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The controlled fabrication of well-ordered atomic-scale metallic contacts is of 

great interest: it is expected that the experimentally observed high percentage of 

point contacts with a conductance at non-integer multiples of the conductance 

quantum G0=2e2/h in simple metals is correlated to defects resulting from the 

fabrication process. Here we demonstrate a combined electrochemical 

deposition and annealing method which allows the controlled fabrication of 

point contacts with pre-selectable integer quantum conductance. The resulting 

conductance measurements on silver point contacts are compared with tight-

binding-like conductance calculations of modeled idealized junction geometries 

between two silver crystals with a predefined number of contact atoms.  
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Due to their interesting physical properties and potential technological perspectives, metallic 

quantum wires and atomic-scale contacts are an object of intensive experimental1-9 and 

theoretical investigations10-13. As the size of these constrictions is smaller than the scattering 

length of the conduction electrons, transport through such contacts is ballistic, and as the 

width of the contacts is on the length scale of the electron wavelength, the quantum nature of 

the electrons is directly observable. The electrical conductance of such quantum structures is 

given by the Landauer formula G = G0 Σ τn, where G0 = 2e2/h is the conductance quantum 

(where e is the charge of the electron and h is Planck’s constant). τn gives the transmission 

probability of the nth channel and depends crucially on the orbital structure of the conducting 

atoms3, but also on the atomic structure, in particular on scattering at defects and 

boundaries11, as well as internal stress10. In practice, most conductance measurements of point 

contacts, even for simple metals, yield non-integer multiples of the conductance quantum G0. 

Such deviations from the ideal behavior can stem from material-specific properties of the 

junction or from defects that result from the fabrication process. Here we combine 

electrochemical deposition and annealing methods for the fabrication of metallic quantum 

point contacts which yield nearly ideal integer multiples of G0 for the quantum conductance 

and explain their properties by comparison with conductance calculations for selected, near 

crystalline junction geometries with a pre-selected number of contact atoms. 

 

Especially in experiments based on atomic-scale contact fabrication by mechanical 

deformation (e.g. break junctions or STM setups1-3), there is very limited control of the 

growth and properties of the atomic-scale contacts. In these experiments long-term stable and 

defect-free contacts with conductance at integer multiples of the conductance quantum G0 are 

difficult to realize in practice as the fabrication process is essentially connected with the 

formation of atomic-scale defects such as dislocations. 

 

To produce well-ordered contacts, a technique of nearly defect-free growth by slow quasi-

equilibrium deposition is required, which can be provided by electrochemical deposition 

methods4-8. In addition, techniques of electrochemical annealing provide the possibility of 

healing atomic-scale defects in contacts even after fabrication (see below). Due to its high 

electrochemical exchange current density14, silver is a promising candidate for efficiently 

applying electrochemical annealing techniques.  
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In this letter we demonstrate an electrochemical annealing method by electrochemical 

deposition/dissolution cycling of atomic-scale silver contacts and compare the experimentally 

observed conductance with the calculated conductance of modeled idealized junctions 

between two ideal single crystals with a predefined number of contacting atoms. 

 

The experimental set-up is shown in Fig. 1(a). By applying an electrochemical potential, 

silver was deposited within the gap between two macroscopic gold electrodes (gap width 

typically of the order of 50 nm). The gold electrodes (thickness approx. 100 nm) were covered 

with an insulting polymer coating except for the immediate contact area and served as 

electrochemical working electrodes. Two silver wires (0.25 mm in diameter, 99.9985% 

purity) served as counter and quasi-reference electrodes. The potentials of the working 

electrodes with respect to the quasi-reference and counter electrodes were set by a computer-

controlled bipotentiostat. The electrolyte consisted of 1 mM AgNO3 + 0.1 M HNO3 in bi-

distilled water. All experiments were performed at room temperature, the electrolyte being 

kept in ambient air. For conductance measurements, an additional voltage of 12.9 mV was 

applied between the two gold electrodes. While one of the gold electrodes was connected to 

the ground potential the other gold electrode was kept at -12.9 mV relative to this ground 

potential. 

 

When applying an electrochemical potential of 10 … 40 mV between the electrochemical 

reference electrode and the two gold electrodes (gold electrodes with negative bias relative to 

the electrochemical reference electrode), silver crystals formed on the two gold electrodes, 

two crystals finally meeting each other by forming an atomic-scale contact (see inset in 

Fig. 1(a)). During deposition, the conductance between the two gold electrodes was 

continuously measured. As soon as a predefined conductance value was exceeded, the 

computer-controlled feedback immediately stopped further deposition of silver on the 

working electrodes. If desired, the deposited contact could be fully or partially 

electrochemically dissolved by applying an electrochemical potential of -15 … -40 mV.  

 

Figure 1(b) gives conductance-vs-time curves of the closing processes of four different 

atomic-scale contacts during initial deposition, i.e. before electrochemical annealing. In this 

way, initially, contacts of limited stability were formed, typically exhibiting conductance 

values which are non-integer multiples of G0. Now, a dissolution/deposition cycle between 

predefined conductance values was performed: after the initial deposition cycle, a dissolution 
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potential was applied until the conductance dropped below a predefined lower threshold. 

Subsequently, deposition was started once more until conductance exceeded a predefined 

upper threshold. At this point, a new dissolution-deposition cycle was started and so on. 

Typically, after a number of cycles, a stable contact was formed, which exhibited an integer 

conductance value, and the cycling was stopped. Using this method, stable conductance levels 

at integer multiples of G0 were configured. Examples for  n·G0  (n = 1, 2, 3, 4, 5) are given in 

Fig. 2(a). This transition from instable contacts with non-integer conductance to stable 

contacts with integer conductance values can be explained by an electrochemical annealing 

process, which heals defects in the direct contact region by electrochemical deposition and 

dissolution leading to an optimized contact configuration. After the electrochemical annealing 

process, most transitions appear to be instantaneous within the time resolution of the diagram 

of Fig. 2(a) (50 ms), whereas at higher time resolution (10 µs), fingerprints of the atomic-

scale reorganization of the contact were observed in the form of both integer and non-integer 

instable transient levels. 

 

In order to get insights into the possible structures of the measured point contacts, we 

calculated the coherent conductance of ideal crystalline silver nanojunctions (see Fig. 2(b)). 

Geometries were generated by assuming two fcc electrode clusters, which are connected at 

their tips by a small number of Ag-Ag-bridges in [111] direction with a bond length of 

2.88 Å15. 

 

The zero-bias quantum conductance of a given junction geometry was computed with the 

Landauer formula16,17. The electronic structure was described using an extended Hückel 

model18,19 including s-, p- and d-orbitals for each silver atom (around 3600 orbitals per 

junction). Consistently, material-specific surface Green's functions were computed using a 

decimation technique17. To reduce the influence of interference effects, we averaged the 

conductance G(E) over a small interval [EF -∆, EF +∆] around the Fermi energy (with ∆ = 

50 meV), which is comparable to the temperature smearing in measurements at room-

temperature.  

 

As shown in Fig. 2(b), we find nearly integer conductance of the idealized geometries for 

contact geometries #1 … #5: 0.97 G0, 1.95 G0, 2.89 G0, 3.95 G0, 4.91 G0, respectively. The 

deviation from integer multiples of G0 of about 0.1 G0 is within the range of the accuracy of 

our numerical method. We observe a good correlation between the number of silver atoms at 
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the point of minimal cross section and the number of conductance quanta, which aids in the 

construction of geometries with a particular value of the conductance. However, this is a 

material-specific property of silver not necessarily to be encountered in other materials.  

 

Figure 3 shows the calculated transmission as a function of the electron energy within the 

energy interval [EF - 6 eV, EF + 6 eV] for the five silver point contact geometries (#1 - #5) 

given in Fig. 2(b). The experimentally relevant values correspond to the conductance at the 

Fermi energy indicated by the vertical line in the figure. For the given silver junction 

geometries we obtained Fermi energies between -5.83 eV and -5.81 eV, which may be 

slightly below the correct value, caused by the known energy underestimation of the extended 

Hückel model17. The conductance curve oscillations are sensitive to the atomic positions. 

Therefore, an average of the conductance around the Fermi energy yields a more 

representative value of the conductance G, taking effectively into account the atomic 

vibrations during the measurement.  

 

In order to study to which extent the conductance values change due to geometrical changes 

in the interatomic distance of the contacting atoms and the relative angle between the 

contacting crystals, we introduced finite changes in contact geometry: we calculated the 

electrode distance and twist-angle dependence of the zero bias conductance. Increasing the 

electrode distance to twice the Ag-Ag bond length leads to a decrease by 86.7 % in the 

conductance, while twisting the electrodes by 60° against each other leads to a decrease of 

conductance of 22.0 %.   

 

To conclude, the results demonstrate that for silver as a representative of a simple s-type 

metal, if defects and disorder in the contact area are avoided, the conductance in atomic-scale 

point contacts typically is an integer multiple of the conductance quantum G0. The method of 

combined electrochemical deposition and electrochemical annealing of point contacts has 

proven to be a very efficient technique to generate such well-ordered contacts. On the other 

hand, if annealing is omitted, non-integer multiples of the conductance quantum are observed, 

which can be attributed to scattering due to defects and disorder within the contact area. These 

observations are confirmed by calculations on ideal model geometries of contacting silver 

nanocrystals, which yield integer multiples of the conductance quantum within the accuracy 

of the calculation in all five cases investigated. As soon as disorder or local distortions of the 

atomic lattice within the contact area are introduced in the model geometry, drastic deviations 
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from integer quantum conductance are obtained. This, in turn, indicates that such kind of 

disorder is effectively avoided in our experiments as a consequence of the electrochemical 

annealing approach. The results not only give an experimental proof of integer conductance 

quantization in annealed contact geometries of simple metals. The reproducible fabrication 

process also opens perspectives for the controlled configuration of atomic-scale quantum 

devices. 
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Figure captions 

 

FIG. 1. 

(a) Schematic diagram of the experimental setup. Within a narrow gap between two gold 

electrodes on a glass substrate, a silver point contact is deposited electrochemically. Inset: 

Two electrochemically deposited silver crystals between which the atomic-scale silver 

contact forms (deposition voltage: 30 mV). 

 

(b) Conductance of four different silver point contacts during initial electrochemical 

deposition. Before electrochemical annealing, contacts of limited stability are formed, 

typically exhibiting conductance values which are non-integer multiples of G0. 

 

 

FIG. 2. 

Comparison of experimental conductance data of electrochemically annealed silver point 

contacts with calculations assuming idealized geometries. 

(a) Quantum conductance of five different annealed atomic-scale contacts at 1 G0, 2 G0, 

3 G0, 4 G0, 5 G0, respectively (with 1 G0= 2e2/h ), which were reversibly opened and 

closed.  

(b) Idealized geometries of silver point contacts with predefined numbers of contacting 

atoms. Conductance calculations performed within a Landauer approach result in near-

integer multiples of G0 for each of the five contact geometries (#1-5). For the 

conformations shown above, the axis of symmetry of the junction corresponds to the 

crystallographic [111] direction. 

 

 

FIG. 3. 

Calculations of the transmission as a function of the electron energy for the five different 

silver contacts (#1-5) of Fig. 2(b). The experimentally relevant values correspond to the 

conductance at the Fermi energy indicated by the vertical line in the figure. 
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Figure 1 
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Figure 2 
 
 
 



12 

Figure 3 
 
 

 


