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Pairing symmetry conversion by spin-active interfaces in superconducting junctions
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We study the proximity-induced superconducting corretatiin a normal metal connected to a superconductor
when the interface between them is spin-active and the donetal is ballistic or diffusive. Remarkably, for any
interface spin polarization there is a critical interfaesistance, above which the conventional even-frequency
proximity component vanishes completely at the chemic&mal, while the odd-frequency component re-
mains finite. We propose a way to unambiguously observe tb€reduency component.

PACS numbers: 74.20.Rp, 74.50.+r1, 74.20.-z

Superconductivity and superfluidity are hallmarks of thewith the transmission probability of the interface. Suctmimi
wave-like character of matter, and manifest themselves igap structures are readily accessible experimentally [E6]
vastly different systems, from ultracold dilute gases w&lc  a spin-active interface, the transmission properties of-$p
metals and fluids, to extremely dense protonic and neutroniand spini electrons into a metal are different, and this gives
matter. In all these contexts, the symmetry of the ordempara rise to both spin-dependent conductivities and spin-dégen
eter is of profound importance. Over the last decades, the pophase shifts at the interface [11) 12, [13,(14, 15]. In thigdret
sibility of superconducting order parameters that chaige s we show that a spin-active interface in iN®ilayer produces
under atime-coordinateexchange of the two fermions com- clear signatures of purely odd-frequency triplet pairingpé-
prising the Cooper-pair, has emerged in addition to the oy no tudes that can be tested experimentally.
well studied varieties of orbital symmetries|[1, 2, 3,/4, Bhis We consider the system shown in Aig. 1. The superconduc-
so-called odd-frequency superconductivity [6] is distinom  tor is conventional (even-frequeneywave) while the inter-
the traditional even-frequency pairing in the Bardeen{i&me  face is magnetic. We find that there is a dramatic change in
Schrieffer paradigm, and may be induced by proximity effect the nature of proximity correlations when the spin-depende
in hybrid structures of superconductors and magnets [1].  phase shifts exceed the tunneling probability of the iateef

In a broader context, proximity systems offer the possibili The spin-active interface in an$ bilayer causes the even-
of controlling the physics of competing broken symmetriesfrequency correlations to vanish at zero excitation energy
The fundamental heterostructure for studying proximity in while odd-frequency correlations appear. At the same time,
duced superconductivity is the superconductor/normahmet the minigap, one of the hallmarks of the conventional prox-
(SIN) bilayer, where the normal metal or the interface mayimity effect, is replaced by a low-energy band with enhanced
have magnetic properties. Among possible triplet pairesorr density of states. We focus on the density of states (DOS)
lations, in the diffusive limit odd-frequency pairs aredagd  in the normal region, which can be probed by tunneling ex-
[7], whereas in ballistic hybrid systems both odd- and evenperiments. Our findings suggest that it should be possible to
frequency amplitudes compete [3, 4]. As all known supercondetect the odd-frequency amplitude without any interfgef
ductors to date exhibit an even-frequency order parantater, fects of even-frequency correlations. Since the exchaed fi
observation of proximity induced effects that are parictid  is absent in the normal metal, this resolves the two main dif-

odd-frequency pairing would be of utmost interest. ficulties associated with the experimental detection of-odd
There are two major difficulties associated with the detecfrequency correlations mentioned above.
tion of the odd-frequency state in superconductor/ferigmea We adopt the quasiclassical theory of superconductivity

(S|F) bilayers. One is the usually short penetration deptH1€], where information about the physical properties @& th

into the ferromagnetic region, limited by the magnetic gohe system is embedded in the Green’s function. For equilibrium

ence lengtlf -, much less than the superconducting coherencsituations, it suffices to consider the retarded Green’s-fun

lengthés [1]. Another problem is that odd-frequency pairs are

only well defined when even-frequency correlations varish i

the ferromagnet. Clear-cut signatures of the former anethe Normal metal

fore only accessible in a limited parameter regime [8]. \'\"1‘1‘1‘»‘(‘“j‘wjl‘ll‘\‘"('y‘fﬁ
The majority of work on superconducting proximity-

structures so far has been restricted to the diffusive lmi

spin-inactive interfaces [9]. For a non-magnetic bilayer, FIG. 1: (Color online) Proposed experimental setup for olese

minigap appears in the density of states of the normal metafion of the odd-frequency component in a diffusive normakahe

It scales with the Thouless energy of the normal layer and@Ye1superconductor junction.
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tion, g, that is parameterized conveniently in the normal (N) 4 Gr > Gy CGr <Gy 4

. . . . singlet El Gy /Gp—— O'?
region by a parametéy,, allowing for both singlet and triplet Imf, 05
correlations|[B]. In the superconducting (S) region, we em- 3 s N ’
ploy the bulk solutios = ¢+ 73 ® 09 + s - 71 ® (102), with "0

Imfg

c = cosh(f), s = sinh(f), § = atani{A/e), 7; ando; being 2 1 o 1 2
Pauli matrices in particle-hole and spin space, respdgtive , frplet Ref, Ref, 6 - €/

We use the formalism described in Ref.l [8], and con- _ =4 J '
sider first the diffusive limit. Then, the orbital symme- = ° - T/, 5 /) o TN e

- . . _ i > 2 c

try for all pr_OX|m|ty amplitudes is reduced te-wave and 2 = ) |
hence the singlet component always has an even-frequent -4 P ) 5 T % I > 3
symmetry while the triplet component has an odd-frequency e/ ¢/= Gr/Gy

symmetry. The Green’s functions are subject to boundary
conditions, which in the tunneling limit assume the follow- FIG. 2: (Color online) The singlet and triplet proximity afitpdes
ing form at the $N interface [1B,[ 15]: 2vdjnd,gy =  Inducedinthe normal metal are shown & /G < 1([ina)and c)]

PO N ; andG4/Gr > 1[in b) and d)]. In e), we plot the energy-resolved
(95, 9] +1(Gy/Gr)[10 ® 03, 4], and at the outer interface DOS for several values @, /Gr. Finally, f) shows the zero-energy

rea_dBIf;N =0. Here,_y = Rp/RN V\_’hereR_B (RN)_iS the  pos as a function ofir /G, with the proximity amplitudes shown
resistance of the barrier (normal region), ahid the width of  in the inset.

the normal region, whilé&/r is the junction conductance in the
normal-state. The boundary condition above contains ain add
tional termG,; compared to the usual non-magnetic boundary The full energy-dependence of the DOS may only be ob-
conditions in Ref. |[9]. This term is due to spin-dependenttained numerically. To model a realistic experimental getu
phase shifts of quasiparticles being reflected at the mterf we fixy = 10 andd/{s = 1.0, although our qualitative re-
G, may be non-zero even if the transmiss@p — 0, corre-  sults are independent of these particular choices. As a mea-
sponding to a ferromagnetic insulator [13]. We define the susure of the relevant energy scale, we define= e1n/(27).
perconducting coherence length = /D/A and Thouless The results are shown in Fig[] 2 to investigate the effect
energysth = D/d?, whereD is the diffusion constant, and of the spin-dependent phase shifts. The low-energy DOS is
assume that the inelastic scattering length,is sufficiently ~ strongly enhanced due to the odd-frequency amplitude when
large, such thad < Ijn. Gy/Gr > 1 (Gy/Gr = 1.5 in the figure). Conversely, the
The Usadel equation [19] read®)?6,, + 2icsinhf, = 0,  DOS develops a minigap arousd= 0 whenG,/Gr < 1
with boundary conditiondd, 0, = (cs, — oscs) +10s, a2 (Go/Gr = 0.5 in the figure). The ratidsy /G depends on
atz = 0 andd,f, = 0 atz = d. Here,c, = cosh(d,) the microscopic barrier properties [15]. In the tunnelingj,
ands, = sinh(f,). At zero energy, we find that the pairing one finds thatz; can be considerably larger thékhy .

amplitudes are either purely (odd-frequency) triplet, We suggest the following qualitative explanation for the
mechanism behind the separation between even- and odd-

fs(0) =0, f,(0)= Gr -sgnGy) for |G| >1, (1) frequency correlations. The superconductor induces a-mini
,/Gi - G% Gr gapx Gr in the normal metal, while the spin-active barrier
induces an effective exchange fieldG,. The situation in the
or purely (even-frequency) singlet normal metal then resembles that of a thin-film conventional
1-Gp G| superconductor in the presence of an in-plane external mag-

fs(0) = —==, fi(0) =0 for == <1. (2)  netic field [22], with the role of the gap and field played by
G2, — 2 T . T
T ¢ Gt andGy, respectively. In that case, it is known that super-

Thus. the presence @ induces an odd-frequency compo- conductivity is destroyed above the Clogston-Chandramekh
: P ¢ 9 y PO" limit [23], as the spin-singlet Cooper-pairs break up. Ia th

nent in the normal layer. The remarkable aspect of Egs. agresent case, we observe coexistence of the exchange field

and [2) is that they are valid for any value of the widthe- C -
. . . . and spin-singlet even-frequency superconductivity ag s
low the inelastic scattering length, and for any interfaae p . g
G, is below the critical value o7y, = Gr. However, for

rametery. Thus, the vanishing of the singlet component is L S :
. . . L G, > Gr spin-singlet pairing is no longer possible at the
a robust feature in|8l structures with spin-active interfaces, : ; : L L
chemical potential. It is then replaced by spin-tripletripey,

as long aSIG‘Z?'./GT > 1. Without loss of generality, W€ which must be odd in frequency due to the isotropization of
focus on positive values af, from now on. The DOS is : e )

. S the gap in the diffusive limit. Thus, there is a natural sepa-
given asN(e)/No = > _Re{c,}/2, yielding N(0)/Ny = . S

5 5 o ration between even-frequency and odd-frequency pairing i

Re{G4/\/G5 — G7}. At zero-energy, the DOS thus van- the normal metal at a critical value of the effective excreang
ishes as long a&',/Gr < 1, which means that the usual field G.
minigap in SN structures survives in this regime. However, The same effect occurs in the ballistic limit, as we now
the zero-energy DOS is enhanced &5/Gr > 1 since the show. In this case, we can obtain the retarded Green'’s func-
singlet component vanishes there. tion using the formalism described in Refs. |[14] 16]. The



Eilenberger equation in the normal region reads,d,§ +

[e3 ® 00, §] = 0. For the boundary conditions, we use a scat- 0.6

tering matrix describing the magnetic interface between th 0.4

superconductor and the normal metal, T o2
; ; 0

s ( s exp(3Usos) gy -exp (59sn0s) i

S = 3 i , (3) -0.2
tns - oxp (39ns03) —ry - exp (39n0s) '

with real reflection and transmission spin matriees r, 0.4
tgn, andtyg. The spin mixing angleds, vy, vsn, and I
Y s describe spin dependent scattering phases [11]. Neglect-
ing spin flip scattering, the transmission and reflection lamp 0.4
tudes are diagonal in spin space, and the relatigns r = L
diag(ry, 7], tys = tsy = diag[tT,tl],r%+t% = rf—l—tj =1,
Ins + Isn = g + U follow from the unitarity ofS. Pos-
sible scalar phases are omitted in Hq. (3), as they play ®o rolF|G. 3: (Color online) Momentum-averaged proximity amyufiés at
in the final results. the surface of the normal layer. Parametetss vr /A, T = 0.1
We next concentrate on subgap energies. The anomé&see text). (a) and (c)dy = Js = 0.05 < To; (b) and (d):
lous amplitudes can be decomposed into singlet and triplety = Us = 0.15 > To. Energy units areo = To ers. Even fre-
components,f = (fs + fio3)(ios). Defining f, = guency singlet components are shown in (a-b), odd frequiipigt

(fs + of:)/2, we obtain on the top of the normal over- components in (c-d).
layer @ = d) f,(e) = —sgna,)tit;//a2 — (t1t))? with 15
ay = sin(2ed/vpy + 0d4) + 7y sin (2ed/vpy + oV-).
Here,d4+ = 3(Jn + ¥g) + arcsin(e/A), ande has to be o
supplemented by an infinitesimally small positive imagynar
part. The interface parameters and the Fermi velocity com-
ponent inz-direction,vg, = vp cost, depend on the impact
angley. The relevant energy scale in the problem is the bal- 0
listic Thouless energy,r, = vr/2d. For zero spin mixing
angles we recover the known DOS for a normal state over-
layer on a singlet superconductor. The DOS is non-zero only o
for |a| > t4t;, which for sufficiently large impact angle al-
ways is fulfilled. Clearly, the mostinteresting regime cemnms
E/EThN|Q9i|NtTtl. 1
In the tunneling limit, for small excitation energies
e/ern, < 1 and small spin mixing angled. we obtain
oy = (ded/vp, +o0dy). Inthis case, duetd, +9_ = Jy,
only the spin mixing angle for reflection at the normal sideFIG. 4: (Color online) (a) DOS as function of energy at the tdp
of the interface enters, and acts as an effective excharide fiethe normal layer for fixed transmission probabilify = 0.1, and
b = ¥ nvr,/4d on the quasiparticles. Especially interesting is Various values oy = ¢s. Remaining parameters are as in fij. 3.

the case = 0, for which all proximity amplitudes are evenin (P) DOS and proximity amplitudes at= 0 for v = s = 0.2 as
momentum. Foe — 0 we obtaina, — o, and the pairing function of Ty. In (c) and (d) we show the results corresponding to
’ N o = UUN, (a) and (b) when assuming an (abrupt) tunneling cone witmioge
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amplitudes are either purely (odd-frequency) triplet, angle of 10 degree.
—t1t)-sgny 9
fs(o) =0, ft(o) _ Tzl gr( Ni for |t Jgf| >1, (4)
O — (tyt)) T tunneling probability shows that in the tunneling limit tgn

dependence of the transmission probabilities can be rieglec

or purely (even-frequency) singlet and only that of the phase shifts needs to be kept. Thus, we

11t EN assume; = t; = t. We model the dependence on the impact
fs(0) = ———, f1(0) =0 for— < 1. (5) -~ i .
/(trt,)% — 0%, tit] angley ast(u) = (to)*, p = costp, and assume for simplic

ity spin mixing angles independent pf The tunneling prob-
Comparing with the results for the diffusive case, we find tha ability for normal impact isTy = t2. In the casély < 9y at
G4 /G corresponds te-dn /(t1t)). small energies the odd frequency triplet amplitude donesiat
In Fig. [3, we show results for the proximity amplitudes in and it is the only non-zero amplitudeat= 0. On the other
the ballistic limit, and focus on positive valuesdf; without  hand, forT, > ¢y both singlet and triplet amplitudes con-
loss of generality. A systematic expansion of all terms i th tribute. This is due to the fact that for large impact anghes t
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transmission probability(x.)? drops below the value for the a superconductor/normal metal bilayer with spin-actiterin

spin mixing angled . face. We find that both in the ballistic and diffusive limits,
We turn now to the DOS. The general expression, assunthe usual even-frequency correlations may vanish corniplete
ing the bulk solution in the superconductor,N§e)/Ny = at zero energy, while odd-frequency correlations per3isis

ReZa:ﬂfJIaal/«/a%—(tTtl)Q dp. In the tunneling resultis completely independent of the specific valuesier t
limit, this simplifies again, and provided thaty| >  layer thicknesses and barrier resistances, indicatirigttisea

t1t; for all impact angles, the DOS at the Fermi level robust and general feature of spin-active interfaces. @uf fi
is enhanced above its normal state valié(0)/N, =  ings suggest a way of obtaining unambiguous experimental
fdu 19N/ /19?\] — (t1t,)2. In Fig. [@, we show results for identification of superconducting odd-frequency corielz.
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