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Non-local electron transport and cross-resistance peak in NSN heterostructures
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We develop a microscopic theory describing the peak in the temperature dependence of the non-
local resistance of three-terminal NSN devices. This peak emerges at sufficiently high temperatures
as a result of a competition between quasiparticle/charge imbalance and subgap (Andreev) contribu-
tions to the conductance matrix. Both the height and the shape of this peak demonstrate the power
law dependence on the superconductor thickness L in contrast to the zero-temperature non-local
resistance which decays (roughly) exponentially with increasing L. A similar behavior was observed
in recent experiments.

Non-local effects in coherent electron transport across
hybrid structures composed of a superconductor (S)
attached to two normal terminals (N) have recently
become a subject of intensive experimental1,2,3 and
theoretical4,5,6,7,8,9,10,11,12 investigations. Provided the
distance L between two N-terminals (see Fig. 1) is
smaller than (or comparable with) the superconducting
coherence length ξ, two non-local processes contribute to
electron transport through such NSN devices. One pro-
cess corresponds to direct electron transfer (DET) be-
tween two N-metals through a superconductor. Another
process is the so-called crossed Andreev reflection (CAR):
An electron penetrating into the superconductor from the
first N-terminal forms a Cooper pair together with an-
other electron from the second N-terminal in which case
a hole goes into the second N-metal. A non-trivial in-
terplay between DET and CAR yields a rich variety of
features observed in recent experiments1,2,3.

Here we focus our attention only on one of such fea-
tures, a pronounced peak in the temperature dependence
of the non-local resistance observed in three-terminal
NSN structures1,3 and attributed to charge imbalance ef-
fects. Very recently Golubev and one of the authors11 of-
fered a theory for this phenomenon interpreting the non-
local resistance peak as a result of a competition between
the contributions of charge imbalance and Andreev re-
flection. A striking experimental observation3 is that the
height of the resistance peak depends on the distance L
between N-terminals much weaker than the correspond-
ing low temperature cross-resistance which was found
to decay (approximately) exponentially1,3 ∝ exp(−L/ξ)
in agreement with theoretical predictions4,5,6,8,12. Note
that due to the restriction L <∼ ξ it was not possible to
address the length dependence of the resistance peak1,3

within the model11.

Below we will employ the model of three-terminal NSN
structures with ballistic electrodes8 which allows for a
complete non-perturbative solution of the problem for
all values of L. We will specifically address the temper-
ature dependence of the non-local resistance R12(T ) and
demonstrate that the height of the charge imbalance peak

FIG. 1: Schematics of our NSN device.

scales with L exactly as the corresponding normal state
resistance RN12

. We believe that this observation might
help to account for recent experimental findings3. In ad-
dition we will argue that – within the model studied here
– the charge imbalance peak for R12(T ) can occur only
in the case of weakly transmitting NS interfaces and it
quickly disappears as the interface transmissions increase
beyond the tunneling limit.

The NSN structure under consideration is depicted in
Fig. 1. We will assume that all electrodes are ballis-
tic and that both NS interfaces (with cross-sections A1

and A2) have arbitrary transmissions D1 and D2 ranging
from zero to one. The distance between these interfaces
L as well as other geometric parameters are assumed to
be much larger than

√

A1,2, i.e. effectively both contacts
are metallic constrictions. At the same time the number
of conducting channels N1,2 = p2

FA1,2/4π in each contact
is assumed to be large.

For convenience, we will set the electric potential of
the S-electrode equal to zero, V = 0. In the presence of
bias voltages V1 and V2 applied to two normal electrodes
(see Fig. 1) the currents I1 and I2 will flow through
SN1 and SN2 interfaces. These currents can be evaluated
with the aid of the quasiclassical formalism of nonequilib-
rium Green-Eilenberger-Keldysh functions13 ĝR,A,K . For
ballistic electrodes considered here the Eilenberger equa-

http://de.arxiv.org/abs/0712.1408v1


2

tions take the form

[

ετ̂3 + eV (r, t) − ∆̂(r, t), ĝR,A,K(pF , ε, r, t)
]

+

+ ivF∇ĝR,A,K(pF , ε, r, t) = 0, (1)

where [â, b̂] = âb̂− b̂â, ε is the quasiparticle energy, pF =
mvF is the electron Fermi momentum vector and τ̂3 is
the Pauli matrix. The functions ĝR,A,K also obey the
normalization conditions (ĝR)2 = (ĝA)2 = 1 and ĝRĝK +
ĝK ĝA = 0. Here and below the product of matrices is
defined as time convolution.

The matrices ĝR,A,K and ∆̂ are 2 × 2 matrices in the
Nambu space

ĝR,A,K =

(

gR,A,K fR,A,K

f̃R,A,K g̃R,A,K

)

, ∆̂ =

(

0 ∆
−∆∗ 0

)

, (2)

and ∆ is the BCS order parameter. Without loss of gen-
erality below we choose ∆ to be real. The current density
is related to the Keldysh function ĝK by the standard
formula

j(r, t) = −eN0

4

∫

dε
〈

vF Sp[τ̂3ĝ
K(pF , ε, r, t)]

〉

, (3)

where N0 = mpF /2π2 is the density of state at the Fermi
level and angular brackets 〈...〉 denote averaging over the
Fermi momentum.

The above equations should be supplemented by the
boundary conditions describing electron scattering at NS
interfaces. Assuming specular reflection at both SN1 and
SN2 interfaces we introduce their transmission probabil-
ities D1,2(px1,2

) ≡ 1− R1,2(px1,2
) (where px1

(px2
) is the

component of pF normal to SN1 (SN2) interface) and em-
ploy the standard Zaitsev boundary conditions14 in order
to match quasiclassical Green functions at both sides of
each of the two interfaces. Deep inside metallic electrodes
S, N1 and N2 the Green functions should approach their
equilibrium values ĝR,A = ±(ετ̂3 − ∆̂)/ΩR,A in a super-
conductor and ĝR,A = ±τ̂3 in normal metals, ΩR,A =
√

(ε ± iδ)2 − ∆2. For the Keldysh functions far from in-
terfaces we have ĝK = tanh[(ε + eV τ̂3)/2T ](ĝR − ĝA),
where V = 0, V1 and V2 respectively in S, N1 and N2

electrodes.

The general solution of the problem within the above
formalism was described in details in Ref.8. Here we
only point out that the accuracy of the above formalism
in the case of double-barrier structures under considera-
tion is justified simultaneously by the two conditions8,15:
A1,2 ≪ L2 and N1,2 ≫ 1.

At low voltages eV1,2 ≪ Tc we obtain

I1 = G11(T )V1 − G12(T )V2, (4)

I2 = −G21(T )V1 + G22(T )V2. (5)

where G12(T ) and G21(T ) are the non-local conductances

of our NSN device8:

G12(T ) = G21(T ) =
GN12

4T

∫

dε

cosh2(ε/2T )

× (1 −R1|a|2)(1 −R2|a|2)
1 − tanh2 iLΩ/vF

P (R1,R2)
. (6)

Here we defined D1,2 ≡ 1 − R1,2 = D1,2(pF γ1,2) and
pF γ1(2) is normal to the first (second) interface com-
ponent of the Fermi momentum for electrons propa-
gating straight between the interfaces, Ω =

√
ε2 − ∆2,

P (R1, R2) = |1−R1R2a
2 −Q[ε(1 + R1R2a

2) + ∆a(R1 +
R2)]|2, Q = Ω−1 tanh iLΩ/vF , a = (Ω − ε)/∆,

GN12
=

8γ1γ2N1N2D1D2

Rqp2
F L2

(7)

is the non-local conductance in the normal state, Rq =
2π/e2 is the quantum resistance unit.

The conductance G11(T ) of the first interface is domi-
nated by the standard BTK expression16

G11(T ) =
N1

RqT

∫

(1 + |a|2)dε

cosh2(ε/2T )

〈 |vx1
|

vF
D1

1 − R1|a|2
|1 − R1a2|2

〉

,

(8)
while a non-local correction to (8) is small in the param-
eter A2/L2 and will be omitted here. The conductance
G22(T ) of the second interface is defined analogously.

In the temperature interval e−∆/T ≪ 1 we obtain fol-
lowing expressions for the conductances

G11(T ) = G11(0) + GN11

√
2π

√

∆

T
e−∆/T , (9)

G12(T ) =







2GN12
e−∆/T , D1D2 ≪ e−∆/T ,

G12(0), T ≪ ∆

ln(1/[D1D2])
,

(10)

where

G12(0)

GN12

=
D1D2(1 − tanh2 L∆/vF )

[1 + R1R2 + (R1 + R2) tanhL∆/vF ]2
, (11)

GN11
=

2N1

Rq

〈 |vx1
|

vF
D1(px1

)

〉

is the normal state (Lan-

dauer) conductance and G11(0) =
4N1

Rq

〈 |vx1
|

vF
D2

1(px1
)

〉

is the subgap (BTK) conductance of the first NS inter-
face.

Turning now to the non-local resistance

R12(T ) =
G12(T )

G11(T )G22(T ) − G12(T )G21(T )
, (12)

we substitute the expressions (10) and (9) into Eq. (12)
and, neglecting the small cross-conductance term G12G21

in the denominator, we obtain

R12(T ) =
2RN12

e−∆/T

[

G11(0)/GN11
+

√

2π∆/Te−∆/T
]×

× 1
[

G22(0)/GN22
+

√

2π∆/Te−∆/T
] , (13)
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FIG. 2: Non-local resistance R12 of an NSN device as a func-
tion of temperature for L = vF /Tc. Provided both interface
transmissions are sufficiently low the non-local resistance ex-
hibits a well pronounced peak. This peak disappears at higher
barrier transmissions.

where RN12
= GN12

/(GN11
GN22

) is the cross-resistance
in the normal state. Eq. (13) applies within the interval
D1D2 ≪ e−∆/T ≪ 1 and represents the central result of
this paper.

We observe that the non-local resistance (13) first
increases with decreasing T reaching its maximum at
T = T ∗ and then decreases with T at lower temperatures.
For the temperature T ∗ with the logarithmic accuracy we
obtain

T ∗ ≃ ∆

ln

√

GN11
GN22

G11(0)G22(0)

, (14)

or simply T ∗ ≃ ∆/ ln(1/D) for symmetric structures
with D1,2 = D. This result matches qualitatively with
that obtained in Ref.11 within a different model.

The temperature dependence of the non-local resis-
tance R12(T ) for our NSN device is depicted in Fig.
2 for different values of the interface transmissions. In
the limit of low transmissions the resistance R12(T ) de-
creases with T right below the superconducting critical
temperature Tc but then turns upwards and exhibits a
well pronounced peak. At lower T the resistance R12(T )
decreases sharply and eventually tends to R12(0) ≡
G12(0)/[G11(0)G22(0)] in the limit T → 0. With in-
creasing interface transmissions D1,2 the peak gets less
pronounced and eventually disappears, in which case the
non-local resistance R12(T ) decreases monotonously with
temperature. The same feature can also be observed in
Eq. (13).

As it is clear from Fig. 3 both the height and the form
of the non-local resistance peak scale with the distance
L exactly as the normal state value RN12

. For instance,

FIG. 3: The same as in Fig. 2 for different values of the
distance L between two N-terminals (measured in units of ξ).
Three curves corresponding to the same barrier transmissions
but different values of L practically coincide, i.e. in the vicin-
ity of the peak R12(T ) in the superconducting state scales
with L exactly as RN12

.

from Eq. (13) we easily determine the height of the re-
sistance peak R12(T

∗) which reads

R12(T
∗)

RN12

=

√

2T ∗

π∆
[
√

G11(0)

GN11

+

√

G22(0)

GN22

]2 (15)

We observe that the right-hand side of Eq. (15) is ex-
pressed only in terms of local conductances and, hence,
is independent of L. This is an important result which
might account for experimental observations3 of a much
weaker L-dependence of R12(T

∗) as compared to the
zero temperature value R12(0). For instance, within our
model of ballistic electrodes for L ≫ ξ0 we have R12(0) ∝
exp(−2L∆(0)/vF ) while R12(T

∗) ∝ 1/L2. Even weaker
length dependence of R12(T

∗) ∝ RN12
∝ 1/L is expected

in the diffusive limit. It would be interesting to scale the
data3 for the resistance peak at different lengths L with
the corresponding normal state resistance RN12

(L).
Although our theory correctly accounts for some key

features of the experimental data it is important to bear
in mind that the model employed here deals with ballistic
electrodes connected via metallic constrictions whereas in
experiments1,3 the electrodes were most likely diffusive.
In addition, we disregarded any relaxation mechanisms
for non-equilibrium quasiparticles inside the supercon-
ductor (except for their escape into the normal terminals)
while such mechanisms (caused, e.g., by electron-phonon
and electron-electron interactions) are obviously present
in experiments being responsible for a finite charge im-
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balance length. Hence, one can also expect certain differ-
ences. For instance, within our model the non-local resis-
tance peak occurs only at small interface transmissions
while the authors1,3 observed such a peak at moderately
high transmissions of NS interfaces. This might be an in-
dication to relatively more pronounced charge imbalance
effects.

In summary, we have developed a quantitative the-
ory describing the peak in the temperature dependence
of the non-local resistance recently observed in three-
terminal NSN devices1,3 at sufficiently high T . This
peak emerges as a result of a trade-off between quasi-

particle/charge imbalance and subgap (Andreev) contri-
butions to local and non-local conductances of the device.
Both the height and the shape of the peak scale with the
normal state resistance RN12

thus demonstrating much
weaker (power law) dependence on the superconductor
thickness L as compared to the zero-temperature resis-
tance R12(0) which decays (roughly) exponentially with
increasing L.

We acknowledge stimulating discussions with D. Beck-
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ubev. This work was supported in part by RFBR grant
06-02-17459.

1 D. Beckmann, H.B. Weber, and H. v. Löhneysen, Phys.
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