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Pairing symmetry conversion by spin-active interfaces in superconducting junctions
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We study the proximity-induced superconducting correlations in a normal metal connected to a superconductor
when the interface between them is spin-active and the normal metal is ballistic or diffusive. Remarkably, for any
interface spin polarization there is a critical interface resistance, above which the conventional even-frequency
proximity component vanishes completely at the chemical potential, while the odd-frequency component re-
mains finite. We propose a way to unambiguously observe the odd-frequency component.

PACS numbers: 74.20.Rp, 74.50.+r, 74.20.-z

Superconductivity and superfluidity are hallmarks of the
wave-like character of matter, and manifest themselves in
vastly different systems, from ultracold dilute gases via cold
metals and fluids, to extremely dense protonic and neutronic
matter. In all these contexts, the symmetry of the order param-
eter is of profound importance. Over the last decades, the pos-
sibility of superconducting order parameters that change sign
under atime-coordinateexchange of the two fermions com-
prising the Cooper-pair, has emerged in addition to the by now
well studied varieties of orbital symmetries [1, 2, 3, 4, 5].This
so-called odd-frequency superconductivity [6] is distinct from
the traditional even-frequency pairing in the Bardeen-Cooper-
Schrieffer paradigm, and may be induced by proximity effects
in hybrid structures of superconductors and magnets [1].

In a broader context, proximity systems offer the possibility
of controlling the physics of competing broken symmetries.
The fundamental heterostructure for studying proximity in-
duced superconductivity is the superconductor/normal metal
(S|N) bilayer, where the normal metal or the interface may
have magnetic properties. Among possible triplet pair corre-
lations, in the diffusive limit odd-frequency pairs are favored
[7], whereas in ballistic hybrid systems both odd- and even-
frequency amplitudes compete [3, 4]. As all known supercon-
ductors to date exhibit an even-frequency order parameter,the
observation of proximity induced effects that are particular to
odd-frequency pairing would be of utmost interest.

There are two major difficulties associated with the detec-
tion of the odd-frequency state in superconductor/ferromagnet
(S|F) bilayers. One is the usually short penetration depth
into the ferromagnetic region, limited by the magnetic coher-
ence lengthξF , much less than the superconducting coherence
lengthξS [1]. Another problem is that odd-frequency pairs are
only well defined when even-frequency correlations vanish in
the ferromagnet. Clear-cut signatures of the former are there-
fore only accessible in a limited parameter regime [8].

The majority of work on superconducting proximity-
structures so far has been restricted to the diffusive limitand
spin-inactive interfaces [9]. For a non-magnetic bilayer,a
minigap appears in the density of states of the normal metal.
It scales with the Thouless energy of the normal layer and

with the transmission probability of the interface. Such mini-
gap structures are readily accessible experimentally [10]. For
a spin-active interface, the transmission properties of spin-↑
and spin-↓ electrons into a metal are different, and this gives
rise to both spin-dependent conductivities and spin-dependent
phase shifts at the interface [11, 12, 13, 14, 15]. In this Letter
we show that a spin-active interface in a S|N bilayer produces
clear signatures of purely odd-frequency triplet pairing ampli-
tudes that can be tested experimentally.

We consider the system shown in Fig. 1. The superconduc-
tor is conventional (even-frequencys-wave) while the inter-
face is magnetic. We find that there is a dramatic change in
the nature of proximity correlations when the spin-dependent
phase shifts exceed the tunneling probability of the interface.
The spin-active interface in an S|N bilayer causes the even-
frequency correlations to vanish at zero excitation energy,
while odd-frequency correlations appear. At the same time,
the minigap, one of the hallmarks of the conventional prox-
imity effect, is replaced by a low-energy band with enhanced
density of states. We focus on the density of states (DOS)
in the normal region, which can be probed by tunneling ex-
periments. Our findings suggest that it should be possible to
detect the odd-frequencyamplitude without any interfering ef-
fects of even-frequency correlations. Since the exchange field
is absent in the normal metal, this resolves the two main dif-
ficulties associated with the experimental detection of odd-
frequency correlations mentioned above.

We adopt the quasiclassical theory of superconductivity
[18], where information about the physical properties of the
system is embedded in the Green’s function. For equilibrium
situations, it suffices to consider the retarded Green’s func-
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FIG. 1: (Color online) Proposed experimental setup for observa-
tion of the odd-frequency component in a diffusive normal metal
layer|superconductor junction.
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tion, ĝ, that is parameterized conveniently in the normal (N)
region by a parameterθσ, allowing for both singlet and triplet
correlations [8]. In the superconducting (S) region, we em-
ploy the bulk solution̂gS = c · τ3 ⊗ σ0 + s · τ1 ⊗ (ıσ2), with
c = cosh(θ), s = sinh(θ), θ = atanh(∆/ε), τi andσi being
Pauli matrices in particle-hole and spin space, respectively.

We use the formalism described in Ref. [8], and con-
sider first the diffusive limit. Then, the orbital symme-
try for all proximity amplitudes is reduced tos-wave and
hence the singlet component always has an even-frequency
symmetry while the triplet component has an odd-frequency
symmetry. The Green’s functions are subject to boundary
conditions, which in the tunneling limit assume the follow-
ing form at the S|N interface [13, 15]: 2γdĝN∂xĝN =
[ĝS , ĝN ] + ı(Gφ/GT )[τ0 ⊗ σ3, ĝN ], and at the outer interface
read∂xĝN = 0̂. Here,γ = RB/RN whereRB (RN ) is the
resistance of the barrier (normal region), andd is the width of
the normal region, whileGT is the junction conductance in the
normal-state. The boundary condition above contains an addi-
tional termGφ compared to the usual non-magnetic boundary
conditions in Ref. [9]. This term is due to spin-dependent
phase shifts of quasiparticles being reflected at the interface.
Gφ may be non-zero even if the transmissionGT → 0, corre-
sponding to a ferromagnetic insulator [13]. We define the su-
perconducting coherence lengthξS =

√

D/∆ and Thouless
energyεTh = D/d2, whereD is the diffusion constant, and
assume that the inelastic scattering length,lin, is sufficiently
large, such thatd≪ lin.

The Usadel equation [19] readsD∂2
xθσ + 2ıε sinh θσ = 0,

with boundary conditionγd∂xθσ = (csσ − σscσ) + ıσsσ
Gφ

GT

at x = 0 and∂xθσ = 0 at x = d. Here,cσ = cosh(θσ)
andsσ = sinh(θσ). At zero energy, we find that the pairing
amplitudes are either purely (odd-frequency) triplet,

fs(0) = 0, ft(0) =
GT · sgn(Gφ)
√

G2
φ −G2

T

for
|Gφ|

GT

> 1, (1)

or purely (even-frequency) singlet

fs(0) =
ı ·GT

√

G2
T −G2

φ

, ft(0) = 0 for
|Gφ|

GT

< 1. (2)

Thus, the presence ofGφ induces an odd-frequency compo-
nent in the normal layer. The remarkable aspect of Eqs. (1)
and (2) is that they are valid for any value of the widthd be-
low the inelastic scattering length, and for any interface pa-
rameterγ. Thus, the vanishing of the singlet component is
a robust feature in S|N structures with spin-active interfaces,
as long as|Gφ|/GT > 1. Without loss of generality, we
focus on positive values ofGφ from now on. The DOS is
given asN(ε)/N0 =

∑

σ Re{cσ}/2, yieldingN(0)/N0 =

Re{Gφ/
√

G2
φ −G2

T }. At zero-energy, the DOS thus van-

ishes as long asGφ/GT < 1, which means that the usual
minigap in S|N structures survives in this regime. However,
the zero-energy DOS is enhanced forGφ/GT > 1 since the
singlet component vanishes there.
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FIG. 2: (Color online) The singlet and triplet proximity amplitudes
induced in the normal metal are shown forGφ/GT < 1 [in a) and c)]
andGφ/GT > 1 [in b) and d)]. In e), we plot the energy-resolved
DOS for several values ofGφ/GT . Finally, f) shows the zero-energy
DOS as a function ofGT /Gφ, with the proximity amplitudes shown
in the inset.

The full energy-dependence of the DOS may only be ob-
tained numerically. To model a realistic experimental setup,
we fix γ = 10 andd/ξS = 1.0, although our qualitative re-
sults are independent of these particular choices. As a mea-
sure of the relevant energy scale, we defineε0 = εTh/(2γ).
The results are shown in Fig. 2 to investigate the effect
of the spin-dependent phase shifts. The low-energy DOS is
strongly enhanced due to the odd-frequency amplitude when
Gφ/GT > 1 (Gφ/GT = 1.5 in the figure). Conversely, the
DOS develops a minigap aroundε = 0 whenGφ/GT < 1
(Gφ/GT = 0.5 in the figure). The ratioGφ/GT depends on
the microscopic barrier properties [15]. In the tunneling limit,
one finds thatGφ can be considerably larger thanGT .

We suggest the following qualitative explanation for the
mechanism behind the separation between even- and odd-
frequency correlations. The superconductor induces a mini-
gap∝ GT in the normal metal, while the spin-active barrier
induces an effective exchange field∝ Gφ. The situation in the
normal metal then resembles that of a thin-film conventional
superconductor in the presence of an in-plane external mag-
netic field [22], with the role of the gap and field played by
GT andGφ, respectively. In that case, it is known that super-
conductivity is destroyed above the Clogston-Chandrasekhar
limit [23], as the spin-singlet Cooper-pairs break up. In the
present case, we observe coexistence of the exchange field
and spin-singlet even-frequency superconductivity as long as
Gφ is below the critical value ofGφ = GT . However, for
Gφ > GT spin-singlet pairing is no longer possible at the
chemical potential. It is then replaced by spin-triplet pairing,
which must be odd in frequency due to the isotropization of
the gap in the diffusive limit. Thus, there is a natural sepa-
ration between even-frequency and odd-frequency pairing in
the normal metal at a critical value of the effective exchange
fieldGφ.

The same effect occurs in the ballistic limit, as we now
show. In this case, we can obtain the retarded Green’s func-
tion using the formalism described in Refs. [14, 16]. The
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Eilenberger equation in the normal region readsivFx∂xĝ +
[ετ3 ⊗σ0, ĝ] = 0̂. For the boundary conditions, we use a scat-
tering matrix describing the magnetic interface between the
superconductor and the normal metal,

Ŝ =

(

rS · exp
(

i
2
ϑSσ3

)

tSN · exp
(

i
2
ϑSNσ3

)

tNS · exp
(

i
2
ϑNSσ3

)

−rN · exp
(

i
2
ϑNσ3

)

)

, (3)

with real reflection and transmission spin matricesrS , rN ,
tSN , and tNS . The spin mixing anglesϑS , ϑN , ϑSN , and
ϑNS describe spin dependent scattering phases [11]. Neglect-
ing spin flip scattering, the transmission and reflection ampli-
tudes are diagonal in spin space, and the relationsrS = rN ≡
diag[r↑, r↓], tNS = tSN ≡ diag[t↑, t↓], r2↑+t

2
↑ = r2↓+t

2
↓ = 1,

ϑNS + ϑSN = ϑS + ϑN follow from the unitarity ofŜ. Pos-
sible scalar phases are omitted in Eq. (3), as they play no role
in the final results.

We next concentrate on subgap energies. The anoma-
lous amplitudes can be decomposed into singlet and triplet
components,f = (fs + ft σ3)(iσ2). Defining fσ =
(fs + σft)/2, we obtain on the top of the normal over-
layer (x = d) fσ(ε) = −sgn(ασ)t↑t↓/

√

α2
σ − (t↑t↓)2 with

ασ = sin (2εd/vFx + σϑ+) + r↑r↓ sin (2εd/vFx + σϑ−).
Here,ϑ± = 1

2
(ϑN ± ϑS) ± arcsin(ε/∆), andε has to be

supplemented by an infinitesimally small positive imaginary
part. The interface parameters and the Fermi velocity com-
ponent inx-direction,vFx = vF cosψ, depend on the impact
angleψ. The relevant energy scale in the problem is the bal-
listic Thouless energy,εTh = vF /2d. For zero spin mixing
angles we recover the known DOS for a normal state over-
layer on a singlet superconductor. The DOS is non-zero only
for |α| > t↑t↓, which for sufficiently large impact angle al-
ways is fulfilled. Clearly, the most interesting regime concerns
ε/εTh ∼ |ϑ±| ∼ t↑t↓.

In the tunneling limit, for small excitation energies
ε/εTh ≪ 1 and small spin mixing anglesϑ± we obtain
ασ = (4εd/vFx +σϑN ). In this case, due toϑ+ +ϑ− = ϑN ,
only the spin mixing angle for reflection at the normal side
of the interface enters, and acts as an effective exchange field
b = ϑNvFx/4d on the quasiparticles. Especially interesting is
the caseε = 0, for which all proximity amplitudes are even in
momentum. Forε = 0 we obtainασ = σϑN , and the pairing
amplitudes are either purely (odd-frequency) triplet,

fs(0) = 0, ft(0) =
−t↑t↓ ·sgn(ϑN )
√

ϑ2
N − (t↑t↓)2

for
|ϑN |

t↑t↓
> 1, (4)

or purely (even-frequency) singlet

fs(0) =
ı · t↑t↓

√

(t↑t↓)2 − ϑ2
N

, ft(0) = 0 for
|ϑN |

t↑t↓
< 1. (5)

Comparing with the results for the diffusive case, we find that
Gφ/GT corresponds to−ϑN/(t↑t↓).

In Fig. 3, we show results for the proximity amplitudes in
the ballistic limit, and focus on positive values ofϑN without
loss of generality. A systematic expansion of all terms in the
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FIG. 3: (Color online) Momentum-averaged proximity amplitudes at
the surface of the normal layer. Parameters:d = vF /∆, T0 = 0.1
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FIG. 4: (Color online) (a) DOS as function of energy at the topof
the normal layer for fixed transmission probabilityT0 = 0.1, and
various values ofϑN = ϑS . Remaining parameters are as in Fig. 3.
(b) DOS and proximity amplitudes atε = 0 for ϑN = ϑS = 0.2 as
function ofT0. In (c) and (d) we show the results corresponding to
(a) and (b) when assuming an (abrupt) tunneling cone with opening
angle of 10 degree.

tunneling probability shows that in the tunneling limit thespin
dependence of the transmission probabilities can be neglected,
and only that of the phase shifts needs to be kept. Thus, we
assumet↑ = t↓ = t. We model the dependence on the impact

angleψ ast(µ) = (t0)
1

µ , µ = cosψ, and assume for simplic-
ity spin mixing angles independent ofµ. The tunneling prob-
ability for normal impact isT0 = t20. In the caseT0 < ϑN at
small energies the odd frequency triplet amplitude dominates,
and it is the only non-zero amplitude atε = 0. On the other
hand, forT0 > ϑN both singlet and triplet amplitudes con-
tribute. This is due to the fact that for large impact angles the
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transmission probabilityt(µ)2 drops below the value for the
spin mixing angleϑN .

We turn now to the DOS. The general expression, assum-
ing the bulk solution in the superconductor, isN(ε)/N0 =

Re
∑

σ=±1

∫ 1

0
|ασ|/

√

α2
σ − (t↑t↓)2 dµ. In the tunneling

limit, this simplifies again, and provided that|ϑN | >
t↑t↓ for all impact angles, the DOS at the Fermi level
is enhanced above its normal state value,N(0)/N0 =
∫

dµ |ϑN |/
√

ϑ2
N − (t↑t↓)2. In Fig. 4, we show results for

the DOS. In (a-b) we assume the dependence on the impact
angle as above, whereas in (c-d) we allow tunnelling only in a
narrow tunneling cone of 10 degrees. The DOS for the cases
of dominating triplet amplitudes and dominating singlet am-
plitudes differ qualitatively. In the case of a tunneling cone
this difference is most drastic, and a comparison with the re-
sults above shows that it is very similar to the diffusive case.
In the right panels, whereϑN = ϑS = 0.2, we demonstrate
that for T0 < 0.2 only the odd frequency triplet amplitude
is present at the chemical potential, while the singlet ampli-
tude is zero. The corresponding zero-bias DOS is enhanced
in this region, whereas it is reduced in the region when singlet
correlations are present atε = 0.

The simplest experimental manifestation of the odd-
frequency component is a zero-energy peak in the DOS
[17, 20, 21]. In S|F layers, where this phenomenon has
been discussed previously, a clear zero-energy peak is unfor-
tunately often masked by the simultaneous presence of singlet
correlationsfs, which tend to suppress the DOS at low ener-
gies. This is not so in the system we consider, provided only
T0 < |ϑN | in the ballistic limit, or equivalently,GT < |Gφ| in
the diffusive limit. This is ideal for a direct observation of the
odd-frequency component, manifested as a zero-energy peak
in the DOS.

The important factor, with regard to isolation of the odd-
frequency correlations at zero energy is the interface. The
even-frequency correlations vanish completely when the in-
terface transmission is sufficiently low. The parametersϑN ,
or equivalently,Gφ can be increased by increasing the mag-
netic polarization of the barrier separating the superconduct-
ing and normal layers. By fabricating several samples with
progressively increasing strength of magnetic moment of the
barrier, one should be able to observe an abrupt crossover at
the zero-energy DOS above a certain strength of the magnetic
moment. Alternatively, one could alter the interface transmis-
sion by varying the thickness of the insulating region.

In summary, we have investigated the proximity-effect in

a superconductor/normal metal bilayer with spin-active inter-
face. We find that both in the ballistic and diffusive limits,
the usual even-frequency correlations may vanish completely
at zero energy, while odd-frequency correlations persist.This
result is completely independent of the specific values for the
layer thicknesses and barrier resistances, indicating that it is a
robust and general feature of spin-active interfaces. Our find-
ings suggest a way of obtaining unambiguous experimental
identification of superconducting odd-frequency correlations.
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