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We study the effect of a noisy environment on spin and charge transport in ballistic quantum
wires with spin-orbit coupling (Rashba coupling). We find that the wire then acts as a dephasing
diode, inducing very different dephasing of the spins of right and left movers. We also show how
Berry phase (geometric phase) in a curved wire can induce such asymmetric dephasing, in addition
to purely geometric dephasing. We propose ways to measure these effects through spin detectors,
spin-echo techniques, and Aharanov-Bohm interferometry.

PACS numbers: 03.65.Yz, 85.75.-d, 73.63.Nm, 73.23.Ad.

A very promising idea for future (quantum or classi-
cal) information processing is “spintronics” ﬂ, E, E, @],
where electrons’ spins (not their charges) are used to en-
code information. However spins do not obey the same
conservation laws as charges; charges do not change sign
but spins can flip. Current conservation enforces sym-
metries on charge transport (Onsager relations). For ex-
ample two-terminal devices always have the same left-to-
right and right-to-left conductance in the linear-response
regime of negligible interaction/charging effects (diodes
do not exist without interactions). By contrast, asymme-
tries between left-to-right and right-to-left spin-transport
can occur in the linear-response regime for two-terminal
devices, if there is spin-orbit coupling (Rashba or Dres-
selhaus). Coherence is a crucial aspect of quantum trans-
port, so here we investigate analogous asymmetries in the
dephasing (decay of coherence) of spins. We then study
how Berry (geometric) phases — present in curved wires

| — modify such asymmetric dephasing ﬂa]

The coherence of a superposition of two spin-states at
the Fermi-surface is quantified in terms of the purity,
P = tr[p?], where p is a 2 x 2 density matrix. A pure
superposition has maximal purity, P = 1, while an equal
classical mixture has minimal purity, P = 1/2. We use
the term “dephasing diode” for a two-terminal device in
which spin-superpositions of left movers experience very
different dephasing from right movers. For an ideal de-
phasing diode, an electron injected into the device from
the left lead (a right mover) in an equal coherent super-
position of spin-states (P = 1) would emerge completely
dephased (P = 1/2), while an electron injected into the
device from the right (a left mover) in any superposi-
tion with P = 1 would emerge at the left without being
dephased at all (still having P = 1). This dephasing
could be observed by measuring either certain spin com-
ponents of the current, or by a conventional current mea-
surement in an Aharonov-Bohm (AB) interferometer. In
this letter, we provide illustrations of dephasing diodes

with straight and curved ballistic wires. For the latter,
the Berry phase gives a geometry-induced contribution to
dephasing, whose sign depends on the curvature’s sign.

Noise causes dephasing, and real devices have many
sources of moise (thermal or quantum), including
electron-electron and electron-phonon interactions. How-
ever, a clear experimental observation of asymmetric de-
phasing requires control of the noise-power (seeing the
asymmetry change with the noise-power). Thus we pro-
pose taking a wire with low intrinsic noise, modelled
by ballistic non-interacting electrons, and applying man-
made noise to the magnetic fields and gates. The re-
sponse time of gates/magnets is typically longer than
the time-of-flight of electrons from source to detector
along a ballistic wire ﬂ] Hence we study the effect of
extremely slow (man-made or intrinsic) noise on non-
interacting electrons with spin-orbit coupling. For sim-
plicity, here we consider only Rashba coupling, Br =
h(pyey — pyes)/(mlr), where Iy is the spin-precession
length []], and magnetic fields are in units of energy.
Biasing a back-gate gives control over Ig by modify-
ing the potential gradient along the z-axis é] Noise
can be applied to either the applied magnetic-field or
the Rashba spin-orbit coupling (via a noisy voltage on
the backgate). By measuring any three orthogonal spin
polarizations (o;), i € {1,2,3}, one gets the purity
P = 2(1+ (61)% + (62)* + (63)%) [1d). Our qualita-
tive predictions are summarized in Table[[l Dresselhaus
coupling yields similar results, but it is hard to control
experimentally (i.e. not affected by the back-gate) so we
do not consider it further here [11).

Asymmetric dephasing in a straight wire (see
Fig. Mh). We neglect the contribution of the motion
across the wire (y-direction) ﬂﬂ], so the Hamiltonian for
an electron in the lowest mode of the ballistic wire is

H = (2m)~'p2 + Eo — h(mlr) 'pu6, — iB-5, (1)

where Fj is the transverse mode’s energy. Hence the
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FIG. 1: The geometries we consider, with applied field, B
and Rashba field, Br. In (c), the BP changes sign for wires
reflected in the z-axis (© — —0). In (d) the source injects a
superposition of T and | eigenmodes, and the spin-flip takes
7<|. In (e) spin-polarized electrons are injected at £. Some
are detected at R, but most escape into D; .

eigenmodes have momenta, p,, given by

0 = ps— 205 +4(R/Ir)*p2 + [2km B, /Ir]ps

where B = |B| and py = [2m(Er — Eo)]'/%. Here
o = +1 = (1,]) is the spin-state, orientated along the
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FIG. 2: (a) A sketch of the dispersion curve for H in Eq. ();
dashed parabolas have B, = B, = 0 [13]. (b) The effective
field felt by spin-states at Er (for B, = By = 0). Since
p? > p?, the two states have non-orthogonal spins (their
overall orthogonality is due to p? #* p?)

effective field (B, 2h(mlr) " ps + By, B.), see Fig.

Let us first consider B, = B, = 0, then the solutions
of Eq. @) are p®* = (h/Ir)o + [p2 + (h/Ir)? + mB,o]'/?
with the upper and lower sign for R and £ movers, re-
spectively. We assume p3 > mB,, then an R or L
mover in a superposition of two spin-states, T and |
(e.g. spin in the z-direction), acquires a phase differ-
ence of ®RL = (|pfﬁ| - |pf’c|)L/h between the two
spin-states when traversing the wire. There is no energy-
term because both states have the same energy. Given
pf'ﬁ we have ®RL = (A]}i — A:}gy + QZR_I)L where
the length scale Ap = h[p3 + (h/Ir)? + mB]~'/2. Noise
smears this phase difference causing dephasing. We con-
sider Gaussian-distributed noise in B and [gr which is
much slower than the time-of-flight between source and
detector. We use (---) to indicate taking the expec-
tation value, and averaging over §B;,dlg with weight
exp[ — £ 3°,(6B;/A:)? — 1(8lr/Ar)?]. Assuming that
the noise is weak, A; < B; and Agr < [g, we can ex-
pand ®R to first order in 6B; and dlg. Defining &, as
along the eigenbasis (here the y-axis), we have

(52.0) o |(explie™ <)

= exp [ — %(L(ABy =+ A,By)mAB/ﬁz)Q}
X exp [ — %(L(ABy — A,By + QZR)AR/ZRB)Q] (3)

This yields a Gaussian decay of the purity with L, i.e.
with the time-of-flight along the wire ﬂﬂ] Such Gaussian
decays are typical of slow noise (inhomogeneous broad-
ening) [15]. Noise in B dephases the spin of R and £
movers in the same way (symmetric). However noise in
Ir dephases R movers differently from £ movers [upper
vs. lower sign in Eq. (3)]. This asymmetry can only be
large if [Ap, — A_p,| ~ 2IR.

In contrast, for B, = 0, Eq. () is a quadratic equation
for p2. For every £ mover with momentum p, there is a
R mover with momentum —p,. In this case ®® = &~
so there is no asymmetry in dephasing.

Geometric dephasing in a curved wire, see



Wire || Ir-noise (cf. Eq. (1)) B.-noise By-noise | Bz-noise
Straight, finite B, sym. + weak asym. none sym. none
Straight, finite B, sym. sym. sym. sym.
Straight, finite B, sym. sym. sym. sym.

Curved, finite B, sym. + weak geom.-induced asym.

+ weak purely geometric sym.

sym. + weak geom.-induced asym.

+ weak purely geometric sym.

Curved + spin-echo || sym. + strong geom.-induced asym.

+ strong purely geometric sym.

sym. + strong geom.-induced asym.
+ strong purely geometric sym.

AB set-up,
finite B.

sym. + strong geom.-induced asym.

+ strong purely geometric sym.

sym. + weak asym.

+ weak geom.-induced asym.

+ weak purely geometric sym.

TABLE I: Contributions to dephasing for the various systems: ‘none” indicates the absence of dephasing ﬂﬂ], “sym./asym.”
indicate that the terms are symmetric/asymmetric under right movers < left movers. Terms labelled “strong” (“weak”) are of
similar size to (much less than) the main symmetric term, for typical experimental parameters. “Geom.-induced” and “purely
geometric” indicate terms which vanish for a straight wire, the former go like LO while the latter go like ©2.

Fig. Mb. The electron travelling along the wire is sub-
ject to a spatially varying effective field (B 4+ Bgr, where
B = B.e.). We go to cylindrical coordinates (r, 0, z)
[16] dropping terms that go like Ap /7. Transforming the
spinor using Uy = exp[i365.] gives the Hamiltonian

A A A
- Dp hpe . hpe \ .
eyl = —+Ey——6,—|B.+— )0, (4
Hext 2m+ 0 mlRU ( * 2m7°)g )

where the #-dependence of the frame causes the pyo,
term. The eigenmodes’ momenta, p, = py(c), are given
by Eq. () with B, = B, = 0 and B, replaced by (B, +
(2mr)~1p,). We next assume a large radius of curva-
ture, 7 > hipo[(hpo/Ir)? + (mB./2)?]~/? (so the frame’s
angular velocity < precession rate in the effective field)
and expand p, = %|p°| + hcyr ™!, where p° is the mo-
mentum for r = oo. To order 1/r, we obtain ¢, = o cosk
where we define x as the angle between the z-axis and
an effective field (0, 2h[p3 + (h/Ir)?]*/?/(mlr), B.). This
is readily generalized to other wire shapes (cf. Fig. 1c),
with r varying along the wire coordinate, z, (r(Z) to be
kept large). Noting that (¢t — ¢)) = 2¢1, we obtain

SRE = pt / (D74 — [R5 ) () d6()

= (IpF°1 = [p°1) L/h £ 2¢1© ()
The first term in ®®% goes like the wire length, L,
(i.e. proportional to the time-of-flight along the wire)
and is hence a dynamic phase. The second term is pro-
portional to the total change in angle, ©, is indepen-
dent of the time-of-flight and is thus a Berry (geomet-
ric) phase; it is the same for all wires in Fig. k. As
O is a directed angle, ® — —© means a curve in the
opposite sense (i.e. clockwise—counter-clockwise). In-
troducing noise (in B, and Ilg) now adds the factor
[0lr 7= + 0B 35| [(Ip%°] — [PS°1)L/h + 2¢10)] to Pr c.
Averaging over this noise as before yields decay (dephas-

ing) of the purity with the exponent

~3([Bng + A g ) (5]~ ) £/ £ 26:0])” (6)

The ~ L? and ~ ©? terms in the exponential (dynamic
and purely geometric terms respectively) are both un-
changed under R < L. The cross term, ~ L-0, (a mixed
dynamic-geometric term) changes sign under R < L,
causing a (geometry-induced) left-right asymmetry.
Coherent oscillations carry the phase of Eq. (@), their
amplitude decays with the exponent in Eq. (@). Ambigu-
ity in choosing the measurement axis (any axis perpen-
dicular to the axis of the eigenbasis) causes ambiguity in
the phase (know as gauge-dependence), but not the am-
plitude. Thus the geometric contribution to dephasing is
gauge-independent even when the BP is not ﬂa]
Spin-echo. To maximize the geometric or asymmet-
ric effects one may use a spin-echo technique, sketched
in Fig. Md. If ® = AL = 0, the wires left and right
of the spin-flipper are identical, and any spin-component
acquires opposite phases before and after the spin-flip.
Thus for non-zero © and AL, the phase is given by
Eq. (@) with L replaced by AL. Dephasing is given by
Eq. (@) with L — AL. Varying AL changes the relative
size of the AL?, AL © and ©2 contributions to dephasing.
For AL = 0, there is only purely geometric dephasing.
Asymmetry is maximized for a small AL, such that the
AL? and AL © terms are similar in size.
Aharonov-Bohm interferometer. Measuring the
flux-sensitive current through such an interferometer
(Fig. k) allows us to study dephasing [17], while avoiding
the need to measure spin-components of the current. We
generate right or left movers via a voltage bias to either
the £ or the R lead. Asymmetry in dephasing will man-
ifest itself as a difference in the visibility (magnitude of
the AB oscillations in the current) between right and left
movers, We assume that the multi-terminal (open) in-
terferometer is sufficiently open that no higher windings



around it occur. This also avoids the symmetry con-
straints imposed by the two-terminal Onsager-Biittiker
relations. We consider injected electrons which are spin-
polarized along B = B.e., thus the phase difference be-
tween the two paths is ®R% = +0ap + [p°|L/h £ 1O
where L = Ly — L1 and © = ©5 — ©7. The Aharonov-
Bohm phase ®pp = —eB, A/(guph) where A is the area
enclosed by the paths. The current at the detector is

[IRF| = L] + | L] + 2| L I /2 ARE cos @RF - (T)

where I; is the part of the current in arm ¢ which enters
the detector lead. In the absence of noise A®* = 1. For
1; = I, the visibility of the AB oscillations is maximal.
Averaging over noise in B, and [g, we find that

d|pse 2
ARE = expl—%AQBz( eA | L |+®dcT)

gush h dB, dB,

L d[pg| der 2
a2 (4 2 bl I I
2 R( Lo dig ele) (8)

This is asymmetric, with the upper (lower) sign for R (£)
movers. There are contributions to dephasing due to the
curvature, ~ LO (asymmetric) and ~ ©% (symmetric).

Discussion. Quantum wires in Ga,In;_,As/InP have
Ig ~ 5Ap ~ 200nm [1§]. Then the ratio of asymmetric
to total dephasing in a straight-wire (cf. Eq. @) will be
small, equal to 202 /(Irlg) ~ 8%, where lp = vph/B ~
lr. However for spin-echo set-ups with AL ~ [g, this
ratio can be of order one (cf. Eq. (@ and thereafter).
Then the dephasing is not very strong, nonetheless we
estimate that one can tune AL such that R movers lose
at least 50% of their coherence (purity P < 3/4), while
L movers are not dephased. For the AB set-up with Ig-
noise (cf. Eq. @), the situation is the same as for the
spin-echo (with L playing the role of AL), while for B.-
noise the ratio of asymmetric to total dephasing (in the
exponent) is tiny ~ ApL/A.

To summarize, we have analyzed the effect of noise
on current-carrying electrons, both spinful and spin-
polarized, subject to a spin-orbit interaction. The de-
phasing may be measured through the spin-components
of the emerging electrons, or the visibility of AB oscil-
lations. We have demonstrated both geometric dephas-
ing and left-right asymmetry in dephasing. The noise
studied here fluctuates at a pace slower than the time-
of-flight, leading to dephasing with the exponential of
~ L? ~ L-0©, ~ 02 By contrast, for faster fluctu-
ations (studied for a spin or qubit in a time-dependent
field ﬂa]), the dephasing would be exponential with L, O,
see also ﬂﬁ, , ] Other £ < R asymmetries occur in
real devices, however those discussed here have a unique
signature; they are controlled by the noise-power.
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