+∞). Theorem 5.5 then gives a Fredholm alternative
for (mild) solutions u of (1.1) in the space AAP±(R, X) of continuous functions
u : R → X being asymptotically almost periodic on R+ and on R−. In fact
we prove more detailed results on the Fredholm properties of (1.1), see Theo-
rem 4.7, and we also treat the corresponding inhomogeneous initial/final value
problems on R±, see Propositions 5.3 and 5.4.

One obtains exponential dichotomies on intervals (−∞,−T ] and [T,+∞) in
the asymptotically hyperbolic case where the operators Am(t) and B(t) con-
verge as t → ±∞ and the resulting limit operators A±∞ have no spectrum on
iR, see [5], [26], [27]. It should be noted that if the limits at +∞ and −∞
differ, then the operators in (1.1) are asymptotically almost periodic only on
R+ and R− separately, so that the space AAP±(R, X) seems to be a natural
setting for our investigations. The asymptotically hyperbolic case can occur
if one linearizes a nonlinear problem along a orbit connecting two hyperbolic
equilibria, see e.g. [25], and also the references in [18], [22].

To establish our results, we develop a theory for the evolution equation

u′(t) = Aα−1(t)u(t) + f(t), t ∈ R, (1.2)

in the continuous extrapolation spaces Xt
α−1 for the operators A(t) and

α ∈ (0, 1). We recall the definition of Xt
α−1 in Section 2. Here, we just note

that Xt
α−1 contains X and that A(t) can be extended to a generator Aα−1(t) in

Xt
α−1. To relate (1.2) with (1.1), we set f(t) = g(t) + (ωI − Aα−1(t))D(t)h(t)

for the solution operator D(t) : ϕ 7→ v of the corresponding abstract Dirichlet
problem (ωI−Am(t))v = 0 and B(t)v = ϕ, where ω ∈ R is large enough. Then
(1.1) and (1.2) have the same classical solutions, see e.g. [9] and also Section 5.

It is known that the evolution family U(t, s) can be extended to operators
Uα−1(t, s) : Xs

α−1 → X, see Section 2. So we can define mild solutions of (1.2)
as the functions u ∈ C(R, X) satisfying

u(t) = U(t, s)u(s) +
∫ t

s
Uα−1(t, τ)f(τ) dτ (1.3)

for all t ≥ s, where f(τ) belongs to Xτ
α−1. In our setting it can be shown that

mild solutions essentially coincide with pointwise solutions of (1.2), see [22] and
the comments at the beginning of Section 3. We prefer to work with the integral
equation (1.3) in order to avoid difficulties with the differential equation (1.2)
which lives in possibly time–varying extrapolation spaces.

When treating (1.3) or (1.2), it is crucial to identify suitable function spaces
for the inhomogeneity f . To that purpose we consider the multiplication oper-
ator A(·) in the space AAP±(R, X) endowed with the sup–norm. This space
possesses the extrapolation spaces AAP±α−1 corresponding to A(·). In Section 3
it is shown that the functions in these spaces can be characterized as limits

2



of functions in AAP±(R, X). Moreover, if the operators A(t) possess constant
extrapolation spaces Xt

α−1
∼= Xα−1, we have AAP±α−1 = AAP±(R, Xα−1). In

so far the spaces AAP±α−1 seem to be natural. For f ∈ AAP±α−1 we then set
Gα−1u = f if u ∈ AAP±(R, X) satisfies (1.3), thus defining a closed operator
Gα−1 in AAP±α−1. Its Fredholm properties yield the desired Fredholm alterna-
tive for the mild solutions to (1.2) described in Theorems 4.7 and 4.9.

This paper combines three lines of research: Fredholm properties of evolution
equations on the line, boundary value problems and extrapolation theory, and
almost periodic equations in the context of exponential dichotomies. We are
not aware of papers on Fredholm properties of inhomogeneous boundary value
problems in the framework of almost periodic functions, but we want to recall
related previous results. Our reformulation of a boundary value problem as an
evolution equation in extrapolation spaces seems to go back to work in boundary
control theory, see e.g. [7], [9], [13], [22] for more details and relevant references.

Almost periodicity of solutions of autonomous problems is a well studied
subject, see e.g. [4]. These results for autonomous problems were partly ex-
tended to the case of time periodic A(·), see e.g. [6], [14], [15], [28]. The case
of almost periodic A(·) was studied for special classes of parabolic problems in
e.g. [16], [19], [24]. For the general case of almost periodic A(·) satisfying the
Acquistapace–Terreni conditions we showed in [21] that for each almost peri-
odic f : R → X there is a unique mild solution u of (1.2) for α = 1 provided
that the underlying evolution family U(t, s) has an exponential dichotomy on
R. (See [17] for the converse implication.) In [21] we also established similar
results for asymptotically almost periodic functions f : R+ → X.

In our previous paper [22] we treated the Fredholmity of parabolic boundary
value problems and of the above operator Gα−1 in the framework of bounded
functions (see also [23] for corresponding perturbation theorems). There we
generalized the approach of the works [10] and [11] which studied the case of
homogeneous boundary values. In [18] one can find a detailed discussion of the
literature and the background of such Fredholm theorems as well as a rather
complete treatment of (1.2) for α = 1, i.e., for f taking values in X (also in the
non parabolic situation).

After discussing the above mentioned preparations in Section 2 and 3, we
prove our main theorems on (1.2) in Section 4. In the last section we then treat
(1.1) by means of the results on (1.2) and discuss an example arising in pde.

2. Notations, assumptions, and preliminaries

We denote by D(A), N(A), R(A), σ(A), ρ(A) the domain, kernel, range,
spectrum and resolvent set of a linear operator A. Moreover, we set R(λ,A) :=
(λI − A)−1 = (λ − A)−1 for λ ∈ ρ(A), L(X,Y ) is the space of bounded linear
operators between Banach spaces X and Y , and L(X) := L(X,X). By c =
c(α, . . . ) we designate a generic constant depending on quantities α, · · · . For
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an unbounded closed interval J , the space of bounded continuous functions
f : J → X (vanishing at ±∞) is denoted by Cb(J,X) (by C0(J,X)).

We investigate linear operators A(t), t ∈ R, on a Banach space X subject to
the following hypotheses introduced by P. Acquistapace and B. Terreni in [1]
and [2]. There are constants ω ∈ R, θ ∈ (π/2, π), K > 0 and µ, ν ∈ (0, 1] such
that µ+ ν > 1 and

λ ∈ ρ(A(t)− ω), ‖R(λ,A(t)− ω)‖ ≤ K

1 + |λ|
, (2.1)

‖(A(t)− ω)R(λ,A(t)− ω) [R(ω,A(t))−R(ω,A(s))]‖ ≤ K |t− s|
µ

|λ|ν
(2.2)

for all t, s ∈ R and λ ∈ Σθ := {λ ∈ C\{0}with | arg(λ)| ≤ θ}. (Observe that the
domains D(A(t)) are not required to be dense.) Occasionally, we also consider
operators A(t) satisfying (2.1) and (2.2) for t and s in an interval J . In this
case the results stated below hold in an analogous way.

The conditions (2.1) and (2.2) imply that the operators A(·) generate an
evolution family U(t, s) for t, s ∈ R with t ≥ s. More precisely, for t > s, the
map (t, s) 7→ U(t, s) ∈ L(X) is continuous and continuously differentiable in t,
U(t, s) maps X into D(A(t)), and it holds ∂tU(t, s) = A(t)U(t, s). Moreover,
U(t, s) and (t− s)A(t)U(t, s) are exponentially bounded. We further have

U(t, s)U(s, r) = U(t, r) and U(t, t) = I for t ≥ s ≥ r.

Finally, for s ∈ R and x ∈ D(A(s)), the function t 7→ u(t) = U(t, s)x is
continuous at t = s and u is the unique solution in C([s,∞), X)∩C1((s,∞), X)
of the Cauchy problem

u′(t) = A(t)u(t), t > s, u(s) = x.

These facts have been established in [1] and [2], see also [3], [20], [29].
We introduce the inter- and extrapolation spaces for A(t). We refer to [3],

[12], [20] for proofs and more details. Let A be a sectorial operator on X (i.e.,
(2.1) holds with A(t) replaced by A) and α ∈ (0, 1). We define the new norm
on D(A) by

‖x‖Aα := supr>0 ‖rα(A− ω)R(r,A− ω)x‖,

and consider the continuous interpolation spaces XA
α := D(A)

‖·‖Aα which are
Banach spaces endowed with the norms ‖·‖Aα . For convenience we further write
XA

0 := X, ‖x‖A0 := ‖x‖, XA
1 := D(A) and ‖x‖A1 := ‖(ω−A)x‖. We also need the

closed subspace X̂A := D(A) of X. Moreover, we define the extrapolation space
XA
−1 as the completion of X̂A with respect to the norm ‖x‖A−1 := ‖R(ω,A)x‖.

Then A has a unique continuous extension A−1 : X̂A → XA
−1. The operator

A−1 satisfies (2.1) in XA
−1, it is densely defined, it has the same spectrum as

A, and it generates the semigroup etA−1 on XA
−1 being the extension of etA. As
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above, we can then define the space XA
α−1 := (X−1)A−1

α endowed with the norm

‖x‖Aα−1 := ‖x‖A−1
α = supr>0 ‖rαR(r,A−1 − ω)x‖.

The restriction Aα−1 : XA
α → XA

α−1 of A−1 is sectorial in XA
α−1 with the same

type as A, it has the same spectrum as A, and the semigroup etAα−1 on XA
α−1

is the extension of etA. Observe that ω − Aα−1 : XA
α → XA

α−1 is an isometric
isomorphism. We will frequently use the continuous embeddings

D(A) ↪→ XA
β ↪→ D((ω −A)α) ↪→ XA

α ↪→ X̂A ⊂ X,

X ↪→ XA
β−1 ↪→ D((ω −A−1)α) ↪→ XA

α−1 ↪→ XA
−1

(2.3)

for all 0 < α < β < 1, where the fractional powers are defined as usually. We
note that XA

α−1, 0 ≤ α < 1, is the completion with respect to ‖ · ‖Aα−1 of each
of the spaces in (2.3) which are contained in XA

α−1; in particular of X.
Given operators A(t), t ∈ R which satisfy (2.1), we set

Xt
α := XA(t)

α , Xt
α−1 := X

A(t)
α−1 , X̂t := X̂A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embed-
dings in (2.3) hold and the norms of the embeddings are uniformly bounded for
t ∈ R. For a closed interval J , we further define on E = E(J) := Cb(J,X) the
multiplication operator A(·) by

(A(·)f)(t) := A(t)f(t) for all t ∈ J,
D(A(·)) := {f ∈ E : f(t) ∈ D(A(t)) for all t ∈ J, A(·)f ∈ E}.

It is clear that the operator A(·) is sectorial. We can thus introduce the spaces

Eα := EA(·)
α , Eα−1 := E

A(·)
α−1 , and Ê := D(A(·))

for α ∈ [0, 1], where E0 := E and E1 := D(A(·)). We observe that E−1 ⊆∏
t∈J X

t
−1 and that the extrapolated operator A(·)−1 : Ê −→ E−1 is given by

(A(·)−1f)(t) := A−1(t)f(t) for t ∈ J and f ∈ E. Further, Eα−1 has the norm

‖f‖α−1 := sup
r>0

sup
s∈J
‖rαR(r,A−1(s)− ω)f(s)‖,

and we have f(t) ∈ Xt
α−1 for each t ∈ J if f ∈ Eα−1. Since R(n,Aα−1(·))

is the resolvent of the densely defined sectorial operator Aα−1(·), we have
nR(n,Aα−1(·))f → f in Eα−1 as n→∞, for each f ∈ Eα−1 and 0 ≤ α < 1.

The next lemma allows to extend the evolution family U(t, s) to the extrap-
olated spaces Xt

α−1, see Proposition 2.1 and Remark 3.12 of [22] for the proof.

Proposition 2.1. Assume that (2.1) and (2.2) hold and let 1 − µ < α < 1.
Then the following assertions hold for s < t ≤ s+ t0 and t0 > 0.
(a) The operators U(t, s) have continuous extensions Uα−1(t, s) : Xs

α−1 → X

satisfying
‖Uα−1(t, s)‖L(Xs

α−1,X
t
β) ≤ c(α, t0)(t− s)α−β−1 , (2.4)
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and Uα−1(t, s)x = Uγ−1(t, s)x for 1− µ < γ < α < 1, β ∈ [0, 1], and x ∈ Xs
α−1.

(b) The map {(t, s) : t > s} 3 (t, s) 7−→ Uα−1(t, s)f(s) ∈ X is continuous for
f ∈ Eα−1.

Exponential dichotomy is another important tool in our study, cf. [8], [20],
[27]. We recall that an evolution family U(·, ·) has an exponential dichotomy on
an interval J if there exists a family of projections P (t) ∈ L(X), t ∈ J , being
strongly continuous with respect to t, and constants δ,N > 0 such that

(a) U(t, s)P (s) = P (t)U(t, s),
(b) U(t, s) : Q(s)(X)→ Q(t)(X) is invertible with the inverse Ũ(s, t),
(c) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖Ũ(s, t)Q(t)‖ ≤ Ne−δ(t−s),

for all s, t ∈ J with s ≤ t, where Q(t) := I − P (t) is the ‘unstable projection.’
One further defines Green’s function by

Γ(t, s) =

{
U(t, s)P (s), t ≥ s, t, s ∈ J,
−Ũ(t, s)Q(s), t < s, t, s ∈ J.

In the parabolic case one easily obtains regularity results for Green’s function
and the dichotomy projections, see e.g. [27, Proposition 3.18]. For instance, if J
is bounded from below, then we have ‖A(t)Q(t)‖ ≤ c(η) for all t > η+inf J and
each η > 0 since A(t)Q(t) = A(t)U(t, t − η)Ũ(t − η, t)Q(t). Similarly, it holds
‖A(t)Q(t)‖ ≤ c for all t ∈ J if J is unbounded from below. As a consequence
P (t) = I−Q(t) leaves invariant X̂t and Xt

α for each α ∈ [0, 1] and t ∈ J\{inf J}.
In the next proposition (shown in Proposition 2.2 and Remark 3.12 of [22]) we
state some properties of Γ(t, s) and Q(t) in extrapolation spaces. We use the
convention ±∞+r = ±∞ for r ∈ R, and we set J ′ = J\{sup J}, i.e., J = J ′ if J
is unbounded from above. Moreover, we write U0(t, s) := U(t, s), P0(t) := P (t),
and Q0(t) := Q(t), where Xt

0 = X by definition.

Proposition 2.2. Assume that (2.1) and (2.2) hold and that U(t, s) has an
exponential dichotomy on an interval J . Let η > 0 and 1 − µ < α ≤ 1. Then
the operators P (t) and Q(t) have continuous extensions Pα−1(t) : Xt

α−1 → Xt
α−1

and Qα−1(t) : Xt
α−1 → X, respectively, for every t ∈ J ′; which are uniformly

bounded for t < sup J − η. Moreover, the following assertions hold for t, s ∈ J ′
with t ≥ s.

(a) Qα−1(t)Xt
α−1 = Q(t)X;

(b) Uα−1(t, s)Pα−1(s) = Pα−1(t)Uα−1(t, s);
(c) Uα−1(t, s) : Qα−1(s)(Xs

α−1) → Qα−1(t)(Xt
α−1) is invertible with the in-

verse Ũα−1(s, t);
(d) ‖Uα−1(t, s)Pα−1(s)x‖ ≤ N(α, η) max{(t − s)α−1, 1}e−δ(t−s)‖x‖sα−1 for

x ∈ Xs
α−1 and s < t < sup J − η;

(e) ‖Ũα−1(s, t)Qα−1(t)x‖ ≤ N(α, η)e−δ(t−s)‖x‖tα−1 for x ∈ Xt
α−1 and s ≤

t < sup J − η.
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(f) Let J0 ⊂ J ′ be a closed interval and f ∈ Eα−1(J0). Then P (·)f ∈
Eα−1(J0) and Q(·)f ∈ Cb(J0, X).

Using this proposition, we define

Γα−1(t, s) =

{
Uα−1(t, s)Pα−1(s), t ≥ s, t, s ∈ J,
−Ũ(t, s)Qα−1(s), t < s, t, s ∈ J.

In some results we shall assume that A(·) is asymptotically hyperbolic, i.e.,
there are two operators A−∞ : D(A−∞)→ X and A+∞ : D(A+∞)→ X which
satisfy (2.1) and

lim
t→±∞

R(ω,A(t)) = R(ω,A±∞) (in L(X)); (2.5)

σ(A+∞) ∩ iR = σ(A−∞) ∩ iR = ∅. (2.6)

Under assumptions (2.1), (2.2), (2.5), (2.6), one can show that

U(·, ·) has exponential dichotomies on [T ′,+∞) and (−∞,−T ′]
for some T ′ ∈ R. We fix a number T ≥ 0 such that T > T ′.

(2.7)

See [27, Theorem 2.3], as well as [5] and [26] for earlier results under additional
assumptions. We further need a result on embeddings of extrapolation spaces
which we state in the more general setting of C0-semigroups, see e.g. [12].

Lemma 2.3. Let A be the generator of a C0-semigroup T (·) on a Banach space
Z. Let Y be an T (·)-invariant closed subspace of Z. Endow Y with the norm of
Z and consider the restriction AY of A to Y . Then the space Y AY

−1 is canonically
embedded into ZA−1 as a closed subspace.

Proof. The operator AY generates the semigroup of the restrictions TY (t) ∈
L(Y ) of T (t). By rescaling we may assume that ‖TY (t)‖ ≤ ‖T (t)‖ ≤ ce−εt for
some ε > 0 and all t ≥ 0. Observe that then A and AY are invertible and that

A−1
Y =

∫ ∞
0

TY (t)y dt =
∫ ∞

0
T (t)y dt = A−1y

for each y ∈ Y . We mostly write A instead of AY , and we endow the extrap-
olation spaces of A and AY with the norm ‖x‖−1 = ‖A−1

−1x‖. By definition, it
holds

Y A
−1 = {y = (yn) +NY : (yn) = (yn)n∈N ⊂ Y is Cauchy for ‖ · ‖−1},

where NY = {(yn) ⊂ Y : yn → 0 for ‖ · ‖−1}. We identify y ∈ Y with the
element (y)n∈N + NY of Y A

−1, thus considering Y as a dense subspace of Y A
−1.

We define the operator

Φ : Y A
−1 −→ ZA−1, Φy = (yn) +NZ , where yn ∈ Y, yn → y in Y A

−1.

If (yn), (ỹn) ⊂ Y converge to y in Y A
−1, then yn − ỹn → 0 as n→∞ for ‖ · ‖−1.

Hence, (yn− ỹn) ∈ NZ , and so Φ is well defined. Let y ∈ Y A
−1 such that Φy = 0.
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This means that (yn) ∈ NZ , and hence yn → 0 in ‖ · ‖−1. Therefore (yn) ∈ NY ,
and thus y = 0. It is clear that Φ is linear. It is also bounded since

‖Φy‖ZA−1
= inf

(zn)∈NZ
‖(yn − zn)‖∞ ≤ inf

(zn)∈NY
‖(yn − zn)‖∞ = ‖y‖Y A−1

.

We have shown that Y A
−1 ↪→ ZA−1 with the canonical embedding Φ. To prove

that the range R(Φ) is closed in ZA−1, we take zj = Φyj ∈ R(Φ) ⊆ ZA−1 such
that zj → z in ZA−1 as j →∞. Then A−1

−1zj =: wj converges in Z to w := A−1
−1z.

We further claim that

A−1
−1Φ = (AY )−1

−1. (2.8)

Indeed, for x ∈ Y one has A−1
−1Φx = A−1x = A−1

Y x = (AY )−1
−1x. So assertion

(2.8) follows from the density of Y in Y A
−1. Equation (2.8) then yields

(AY )−1
−1yj = A−1

−1zj → w (inZ).

Since Y is closed in Z and (AY )−1
−1yj ∈ Y , we obtain (AY )−1

−1yj → w in Y .
As a consequence, yj converges in Y A

−1 to y := (AY )−1w. We conclude that
zj = Φyj → Φy in ZA−1 which means that R(Φ) is closed. �

We further introduce the concept of almost periodicity, see e.g. [4], [19].

Definition 2.4. Let Y be a Banach space. A continuous function g : R → Y

is called almost periodic if for every ε > 0 there exist a set P (ε) ⊆ R and a
number `(ε) > 0 such that each interval (a, a+ `(ε)), a ∈ R, contains an almost
period τ = τε ∈ P (ε) and the estimate ‖g(t+ τ)− g(t)‖ ≤ ε holds for all t ∈ R
and τ ∈ P (ε). The space of almost periodic functions is denoted by AP (R, Y ).

We recall that AP (R, Y ) is a closed subspace of the space of bounded and
uniformly continuous functions, see [19, Chapter 1]. For a closed unbounded
interval J , we also define the space

AP (J, Y ) := {g : J → Y : ∃ g̃ ∈ AP (R, Y ) s.t. g̃|J = g}

of almost periodic functions on J . We remark that the function g̃ in the above
definition is uniquely determined, cf. [4, Proposition 4.7.1]. The following notion
is more important for our investigations.

Definition 2.5. Let J = [t0,∞). A continuous function g : J → Y is called
asymptotically almost periodic if for every ε > 0 there exists a set P (ε) ⊆ J

and numbers s(ε), `(ε) > 0 such that each interval (a, a+ `(ε)), a ≥ 0, contains
an almost period τ = τε ∈ P (ε) and the estimate ‖g(t+ τ)− g(t)‖ ≤ ε holds for
all t ≥ s(ε) and τ ∈ P (ε). The space of asymptotically almost periodic functions
is denoted by AAP (J, Y ).

Due to e.g. [4, Theorem 4.7.5], these spaces are related by the equality

AAP ([t0,∞), Y ) = AP ([t0,∞), Y )⊕ C0([t0,∞), Y ). (2.9)
8



Analogously, we define the asymptotic almost periodicity on J = (−∞, t0], and
one also has

AAP ((−∞, t0], Y ) = AP ((−∞, t0], Y )⊕ C0((−∞, t0], Y ). (2.10)

Finally, we recall that M(·)f ∈ (A)AP (J, Y ) if f ∈ (A)AP (J, Y ) and M(·) ∈
(A)AP (J,L(Y )). This follows from the above definitions if one takes into ac-
count that we can find common pseudo periods for f and M , cf. [19, p.6].

3. Amost periodicity of parabolic evolution equations

In this section of the paper we study the parabolic evolution equation

u′(t) = Aα−1(t)u(t) + f(t), t ∈ J, (3.1)

where J is an unbounded closed interval, f ∈ Eα−1(J) and A(t), t ∈ R, are
linear operators satisfying the assumptions (2.1) and (2.2). Let U(t, s), t ≥ s,
be the evolution family generated by A(t), t ∈ R, and be Uα−1(t, s), t ≥ s, its
extrapolated evolution family defined in Proposition 2.1 for each α ∈ (1−µ, 1].
A mild solution of (3.1) is a function u ∈ C(J,X) satisfying

u(t) = U(t, s)u(s) +
∫ t

s
Uα−1(t, τ)f(τ) dτ, ∀ t ≥ s in J. (3.2)

In Proposition 2.6 of [22], we showed that a mild solution actually satisfies
(3.1) pointwise in Xt

β−1 for each β ∈ [0,min{ν, α}) and t ∈ J . Conversely, if
u ∈ C1(J,X) solves (3.1) (and thus u ∈ Eα(J)), then Proposition 2.1(iv) of [23]
implies that

∂+
τ U(t, τ)u(τ) = −Uα−1(t, τ)Aα−1(τ)u(τ) + U(t, τ)u′(τ) = Uα−1(t, τ)f(τ)

in X for all t > τ . As a result,

U(t, t− ε)u(t− ε)− U(t, s)u(s) =
∫ t−ε

s
Uα−1(t, τ)f(τ) dτ

for t > t− ε > s. Letting ε→ 0, we conclude that u is a mild solution of (3.1).

3.1. Evolution equations on R. In this subsection we study the almost pe-
riodicity of the solutions to (3.1) on J = R under the following assumptions.

(H1) The operators A(t), t ∈ R, satisfy the assumptions (2.1) and (2.2).
(H2) The evolution family U generated by A(·) has an exponential dichotomy

on R with constants N, δ > 0, projections P (t), t ∈ R, and Green’s
function Γ.

(H3) R(ω,A(·)) ∈ AP (J,L(X)).
It is not difficult to verify that then R(λ,A(·)) ∈ AP (J,L(X)) for λ ∈ ω+ Σθ ∪
{0}. We want to solve (3.2) for f belonging to the space APα−1(R) which is
defined by

APα−1(R) := {f ∈ Eα−1(R) : ∃ (fn) ∈ AP (R, X) converging to f in Eα−1(R)}
= {f ∈ E−1(R) : ∃ (fn) ∈ AP (R, X) converging to f in Eα−1(R)}
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for α ∈ [0, 1]. This space is endowed with the norm of Eα−1(R). Note that
AP0(R) = AP (R, X).

We first characterize the space APα−1(R). On F := AP (R, X), we define the
multiplication operator

(A(·)v)(t) := A(t)v(t), t ∈ R,
D(A(·)) := {v ∈ F : f(t) ∈ D(A(t)) for all t ∈ R, A(·)v ∈ F}.

Assumptions (H3) and (2.1) imply that the function R(λ,A(·))v belongs to
F for every v ∈ F and λ ∈ ω + Σθ ∪ {0}. Therefore, the operator A(·) is
sectorial on F with the resolvent R(λ,A(·)). We can thus introduce the spaces
Fα−1 := F

A(·)
α−1 for each α ∈ [0, 1), where we set F0 := F and F1 := D(A(·)).

Proposition 3.1. Let (2.1) and (H3) hold. We then have Fα−1
∼= APα−1(R)

for each α ∈ [0, 1].

Proof. We first note that

‖f‖Fα−1 = ‖f‖Eα−1 for all f ∈ F and α ∈ [0, 1]. (3.3)

The embedding F−1 ↪→ E−1 holds due to Lemma 2.3. Therefore we obtain

Fα−1 = {f ∈ F−1 : ∃ fn ∈ AP (R, X), fn → f in ‖ · ‖Fα−1 = ‖ · ‖Eα−1}
↪→ {f ∈ E−1 : ∃ fn ∈ AP (R, X), fn → f in ‖ · ‖Fα−1 = ‖ · ‖Eα−1}
= APα−1(R).

The asserted isomorphy now follows from (3.3). �

These spaces are much simpler in the case of constant extrapolation spaces.

Proposition 3.2. Let (2.1) and (H3) hold. Assume that Xt
α−1
∼= X0

α−1 =:
Xα−1 for some α ∈ [0, 1] and every t ∈ R with uniformly equivalent norms.
Then it holds Fα−1

∼= APα−1(R) ∼= AP (R, Xα−1).

Proof. Due to the assumptions, the norms of Eα−1 and of Cb(R, Xα−1) are
equivalent on E, so that Eα−1

∼= Cb(R, Xα−1). Take f ∈ AP (R, Xα−1) ↪→ Eα−1

and the sequence fn := nR(n,Aα−1(·))f for n > ω. We first show that
fn ∈ AP (R, X). For that purpose, let x ∈ Xα−1 and take xk ∈ X converg-
ing to x in Xα−1. Due to (H3), we have nR(n,A(·))xk ∈ AP (R, X). Since
R(n,Aα−1(t)) is bounded from Xt

α−1 to X uniformly in t (see e.g. [23, (2.8)],
we derive that nR(n,Aα−1(·))x ∈ AP (R, X). The same is true for functions
f = φ(·)x, with scalar almost periodic function φ and x ∈ Xα−1. Since the
span of those functions is dense in AP (R, Xα−1) by [4, Theorem 4.5.7], it fol-
lows that fn ∈ AP (R, X). Observing that fn → f in Eα−1, we conclude that
f ∈ APα−1(R). For the converse, let f ∈ APα−1(R) and AP (R, X) 3 fn → f

in Eα−1
∼= Cb(R, Xα−1). The continuous embedding X ↪→ Xα−1 implies that

fn ∈ AP (R, Xα−1), and hence f ∈ AP (R, Xα−1). �

We state the main result of this subsection.
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Theorem 3.3. Assume that (H1), (H2) and (H3) hold. Let f ∈ APα−1(R)
for some α ∈ (1 − µ, 1]. Then the evolution equation (3.1) has a unique mild
solution u ∈ AP (R, X) given by

u(t) =
∫

R
Γα−1(t, τ)f(τ) dτ, t ∈ R. (3.4)

Proof. For f ∈ Eα−1, one can show that the function u given by (3.4) is a
bounded mild solution of (3.1), and that every bounded mild solution is given
by (3.4). (See e.g. the remarks after Theorem 3.10 in [22].) This fact shows
the uniqueness of bounded mild solutions to (3.1). Take a sequence (fn) ⊂
AP (R, X) converging to f in Eα−1. In Theorem 4.5 of [21] we have shown that
the functions

un(t) =
∫

R
Γ(t, τ)fn(τ) dτ, t ∈ R, (3.5)

belongs to AP (R, X). Proposition 2.2 further yields

‖u(t)− un(t)‖ ≤
∫

R
‖Γα−1(t, τ)‖L(Xτ

α−1,X)‖fn(τ)− f(τ)‖τα−1 dτ

≤ c ‖fn − f‖Eα−1 , t ∈ R.

Therefore un → u in Cb(R, X) as n→∞, and so u ∈ AP (R, X). �

3.2. Forward evolution equations. We investigate the parabolic initial value
problem

u′(t) = Aα−1(t)u(t) + f(t), t ≥ t0,
u(t0) = x,

(3.6)

under the following assumptions.

(H1’) The operators A(t), t > a, satisfy the assumptions (2.1) and (2.2) for
t, s > a.

(H2’) The evolution family U generated by A(·) has an exponential dichotomy
on (a,∞) with projections P (t), t > a, constants N, δ > 0, and Green’s
function Γ.

(H3’) R(ω,A(·)) ∈ AAP ([t0,∞),L(X)) for some t0 > a.

Let now t0 > a, 1 − µ < α ≤ 1, x ∈ D(A(t0)) and f ∈ Eα−1([t0,∞)). Assume
that (H1’) and (H2’) hold. Then a mild solution of (3.6) is a function u ∈
C([t0,∞), X) being a mild solution of the evolution equation in the first line
of (3.6) and satisfying u(t0) = x. We have shown in [22, Proposition 2.7] that
there is a bounded mild function u of (3.6) if and only if

Q(t0)x = −
∫ ∞
t0

Ũ(t0, s)Qα−1(s)f(s) ds. (3.7)

In this case the mild solution of (3.6) is uniquely given by

u(t) = U(t, t0)P (t0)x+
∫ t

t0

Uα−1(t, s)Pα−1(s)f(s) ds
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−
∫ +∞

t
Ũα−1(t, s)Qα−1(s)f(s) ds

= U(t, t0)P (t0)x+
∫ +∞

t0

Γα−1(t, s)f(s) ds, t ≥ t0. (3.8)

We want to study the asymptotic almost periodicity of this solution in the case
of an asymptotically almost periodic f . For a closed unbounded interval J 6= R,
we introduce the space

AAPα−1(J) := {f ∈ Eα−1(J) : ∃ (fn) ⊆ AAP (J,X), fn → f in Eα−1(J)},

endowed with the norm of Eα−1(J). We define the multiplication operator A(·)
on AAP (J,X) by

(A(·)v)(t) := A(t)v(t), t ∈ J,
D(A(·)) := {v ∈ AAP (J,X) : v(t) ∈ D(A(t)) ∀ t ∈ J, A(·)v ∈ AAP (J,X)}.

Assumption (H3’) and (2.1) imply that the function R(λ,A(·))v belongs to
AAP ([t0,∞), X) for every v ∈ AAP ([t0,∞), X) and λ ∈ ω + Σθ ∪ {0}. There-
fore, the operator A(·) is sectorial on AAP ([t0,∞), X). We can thus introduce
also the spaces AAP ([t0,∞), X)A(·)

α−1 for α ∈ [0, 1]. These spaces can be charac-
terized as in the previous subsection.

Proposition 3.4. Let (2.1) and (H3’) hold. Then we have

AAPα−1([t0,∞)) ∼= AAP ([t0,∞), X)A(·)
α−1.

for each α ∈ [0, 1]. If, in addition, Xt
α−1

∼= Xα−1 with uniform equivalent
norms for some 1− µ < α ≤ 1 and a Banach space Xα−1, then we obtain

AAPα−1([t0,∞)) ∼= AAP ([t0,∞), Xα−1).

We can now prove the main result of this subsection.

Theorem 3.5. Let 1− µ < α ≤ 1. Assume that (H1’), (H2’), and (H3’) hold
and that x ∈ D(A(t0)) and f ∈ AAPα−1([t0,∞)) satisfy (3.7). Then the unique
bounded mild solution u of (3.6) is asymptotically almost periodic.

Proof. Let f ∈ AAPα−1([t0,∞)) and x ∈ X satisfy (3.7). Take a sequence
(fn) ⊂ AAP ([t0,∞), X) converging to f in Eα−1([t0,∞)). Due to [21, Theorem
5.4], the functions

un(t) = U(t, t0)P (t0)x+
∫ ∞
t0

Γ(t, s)fn(s) ds, t ≥ t0, n ∈ N

are asymptotically almost periodic in X (and they are mild solutions of (3.6)
for the inhomogeneities fn and the initial values xn = un(t0)). As in the proof
of Theorem 3.3, we see that un → u in Cb([t0,∞), X). So we conclude that
u ∈ AAP ([t0,∞), X). �
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3.3. Backward evolution equations. As a counterpart to the previous sub-
section, we now study the parabolic final value problem

u′(t) = Aα−1(t)u(t) + f(t), t ≤ t0,
u(t0) = x.

(3.9)

Mild solutions of (3.9) are defined as in the forward case. We make the following
assumptions.
(H1”) The operators A(t), t < b, satisfy (2.1) and (2.2) for t, s < b.
(H2”) The evolution family U has an exponential dichotomy on (−∞, b) with

projections P (t), t < b, constants N, δ > 0, and Green’s function Γ.
(H3”) R(ω,A(·)) ∈ AAP ((−∞, t0],L(X)) for some t0 < b.

Let 1 − µ < α ≤ 1, x ∈ X, and f ∈ Eα−1((−∞, t0]). We have
shown in [22, Proposition 2.8] that there is a unique bounded mild solution
u ∈ C((−∞, t0], X) of (3.9) on (−∞, t0] if and only if

P (t0)x =
∫ t0

−∞
Uα−1(t0, s)Pα−1(s)f(s)ds, (3.10)

in which case u is given by

u(t) = Ũ(t, t0)Q(t0)x+
∫ t

−∞
Uα−1(t, s)Pα−1(s)f(s) ds

−
∫ t0

t
Ũα−1(t, s)Qα−1(s)f(s) ds (3.11)

for t ≤ t0. As before, we obtain the asymptotic almost periodicity of
this function if f belongs to AAPα−1((−∞, t0]). We note that the space
AAPα−1((−∞, t0]) can de described as in Proposition 3.4.

Theorem 3.6. Assume that (H1”), (H2”), and (H3”) hold. Let x ∈ X and
f ∈ AAPα−1((−∞, t0]) satisfy (3.10). Then the unique bounded mild solution
u of (3.9) given by (3.11) belongs to AAP ((−∞, t0], X).

Proof. Let x and f be as in the assertion. Take a sequence (fn) in
AAP ((−∞, t0], X) converging to f in Eα−1((−∞, t0]). Define the function

un(t) = Ũ(t, t0)Q(t0)x+
∫ t0

−∞
Γα−1(t, s)Qα−1(s)fn(s) ds

for t ≤ t0 and n ∈ N. Using the same arguments as in [21, Theorem 5.4], we
can show that un ∈ AAP ((−∞, t0], X) for all n ∈ N. Finally, as in Theorem 3.3
we see that un → u in Cb((−∞, t0], X), so that u ∈ AAP ((−∞, t0], X). �

4. Fredholmity of almost periodic parabolic evolution equations

on R

Consider a family of operators A(t), t ∈ R, on X satisfying the hypotheses
(2.1), (2.2), and (2.7). Again, U(t, s) is the evolution family on X generated by
A(·) and Uα−1(t, s) is its extrapolation on Xs

α−1 for 1−µ < α ≤ 1. Both families
13



have exponential dichotomies on (−∞,−T ] and [T,+∞) for some T ≥ 0 with
projections P (·) and Pα−1(·), respectively. We further assume that

(H4) R(ω,A(·))|[T,∞) ∈ AAP ([T,∞),L(X)) and R(ω,A(·))|(−∞,−T ] ∈
AAP ((−∞,−T ],L(X)) for the number T from (2.7).

We will work on the space

AAP± = AAP±(R, X) := {f ∈ Cb(R, X) : f |R± ∈ AAP (R±, X)}.

of functions being asymptotically almost periodic on R− and R+, separately.
This space is endowed with the sup–norm. The following description of this
space turns out to be crucial for our work.

Lemma 4.1. Let (2.1) and (H4) hold. We then have AAP± = {f ∈ Cb(R, X) :
f |(−∞,−a] ∈ AAP ((−∞,−a], X), f |[a,∞) ∈ AAP ([a,∞), X)} =: F a for each
a ≥ 0.

Proof. Let a ≥ 0 and f ∈ Cb(R, X) such that

f+ := f |[a,∞) = g+ + h+ ∈ C0([a,∞), X)⊕AP ([a,∞), X);

f− := f |(−∞,−a] = g− + h− ∈ C0((−∞,−a], X)⊕AP ((−∞,−a], X).

It is clear that h+ and h− can be extended to functions in AP (R+, X) and
AP (R−, X) respectively. The functions g̃± := f |R± − h± then belong to
C0(R±, X), i.e, f |R± = g̃± + h± ∈ AAP (R±, X). So we have shown the inclu-
sion F a ⊂ AAP±. The other inclusion is clear. �

As in the previous sections we define the multiplication operator A(·) on
AAP±(R, X) by

(A(·)v)(t) := A(t)v(t), t ∈ R,

D(A(·)) := {v ∈ AAP±(R, X) : f(t) ∈ D(A(t)) ∀ t ∈ R, A(·)v ∈ AAP±}.

Assumption (H4) shows that function R(λ,A(·))f belongs to AAP± for every
f ∈ AAP± and λ ∈ ω + Σθ ∪ {0}, and thus the operator A(·) is sectorial in
AAP± with the resolvent R(λ,A(·)). So we can define the extrapolation spaces

AAP±α−1 = AAP±α−1(R) := (AAP±(R, X))A(·)
α−1 for α ∈ [0, 1],

which are characterized in the following proposition.

Proposition 4.2. Let (2.1) and (H4) hold, and let α ∈ [0, 1]. Then we have

AAP±α−1
∼= {f ∈ Eα−1(R) : f |[T,∞) ∈ AAPα−1([T,∞)),

f |(−∞,−T ] ∈ AAPα−1((−∞,−T ])}.

Assume that, in addition, Xt
α−1
∼= Xα−1 with uniformly equivalent norms for

some Banach space Xα−1 and some α ∈ [0, 1]. Then we have

AAP±α−1
∼= {f ∈ Cb(R, Xα−1) : f |[T,∞) ∈ AAP ([T,∞), Xα−1),

f |(−∞,−T ] ∈ AAP ((−∞,−T ], Xα−1)}.
14



Proof. Due to Lemma 4.1 the space AAP±−1 is embedded into E−1(R). Let
f ∈ AAP±α−1. Then there are fn ∈ AAP± converging to f in Eα−1. The re-
strictions of fn to (−∞,−T ] and to [T,+∞) converge to the corresponding re-
strictions of f in Eα−1((−∞,−T ]) and Eα−1([T,+∞)), respectively. Therefore
the restrictions of f belong to AAPα−1((−∞,−T ]) and to AAPα−1([T,+∞)),
respectively, which shows the inclusion ‘⊂’. Let f belong to the space on the
right side in the first assertion. The functions fn = nR(n,Aα−1(·))f then be-
long to Cb(R, X) for n ≥ ω, and their restrictions belong to AAP ((−∞,−T ], X)
and to AAP ([T,+∞), X) (since R(n,Aα−1(·)) is the resolvent of the respective
multiplication operator Aα−1(·)). Lemma 4.1 thus yields fn ∈ AAP±. Since
fn → f in Eα−1 as n→∞, the first assertion holds. The second assertion now
follows from the results of the previous section. �

As in [22], we define the operator Gα−1 on AAP±α−1(R, X) in the following
way. A function u ∈ AAP±(R, X) belongs to D(Gα−1) and Gα−1u = f if there
is a function f ∈ AAP±α−1 such that (3.2) holds; i.e.,

u(t) = U(t, s)u(s) +
∫ t

s
Uα−1(t, τ)f(τ) dτ

for all t, s ∈ R with t ≥ s. In particular, G0 is defined on AAP±(R, X) by (3.2),
replacing Uα−1 by U . To study the operator Gα−1, we introduce the stable and
unstable subspaces of Uα−1(·, ·).

Definition 4.3. Let t0 ∈ R. We define the stable space at t0 by

Xs(t0) := {x ∈ Xt0
α−1 : lim

t→+∞
‖Uα−1(t, t0)x‖ = 0},

and the unstable space at t0 by

Xu(t0) := {x ∈ X : ∃ a mild solution u ∈ C0((−∞, t0], X) of (3.9) with f = 0}.

Observe that the function u in the definition of Xu(t0) satisfies u(t) =
U(t, s)u(s) for s ≤ t ≤ t0 and u(t0) = x, so that Xu(t0) ⊂ D(A(t0)). The
following result was shown in [22, Lemma 3.2].

Lemma 4.4. Assume that the assumptions (2.1), (2.2), and (2.7) are satisfied
and that 1− µ < α ≤ 1. Then the following assertions hold.

(a) Xs(t0) = Pα−1(t0)Xt0
α−1 for t0 ≥ T ;

(b) Xu(t0) = Q(t0)X for t0 ≤ −T ;
(c) Uα−1(t, t0)Xs(t0) ⊆ Xs(t) for t ≥ t0 in R;
(d) U(t, t0)Xu(t0) = Xu(t) for t ≥ t0 in R;
(e) Xs(t0) is closed in Xt0

α−1 for t0 ∈ R.

Finally, for technical purposes we introduce the space

F T := {f : Cb((−∞, T ], X) : f |(−∞,−T ] ∈ AAP ((−∞,−T ], X)}

and endow it with the sup norm. The corresponding extrapolation spaces F Tα−1

for A(·) are defined as above for α ∈ [0, 1].
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The restrictionsG+
α−1 andG−α−1 ofGα−1 to the halflines [T,+∞) and (−∞, T ]

are given in a similar way: A function u ∈ AAP ([T,+∞), X) (resp., u ∈ F T ) be-
longs to D(G+

α−1) (resp., D(G−α−1)) if there is a function f ∈ AAPα−1([T,+∞))
(resp., f ∈ F Tα−1) such that

u(t) = U(t, s)u(s) +
∫ t

s
Uα−1(t, σ)f(σ)dσ

holds for all t ≥ s ≥ T (resp., for all s ≤ t ≤ T ). Then we set G+
α−1u = f and

G−α−1u = f , respectively. The operators Gα−1 and G±α−1 are single valued and
closed due to Remarks 2.5 and 3.12 of [22]. As in [10], [11] and [22], we obtain
right inverses R+

α−1 and R−α−1 on AAP ([T,+∞), X) and on F T for G+
α−1 and

G−α−1, respectively, by setting

(R+
α−1h)(t) = −

∫ ∞
t

Ũα−1(t, s)Qα−1(s)h(s) ds+
∫ t

T
Uα−1(t, s)Pα−1(s)h(s) ds

for h ∈ AAPα−1([T,+∞), X) and t ≥ T , and

(R−α−1h)(t)=


∫ T

−∞
Γα−1(t, s)h(s) ds, t ≤ −T,∫ −T

−∞
Uα−1(t, s)Pα−1(s)h(s) ds+

∫ t

−T
Uα−1(t, s)h(s) ds, |t| ≤ T,

for h ∈ F Tα−1.

Proposition 4.5. Assume that the assumptions (2.1), (2.2), (2.7) and (H4)
are satisfied and that 1− µ < α ≤ 1. Then the following assertions hold.

(a) The operator R+
α−1 : AAPα−1([T,+∞))→ AAP ([T,+∞), X) is bounded

and G+
α−1R

+
α−1h = h for each h ∈ AAPα−1([T,+∞)).

(b) The operator R−α−1 : F Tα−1 → F T is bounded and G−α−1R
−
α−1h = h for

each h ∈ F Tα−1.
(c) We have R±α−1h(T ) ∈ XT

ε for all 0 ≤ ε < α.

Proof. Let h ∈ AAPα−1([T,+∞)). In Proposition 3.3 and Remark 3.12 of
[22] it was shown that R+

α−1h is a mild solution of the equation (3.6) for
the inhomogeneity h and the initial value x := −

∫∞
T Ũ(T, s)Qα−1(s)h(s) ds

at t0 = T . Since (3.7) holds for h and x, Theorem 3.5 gives the asymptotic
almost periodicity of R+

α−1h. So the operator R+
α−1 maps AAPα−1([T,+∞))

into AAP ([T,+∞), X), and its boundedness follows from Proposition 2.2 d),
e) as in the proof of [22, Proposition 3.3]. Assertion (a) is thus established.
To show (b), let h ∈ F Tα−1((−∞, T ]). Proposition 3.3 and Remark 3.12
of [22] also yield that R−α−1h is a mild solution of the equation (3.9) with
t0 = T and the inhomogeneity h. It is clear that h|(−∞,−T ] satisfies (3.11)
for x :=

∫ −T
−∞ Uα−1(−T, s)Pα−1(s)f(s) ds. Theorem 3.5 then implies that

R−α−1h|(−∞,−T ] ∈ AAP ((−∞,−T ], X) and consequently R−α−1 maps F Tα−1

into F T . The boundedness of R−α−1 follows again from Proposition 2.2 d),e).
The last assertion is a consequence of Propositions 2.1 a) and 2.2 d),e). �
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We can now describe the range and the kernel of Gα−1.

Proposition 4.6. Assume that (2.1), (2.2), (2.7) and (H4) are satisfied and
that 1 − µ < α ≤ 1. For f ∈ AAP±α−1 we set f+ = f |[T,+∞) and
f− = f |(−∞, T ]. Then the following assertions hold for Gα−1.

(a) N(G+
α−1) = {u ∈ C0([T,+∞), X)) : u(t) = U(t, T )x (∀ t ≥ T ), x ∈

P (T )X̂T };
(b) N(G−α−1) = {u ∈ C0((−∞, T ], X) : u(t) = U(t, s)u(s) (∀ s ≤ t ≤

T ), u(T ) ∈ Xu(T )};
(c) N(Gα−1) = {u ∈ C0(R, X) : u(t) = U(t, s)u(s) (∀ t ≥ s), u(T ) ∈

P (T )X ∩Xu(T )};
(d) R(Gα−1)={f ∈ AAP±α−1 :R+

α−1f
+(T )−R−α−1f

−(T )∈P (T )X+Xu(T )},
where for f ∈ R(Gα−1) a function u ∈ D(Gα−1) with Gα−1u = f is given
by (4.1) below;

(e) R(Gα−1)={f ∈ AAP±α−1 :R+
α−1f

+(T )−R−α−1f
−(T )∈P (T )X +Xu(T )},

where the closure on the left (right) side is taken in AAP±α−1 (in X).

Proof. The assertions (a), (b) and (c) follow from Proposition 3.5 and Re-
mark 3.12 of [22]. We note that P (T )X ∩ Xu(T ) = P (T )X̂T ∩ Xu(T ) since
Xu(T ) ⊆ D(A(T )). To show (d), let Gα−1u = f ∈ AAP±α−1(R) for some
u ∈ D(Gα−1). Then the functions f± belong to R(G+

α−1) and to R(G−α−1),
respectively, because of Proposition 4.2 and (3.2). Proposition 4.5 shows that
the functions

v+ = u|[T,+∞)−R+
α−1f

+ and v− = u|(−∞, T ]−R−α−1f
−

are contained in the kernels of G+
α−1 and of G−α−1, respectively. So we obtain

(R+
α−1f

+)(T )− (R−α−1f
−)(T ) = v−(T )− v+(T ) ∈ Xu(T ) + P (T )X

by (a) and (b). Conversely, let f ∈ AAP±α−1(R) with

(R+
α−1f

+)(T )− (R−α−1f
−)(T ) = ys + yu ∈ P (T )X +Xu(T ).

Set x0 := (R+
α−1f

+)(T )− ys = yu + (R−α−1f
−)(T ) and

u(t) :=

{
u+(t) := −U(t, T )ys + (R+

α−1f
+)(t), t ≥ T,

u−(t) := ṽ(t) + (R−α−1f
−)(t), t ≤ T,

(4.1)

where ṽ ∈ N(G−α−1) such that ṽ(T ) = yu. Observe that u+(T ) = u−(T ). From
Proposition 4.5(c) we deduce ys ∈ P (T )X̂T , so that U(·, T )ys ∈ C0([T,∞), X).
Proposition 4.5 shows that R+

α−1f
+ ∈ AAP ([T,∞), X), and hence u|[T,∞) ∈

AAP ([T,∞), X). We also know from assertion (c) that ṽ ∈ C0((−∞, T ], X)
and from Proposition 4.5 that R−α−1f

− ∈ F T . Using also Lemma 4.1, we
deduce that u belongs to AAP±(R, X). Finally, one can check as in the proof
of Proposition 3.5 of [22] that Gα−1u = f . The last assertion can be shown
exactly as Proposition 3.5(e) of [22]. �
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Using the above results, we are able to describe the Fredholm properties of
the operator Gα−1 in terms of properties of the subspaces Xs(T ) and Xu(T ).
The proofs are similar to ones of Theorems 3.6 and 3.10 and Proposition 3.8 of
[22] and therefore omitted. Recall that subspaces V and W of a Banach space
E are called a semi-Fredholm couple if V + W is closed and if at least one of
the dimensions dim(V ∩W ) and codim(V +W ) is finite. The index of (V,W )
is defined by ind(V,W ) := dim(V ∩W )− codim(V +W ). If the index is finite,
then (V,W ) is a Fredholm couple.

Theorem 4.7. Assume that (2.1), (2.2), and (2.7) are satisfied and that 1−µ <
α ≤ 1. Then the following assertions hold for Gα−1 defined on AAP±α−1(R).

(a) R(Gα−1) is closed in AAP±α−1 if and only if P (T )X + Xu(T ) is closed
in X.

(b) If Gα−1 is injective, then P (T )X ∩Xu(T ) = {0}. The converse is true
if U(T,−T )|Q(−T )(X) is injective, in addition.

(c) If Gα−1 is invertible, then P (T )X ⊕Xu(T ) = X. The converse is true
if U(T,−T )|Q(−T )(X) is injective in addition.

(d) dimN(Gα−1) = dim(P (T )X ∩Xu(T )) + dimN(U(T,−T )|Q(−T )(X)).
If R(Gα−1) is closed in AAP±α−1, then codim(P (T )X + Xu(T )) =
codimR(Gα−1). In particular, Gα−1 is surjective if and only if P (T )X+
Xu(T ) = X.

(e) If Gα−1 is a semi-Fredholm operator, then (P (T )X,Xu(T )) is a semi-
Fredholm couple, and ind(P (T )X,Xu(T )) ≤ indGα−1. If in addition
the kernel of U(T,−T )|Q(−T )(X) is finite dimensional, then

ind(P (T )X,Xu(T )) = indGα−1 − dimN(U(T,−T )|Q(−T )(X)). (4.2)

Conversely, if (P (T )X,Xu(T )) is a semi-Fredholm couple and the ker-
nel of U(T,−T )|Q(−T )(X) is finite dimensional, then Gα−1 is a semi-
Fredholm operator and (4.2) holds.

Proposition 4.8. Assume that (2.1), (2.2), and (2.7) hold and that 1 − µ <
α ≤ 1. Then the closure of R(Gα−1) is equal to the space

F := {f ∈ AAP±α−1 :
∫

R
〈f(s), v(s)〉Xs

α−1
ds = 0 for all v ∈ V},

where V is the space of those v ∈ L1(R, X∗) such that v(s) = Uα−1(t, s)∗v(t)
for all t ≥ s in R.

In the following Fredholm alternative, we restrict ourselves to the asymptoti-
cally hyperbolic case. The projections Q±∞ have finite rank if, for instance,
the domains D(A±∞) are compactly embedded in X.

Theorem 4.9. Assume that (2.1), (2.2), (2.5) and (2.6) are true, that
dimQ±∞X < ∞, and that 1 − µ < α ≤ 1. Let f ∈ AAP±α−1. Then there
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is a mild solution u ∈ AAP±(R, X) of (3.1) if and only if∫
R
〈f(s), w(s)〉Xs

α−1
ds = 0

for each w ∈ L1(R, X∗) with w(s) = Uα−1(t, s)∗w(t) for all t ≥ s in R. The
mild solutions u are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−α−1f)(t), t ≤ T,

where R±α−1 was defined before Proposition 4.5, (R+
α−1f)(T ) − (R−α−1f)(T ) =

ys + yu ∈ P (T )X + Xu(T ), ṽ ∈ C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) =
U(t, s)ṽ(s) for all T ≥ t ≥ s, and v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all
t ≥ s.

5. Non–autonomous parabolic boundary evolution equations

In this section we study the non–autonomous forward (resp. backward) par-
abolic boundary evolution equation

u′(t) = Am(t)u(t) + g(t), t ≥ t0 (resp. t ≤ t0),

B(t)u(t) = h(t), t ≥ t0 (resp. t ≤ t0), (5.1)

u(t0) = u0,

and their variant on the line

u′(t) = Am(t)u(t) + g(t), t ∈ R,
B(t)u(t) = h(t), t ∈ R.

(5.2)

Here t0 ∈ R, u0 ∈ X, and the inhomogeneities g and h take values in Banach
spaces X and Y , respectively. We assume that the following conditions hold.

(A1) There are Banach spaces Z ↪→ X and Y such that the operators Am(t) ∈
L(Z,X) and B(t) ∈ L(Z, Y ) are uniformly bounded for t ∈ R and that
B(t) : Z → Y is surjective for each t ∈ R.

(A2) The operators A(t)u := Am(t)u with domains D(A(t)) := {u ∈ Z :
B(t)u = 0}, t ∈ R, satisfy (2.1) and (2.2) with constants ω, θ,K,L, µ, ν.
Moreover, the graph norm of A(t) and the norm of Z are equivalent with
constants being uniform in t ∈ R.

In the typical applications Am(t) is a differential operator with ’maximal’ do-
main not containing boundary conditions and B(t) are boundary operators.
Under the hypotheses (A1) and (A2), there is an evolution family (U(t, s))t≥s
solving the problem with homogeneous conditions g = h = 0. Moreover, by [13,
Lemma 1.2] there exists the Dirichlet map D(t) for ω − Am(t); i.e., v = D(t)y
is the unique solution of the abstract boundary value problem

(ω −Am(t))v = 0, B(t)v = y,
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for each y ∈ Y . (In [13] the density of Z in X was assumed, but this does not
play a role in the cited Lemma 1.2.) Let x ∈ X and y ∈ Y be given. The
problem

(ω −Am(t))v = x, B(t)v = y,

has the solution v = R(ω,A(t))x + D(t)y. This solution is unique in Z since
ω −Am(t) is injective on D(A(t)) = N(B(t)). We further assume that

(A3) there is a β ∈ (1 − µ, 1] such that Z ↪→ Xt
β for t ∈ R with uniformly

bounded embedding constants and supt∈R ‖D(t)‖L(Y,Z) <∞.

Lemma 5.1. Assume that assumptions (A1), (A2) and (A3) without (2.2)
hold. For a closed unbounded interval J , let Am(·) ∈ AP (J,L(Z,X)) and B(·) ∈
AP (J,L(Z, Y )). Then we have
(a) D(·) ∈ AP (J,L(Y,Z)),
(b) R(ω,A(·)) ∈ AP (J,L(X,Z)),
(c) (ω−A−1(·))D(·)h ∈ APα−1(J) for every h ∈ AP (J, Y ) and α ∈ (1− µ, β).

The same results hold if one replaces throughout AP by AAP (if J 6= R) or
by AAP± (if J = R).

Proof. (a) Let y ∈ Y and t, t+ τ ∈ J . By the definition of D(t), we have

(ω −Am(t))(D(t+ τ)y −D(t)y) = (Am(t+ τ)−Am(t))D(t+ τ)y =: ϕ(t),

B(t)(D(t+ τ)y −D(t)y) = −(B(t+ τ)−B(t))D(t+ τ)y =: ψ(t),

and thus
D(t+ τ)y −D(t)y = R(ω,A(t))ϕ(t) +D(t)ψ(t).

The assumptions now imply that

‖D(t+ τ)y −D(t)y‖Z ≤ c (‖ϕ(t)‖X + ‖ψ(t)‖Y )

≤ c (‖Am(t+ τ)−Am(t)‖L(Z,X) + ‖B(t+ τ)−B(t)‖L(Z,Y )) ‖y‖Y .

So the almost periodicity of D(·) follows from that of Am(·) and B(·).
(b) For x ∈ X and t, t + τ ∈ J , set y = R(ω,A(t + τ))x − R(ω,A(t))x ∈ Z.

Then we obtain

(ω −Am(t))y = (Am(t+ τ)−Am(t))R(ω,A(t+ τ))x =: ϕ1(t),

B(t)y = (B(t)−B(t+ τ))R(ω,A(t+ τ))x =: ψ1(t).

Hence y = R(ω,A(t))ϕ1(t) +D(t)ψ1(t), and assertion (b) can now be shown as
in (a).

(c) Due to (a) and (b), the functions D(·)h and fn := nR(n,A(·))D(·)h are
almost periodic in Z, and hence in X, for n > ω. Then A(·)fn = (n2R(n,A(·))−
n)D(·)h belongs to AP (J,X). Assumptions (2.1) and (A3) imply that fn is
uniformly bounded in the norm of Eβ. Since fn → D(·)h in Cb(J,X), we
conclude by interpolation that fn → D(·)h in Eα. As a consequence, (ω −
A(·))fn → (ω −Aα−1(·))D(·)h in Eα−1, whence (c) follows.

Similarly one establishes the assertions concerning AAP and AAP±. �
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In order to apply the results from the previous sections to the boundary
forward (resp. backward) evolution equation (5.1), we write it as the inhomo-
geneous Cauchy problem

u′(t) = A−1(t)u(t) + f(t), t ≥ t0 (resp. t ≤ t0),

u(t0) = u0,
(5.3)

setting f := g + (ω −A−1(·))D(·)h. We also consider the evolution equation

u′(t) = A−1(t)u(t) + f(t), t ∈ R. (5.4)

In the following we will have f ∈ Eα−1(J), where we fix the number α ∈
(1−µ, β) from Lemma 5.1. We note that a function u ∈ C1(J,X) with u(t) ∈ Z
satisfies (5.1), resp. (5.2), if and only if it satisfies (5.3), resp. (5.4). These facts
can be shown as in Proposition 4.2 of [9]. This motivates the following definition.
We call a function u ∈ C(J,X) a mild solution of (5.2) and (5.4) on J if the
equation

u(t) = U(t, s)u(s) +
∫ t

s
Uα−1(t, σ)[g(σ) + (ω −A−1(σ))D(σ)h(σ)] dσ (5.5)

holds for all t ≥ s in J . The function u is called a mild solution of (5.1) (resp.
(5.3) if in addition u(t0) = u0 and J = [t0,∞) (resp. J = (−∞, t0]).

Theorems 3.3, 3.5 and 3.6 and Lemma 5.1 immediately imply three results
on the existence of almost periodic mild solutions for (5.2) and (5.1).

Proposition 5.2. Assume that (A1)–(A3) hold, that Am(·) ∈ AP (R,L(Z,X))
and B(·) ∈ AP (R,L(Z, Y )), and that U(t, s) has an exponential dichotomy on
R. Let g ∈ AP (R, X) and h ∈ AP (R, Y ). Then there is a unique mild solution
u ∈ AP (R, X) of the boundary equation (5.2) given by

u(t) =
∫

R
Γα−1(t, s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ∈ R.

Proposition 5.3. Assume that assertions (A1)–(A3) hold, that Am(·) ∈
AAP ([a,∞),L(Z,X)), and B(·) ∈ AAP ([a,∞),L(Z, Y )), and that U(t, s)
has an exponential dichotomy on [a,∞). Let t0 > a, g ∈ AAP ([a,∞), X),
h ∈ AAP ([a,∞), Y ), and u0 ∈ D(A(t0)). Then the mild solution u of the
equation (5.1) belongs to AAP ([t0,+∞), X) if and only if

Q(t0)u0 = −
∫ +∞

t0

Ũα−1(t0, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = U(t, t0)P (t0)u0 +
∫ t

t0

Uα−1(t, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds

−
∫ ∞
t

Ũα−1(t, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ≥ t0.
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Proposition 5.4. Assume that assertions (A1)–(A3) hold, that Am(·) ∈
AAP ((−∞, b],L(Z,X)) and B(·) ∈ AAP ((−∞, b],L(Z, Y )), and that U(t, s)
has an exponential dichotomy on (−∞, b]. Let t0 < b, g ∈ AAP ((−∞, b], X),
h ∈ AAP ((−∞, b], Y ), and u0 ∈ X. Then there is a mild solution u ∈
AAP ((−∞, t0], X) of the equation (5.1) if and only if

P (t0)u0 =
∫ t0

−∞
Uα−1(t0, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds.

In this case u is given by

u(t) = Ũ(t, t0)Q(t0)u0 −
∫ t0

t
Ũα−1(t, s)Qα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds

+
∫ t

−∞
Uα−1(t, s)Pα−1(s)[g(s) + (ω −A−1(s))D(s)h(s)] ds, t ≤ t0.

Moreover, Theorem 4.9 implies the following Fredholm alternative for the
mild solutions of (5.2), where we focus on the asymptotically hyperbolic case.

Theorem 5.5. Assume that assumptions (A1)–(A3) hold and that Am(t) →
Am(±∞) in L(Z,X) and B(t)→ B(±∞) in L(Z, Y ) as t→ ±∞. Set A±∞ :=
Am(±∞)|N(B(±∞)). We suppose that σ(A±∞) ∩ iR = ∅ and that the corre-
sponding unstable projections Q±∞X have finite rank. Let g ∈ AAP±(R, X)
and h ∈ AAP±(R, Y ). Then there is a mild solution u ∈ AAP±(R, X) of (5.2)
if and only if ∫

R
〈f(s), w(s)〉Xs

α−1
ds = 0

for f := g + (ω − A−1(·))D(·)h and all w ∈ L1(R, X∗) with w(s) =
Uα−1(t, s)∗w(t) for all t ≥ s in R. The mild solutions u are given by

u(t) = v(t)− U(t, T )ys + (R+
α−1f

+)(t), t ≥ T,

u(t) = v(t) + ṽ(t) + (R−α−1f
−)(t), t ≤ T,

where R±α−1 was defined before Proposition 4.5, f+ = f |[T,+∞), f− =
f |(−∞,−T ], (R+

α−1f
+)(T ) − (R−α−1f

−)(T ) = ys + yu ∈ P (T )X + Xu(T ),
ṽ ∈ C0((−∞, T ], X) with ṽ(T ) = yu and ṽ(t) = U(t, s)ṽ(s) for all T ≥ t ≥ s,
and v ∈ C0(R, X) with v(t) = U(t, s)v(s) for all t ≥ s.

Proof. Observe that functions converging at ±∞ belong to AAP±. So it re-
mains to show that R(ω,A(t))→ R(ω,A±∞) in L(X) as t→ ±∞. This can be
established as Lemma 5.1(b). �

We conclude with a pde example. One could treat more general problems, in
particular systems, cf. [11], and one could weaken the regularity assumptions;
but we prefer to keep the example simple.
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Example 5.6. We study the boundary value problem

∂t u(t, x) = A(t, x,D)u(t, x) + g(t, x), t ∈ R, x ∈ Ω,

B(t, x,D)u(t, x) = h(t, x), t ∈ R, x ∈ ∂Ω,
(5.6)

on a bounded domain Ω ⊆ Rn with boundary ∂Ω of class C2, employing the
differential expressions

A(t, x,D) =
∑

k,l
akl(t, x)∂k∂l +

∑
k
ak(t, x) ∂k + a0(t, x),

B(t, x,D) =
∑

k
bk(t, x) ∂k + b0(t, x),

where B(t) is understood in the sense of traces. We require that akl = alk and
bk are real–valued, akl, ak, a0 ∈ Cµb (R, C(Ω)), bk, b0 ∈ Cµb (R, C1(∂Ω)),

n∑
k,l=1

akl(t, x) ξk ξl ≥ η |ξ|2 , and
n∑
k=1

bk(t, x)νk(x) ≥ β

for constants µ ∈ (1/2, 1), β, η > 0 and all ξ ∈ Rn, k, l = 1, · · · , n, t ∈ R,
x ∈ Ω resp. x ∈ ∂Ω. (Cµb is the space of bounded, globally Hölder continuous
functions.) Let p ∈ (1,∞). We set X = Lp(Ω), Z = W 2

p (Ω), Y = W
1−1/p
p (Ω)

(a Slobodeckij space), Am(t)u = A(t, ·, D)u and B(t)u = B(t, ·, D)u for u ∈ Z
(in the sense of traces), and A(t) = Am(t)|N(B(t)). The operators A(t), t ∈ R,
satisfy (2.1) and (2.2), see [2], [3], [20], or [27, Example 2.9]. Thus A(·) generates
an evolution family U(·, ·) on X. It is known that the graph norm of A(t) is
uniformly equivalent to the norm of Z, that B(t) : Z → Y is surjective, that
Xt
α = W 2α

p (Ω) with uniformly equivalent norms for α ∈ (1 − µ, 1/2), and that
the Dirichlet map D(t) : Z → Y is uniformly bounded for t ∈ R, see e.g. [3,
Example IV.2.6.3].

Further let g ∈ AAP±(R, X) and h ∈ AAP±(R, Y ). We define mild solutions
of (5.6) again by (5.5). We further assume that

aα(t, ·)→ aα(±∞, ·) in C(Ω) and bj(t, ·)→ bj(±∞, ·) in C1(∂Ω)

as t→ ±∞, where α = (k, l) or α = j for k, l = 1, · · · , n and j = 0, · · · , n. As a
result, Am(·) ∈ AAP±(R,L(Z,X)) and B(·) ∈ AAP±(R,L(Z, Y )). We define
the sectorial operators A±∞ in the same way as A(t). As in [11, Example 5.1]
one can check that (2.5) holds. Finally we assume that iR ⊂ ρ(A±∞). Then
the Fredholm alternative stated in Theorem 5.5 holds for mild solutions of (5.6)
on X = Lp(Ω) for g ∈ AAP±(R, X) and h ∈ AAP±(R, Y ).
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