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0 − π Transitions in a Superconductor/Chiral magnet/Superconductor Junction
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We study the π phase in a superconductor-ferromagnet-superconductor Josephson junction, with
a ferromagnet showing a cycloidal spiral spin modulation with in-plane propagation vector. Our
results reveal a high sensitivity of the junction to the spiral order and indicate the presence of 0-π
quantum phase transitions as function of the spiral wave vector. We find that the chiral magnetic
order introduces chiral superconducting triplet pairs that strongly influence the physics in such
Josephson junctions, with potential applications in nanoelectronics and spintronics.

It is by now well established that an equilibrium su-
perconducting phase difference of π can be arranged be-
tween two singlet superconductors when separating them
by a suitably chosen ferromagnetic material [1, 2]. Tran-
sitions between the π-state and the 0-state of such S-F-S
Josephson junctions have been revealed in experiments
through oscillations of the Josephson critical current with
varying thickness of the ferromagnet [3] or with varying
temperature [4]. The π Josephson junction is currently
of considerable interest as an element complementary to
the usual Josephson junction in the development of func-
tional nanostructures [5], including superconducting elec-
tronics [6] and quantum computing [7].

Recently, there has been a rapid progress in the field
of chiral magnetism [8, 9, 10, 11] that raises the expec-
tations for applications of chiral magnets in spintron-
ics. Chiral order occurs in inversion asymmetric mag-
netic materials [9, 11] that in the presence of spin-orbit
coupling give rise to a Dzyaloshinskii-Moriya interaction
Dij · (Si ×Sj). This interaction favors a directional non-
collinear (spiral) spin structure of a specific chirality over
the usual collinear arrangement favored by the Heisen-
berg exchange interaction Jij(Si · Sj). A well-studied
[10, 11] chiral magnet is the transition-metal compound
MnSi, with the spiral wave length Λ ≈ 180 Å. Nanoscale
magnets or magnetic systems with reduced dimension-
ality that frequently lack inversion symmetry due to in-
terfaces and surfaces are expected to exhibit chiral mag-
netism [8]. This has been confirmed by the recent obser-
vation [9] of a spin spiral structure (with Λ ≈ 12 nm) in a
single atomic layer of manganese on a tungsten substrate.

In this Letter, we combine chiral magnetism with su-
perconductivity in a controllable Josephson nano-device
where 0−π transitions can be induced by tuning the mag-
netic spiral wave vector Q (see Fig. 1). Whereas in bulk
magnets Q can be manipulated e.g. by means of pressure,
in nano-magnets alternative possibilities of control exist,
as electric fields, geometry, or pinning layers. Such a

Josephson device shows a surprisingly complex behavior
with 0- to π-state transitions as function of spiral wave
length Λ = 2π/Q, that turn into zero temperature transi-
tions for some critical wave vectors. However, below the
threshold Λth = πξJ , where ξJ is the penetration depth
of pairs into the chiral magnet (ξJ depends on material
constants), a qualitatively different behavior is found.

Within our model chiral magnetism and singlet super-
conductivity take place in mutually separated materials,
and the magnetic spiral affects only the superconducting
proximity amplitudes. This is in contrast to the case of
coexisting superconducting and spiral magnetic order in
the same material, e.g. in ferromagnetic superconduc-
tors [12]. We also contrast our model to the case of a
helical spiral spin modulation with a propagation wave
vector perpendicular to the S-F interface [13], and the
Josephson effect in S-F-S junctions with a Néel domain
structure [14]. The physics studied in Refs. [13, 14] is
dominated by the presence of long-range triplet compo-
nents, that are absent in the present system [15] (con-
cerning the role of long-range triplet pairs in S-F-S hy-
brid structures see also [16]). In Refs. [13, 14], a strong
dependence of the Josephson critical current Ic on the
ferromagnet inhomogeneity is found due to these long-

FIG. 1: (Color online) S-CM-S Josephson junction where CM
is a chiral ferromagnet with a cycloidal spiral spin modulation,
i.e. the spins are confined to a plane (the x−y-plane) parallel
to the spiral propagation direction (the y-axis).
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range components. However, the related magnitude of
Ic is so small that the observation of such an effect is
questionable. In this paper, we report a critical current
with a much larger magnitude [17], which is essential for
potential applications.

We study the S-CM-S junction shown in Fig. 1 within
the framework of the quasiclassical theory of supercon-
ductivity and consider the diffusive limit. Furthermore,
we shall assume that the pair correlations induced in the
chiral magnet, quantified by the anomalous Green func-
tion f , are small. This is fulfilled for temperatures close
to the superconducting critical temperature Tc, and also
for much smaller temperatures T provided that the S-
CM interface transparency is small. We decompose the
2 × 2 spin-matrix f as f = fsiσy + i(ft · σ)σy , where
fs is the singlet component and ft is the triplet vector
(here σ = (σx, σy, σz) is a vector of Pauli matrices).
These components obey [15] in the magnet a system of
linearized Usadel equations

(D∇
2 − 2εn)fs = 2iJ · ft, (1)

(D∇
2 − 2εn)ft = 2iJfs, (2)

where εn = πT (2n + 1) is the Matsubara frequency with
n a positive integer. Quantities for negative frequencies
are obtained through symmetry relations [15], the com-
ponents fs and ft being respectively even and odd in εn.
The z-axis is perpendicular to the interfaces, and the CM
region is delimited by |z| < df/2, where df is the thick-
ness of the CM layer. The exchange field J is nonzero
in the CM region, while the singlet superconducting or-
der parameter ∆s is nonzero only in the S regions. The
S and CM parts can have different diffusion constants,
Ds and Df , and therefore also different superconduct-

ing coherence lengths ξs,f =
√

Ds,f/2πTc. For simplic-
ity, we assume that the two S regions, and also the two
S/CM interfaces, are characterized by identical param-
eters. Another important length scale is the magnetic
length ξJ =

√

Df/J.
The exchange field J rotates within the x− y plane in

the CM film with a spiral wave vector Qey,

J(y) = J(cosQy, sinQy, 0). (3)

As a result f depends on both spatial coordinates z and
y. The triplet vector ft is found to be parallel to J ev-
erywhere [15]. It is convenient to introduce chiral triplet
components f± = (∓ftx + ifty) e±iQy. In the CM layer,
the singlet component fs and the two chiral triplet com-
ponents f± are then given by

fl(z) =
∑

ǫ=±1

ϕl,ǫ [aǫ cosh (kǫz) + bǫ sinh (kǫz)] , (4)

where l = s or ±, ϕs,ǫ = ηǫ, ϕ−,ǫ = ǫ, ϕ+,ǫ = −ǫ and

kǫ =
√

2(εn + ǫiJη−ǫ)/Df , (5)

ηǫ =

{
√

1 − η2 + iǫη

−i(
√

η2 − 1 − ǫη)
for

η ≤ 1
η > 1

, (6)

where η = DfQ2/4J = (QξJ)2/4. As the singlet compo-
nent fs, the chiral triplet components penetrate over the
short length scale ξJ inside the chiral magnet.

The different coefficients aǫ and bǫ are determined by
boundary conditions for the two S/CM interfaces (lo-
cated at z = ±df/2). These connect the f on the S
side of the interface (denoted zs) with the f on the CM
side at the interface (denoted zf) and read [18]

γξf∂zfl(zf ) = ξs∂zfl(zs), (7)

γbξf∂zfl(zf ) = ± [fl(zs) − fl(zf )] , (8)

for the triplet (l = ±) and singlet (l = s) amplitudes.
The parameters γ and γb are related to the conductivity
mismatch between the two sides (γξf/ξs = σf/σs with
the bulk conductivities σf in CM and σs in S) and the
boundary resistance, respectively. The signs ± in Eq. (8)
refer to the interfaces at z = ±df/2, respectively. In
the following, we define the short-hand notation δ(±) =
fs(±df/2) for the singlet amplitudes at the interfaces.

Due to the leakage of pair correlations into the central
CM region, the amplitudes δ(±) are expected to be re-
duced compared with the bulk value in S. This inverse
proximity effect can be important in hybrid structures
involving ferromagnets (see e.g. Ref. 19). However, the
spatial dependences of fs as well as of the triplet compo-
nents can be disregarded in S when γ ≪ 1+γbdf/ξf , and
the rigid boundary conditions hold (see, e.g., Ref. [1]),
with δ(±) ≈ π∆se

±iφ/2/
√

ε2
n + ∆2

s, where φ is the phase
difference between the two superconductors. Using Eqs.
(7)-(8) within this assumption, we express aǫ and bǫ as
functions of δ(±)

aǫ =
δ(+) + δ(−)

2

1

(ηǫ + η−ǫ)Aǫ
, (9)

bǫ =
δ(+) − δ(−)

2

1

(ηǫ + η−ǫ)Bǫ
, (10)

where Aǫ = cosh(xǫ) + γbkǫξf sinh(xǫ), Bǫ = sinh(xǫ) +
γbkǫξf cosh(xǫ), and xǫ = kǫdf/2.

The current flowing through the S-CM-S junction is

I = 2e
Df

π
NfST

∑

n

Im
[

f∗
s ∂zfs − f∗

tx∂zftx − f∗
ty∂zfty

]

,

(11)
where Nf is the Fermi-level density of states per spin in
CM and S is the cross-section area. We insert f∗

tx∂zftx +
f∗

ty∂zfty =
(

f∗
−∂zf− + f∗

+∂zf+

)

/2 and Eq. (4) in Eq.
(11), and express I as a function of aǫ and bǫ as

I = 4e
Df

π
NfST

∑

n≥0

∑

ǫ,ǫ′

Im [(η∗
ǫ′ηǫ − ǫ′ǫ)a∗

ǫ′bǫkǫ] . (12)

For η < 1 only the terms with ǫ 6= ǫ′ contribute, while
for η > 1 only the terms with ǫ = ǫ′ contribute [the case
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FIG. 2: (Color online) Josephson critical current Ic versus the
spiral wave vector Q for a few thicknesses of the ferromagnet:
curves from top to bottom df/ξf = 0.1, 1, 3, 5. Here T =
0.1Tc and J = 20Tc. The inset shows the flow of the real
and imaginary parts of the eigenvalues k±1 with varying η =
(QξJ)2/4 for εn = πTc.

η = 1 is defined via the corresponding limit in Eq. (12)].
In agreement with current conservation, the dependence
on z vanishes.

It then follows from Eqs. (9), (10), and (12) that
the current-phase relation reduces to sinusoidal form
I = Ic sin(φ). Close to Tc we get for Ic

IcRN = 4V0

(

df

ξf
+ 2γb

)

∑

n≥0

∑

ǫ=±1

T 2
c

ε2
n

kǫξfηǫ

AǫBǫ(ηǫ + η−ǫ)
,

(13)
where RN = (df + 2γbξf )/σfS is the normal state
resistance, σf = 2e2NfDf is the conductivity of the
CM layer, and V0 = π∆2

s/4eTc. On the other hand,
for low barrier transparencies (γb ≫ 1) [20], we have
Aǫ ≈ γbkǫξf sinh(kǫdf/2) and Bǫ ≈ γbkǫξf cosh(kǫdf/2),
which lead to

IcRN =
4π

γb

T

e

∑

n≥0

∑

ǫ=±1

∆2
s

ε2
n + ∆2

s

ηǫ/(ηǫ + η−ǫ)

kǫξf sinh(kǫdf )
. (14)

In the absence of inhomogeneity (Q = 0), we then recover
expressions for the critical current in the literature [1].
Note that the temperature T appears through several
terms in Eq. (14), such as ∆s (here we assume the BCS
temperature dependence), εn and kǫ.

In the following we study the influence of an exchange
field with chiral order on the Josephson effect on the ba-
sis of Eq. (14). For small thicknesses df we have used
the more general expression (12) to verify that Eq. (14)
indeed is applicable in the parameter range we consider.
As we show in Fig. 2, the chiral magnetic order intro-
duces a surprizingly rich behavior: the magnitude of Ic

as function of increasing wave vector Q presents initial
oscillations and suppression, followed by increase and fi-
nal saturation. Depending on the thickness of the CM
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FIG. 3: (Color online) (a) Critical current versus spiral wave
vector for a few temperatures, in the region 0 ≤ QξJ ≤ 2
where 0 − π transitions are possible. Here df = 2.7ξf and
J = 20Tc. (b) The 0 − π transition is observable as function
of temperature for a certain thickness (here df = 0.45ξf ) by
tuning the spiral wave vector. The other model parameters
are the same as in (a).

layer, there can be one or several 0 − π and π − 0 tran-
sitions as function of the spiral order wave vector Q.
Above a certain value of Q (QξJ = 2 indicated by the
vertical line in the figure) Ic is positive independently
of other model parameters, meaning that the junction
phase difference is stabilized at zero. Physically, this can
be understood as an averaging out of the exchange field
within one magnetic length ξJ . Technically, this critical
value of Q separates a region with complex eigenvalues kǫ

(η < 1, oscillating Ic) from a region with real kǫ (η > 1,
monotonously increasing Ic), see the inset of Fig. 2. For
η < 1, the complex kǫ leads to a non-monotonic depen-
dence of Ic as function of Q. In the large-Q limit, the
Josephson critical current for a junction with a normal
metal is recovered.

In Fig. 3(a) we study in more detail the critical cur-
rent within the region 0 ≤ QξJ ≤ 2 supporting oscil-
lations. For an intermediately thick magnetic film (here
df = 2.7ξf) it is possible to see both 0−π and π−0 tran-
sitions as function of Q, with a reasonably large critical
current. The phase transitions shift to lower values of Q
with increasing temperature. As seen in Fig. 3(b), the
spiral order can also induce 0− π transitions as function
of temperature for certain parameter ranges.

Phase-diagrams of the π − 0 transitions are presented
in Fig. 4. We see that in the low-T region [panel (a)]
the phase transition line Tπ−0(Q) develops a very steep
slope. This insensitivity to temperature variations can
be of importance for device applications. Although at
ultra-low temperatures a more sophisticated theory than
the mean field approach presented here should be used,
our results in Fig. 4 give a strong indication of a π − 0
transition as a function of Q also at zero temperature.
Thus, the system of a chiral magnet sandwiched between
two superconductors is of potential interest for the study
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FIG. 4: (Color online) (a): (T -Q) phase diagram for a Joseph-
son junction with a chiral magnet (J = 20Tc) between two
singlet superconductors. The transition from a π-junction at
smaller chiral wave vector Q to a 0-junction at larger Q is
indicated for several thicknesses of the ferromagnetic layer.
(b): corresponding low-T (df -Q) phase diagram (T = 0.1Tc).

of critical behavior near a quantum critical point.
In the right panel of Fig. 4 the very different behav-

iors for QξJ < 2 and > 2 are also seen. For QξJ < 2
the spiral order shifts the transition lines towards thicker
magnetic films, but the transition line never disappears
from the phase diagram. Only in the region QξJ > 2
is the averaging of the exchange field over the magnetic
length so effective as to prevent 0 − π transitions.

In summary, we have studied the Josephson effect in an
S-CM-S junction in the presence of an in-plane cycloidal
spin spiral structure in the magnet. We have found that
the presence of a spin spiral can change the ground state
of the Josephson junction, and lead to a transition be-
tween a π-junction and a 0-junction for a critical spiral
wave vector. The dependences of the Josephson effect
on magnet thickness and on temperature depend sensi-
tively on the wave vector of the chiral order in the mag-
net. We predict that a quantum-critical point should
exist in the phase-diagram for suitably chosen sample
parameters. We expect that these effects will have po-
tential applications for new types of functional nanoscale
structures. The ultimate goal for the future is to tune
Josephson junctions with one or more chiral magnets by
controlling the phases or magnitudes of the spiral mag-
netic wave vectors.

We would like to thank Gerd Schön for valuable con-
tributions to this work. T.L. acknowledges support from
the Alexander von Humboldt Foundation.

Note added. - After submission, we became aware of
work by Crouzy et al. [21], who study in-plane magnetic
Néel domain walls. Their model is markedly different
from ours, but leads to similar findings about the peri-
odicity of 0 to π transitions with the magnetic inhomo-
geneity.
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[19] T. Löfwander, T. Champel, and M. Eschrig, Phys. Rev.
B 75, 014512 (2007).

[20] We assume that the following inequalities hold
(γbkǫξf )−1

≪ tanh(xǫ) ≪ γbkǫξf .
[21] B. Crouzy, S. Tollis, and D.A. Ivanov, Phys. Rev. B 76,

134502 (2007).


